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Abstract

The memory-surprisal trade-off (MST) has001
been shown to hold cross-linguistically as a002
general principle of communicative efficiency003
that provides a processing explanation to some004
basic properties of language. In this paper, we005
explore the influence of diachronic variation on006
the MST. We investigate scientific English in007
the Royal Society Corpus (RSC) spanning from008
the 18th century to modern time; to assess the009
impact of intra-linguistic variation (register),010
we compare scientific English with “general011
language” using parts of the Corpus of Histor-012
ical American English (COHA). We observe013
a clear diachronic effect for scientific English014
towards decreased efficiency as scientific texts015
shift from verbal to nominal style and the lexi-016
con in the scientific domain expands, while in017
general language the effect is less pronounced.018

1 Introduction019

The development of scientific English over the last020

300 years was characterized by a shift from more021

intricate sentence structure with a high degree of022

clausal embedding towards increasingly informa-023

tionally packed noun phrases, shorter sentences,024

and decreasing dependency length (DL). These025

changes have led to the conclusion that scientific026

English has become syntactically less complex at027

sentence level and more complex at noun phrase028

level over time (Juzek et al., 2020; Krielke et al.,029

2022; Krielke, 2024). At the same time, scientific030

English has expanded its vocabulary drastically031

from ca. 1900 onward, as seen, e.g., in the expo-032

nential increase of noun types in the Royal Society033

Corpus (RSC; Fischer et al., 2020) (see Figure 3).034

In this paper, we set out to model the impact of035

lexical expansion and syntactic change on commu-036

nicative efficiency in terms of the memory-surprisal037

trade-off (MST, Hahn et al., 2021). The MST uni-038

fies two competing approaches to communicative039

efficiency: Surprisal theory (Levy, 2008), focus-040

ing on expectation-based efficiency, assumes that a 041

word wt becomes easier to predict the more context 042

information (e.g., preceding words w1, ..., wt−1) is 043

available. Dependency Locality Theory (Gibson, 044

2000) assumes that memory-based efficiency is op- 045

timized if words that are close to each other in a 046

dependency tree (see Figure 1) are also close to 047

each other in the surface form of a sentence, i.e., 048

if dependency lengths between words on average 049

are small. The MST combines these approaches 050

by positing that for a given language, the actual 051

word order in a sufficiently large corpus balances 052

the requirements of predictive processing (surprisal 053

theory) and communicative efficiency (dependency 054

locality) by optimizing the amount of information 055

that needs to be stored in memory to reach an av- 056

erage surprisal level. In their seminal paper, Hahn 057

et al. (2021) showed that the syntax of a typolog- 058

ically diverse set of languages is optimized with 059

respect to this trade-off. 060

We ask whether the communicative efficiency 061

of scientific English as measured by the MST 062

changes over time due to linguistic change, and 063

if so, whether it becomes better or worse and 064

which factors are most influential. We also ask 065

whether any changes in MST are register-specific, 066

i.e., whether scientific English is affected more than 067

general English, and whether the language of dif- 068

ferent scientific disciplines reacts differently (due 069

to domain-specific lexical expansion). 070

2 Related Work 071

2.1 Diachronic development of scientific 072

English 073

In the past 300 years, scientific English has un- 074

dergone substantial changes on the lexical and 075

grammatical levels (e.g., Banks, 2003; Halliday, 076

1988). Lexis is continuously expanded with new 077

technical terms (Halliday and Martin, 1993; Wang 078

et al., 2023), and due to the increasing shared back- 079
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Figure 1: Dependency structures of (a) noun phrase with relative clause postmodification (15 words) and (b) noun
phrase with multiple premodication (9 words).

