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Abstract

The memory-surprisal trade-off (MST) has
been shown to hold cross-linguistically as a
general principle of communicative efficiency
that provides a processing explanation to some
basic properties of language. In this paper, we
explore the influence of diachronic variation on
the MST. We investigate scientific English in
the Royal Society Corpus (RSC) spanning from
the 181 century to modern time; to assess the
impact of intra-linguistic variation (register),
we compare scientific English with “general
language” using parts of the Corpus of Histor-
ical American English (COHA). We observe
a clear diachronic effect for scientific English
towards decreased efficiency as scientific texts
shift from verbal to nominal style and the lexi-
con in the scientific domain expands, while in
general language the effect is less pronounced.

1 Introduction

The development of scientific English over the last
300 years was characterized by a shift from more
intricate sentence structure with a high degree of
clausal embedding towards increasingly informa-
tionally packed noun phrases, shorter sentences,
and decreasing dependency length (DL). These
changes have led to the conclusion that scientific
English has become syntactically less complex at
sentence level and more complex at noun phrase
level over time (Juzek et al., 2020; Krielke et al.,
2022; Krielke, 2024). At the same time, scientific
English has expanded its vocabulary drastically
from ca. 1900 onward, as seen, e.g., in the expo-
nential increase of noun types in the Royal Society
Corpus (RSC; Fischer et al., 2020) (see Figure 3).

In this paper, we set out to model the impact of
lexical expansion and syntactic change on commu-
nicative efficiency in terms of the memory-surprisal
trade-off (MST, Hahn et al., 2021). The MST uni-
fies two competing approaches to communicative
efficiency: Surprisal theory (Levy, 2008), focus-

ing on expectation-based efficiency, assumes that a
word w; becomes easier to predict the more context
information (e.g., preceding words wy, ..., w;—1) is
available. Dependency Locality Theory (Gibson,
2000) assumes that memory-based efficiency is op-
timized if words that are close to each other in a
dependency tree (see Figure 1) are also close to
each other in the surface form of a sentence, i.e.,
if dependency lengths between words on average
are small. The MST combines these approaches
by positing that for a given language, the actual
word order in a sufficiently large corpus balances
the requirements of predictive processing (surprisal
theory) and communicative efficiency (dependency
locality) by optimizing the amount of information
that needs to be stored in memory to reach an av-
erage surprisal level. In their seminal paper, Hahn
et al. (2021) showed that the syntax of a typolog-
ically diverse set of languages is optimized with
respect to this trade-off.

We ask whether the communicative efficiency
of scientific English as measured by the MST
changes over time due to linguistic change, and
if so, whether it becomes better or worse and
which factors are most influential. We also ask
whether any changes in MST are register-specific,
i.e., whether scientific English is affected more than
general English, and whether the language of dif-
ferent scientific disciplines reacts differently (due
to domain-specific lexical expansion).

2 Related Work

2.1 Diachronic development of scientific
English

In the past 300 years, scientific English has un-
dergone substantial changes on the lexical and
grammatical levels (e.g., Banks, 2003; Halliday,
1988). Lexis is continuously expanded with new
technical terms (Halliday and Martin, 1993; Wang
et al., 2023), and due to the increasing shared back-



The skin , in which the three - week old featus of a cow is normally wrapped

(a)

Typical integumentary coverage of the three - week bovine fetus

(b

Figure 1: Dependency structures of (a) noun phrase with relative clause postmodification (15 words) and (b) noun

phrase with multiple premodication (9 words).

ground knowledge within individual scientific dis-
ciplines, grammatically explicit constructions such
as clausal subordination (Example in Figure 1a)
become less frequent (Hundt et al., 2012; Krielke,
2024) in favor of a dense, implicit nominal style
with heavy noun phrase constructions (Biber and
Gray, 2011; Biber and Clark, 2002) (cf. Example
in Figure 1b).

