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Abstract—Fully-supervised salient object detection (SOD)
methods have made great progress, but such methods often rely
on a large number of pixel-level annotations, which are time-
consuming and labour-intensive. In this paper, we focus on a
new weakly-supervised SOD task under hybrid labels, where
the supervision labels include a large number of coarse labels
generated by the traditional unsupervised method and a small
number of real labels. To address the issues of label noise
and quantity imbalance in this task, we design a new pipeline
framework with three sophisticated training strategies. In terms
of model framework, we decouple the task into label refinement
sub-task and salient object detection sub-task, which cooperate
with each other and train alternately. Specifically, the R-Net is
designed as a two-stream encoder-decoder model equipped with
Blender with Guidance and Aggregation Mechanisms (BGA),
aiming to rectify the coarse labels for more reliable pseudo-labels,
while the S-Net is a replaceable SOD network supervised by the
pseudo labels generated by the current R-Net. Note that, we only
need to use the trained S-Net for testing. Moreover, in order to
guarantee the effectiveness and efficiency of network training,
we design three training strategies, including alternate iteration
mechanism, group-wise incremental mechanism, and credibility
verification mechanism. Experiments on five SOD benchmarks
show that our method achieves competitive performance against
weakly-supervised/unsupervised methods both qualitatively and
quantitatively. The code and results can be found from the link
of https://rmcong.github.io/proj Hybrid-Label-SOD.html.

Index Terms—Salient object detection, weakly supervised
learning, hybrid labels, blender, group-wise incremental mech-
anism.

I. INTRODUCTION

Salient object detection (SOD) task aims to locate the
most attractive and interesting objects or regions from an
image, which is consistent with the human visual attention
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(a) RGB Image (b) Scribble Label (c) Point Label

(d) Pixel-level Label (e) Image-level Label (f) Coarse Label

Fig. 1: Several types of saliency supervision. (a) Original
RGB image; (b) Weakly-supervised scribble label; (c) Weakly-
supervised point label; (d) Pixel-level label; (e) Weakly-
supervised image-level label; (f) Unsupervised coarse label.

mechanism, and has been applied to image segmentation [1]–
[7], object tracking [8], [9], image enhancement [10]–[17],
and other vision tasks. In recent years, fully-supervised SOD
models based on deep learning have made great breakthroughs
in performance [18]–[25], but these models usually require a
large number of pixel-level labels for training, while such la-
beling costs are obviously very expensive. Therefore, weakly-
supervised or unsupervised SOD methods have received in-
creasing attention from both academia and industry, aiming
to reduce or get rid of the reliance on the elaborately labeled
data. Some related areas such as weakly supervised semantic
segmentation [26]–[30], light field SOD [31], [32], remote
sensing SOD [33]–[38], and visual grounding [39], [40] have
also been developed.

According to the given labeled data, weakly-
supervised/unsupervised SOD methods can be roughly
divided into the following categories: (1) Weakly-supervised
scribble label supervision as shown in Fig. 1(b), that is,
the parts of the foreground and background regions of each
training sample are outlined in a scribble way. (2) Weakly-
supervised point label supervision as shown in Fig. 1(c), that
is, the foreground and background regions of each training
sample are marked with only one point respectively. (3)
Weakly-supervised image-level label supervision as shown in
Fig. 1(e), that is, only the category of salient object is known
during training. (4) Unsupervised coarse label supervision
as shown in Fig. 1(f), that is, the saliency map generated
by the existing unsupervised traditional methods is used as
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Fig. 2: (a) A simple solution for training the SOD model with
coarse and real labels. (b) The proposed alternate learning
framework for weakly-supervised SOD task under the hybrid
label, consisting of a Refine Network (R-Net) and a Saliency
Network (S-Net). These two networks cooperate with each
other and train alternately. During training, both networks
employ a group-wise incremental mechanism to address the
imbalance between real-labeled data and pseudo-labeled data,
and use a credibility verification mechanism to ensure that the
two networks can provide credible labels.