ground knowledge within individual scientific dis-080

ciplines, grammatically explicit constructions such081

as clausal subordination (Example in Figure 1a)082

become less frequent (Hundt et al., 2012; Krielke,083

2024) in favor of a dense, implicit nominal style084

with heavy noun phrase constructions (Biber and085

Gray, 2011; Biber and Clark, 2002) (cf. Example086

in Figure 1b).087

According to rational communication, di-088

achronic change is a continuous process of adapt-089

ing the linguistic system to emerging communica-090

tive needs while holding processing effort sta-091

ble. Information-theoretic approaches (Degaetano-092

Ortlieb and Teich, 2019) have shown that periods093

of lexical expansion are associated with increased094

surprisal (and thus increased processing load) (e.g.095

Steuer et al., 2024), while grammatical convention-096

alization leads to optimization of expectation-based097

processing for increasingly predictable grammat-098

ical constructions (Degaetano-Ortlieb and Teich,099

2019; Degaetano-Ortlieb et al., 2019; Teich et al.,100

2021; Bizzoni et al., 2020).101

To cognitively assess syntactic phenomena, de-102

pendency locality (the distance between syntacti-103

cally related words) has been used to approximate104

the processing difficulty of working memory (Gib-105

son, 1998, 2000; Lewis and Vasishth, 2005). While106

overall, languages tend to minimize the length of107

their syntactic dependencies (Futrell et al., 2015;108

Liu, 2008) compared to random baseline word or-109

ders, this also applies diachronically (Gulordava110

and Merlo, 2015; Lei and Wen, 2020) and in spe-111

cific registers (Juzek et al., 2020; Krielke, 2024).112

In the present paper, we set out to measure commu-113

nicative efficiency by applying the MST over time114

as well as by register (scientific vs. non-scientific115

language).116

2.2 Memory-surprisal models 117

Hahn and Futrell (2020) extend expectation-based 118

processing models (Levy, 2008) and lossy compres- 119

sion theory (Cover and Thomas, 2006) to propose 120

an information-theoretic framework for memory 121

efficiency in language. They define memory effi- 122

ciency as a trade-off between surprisal and memory 123

usage where reducing average surprisal per word 124

requires storing more information about past con- 125

text. Applying this to 54 languages, they find that 126

word order optimizes processing efficiency under 127

memory constraints, supporting the idea that syntax 128

facilitates efficient online processing. Hahn et al. 129

(2021) extend the notion of the MST proposing 130

the Efficient Tradeoff Hypothesis, which suggests 131

that word order in natural language is shaped by 132

pressures to optimize this tradeoff. They further de- 133

rive that languages achieve more efficient tradeoffs 134

when they exhibit information locality, i.e. predic- 135

tive information about a word is concentrated in 136

its immediate preceding linguistic context. While 137

these approaches have proven a cross-linguistic ten- 138

dency to order words and morphemes to achieve a 139

maximally efficient tradeoff between memory and 140

surprisal, to date, the approach has not been applied 141

to intralinguistic or diachronic studies. 142

2.3 MST Intuition 143

Figure 2 illustrates the relationship between MST 144

curves and area under the curve (AUC) for five 145

years from the RSC: the curve for the last year 146

(1900) starts at the highest unigram surprisal and 147

then converges to the highest surprisal level after 148

the maximum amount of memory bits, resulting in 149

the highest AUC value. Conversely, the first year 150

(1820) starts at the lowest unigram surprisal and 151

reaches the lowest surprisal level overall after the 152

maximum number of memory bits, resulting in the 153

lowest AUC and thus a more optimal MST. Be- 154
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Figure 2: MST curves (1820-1990) and their respective
areas under the curves (AUC). MST curves where ex-
tended to the maximum per-document memory in the
RSC.