According to rational communication, di-
achronic change is a continuous process of adapt-
ing the linguistic system to emerging communica-
tive needs while holding processing effort sta-
ble. Information-theoretic approaches (Degaetano-
Ortlieb and Teich, 2019) have shown that periods
of lexical expansion are associated with increased
surprisal (and thus increased processing load) (e.g.
Steuer et al., 2024), while grammatical convention-
alization leads to optimization of expectation-based
processing for increasingly predictable grammat-
ical constructions (Degaetano-Ortlieb and Teich,
2019; Degaetano-Ortlieb et al., 2019; Teich et al.,
2021; Bizzoni et al., 2020).

To cognitively assess syntactic phenomena, de-
pendency locality (the distance between syntacti-
cally related words) has been used to approximate
the processing difficulty of working memory (Gib-
son, 1998, 2000; Lewis and Vasishth, 2005). While
overall, languages tend to minimize the length of
their syntactic dependencies (Futrell et al., 2015;
Liu, 2008) compared to random baseline word or-
ders, this also applies diachronically (Gulordava
and Merlo, 2015; Lei and Wen, 2020) and in spe-
cific registers (Juzek et al., 2020; Krielke, 2024).
In the present paper, we set out to measure commu-
nicative efficiency by applying the MST over time
as well as by register (scientific vs. non-scientific
language).

2.2  Memory-surprisal models

Hahn and Futrell (2020) extend expectation-based
processing models (Levy, 2008) and lossy compres-
sion theory (Cover and Thomas, 2006) to propose
an information-theoretic framework for memory
efficiency in language. They define memory effi-
ciency as a trade-off between surprisal and memory
usage where reducing average surprisal per word
requires storing more information about past con-
text. Applying this to 54 languages, they find that
word order optimizes processing efficiency under
memory constraints, supporting the idea that syntax
facilitates efficient online processing. Hahn et al.
(2021) extend the notion of the MST proposing
the Efficient Tradeoff Hypothesis, which suggests
that word order in natural language is shaped by
pressures to optimize this tradeoff. They further de-
rive that languages achieve more efficient tradeoffs
when they exhibit information locality, i.e. predic-
tive information about a word is concentrated in
its immediate preceding linguistic context. While
these approaches have proven a cross-linguistic ten-
dency to order words and morphemes to achieve a
maximally efficient tradeoff between memory and
surprisal, to date, the approach has not been applied
to intralinguistic or diachronic studies.

2.3 MST Intuition

Figure 2 illustrates the relationship between MST
curves and area under the curve (AUC) for five
years from the RSC: the curve for the last year
(1900) starts at the highest unigram surprisal and
then converges to the highest surprisal level after
the maximum amount of memory bits, resulting in
the highest AUC value. Conversely, the first year
(1820) starts at the lowest unigram surprisal and
reaches the lowest surprisal level overall after the
maximum number of memory bits, resulting in the
lowest AUC and thus a more optimal MST. Be-
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Figure 2: MST curves (1820-1990) and their respective
areas under the curves (AUC). MST curves where ex-
tended to the maximum per-document memory in the
RSC.

tween those years, 1950 still follows the (expected)
trend of increasing unigram surprisal, but intersects
the MST curve of 1850, leading to a lower AUC
and a temporary increase in optimality w.r.t. the
MST.

3 Rationale and Hypotheses

Over time, scientific English has shifted toward a
nominal style with high lexical density and syn-
tactic conventionalization, promoting local but im-
plicit dependencies. Simultaneously, vocabulary
growth increases lexical variability, suggesting an
interaction between lexis and grammar. Nominal
constructions reduce the efficiency of memory-
based prediction due to implicit dependencies,
whereas verbal constructions support explicit, less
local dependencies and benefit more from mem-
ory. As vocabulary expands, the average lexical
surprisal rises, implying that the minimum achiev-
able surprisal in later periods exceeds that of earlier
ones.

Specifically, we expect that changing prefer-
ences for specific syntactic constructions will lead
to different shapes of the MST. For instance, a lan-
guage variety (e.g., register and/or period) with
a high usage of subordinate constructions leads

to longer dependencies generating longer predic-
tive contexts (e.g., Figure 1a). Such constructions
benefit from higher memory usage to predict the
next word, since more memory helps to reduce sur-
prisal. In contrast, varieties using highly dense con-
structions (e.g., Figure 1b), less memory should be
enough on average to predict the next word, while
more memory should not necessarily improve the
prediction.