the label of the training sample. Generally speaking, the
weaker the supervision information, the more limited the
detection performance. Compared to image-level labels and
sparse labels (i.e., scribble and point labels) as supervision
information, the information given by coarse label is
uncontrollable and may introduce some inevitable distracting
noise, so it provides weaker supervision than others. Different
from the above-mentioned forms of supervision, we construct
a new supervision form for the first time to solve the
weakly-supervised SOD task by releasing part of the real
labels on the basis of unsupervised labels, called hybrid
labels. The hybrid label supervision consists of two parts,
that is, a small number of pixel-level real labels and a
large number of coarse labels generated by the existing
unsupervised SOD models (e.g., one tenth of the fully-
supervised pixel-wise annotations). Such weakly supervision
form is expected to achieve better detection performance at
a smaller annotation cost. But with this kind of supervision,
the weakly-supervised SOD task becomes more challenging
due to the unreliability of coarse labels and the imbalance
between real-labeled and coarse-labeled data. Specifically, on
the one hand, the coarse labels are generated by traditional
unsupervised methods and necessarily contain a lot of noise
and mislabeling. If the network is trained with such labels
all the time, the network will gradually become chaotic and
disabled, seriously affecting the final performance. On the
other hand, the proportion of real labels and coarse labels
in the hybrid label setting is severely imbalanced (e.g., 1:9),
and the network learning will collapse if the mixed training
is directly performed. Therefore, in order to address these
issues, we propose a new weakly-supervised SOD framework
with hybrid labels from the perspective of pipeline structure

and training strategy.
For such a new weakly-supervised learning task set in this

paper, the key problems we need to solve are also different
from the existing methods, and thus our model framework
and technical implementation are also different. To address
the problem of unreliable coarse label and imbalanced sample
size under this new hybrid supervision, different from the
previous single-stage SOD framework [41]–[43], we decouple
the weakly-supervised SOD task into two sub-tasks of coarse
label refinement and salient object detection, and construct a
joint learning framework as shown in Fig. 2(b), consisting of a
Refinement Network (R-Net) and a Saliency Network (S-Net).
These two networks cooperate with each other and train alter-
nately. To achieve the R-Net, a two-stream encoder-decoder
model equipped with Blender with Guidance and Aggregation
Mechanisms (BGA) is designed for coarse label refinement,
including a saliency-refinement mainstream branch and an
RGB-image guidance branch. On the one hand, considering
the uncertainty and noise of coarse labels, a separate RGB-
image guidance branch is introduced to form the two-stream
structure and provide effective guidance information from the
raw RGB data. On the other hand, we propose a BGA to
achieve two-stage feature decoding, where the guidance stage
aims to gain relatively robust baseline performance for main-
stream branch by the guidance branch information, and the
aggregation stage is to integrate the encoder features, previous
decoder features, and global features by considering the roles
of different features. The S-Net is a replaceable salient object
detection network supervised by the pseudo label1 generated
by the current R-Net, with the original RGB image as input
and output of the pseudo label for the subsequent round
learning of R-Net. By using such a decoupled architecture,
not only the negative impact of coarse labels on S-Net can be
effectively reduced, but also the number of training samples
can be expanded with the refined coarse labels generated by
the trained R-Net, thereby enhancing the learning ability of
the network.

Besides, in the face of imbalanced training on the hybrid-
labeled data, some well-designed training strategies are crucial
to guarantee the effectiveness and efficiency of network train-
ing. Specifically, we design three ingenious training strategies:
(1) Alternate iteration mechanism. In order to ensure that
sufficient and effective samples participate in training, we
alternately perform iterative training of R-Net and S-Net. The
two networks provide better labels for each other. (2) Group-
wise incremental mechanism. In order to avoid the imbalance
of inputting a large number of pseudo-labeled samples and a
small number of real-labeled samples at the same time, we
group the training set and gradually increase the amount of
data with pseudo labels in each training iteration, thereby
stepwise learning the effective feature representations. (3)
Credibility verification mechanism. In order to ensure that the
two networks can provide credible labels to each other during
the iteration process, starting from the second iteration, we
design a validation phase on the validation set containing 100

1For clarity, the coarse label in our paper specifically refer to labels
generated by unsupervised SOD model and used as input to R-Net. The pseudo
label is saliency map obtained by testing with the trained R-Net or S-Net.
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images, and only the best model that satisfies the validation
conditions can be used to generate pseudo labels for the
corresponding data to participate in the next step of training.
In general, the three training strategies constrain the training
process from three aspects, i.e., quantity allocation, training
method and reliability judgment, so as to achieve the effective
training of the network.