tween those years, 1950 still follows the (expected)155

trend of increasing unigram surprisal, but intersects156

the MST curve of 1850, leading to a lower AUC157

and a temporary increase in optimality w.r.t. the158

MST.159

3 Rationale and Hypotheses160

Over time, scientific English has shifted toward a161

nominal style with high lexical density and syn-162

tactic conventionalization, promoting local but im-163

plicit dependencies. Simultaneously, vocabulary164

growth increases lexical variability, suggesting an165

interaction between lexis and grammar. Nominal166

constructions reduce the efficiency of memory-167

based prediction due to implicit dependencies,168

whereas verbal constructions support explicit, less169

local dependencies and benefit more from mem-170

ory. As vocabulary expands, the average lexical171

surprisal rises, implying that the minimum achiev-172

able surprisal in later periods exceeds that of earlier173

ones.174

Specifically, we expect that changing prefer-175

ences for specific syntactic constructions will lead176

to different shapes of the MST. For instance, a lan-177

guage variety (e.g., register and/or period) with178

a high usage of subordinate constructions leads179

to longer dependencies generating longer predic- 180

tive contexts (e.g., Figure 1a). Such constructions 181

benefit from higher memory usage to predict the 182

next word, since more memory helps to reduce sur- 183

prisal. In contrast, varieties using highly dense con- 184

structions (e.g., Figure 1b), less memory should be 185

enough on average to predict the next word, while 186

more memory should not necessarily improve the 187

prediction. 188

To quantify the quality of the MST over time, 189

we calculate the area under the curve (AUC) of the 190

memory–surprisal graph per decade in scientific 191

and general English. We compare the AUCs calcu- 192

lated for both corpora per 50-year periods to find 193

out if optimization on memory efficiency develops 194

differently in scientific vs. general English. For a 195

more fine-grained analysis, we calculate the MST 196

for word classes (nouns, verbs, other) and compare 197

the AUCs respectively. 198

Since the AUC can only give us a reduced picture 199

of the actual shape of the MST, we also consider the 200

actual MST graphs and interpret their slopes. If a 201

graph flattens at a low memory budget, this means, 202

more memory does not contribute to improving the 203

prediction of the next word. If a graph decreases 204

steadily, this means that every further token held in 205

memory improves the prediction of the next word 206

further. 207

Based on the attested developments in scientific 208

English, we form the following hypotheses: 209

H1.1: Impact of average surprisal We expect 210

the MST to deteriorate (i.e. increasing AUC) in 211

both RSC and COHA (scientific vs. "general" 212

English) due to the general increase in surprisal 213

through vocabulary expansion. 214

H1.2: Impact of register We expect the MST to 215

deteriorate (i.e. increasing AUC) more strongly in 216

the RSC than for COHA due to a stronger vocabu- 217

lary increase in scientific English. 218

H2: Difference between POS The vocabulary 219

expansion affects the MST of nouns (i.e. increasing 220

AUC) more than other POS, especially in scientific 221

English. 222

H3: Effects of nominal style on shape of the 223

MST curves Over time, we expect to find a 224

weaker surprisal reduction with more bits of mem- 225

ory, especially in the RSC. 226
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Figure 3: Increase of types per part-of-speech (POS)
in the RSC over time; "Other" contains all POS except
nouns and verbs.