To quantify the quality of the MST over time,
we calculate the area under the curve (AUC) of the
memory—surprisal graph per decade in scientific
and general English. We compare the AUCs calcu-
lated for both corpora per 50-year periods to find
out if optimization on memory efficiency develops
differently in scientific vs. general English. For a
more fine-grained analysis, we calculate the MST
for word classes (nouns, verbs, other) and compare
the AUCs respectively.

Since the AUC can only give us a reduced picture
of the actual shape of the MST, we also consider the
actual MST graphs and interpret their slopes. If a
graph flattens at a low memory budget, this means,
more memory does not contribute to improving the
prediction of the next word. If a graph decreases
steadily, this means that every further token held in
memory improves the prediction of the next word
further.

Based on the attested developments in scientific
English, we form the following hypotheses:

H1.1: Impact of average surprisal We expect
the MST to deteriorate (i.e. increasing AUC) in
both RSC and COHA (scientific vs. "general"
English) due to the general increase in surprisal
through vocabulary expansion.

H1.2: Impact of register We expect the MST to
deteriorate (i.e. increasing AUC) more strongly in
the RSC than for COHA due to a stronger vocabu-
lary increase in scientific English.

H2: Difference between POS The vocabulary
expansion affects the MST of nouns (i.e. increasing
AUC) more than other POS, especially in scientific
English.

H3: Effects of nominal style on shape of the
MST curves Over time, we expect to find a
weaker surprisal reduction with more bits of mem-
ory, especially in the RSC.
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Figure 3: Increase of types per part-of-speech (POS)
in the RSC over time; "Other" contains all POS except
nouns and verbs.

4 Data
4.1 Royal Society Corpus

We use two English diachronic corpora covering
the time between 1750 and 2000. For scientific
English we use the Royal Society Corpus, (RSC;
Fischer et al., 2020), consisting of the publications
of the Royal Society of London with 47K docu-
ments and 300M tokens. We evaluate the evolution
of the MST in 3 sub-samples, given that the RSC
was split into subjournals around the 1900: (1)
RSC encompasses all documents from 1665 to
1900, and from 1900 onward (2) RSC-A includes
the Proceedings and Transactions of the Mathemat-
ical, Physical and Engineering Sciences, and (3)
RSC-B containing publications of the Proceed-
ings and Transactions of the Biological Sciences.
Documents from a forth category containing, e.g.,
obituaries were excluded from the analysis.

4.2 Corpus of Historical American English

For general English, we use a reduced version
(masked words) of the multi-genre, diachronic
COHA corpus (Davies, 2021). The full COHA
comprises over 475 million words spanning the
1820s to 2010s. To make the linguistic annotation
comparable in both corpora, we parse and POS-tag
the corpus with the Stanza software package (Qi
et al., 2020), using the default English parser.

4.3 Corpus subsampling

We follow the diachronic language modeling ap-
proach introduced by Steuer et al. (2024) by sub-
sampling train sets of approximately identical size
for each year in a corpus (see Table 1 in Appendix
A). For the tokenization methods not based on sub-
words, we apply a post-processing step that reduces

the number of vocabulary items to obtain approxi-
mately similar vocabulary sizes of ~ 80.000. For
each tokenization method, we choose a separate
threshold frequency frgpr that any token in the
train set must exceed to be included in the tok-
enizer’s vocabulary. We split the train set by white
spaces and replace all words that occur only ¢rgpL.
times in the train set by an "unknown" token that
corresponds to its POS tag as given by the UPOS
column in the conllu file. Then, we replace all
OOV items in the validation and test sets in the
same way.