The main contributions of this paper mainly lie in three as-
pects, including task setting, technical framework and training
strategy:
• For the first time, we launch a new weakly-supervised

SOD task based on hybrid labels, with a large number
of coarse labels and a small number of real labels as
supervision. To this end, we decouple this task into two
sub-tasks of coarse label refinement and salient object
detection, and design the corresponding R-Net and S-Net.
Moreover, our method achieves competitive performance
on five widely used benchmark datasets using only one-
tenth of the real labels in fully-supervised setting.

• We design a BGA in the R-Net to achieve two-stage
feature decoding, where the guidance stage is used to
introduce the guidance information from the RGB-image
guidance branch to guarantee a relatively robust perfor-
mance baseline, and the aggregation stage is to dynam-
ically integrate different levels of features according to
their modification or supplementation roles.

• In order to guarantee the effectiveness and efficiency of
network training, from the perspective of quantity alloca-
tion, training method and reliability judgment, we design
the alternate iteration mechanism, group-wise incremental
mechanism, and credibility verification mechanism.

II. RELATED WORK

A. Fully supervised salient object detection

Inspired by image semantic segmentation, Zhao et al. [44]
proposed a fully supervised model based on CNN to integrate
local and global features to predict the saliency map. Wang
et al. [45] adopted a recurrent CNN to refine the predicted
saliency map step by step. Most of them follow an encoder-
decoder architecture similar to FCN [46], on this basis, in order
to obtain more accurate and convincing detection results, the
researchers carried out a series of elaborate network designs.
Several recent works [47]–[57] integrated features in multiple
layers of CNN to exploit the context information at different
semantic levels. Among them, Hou et al. [48] introduced short
connection to the skip-layer structure for capturing fine details.
Deng et al. [49] proposed an iterative method to optimize
the saliency map, leveraging features generated by deep and
shallow layers. Zhang et al. [52] designed an attention guided
network that selectively integrates multi-level contextual in-
formation in a progressive manner. Wei et al. [53] focused on
the feature fusion strategies and proposed a SOD network that
equipped with cross feature module and cascaded feedback
decoder trained with a new pixel position aware loss. Pang
et al. [55] investigated the multi-scale issue in salient object
detection and proposed an effective and efficient network with
the transformation-interaction-fusion strategy. In the SOD task,

for obtaining results with elaborate boundaries, edge-guided
or boundary-guided methods have been proposed. Qin et
al. [58] proposed a boundary-aware model to segment salient
object regions and predict the boundaries simultaneously. Li
et al. [59] proposed an edge-guided SOD network to learn
the complementarity between salient edge information and
salient object information in a single network. Feng et al. [58]
designed an attentive feedback network by integrating some
feedback network modules to explore the structure of objects
better and proposed a new boundary-enhanced loss for learning
exquisite boundaries. Wang et al. [60] introduced the salient
edge detection module into an essential pyramid attention
structure for salient object detection and achieved superior
performance.

Although superior performance has been obtained, a fatal
problem still exists is that they all require a mass of pixel-level
labeled training data. Accordingly, how to obtain satisfactory
detection results with fewer annotations has become a topic
worth exploring, which also motivates our work.