4 Data227

4.1 Royal Society Corpus228

We use two English diachronic corpora covering229

the time between 1750 and 2000. For scientific230

English we use the Royal Society Corpus, (RSC;231

Fischer et al., 2020), consisting of the publications232

of the Royal Society of London with 47K docu-233

ments and 300M tokens. We evaluate the evolution234

of the MST in 3 sub-samples, given that the RSC235

was split into subjournals around the 1900: (1)236

RSC encompasses all documents from 1665 to237

1900, and from 1900 onward (2) RSC-A includes238

the Proceedings and Transactions of the Mathemat-239

ical, Physical and Engineering Sciences, and (3)240

RSC-B containing publications of the Proceed-241

ings and Transactions of the Biological Sciences.242

Documents from a forth category containing, e.g.,243

obituaries were excluded from the analysis.244

4.2 Corpus of Historical American English245

For general English, we use a reduced version246

(masked words) of the multi-genre, diachronic247

COHA corpus (Davies, 2021). The full COHA248

comprises over 475 million words spanning the249

1820s to 2010s. To make the linguistic annotation250

comparable in both corpora, we parse and POS-tag251

the corpus with the Stanza software package (Qi252

et al., 2020), using the default English parser.253

4.3 Corpus subsampling254

We follow the diachronic language modeling ap-255

proach introduced by Steuer et al. (2024) by sub-256

sampling train sets of approximately identical size257

for each year in a corpus (see Table 1 in Appendix258

A). For the tokenization methods not based on sub-259

words, we apply a post-processing step that reduces260

the number of vocabulary items to obtain approxi- 261

mately similar vocabulary sizes of ≈ 80.000. For 262

each tokenization method, we choose a separate 263

threshold frequency tREPL that any token in the 264

train set must exceed to be included in the tok- 265

enizer’s vocabulary. We split the train set by white 266

spaces and replace all words that occur only tREPL 267

times in the train set by an "unknown" token that 268

corresponds to its POS tag as given by the UPOS 269

column in the conllu file. Then, we replace all 270

OOV items in the validation and test sets in the 271

same way. 272

5 Methods 273

5.1 Tokenization 274

We tested several tokenization methods for both 275

corpora. These methods are described in detail in 276

Appendix A. For the results in the main paper, we 277

used a lempos-based tokenization: We first split the 278

train corpus by whitespaces, and then replace each 279

word with a concatenation of its lemma form as 280

given by the UPOS tag as given by the respective 281

columns of the conllu file. In case the absolute 282

frequency of a word did not exceed the threshold 283

value tREPL it is replaced by its UPOS tag. We 284

then replace all out-of-vocabulary (OOV) items in 285

the validation and test set in the same way. The 286

final tokenizer (used for all models trained on that 287

corpus) is trained on the concatenated train sets 288

of each corpus. This dampens the effect of the 289

exponential increase of noun types in the RSC, and 290

allows a closed, word-based vocabulary sampled 291

equally from all years of the corpus. 292

5.2 Language models 293

For each tokenization method, we use Hugging 294

Face transformers (Wolf et al., 2020) to train the 295

base version of the OPT architecture (Zhang et al., 296

2022) on each subset of the training corpus (i.e., 297

the train set of pertainging to a single year in either 298

RSC or COHA) for 10 epochs with a batch size of 299

256, a learning rate of 5× 10−5 and a linear learn- 300

ing rate warmup over 50% of training steps. Word- 301

level models were trained with a context window 302

of 32, and the BPE model with a context window 303

of 64. Training was done on a cluster of 8 Nvidia 304

A100 GPUs with 40GB of memory and took about 305

2 hours per model. We then used the language mod- 306

els to estimate surprisal values on all documents 307

from each test year of the two corpora. 308
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Figure 4: Memory-surprisal trade-off curves for 10 years from the RSC. Surprisal was averaged over documents
and cross-validation folds. Each dot on a curve corresponds to a surprisal - memory pair, starting with unigram
surprisal and no memory. All curves where extended to the maximal amount of memory available.

5.3 Surprisal estimation309

For each context size T ranging from T = 0 (uni-310

gram surprisal) to TMax = 20, we estimate average311

surprisal ŜT on a document D of |D| words fol-312

lowing Hahn et al. (2021):313

ŜT =
1

|D| − T

|D|∑
t=T

− log2 p(wt|wt−T , ..., wt−1)

(1)314

We estimate p(wt|wt−T , ..., wt−1) directly from a315

transformer model averaging ŜT on the documents316

from a single year over 5 models trained on differ-317

ent cross-validation splits as described in Section318

4. Since the model may overfit for larger values319

of T due to data sparsity, we stop estimating ŜT320

if ŜT > ŜT−1 and substitute ŜT−1 for ŜT . Since321

we want to compare the MST of different POS 322

tags, we calculate ŜT for a a given set of POS tags 323

P = {p1, ..., p|P |} and a subset of words DP ⊆ D 324

as: 325

ŜP
T =

1

|DP | − T

|DP |∑
t=T

− log2 p(wt|wt−T , ..., wt−1)

(2) 326

5.4 AUC calculation 327

We then use surprisal estimates ŜP
T to calculate 328

mutual information IPT for each context size T as 329

IPT = ŜP
T−1−ŜP

T , and memories MP
T as

∑T
t=0 tI

P
T . 330

We chose the following POS tag sets: Nouns 331

(UPOS = "NOUN"), verbs (UPOS = "VERB") and 332

other (all other POS). After estimating ŜP
T s and IPT , 333

we calculate the area under the memory-surprisal 334

trade-off curve (AUC) by applying the trapezoidal 335
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Figure 5: Effects of part of speech, journal and time on AUC for the period from 1820 to 1996. Reference levels for
factor variables are "other" (POS) and "coha" (journal). Significance levels: ’***’ p < 0.001, ’**’ p < 0.01, ’*’
p < 0.05, ’x’ p >= 0.05. Error bars show standard error of the coefficient estimate.

rule using the corresponding function of the scikit-336

learn Python package (Pedregosa et al., 2011).337

5.5 Statistical modeling338

To assess the temporal development of the MST in339

the two corpora, we fit linear mixed-effects models340

(LMEs) via the lmerTest R package with AUC as re-341

sponse variable and average per-document 7-gram342

surprisal (surprisal estimated from the transformer343

model with 6 words in the context), journal, period,344

and POS as dependent variables. As we calculate345

the AUC for each document in the corpus, we in-346

clude the document ID as a random effect nested347

in the corpus variable. We fit a separate LME for348

each tokenization method. We used the following349

formula to fit all regression models:350

lmer(auc ~ year * pos * journal + surprisal-7 *351
year + (1|corpus/doc_id), data = .)352