5 Methods

5.1 Tokenization

We tested several tokenization methods for both
corpora. These methods are described in detail in
Appendix A. For the results in the main paper, we
used a lempos-based tokenization: We first split the
train corpus by whitespaces, and then replace each
word with a concatenation of its lemma form as
given by the UPOS tag as given by the respective
columns of the conllu file. In case the absolute
frequency of a word did not exceed the threshold
value trepr it is replaced by its UPOS tag. We
then replace all out-of-vocabulary (OOV) items in
the validation and test set in the same way. The
final tokenizer (used for all models trained on that
corpus) is trained on the concatenated train sets
of each corpus. This dampens the effect of the
exponential increase of noun types in the RSC, and
allows a closed, word-based vocabulary sampled
equally from all years of the corpus.

5.2 Language models

For each tokenization method, we use Hugging
Face transformers (Wolf et al., 2020) to train the
base version of the OPT architecture (Zhang et al.,
2022) on each subset of the training corpus (i.e.,
the train set of pertainging to a single year in either
RSC or COHA) for 10 epochs with a batch size of
256, a learning rate of 5 x 10~ and a linear learn-
ing rate warmup over 50% of training steps. Word-
level models were trained with a context window
of 32, and the BPE model with a context window
of 64. Training was done on a cluster of 8 Nvidia
A100 GPUs with 40GB of memory and took about
2 hours per model. We then used the language mod-
els to estimate surprisal values on all documents
from each test year of the two corpora.
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Figure 4: Memory-surprisal trade-off curves for 10 years from the RSC. Surprisal was averaged over documents
and cross-validation folds. Each dot on a curve corresponds to a surprisal - memory pair, starting with unigram
surprisal and no memory. All curves where extended to the maximal amount of memory available.

5.3 Surprisal estimation

For each context size 7" ranging from 7" = 0 (uni-
gram surprisal) to T4, = 20, we estimate average
surprisal S7 on a document D of |D| words fol-
lowing Hahn et al. (2021):

|D|
Z —logy p(wi|wi—7, ..., we_1)

t=T

)
We estimate p(w;|wi_7, ..., w1 ) directly from a
transformer model averaging S on the documents
from a single year over 5 models trained on differ-
ent cross-validation splits as described in Section
4. Since the model may overfit for larger values
of T" due to data sparsity, we stop estimating Sr
if S'T > S'T_l and substitute S'T_l for S’T. Since

1

D] =T

~

Sp =

)]

we want to compare the MST of different POS
tags, we calculate St for a a given set of POS tags
P = {p1,...,p p|} and a subset of words Dp C D
as:

[Dp|

A 1
F = e 3 o bl i)
t=T
2

5.4 AUC calculation

We then use surprisal estimates 5‘5 to calculate
mutual information /. 713 for each context size T as
IF = S’;_I—S’P, and memories M:,E as ZZ;O tljlf.
We chose the following POS tag sets: Nouns
(UPOS = "NOUN"), verbs (UPOS = "VERB") and
other (all other POS). After estimating 5‘713 sand I%,
we calculate the area under the memory-surprisal
trade-off curve (AUC) by applying the trapezoidal



Yearr KoKk
POS: nounf
POS: verbf
Journal: rsc *k
Journal: rsc-af- *okok

Journal: rsc-bf- X
Surprisal-7 |

Year - POS: nounf  *xx*
Year - POS: verb} *okok
Year - Journal: rscf *x

Year - Journal: rsc-af *x
Year - Journal: rsc-b} X
POS: noun - Journal: rsc| *kK
POS: verb - Journal: rscf
POS: noun - Journal: rsc-af *kk
POS: verb - Journal: rsc-a
POS: noun - Journal: rsc-bf *kk
POS: verb - Journal: rsc-br EEE3
Year - Surprisal-7 *k ok
Year - POS: noun - Journal: rsc| *xk

Year - POS: verb - Journal: rscf X
Year - POS: noun - Journal: rsc-ar *kk
Year - POS: verb - Journal: rsc-a X
Year - POS: noun - Journal: rsc-b- *kok
Year - POS: verb - Journal: rsc-b}- *kk

0.2 0.4 0.6 0.8

Estimate

Figure 5: Effects of part of speech, journal and time on AUC for the period from 1820 to 1996. Reference levels for
factor variables are "other" (POS) and "coha" (journal). Significance levels: ****’ p < 0.001, ***’ p < 0.01, **’
p < 0.05,’x” p >= 0.05. Error bars show standard error of the coefficient estimate.

rule using the corresponding function of the scikit-
learn Python package (Pedregosa et al., 2011).