B. Weakly supervised salient object detection

Unlike fully-supervised SOD needs a complete pixel-level
label for each training sample, weakly-supervised SOD model
may utilize simpler labels, e.g., scribble/point/image-level la-
bel, as supervision signals to achieve comparable performance.
Due to the low cost of labels and considerable prospects, it
has received more and more attention. The WSS model [41]
is the first weakly-supervised SOD method by using image-
level label, which employs a global smooth pooling layer and
a foreground inference scheme to make the network generate
good prediction results even for unseen categories. Zeng et
al. [61] utilized multiple labels (i.e., image-level labels and
captions) to train a SOD model, and then a classification
network and a caption generation network were designed
to predict object class and generate captions, respectively.
Zhang et al. [62] used scribble labels as the supervision
to train the network, including an auxiliary edge detection
task to locate object edges explicitly and a gated structure-
aware loss to place constraints on the scope of structure to be
recovered. Apart from that, Zhang et al. [42] first applied an
unsupervised method to generate coarse labels, then obtained
refined saliency maps by modelling the noise in the coarse
labels. Zheng et al. [43] first introduced saliency subitizing as
the weak supervision and proposed a SOD model with saliency
subitizing module and saliency updating module. Yu et al. [63]
proposed a local coherence loss to propagate the labels to
unlabeled regions based on image features and pixel distance.
Piao et al. [64] introduced a new multiple-pseudo-label frame-
work to integrate more comprehensive and accurate saliency
cues from multiple labels, avoiding that the generated single
label is inevitably affected by adopted refinement algorithms.
Gao et al. [65] proposed a point supervised saliency detection
model, where an adaptive masked flood filling algorithm is
designed to generate pseudo labels, and the transformer-based
point-supervised SOD model and a Non-Salient Suppression
(NSS) method are used to achieve two-stage saliency map
generation and optimization. Yan et al. [66] made the first
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Fig. 3: The overall framework of the proposed Refine Network (R-Net).

attempt to achieve SOD by exploiting unsupervised domain
adaption from synthetic data, and constructed a synthetic SOD
dataset named UDASOD.

Besides, weakly supervised video object segmentation/SOD
methods can also provide us with some enlightenment. Zhao et
al. [67] proposed the first weakly supervised video salient ob-
ject detection model based on ”fixation guided scribble annota-
tions”. And some methods used weakly-supervised approaches
to video object segmentation by fusing information between
different frames [68]–[70]. In contrast, Zhou et al. [71] relied
only on the current frame image and the corresponding optical
flow data to achieve the zero-shot video object segmentation.
En et al. [72] performed video object segmentation with the
help of saliency information.

In this paper, we construct a new label form for the first
time to solve the weakly-supervised SOD task, namely hybrid
labels, which only contains one-tenth of the real pixel-wise
labelled samples. With the help of the proposed learning
framework and training strategies, our method finally achieves
encouraging performance.

III. PROPOSED METHOD

A. Overview

At first, the hybrid labels used in this paper can be divided
into two parts, i.e., a small number of pixel-level real labels
and a large number of coarse labels, where the coarse labels
are generated by a traditional unsupervised method (e.g., MB
[73]). The overall framework is shown in Fig. 2, consisting
of a Refine Network (R-Net) and a Saliency Network (S-
Net). The R-Net is designed as a two-stream encoder-decoder
architecture that takes original RGB image and coarse label as
inputs and outputs updated pseudo-labels (more details will be
introduced in Section III-B). The S-Net is a replaceable SOD
network that takes the original RGB image as input and the
pseudo labels generated by R-Net as supervision signal.

The proposed framework is trained in alternating iterations.
For the training process, the first thing to mention is that we

divide the training samples into ten groups (note that only the
samples in GROUP 1 include real labels) and incrementally
load them into the training pool. On the one hand, the
alternating iteration strategy makes the quality of pseudo labels
continuously be optimized through the cooperation of these
two networks. On the other hand, incremental loading of
training samples enhances the guiding ability of real labels.
As a result, the imbalance between the real label and pseudo
label can be alleviated effectively. Specifically, taking the first
iteration as an example, we first use the original RGB images
and coarse labels of GROUP 1 as inputs to train the R-Net,
then predict the corresponding pseudo labels of GROUP 2.
Next, we input the GROUP 1 and GROUP 2 into S-Net for
network training, then predict the corresponding pseudo labels
of GROUP 3. At this point, this round of training is over. The
samples in GROUP 1 and GROUP 3 will be used for the next
iteration of R-Net training. The iteration is terminated until
we run out of data. Ultimately, we only use the trained S-Net
for testing and no longer need coarse label input. More details
will be introduced in the Training Strategy with Hybrid Labels
of Section III-C.