We normalized auc, year and surprisal-7 to the in-353

terval [0, 1]. We chose "coha" (that is, the whole354

COHA corpus) as the base level of the journal vari-355

able, and "other" (not noun or verb) as the base356

level of the POS variable.357

6 Analysis 358

6.1 Effect of surprisal 359

Overall, the observed effects are in line with our ex- 360

pectations. We find the strongest effect for 7-gram 361

surprisal (Estimate: 0.8525; CI: 0.8492, 0.8557; 362

t = 522.77). A positive estimate corresponds to an 363

increase in AUC, i.e., a worse MST, while a neg- 364

ative estimate corresponds to a decrease in AUC 365

and a better MST compared to the base level of the 366

variable. Given the fact that AUC is correlated with 367

the surprisal values at different memory budgets, 368

the strong association between the predictor and re- 369

sponse is plausible. Figure 5 is a detailed overview 370

of all effects of interest, besides surprisal. We also 371

see main effects of POS, with both nouns (Esti- 372

mate: 0.44; CI: 0.43, 0.45; t = 96, 17) and verbs 373

(Estimate: 0.27, CI: 0.26,0.28; t = 61.47) having 374

on average higher AUCs than other POS, which is 375

in line with their generally higher surprisal. 376

6.2 Effect of RSC subjournals 377

Comparing the language of the three subjournals of 378

the RSC to COHA, we find a mixed picture. AUC 379

is higher for the early RSC (up until 1900), though 380

this effect is small (Estimate: 0.03; CI: 0.002,0.06; 381

t = 2.11), while we find no significant effect for 382
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Figure 6: Average slope of the MST curve at equidistant memory intervals of 1 bit.