5.5 Statistical modeling

To assess the temporal development of the MST in
the two corpora, we fit linear mixed-effects models
(LMES) via the ImerTest R package with AUC as re-
sponse variable and average per-document 7-gram
surprisal (surprisal estimated from the transformer
model with 6 words in the context), journal, period,
and POS as dependent variables. As we calculate
the AUC for each document in the corpus, we in-
clude the document ID as a random effect nested
in the corpus variable. We fit a separate LME for
each tokenization method. We used the following
formula to fit all regression models:

Imer(auc ~ year * pos * journal + surprisal-7 *
year + (1|corpus/doc_id), data = .)

We normalized auc, year and surprisal-7 to the in-
terval [0, 1]. We chose "coha" (that is, the whole
COHA corpus) as the base level of the journal vari-
able, and "other" (not noun or verb) as the base
level of the POS variable.

6 Analysis

6.1 Effect of surprisal

Overall, the observed effects are in line with our ex-
pectations. We find the strongest effect for 7-gram
surprisal (Estimate: 0.8525; CI: 0.8492, 0.8557;
t = 522.77). A positive estimate corresponds to an
increase in AUC, i.e., a worse MST, while a neg-
ative estimate corresponds to a decrease in AUC
and a better MST compared to the base level of the
variable. Given the fact that AUC is correlated with
the surprisal values at different memory budgets,
the strong association between the predictor and re-
sponse is plausible. Figure 5 is a detailed overview
of all effects of interest, besides surprisal. We also
see main effects of POS, with both nouns (Esti-
mate: 0.44; CI: 0.43, 0.45; t = 96,17) and verbs
(Estimate: 0.27, CI: 0.26,0.28; ¢t = 61.47) having
on average higher AUCs than other POS, which is
in line with their generally higher surprisal.

6.2 Effect of RSC subjournals

Comparing the language of the three subjournals of
the RSC to COHA, we find a mixed picture. AUC
is higher for the early RSC (up until 1900), though
this effect is small (Estimate: 0.03; CI: 0.002,0.06;

= 2.11), while we find no significant effect for
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RSC-B. For RSC-A we find a large negative ef-
fect (Estimate: -0.1, CI: -0.11, -0.09; t = —15.41),
showing that the language of this subjournal is opti-
mized w.r.t. the MST compared to general English.

6.3 Effect of time

AUC increases gradually over time (main effect of
the "Year" variable; Estimate: 0.0798, CI: 0.0731,
0.0866; t = 23.26). We find significant interac-
tions of time and POS, with both nouns (Estimate:
-0.15; CI: -0.17, -0.14; t = —32.94) and verbs (Es-
timate: -0.11; CI: -0.12, -0.1; t = —24.96) show-
ing a markedly slower increase in AUC than other
POS. This effect is stronger in the RSC than in
COHA, with triple interactions between time, POS
and journal indicating a slower increase for nouns
compared to other POS in RSC (Estimate: -0.7;
CIL: -0.10, -0.04, t = —4,41), RSC-A (Estimate:
-0.04; CI: -0.07, -0.03; t = —4.37), and RSC-B
(Estimate: -0.05; CI: -0.07, -0.03; t = —3.82).

6.4 Effect of POS

Apart from the main effect of POS, we also find sig-
nificant interactions of POS and journal: Verbs gen-
erally have a higher AUC than other POS in RSC
(Estimate: 0.16; CI: 0.12, 0.2; t = 7.95), RSC-A
(Estimate: 0.19, CI: 0.17, 0.21; ¢ = 21.33), and
RSC-B (Estimate: 0.06; CI: 0.04, 0.08; ¢t = 5.19)
compared to COHA, while nouns are overall as-
sociated with lower AUC. This is in line with our
findings for the interaction of time, POS and jour-

nal: Not only do nouns in the RSC generally have
a lower AUC (see Section 6.1), but the increase
in AUC over time is not as large as may be ex-
pected based on the overall increase. Thus, while
the number of nominal vocabulary items increases
drastically over time in the RSC, the syntax of sci-
entific English is still in some sense optimized w.r.t.
the MST for nouns and verbs.