B. Refinement Network (R-Net)

The R-Net is designed to refine the coarse labels and
produce better pseudo labels that can be used for S-Net
training. Intuitively, we only need to input coarse labels and
corresponding RGB images into the network to achieve the
label refinement. But in our setting, the coarse labels are
generated by the traditional unsupervised method, which very
noisy for some complex scenes, even inferior to the results
obtained by the weakly-supervised deep learning methods. In
this way, if only the Saliency-Refinement Mainstream Branch
(mainstream branch for short) is used to directly refine the la-
bel, the difficulty can be imagined. Considering the uncertainty
and noise of coarse labels, a separate RGB-Image Guidance
Branch (referred to as the Guidance Branch) is introduced into
the R-Net to form a two-stream encoding structure, which is
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used to provide some guidance information to the mainstream
branch, such as object localization and integrity, thereby guar-
anteeing a relatively robust performance baseline. The whole
framework of the R-Net is shown in Fig. 3. The encoders
of both streams are based on the ResNet-50 [74] to extract
the corresponding multi-level features. Then, we propose a
Blender with Guidance and Aggregation Mechanisms (BGA)
to achieve two-stage feature decoding, as shown on the right
side of Fig. 3. The role of the first stage is guidance, that is, to
supplement the mainstream branch with the information of the
guidance branch, ensuring that the mainstream branch has a
relatively robust baseline performance. The role of the second
stage is aggregation, that is, to integrate the encoder features,
previous decoder features, and global features by considering
the roles of different features.

1) The Guidance Stage: We hope that in the first stage, the
RGB branch can provide guidance information (e.g., object
localization and integrity) for the mainstream branch, guaran-
teeing its effective learning and robust performance baseline.
The detailed architecture is shown on the top right corner of
Fig. 3.

First, in order to ensure that enough saliency information
can be transferred to the mainstream branch and mitigate un-
reliable noise from the coarse label input, we supplement and
filter the features in the channel dimension. Specifically, the
encoder features of corresponding layers in the two branches
are first concatenated for complementation, and then channel
attention is used to highlight essential channel features for
filtering. This process can be formulated as:

F icom = CA([f isrm, f
i
rgb]) } [f isrm, f

i
rgb], (1)

where F icom denote the complementation features after channel
attention, CA is the channel attention operation [75], f isrm
and f irgb denote the encoder features of the ith layer in
the mainstream branch and guidance branch, respectively,
[·, ·] represents the concatenation operation along the channel
dimension, and } means element-wise multiplication with
channel-wise broadcasting.

Secondly, in addition to the direct complement of channel
dimensions, the RGB branch can also provide pixel-level spa-
tial guidance information, which can both reinforce important
regions and suppress irrelevant noise interference. Specifically,
we use the spatial attention [76] to generate the spatial location
mask that need to be emphasized from the perspective of
RGB information, and use this to update the features of the
refinement branch.

F iEn = Conv1×1(SA(f irgb)� F icom + F icom), (2)

where F iEn are the final output encoder features of the
guidance stage after the spatial attention, SA is the spatial
attention operation [77], � is the element-wise multiplication,
and Conv1×1 denotes the convolutional layer with the kernel
size of 1× 1.

2) The Aggregation Stage: As mentioned earlier, the second
stage is mainly used to realize the fusion of multi-level
features, including the encoder features of the corresponding
layer generated in the first stage, the global features from the

top encoder layer, and the decoder features of the previous
layer. In order to implement the aggregation more effectively,
we need to analyze the roles of various features. In general,
both encoder features and global features should play an
auxiliary role to obtain better decoder features in the feature
decoding stage. The auxiliary functions can be divided into
two aspects: one is to refine the decoder features under the
guidance of global information; the other is to supplement the
decoder features under the guidance of encoder features.