RSC-B. For RSC-A we find a large negative ef-383

fect (Estimate: -0.1, CI: -0.11, -0.09; t = −15.41),384

showing that the language of this subjournal is opti-385

mized w.r.t. the MST compared to general English.386

6.3 Effect of time387

AUC increases gradually over time (main effect of388

the "Year" variable; Estimate: 0.0798, CI: 0.0731,389

0.0866; t = 23.26). We find significant interac-390

tions of time and POS, with both nouns (Estimate:391

-0.15; CI: -0.17, -0.14; t = −32.94) and verbs (Es-392

timate: -0.11; CI: -0.12, -0.1; t = −24.96) show-393

ing a markedly slower increase in AUC than other394

POS. This effect is stronger in the RSC than in395

COHA, with triple interactions between time, POS396

and journal indicating a slower increase for nouns397

compared to other POS in RSC (Estimate: -0.7;398

CI: -0.10, -0.04, t = −4, 41), RSC-A (Estimate:399

-0.04; CI: -0.07, -0.03; t = −4.37), and RSC-B400

(Estimate: -0.05; CI: -0.07, -0.03; t = −3.82).401

6.4 Effect of POS402

Apart from the main effect of POS, we also find sig-403

nificant interactions of POS and journal: Verbs gen-404

erally have a higher AUC than other POS in RSC405

(Estimate: 0.16; CI: 0.12, 0.2; t = 7.95), RSC-A406

(Estimate: 0.19, CI: 0.17, 0.21; t = 21.33), and407

RSC-B (Estimate: 0.06; CI: 0.04, 0.08; t = 5.19)408

compared to COHA, while nouns are overall as-409

sociated with lower AUC. This is in line with our410

findings for the interaction of time, POS and jour-411

nal: Not only do nouns in the RSC generally have 412

a lower AUC (see Section 6.1), but the increase 413

in AUC over time is not as large as may be ex- 414

pected based on the overall increase. Thus, while 415

the number of nominal vocabulary items increases 416

drastically over time in the RSC, the syntax of sci- 417

entific English is still in some sense optimized w.r.t. 418

the MST for nouns and verbs. 419

7 From AUC to Shape of the MST curves 420

7.1 Effect of nominal style 421

In the previous section, we have analyzed the over- 422

all development of optimality in the two corpora 423

as measured by the AUC. However, the AUC is 424

only an approximation of optimality, given that 425

MST curves whose AUC is compared are parallel 426

in time. Furthermore, even when two curves do not 427

cross, the degree to which more bits of memory 428

reduce surprisal is not covered by the AUC. We 429

will therefore analyze in more detail the individual 430

shapes of the MST curves as well as the surprisal 431

reduction rate per every additional bit of memory. 432

Looking at Figure 4, we see that the MST curves 433

show different shapes in different years. Especially 434

for nouns in the RSC, MST curves show an inter- 435

esting picture: While surprisal in the first 100 years 436

(1820 - 1920) continuously drops per additional 437

bit of memory, in the last 60 years, surprisal shows 438

very little reduction with less than 5 bits of memory. 439

A similar trend can be observed for verbs in the 440
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RSC and other POS, however, not as pronounced441