7 From AUC to Shape of the MST curves

7.1 Effect of nominal style

In the previous section, we have analyzed the over-
all development of optimality in the two corpora
as measured by the AUC. However, the AUC is
only an approximation of optimality, given that
MST curves whose AUC is compared are parallel
in time. Furthermore, even when two curves do not
cross, the degree to which more bits of memory
reduce surprisal is not covered by the AUC. We
will therefore analyze in more detail the individual
shapes of the MST curves as well as the surprisal
reduction rate per every additional bit of memory.

Looking at Figure 4, we see that the MST curves
show different shapes in different years. Especially
for nouns in the RSC, MST curves show an inter-
esting picture: While surprisal in the first 100 years
(1820 - 1920) continuously drops per additional
bit of memory, in the last 60 years, surprisal shows
very little reduction with less than 5 bits of memory.
A similar trend can be observed for verbs in the



RSC and other POS, however, not as pronounced
as for nouns. At the same time, nouns show a
decreasing unigram surprisal, which is surprising
given the fact that the number of nominal vocabu-
lary items increases over time. It shows, however,
that in the case of nouns, the increase in AUC over
time is not owed to increasing surprisal but instead
to the decreasing surprisal reduction per bit of in-
formation held in memory. A meta-interpretation
of this would be that increasingly dense structures
as typical for nominal style lead to a decreasing
information gain through additional memory, or in
other words: If information is packed in dense con-
structions, only locally placed information helps
reduce surprisal of the next word, while with less
dense constructions, longer context windows are
beneficial for prediction of the next word.

7.2 Effect of NP density

This interpretation is backed by the calculation of
the average slope of the memory-surprisal curves
at equidistant memory intervals of one bit (see Fig-
ure 6). For nouns, less and less information is
gained (or surprisal reduced) per additional bit of
memory for each step of 20 years. Compared to
verbs and other POS, this is especially pronounced.
Comparing RSC and COHA, the slope of the MST
curves levels out faster for COHA than for the RSC,
i.e., the language models trained on the RSC data
can make use of more bits of memory. This differ-
ence may be a result of generally longer sentence
lengths in scientific English than in general English.
Comparing POS, in both corpora, the temporal
effect is strongest for nouns and especially pro-
nounced in the RSC. For verbs, the slope is fairly
similar across time in the RSC, indicating that there
has been less change in predictive contexts of verbs
than for nouns. This is plausible given that most
changes in scientific English are known to have
affected the structure of noun phrases, which have
become increasingly dense over time.

8 Conclusion

We examined the communicative efficiency of sci-
entific vs. general English over time, as measured
by the Memory-Surprisal Tradeoff (MST). Our
central question was whether MST optimality has
changed diachronically and, if so, whether such
changes vary across registers. This inquiry was
motivated by the well-documented shift in English
toward nominal rather than verbal style, manifested

in complex, informationally dense noun phrases.
While the Efficient Tradeoff Hypothesis predicts
that more optimal orderings with respect to local-
ity should yield more efficient MSTs, our findings
indicate the opposite: denser encodings and vocab-
ulary expansion over time appear to reduce opti-
mality. Specifically, we identified two key factors:
growing vocabulary size leads to higher average
lexical surprisal, and less predictive contexts re-
sult in less efficient memory usage. The observed
trends in AUC values suggest a general decline in
optimality over time. However, this interpretation
must be qualified, as vocabulary growth is an in-
herent feature of language evolution. Although our
subsampling strategy was designed to mitigate the
influence of vocabulary size on surprisal estimates,
the overall trend persists. This raises important
questions regarding the comparability of surprisal
values across historical stages. To address this, we
also analyzed the average slope of the MST curves,
capturing the information gained per bit of memory
independently of absolute surprisal levels. This
analysis revealed that for short memory contexts
(1-3 bits), the tradeoff remains relatively stable
over time, suggesting that efficiency has declined
primarily for longer contexts. We interpret this as
evidence that English has become less optimal in
terms of long-range predictability, consistent with
a broader shift toward shorter, denser encodings.