as for nouns. At the same time, nouns show a442

decreasing unigram surprisal, which is surprising443

given the fact that the number of nominal vocabu-444

lary items increases over time. It shows, however,445

that in the case of nouns, the increase in AUC over446

time is not owed to increasing surprisal but instead447

to the decreasing surprisal reduction per bit of in-448

formation held in memory. A meta-interpretation449

of this would be that increasingly dense structures450

as typical for nominal style lead to a decreasing451

information gain through additional memory, or in452

other words: If information is packed in dense con-453

structions, only locally placed information helps454

reduce surprisal of the next word, while with less455

dense constructions, longer context windows are456

beneficial for prediction of the next word.457

7.2 Effect of NP density458

This interpretation is backed by the calculation of459

the average slope of the memory-surprisal curves460

at equidistant memory intervals of one bit (see Fig-461

ure 6). For nouns, less and less information is462

gained (or surprisal reduced) per additional bit of463

memory for each step of 20 years. Compared to464

verbs and other POS, this is especially pronounced.465

Comparing RSC and COHA, the slope of the MST466

curves levels out faster for COHA than for the RSC,467

i.e., the language models trained on the RSC data468

can make use of more bits of memory. This differ-469

ence may be a result of generally longer sentence470

lengths in scientific English than in general English.471

Comparing POS, in both corpora, the temporal472

effect is strongest for nouns and especially pro-473

nounced in the RSC. For verbs, the slope is fairly474

similar across time in the RSC, indicating that there475

has been less change in predictive contexts of verbs476

than for nouns. This is plausible given that most477

changes in scientific English are known to have478

affected the structure of noun phrases, which have479

become increasingly dense over time.480

8 Conclusion481

We examined the communicative efficiency of sci-482

entific vs. general English over time, as measured483

by the Memory-Surprisal Tradeoff (MST). Our484

central question was whether MST optimality has485

changed diachronically and, if so, whether such486

changes vary across registers. This inquiry was487

motivated by the well-documented shift in English488

toward nominal rather than verbal style, manifested489

in complex, informationally dense noun phrases. 490

While the Efficient Tradeoff Hypothesis predicts 491

that more optimal orderings with respect to local- 492

ity should yield more efficient MSTs, our findings 493

indicate the opposite: denser encodings and vocab- 494

ulary expansion over time appear to reduce opti- 495

mality. Specifically, we identified two key factors: 496

growing vocabulary size leads to higher average 497

lexical surprisal, and less predictive contexts re- 498

sult in less efficient memory usage. The observed 499

trends in AUC values suggest a general decline in 500

optimality over time. However, this interpretation 501

must be qualified, as vocabulary growth is an in- 502

herent feature of language evolution. Although our 503

subsampling strategy was designed to mitigate the 504

influence of vocabulary size on surprisal estimates, 505

the overall trend persists. This raises important 506

questions regarding the comparability of surprisal 507

values across historical stages. To address this, we 508

also analyzed the average slope of the MST curves, 509

capturing the information gained per bit of memory 510

independently of absolute surprisal levels. This 511

analysis revealed that for short memory contexts 512

(1–3 bits), the tradeoff remains relatively stable 513

over time, suggesting that efficiency has declined 514

primarily for longer contexts. We interpret this as 515

evidence that English has become less optimal in 516

terms of long-range predictability, consistent with 517

a broader shift toward shorter, denser encodings. 518

Limitations 519

There are several limitations to our study. First, our 520

analysis of scientific English distinguishes between 521

three journals within the RSC (RSC, Journal A and 522

Journal B). It is important to note that these jour- 523

nals reflect both different disciplines (biology and 524

mathematics) and represent different time periods 525

(Journals A and B are only published from 1900 526

onward, RSC contains all earlier publications). A 527

more detailed analysis of the three journals could 528

reveal variation among scientific disciplines. Fur- 529

thermore, more fine-grained distinctions by topic, 530

author, or subfield could give additional insights 531

into how efficiency varies along these lines. Sec- 532

ond, our comparison contrasts these journals with 533

the entirety of COHA, rather than with more care- 534

fully matched subsets of general English. A more 535

nuanced comparison might better isolate register- 536

specific effects. Third, we did not investigate which 537

specific documents or genres are driving the ob- 538

served increase in surprisal over time, nor did we 539
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examine which texts could be considered partic-540

ularly (non-)optimal w.r.t. the MST. Addressing541

these points in future work would provide a more542

detailed understanding of the interaction between543

register, vocabulary growth, and communicative544

efficiency. Finally, although Scientific English may545

appear less optimal, in our surprisal models, we546

have not accounted for the factors of specializa-547

tion and background knowledge. This is because548

our modeling is based on the entire corpus, which549

may mask discipline-specific effects. These ef-550

fects could become apparent if we were to model551

each discipline separately. Additionally, psycholin-552

guistic studies on expert text processing would be553

necessary to draw more definitive conclusions.554
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Corpus Tokenizer Tokens tREPL |V |

RSC
Lempos

2.5M
1 79K

Word 1 74K
BPE 0 100K

COHA
Lempos

3.5M
1 83K

Word 3 98K
BPE 0 100K

Table 1: Corpus sizes and data preprocessing parameters.
10% of the sampled tokens were used as a development
set.

A Tokenization710

A.1 Tokenization Methods711

In order to mitigate the problem of vocabulary ex-712

pansion, we employ and independently evaluate713

three tokenization strategies, which all drastically714

reduce the number of tokens in the vocabulary715

and do not require a model whose parameters are716

mostly in the embedding layer (which would hap-717

pen in case of a vocabulary of about 500K tokens,718

as in COHA).719

Word-level tokenization: This is the simplest720

tokenization approach and requires a few tweaks to721

work. We use word-level tokenization with replace-722

ment of OOV items instead of a subword tokeniza-723

tion method because words that are split into many724

subtokens due to high tokenizer fertility would be725

assigned higher surprisal values by default. The726

surprisal of these de-facto OOV items would arti-727

ficially inflate our AUC measure and obscure the728

impact of word order on AUC.729

Lempos tokenization: This tokenization ap-730

proach is derived from word-level tokenization, but731

reduces the size of the unigram vocabulary even fur-732

ther by replacing word forms with a combination733

of the corresponding lemma and UPOS tag.734

Figure 7: LME coefficients for AUC, surprisal from
language models trained on lempos, word-level and BPE
tokenizations. Non-significant effects in parentheses.

BPE tokenization: We use the default implemen- 735

tation of the BPE algorithm in the Hugging Face to- 736

kenizers Python package to train a tokenizer with a 737

vocabulary size of 100K on the subsampled version 738

of each corpus. We did not replace OOV words, 739

as those are handled by the tokenization algorithm. 740

An overview of the tokenization methods, thresh- 741

olds and examples of a tokenized sentence can be 742

found in Table 1. 743

A.2 Consistency across tokenization methods 744

We re-fitted all LMEs with surprisals and AUCs 745

from language models trained on word-level and 746

BPE-tokenized versions of the subsampled corpora. 747

We found that, while effect sizes vary greatly be- 748

tween tokenizations, the direction of the effects is 749

consistent. See Figure 7 for a detailed overview 750

of the LME coefficients for all three tokenization 751

methods. 752

11


	Introduction
	Related Work
	Diachronic development of scientific English
	Memory-surprisal models
	MST Intuition

	Rationale and Hypotheses
	Data
	Royal Society Corpus
	Corpus of Historical American English
	Corpus subsampling

	Methods
	Tokenization
	Language models
	Surprisal estimation
	AUC calculation 
	Statistical modeling

	Analysis
	Effect of surprisal
	Effect of RSC subjournals
	Effect of time
	Effect of POS

	From AUC to Shape of the MST curves
	Effect of nominal style
	Effect of NP density

	Conclusion
	Tokenization
	Tokenization Methods
	Consistency across tokenization methods