Limitations

There are several limitations to our study. First, our
analysis of scientific English distinguishes between
three journals within the RSC (RSC, Journal A and
Journal B). It is important to note that these jour-
nals reflect both different disciplines (biology and
mathematics) and represent different time periods
(Journals A and B are only published from 1900
onward, RSC contains all earlier publications). A
more detailed analysis of the three journals could
reveal variation among scientific disciplines. Fur-
thermore, more fine-grained distinctions by topic,
author, or subfield could give additional insights
into how efficiency varies along these lines. Sec-
ond, our comparison contrasts these journals with
the entirety of COHA, rather than with more care-
fully matched subsets of general English. A more
nuanced comparison might better isolate register-
specific effects. Third, we did not investigate which
specific documents or genres are driving the ob-
served increase in surprisal over time, nor did we



examine which texts could be considered partic-
ularly (non-)optimal w.r.t. the MST. Addressing
these points in future work would provide a more
detailed understanding of the interaction between
register, vocabulary growth, and communicative
efficiency. Finally, although Scientific English may
appear less optimal, in our surprisal models, we
have not accounted for the factors of specializa-
tion and background knowledge. This is because
our modeling is based on the entire corpus, which
may mask discipline-specific effects. These ef-
fects could become apparent if we were to model
each discipline separately. Additionally, psycholin-
guistic studies on expert text processing would be
necessary to draw more definitive conclusions.
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Corpus ‘ Tokenizer | Tokens ‘ tREPL ‘ V|

Lempos 1 79K

RSC Word 2.5M 1 74K
BPE 0 100K

Lempos 1 83K

COHA Word 3.5M 3 98K
BPE 0 100K

Table 1: Corpus sizes and data preprocessing parameters.
10% of the sampled tokens were used as a development
set.

A Tokenization

A.1 Tokenization Methods

In order to mitigate the problem of vocabulary ex-
pansion, we employ and independently evaluate
three tokenization strategies, which all drastically
reduce the number of tokens in the vocabulary
and do not require a model whose parameters are
mostly in the embedding layer (which would hap-
pen in case of a vocabulary of about 500K tokens,
as in COHA).

Word-level tokenization: This is the simplest
tokenization approach and requires a few tweaks to
work. We use word-level tokenization with replace-
ment of OOV items instead of a subword tokeniza-
tion method because words that are split into many
subtokens due to high tokenizer fertility would be
assigned higher surprisal values by default. The
surprisal of these de-facto OOV items would arti-
ficially inflate our AUC measure and obscure the
impact of word order on AUC.

Lempos tokenization: This tokenization ap-
proach is derived from word-level tokenization, but
reduces the size of the unigram vocabulary even fur-
ther by replacing word forms with a combination
of the corresponding lemma and UPOS tag.

Lempos-{ oot 008

Figure 7: LME coefficients for AUC, surprisal from
language models trained on lempos, word-level and BPE
tokenizations. Non-significant effects in parentheses.
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BPE tokenization: We use the default implemen-
tation of the BPE algorithm in the Hugging Face to-
kenizers Python package to train a tokenizer with a
vocabulary size of 100K on the subsampled version
of each corpus. We did not replace OOV words,
as those are handled by the tokenization algorithm.
An overview of the tokenization methods, thresh-
olds and examples of a tokenized sentence can be
found in Table 1.

A.2 Consistency across tokenization methods

We re-fitted all LMEs with surprisals and AUCs
from language models trained on word-level and
BPE-tokenized versions of the subsampled corpora.
We found that, while effect sizes vary greatly be-
tween tokenizations, the direction of the effects is
consistent. See Figure 7 for a detailed overview
of the LME coefficients for all three tokenization
methods.
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