First, the high-level semantic features from the top encoder
layer are crucial for distinguishing salient objects, but as the
decoding process proceeds, the semantic constraint will be
gradually diluted. Therefore, in order to enforce semantic
information throughout the decoding process, we generate the
corresponding semantic guidance mask to refine the decoder
features of each level. Specifically, we firstly combine the
semantic features from two branches and the encoder features
generated in the first stage through an importance weighting
strategy [78]:

f is = P i � fg + (1− P i)� f iEn, (3)

where fg = conv([f5srm, f
5
rgb]) denote the fused semantic

features from two branches, P i is the learned importance
weight that controls the fusion rate of the features of fg
and f iEn (more details can be found in [78]). Then, the
fusion features f is containing global semantic information are
activated as a semantic mask, which is used to modify the
upsampled decoder features:

f iDeR = Up(f i+1
De )� σ(f is), (4)

where f iDeR are the modified decoder features of the ith level,
f i+1
De represent the original decoder features of the (i + 1)th

level, Up represents the up-sampling operation by bilinear
interpolation, and σ is the sigmoid activation function.

Second, as demonstrated in [48], the encoder features con-
tain many valuable information that can complement the de-
coder feature learning, such as the shallower features including
rich spatial information to better recover details, etc. There-
fore, we further supplement the modified decoder features with
the filtered features via the spatial attention mechanism [76] to
obtain more comprehensive saliency-related decoder features.
This process can be formulated as:

f iDe = Up(f i+1
De ) + f iDeR + SA(f iEn)� f iEn, (5)

where f iDeR are the modified decoder features of the ith level,
and SA is the spatial attention operation [76].

C. Training Strategy with Hybrid Labels

Training settings. The pixel-level real labels and coarse
labels are given in our training set, in which the coarse labels
are only used as the input to the S-Net instead of supervision.
At the same time, the pseudo label will be generated as
supervision information during the network training process.
In the implementation, we randomly select 1,000 samples from
the DUTS-TR dataset [41] as the real-labeled training subset,
and use the MB method [73] to generate the corresponding
coarse labels of all samples in the DUTS-TR dataset (including
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Fig. 4: Training strategy for group update based on real labels
and pseudo labels.

the 1,000 samples mentioned earlier). As thus, these 1,000
samples (including RGB images, coarse labels, and real labels)
can support the first iteration of R-Net training. In order to
guarantee the effectiveness and efficiency of network training,
we propose three key training mechanisms, including alternate
iteration mechanism, group-wise incremental mechanism, and
credibility verification mechanism, as illustrated in Fig. 4.

Alternate iteration mechanism. As mentioned earlier,
considering that coarse labels may contain a lot of noise,
directly training the network under these supervisions will
inevitably lead to poor performance. Therefore, we design
a R-Net for label correction and a S-Net for salient object
detection. In terms of network training, we train these two
networks alternately and iteratively, thereby providing better
pseudo labels for each other. In detail, the S-Net of the current
iteration is trained using the pseudo labels generated by the
trained R-Net of the current iteration, and the pseudo labels
generated by the trained S-Net are further used for the next
iteration of R-Net training. The two networks are trained in
an alternating manner until all training samples are traversed,
which is called alternate iteration mechanism.

Group-wise incremental mechanism. Another important
problem in the weakly-supervised SOD framework with hybrid
label is sample imbalance caused by the difference in the
number of real-labeled samples and coarse-labeled samples. If
the unbalanced training samples are directly used for network
training, it will cause ambiguity and unavailability of network
learning. Therefore, we propose a group-wise incremental
mechanism to avoid network collapse caused by importing
a large amount of pseudo-labeled data at a time. Specifically,
we divide all training samples (i.e., 1,000 real-labeled samples
and 9,000 coarse-labeled samples) into ten groups equally, of
which 1,000 samples with real labels are grouped into GROUP
1. In the first iteration, we only load the samples of GROUP
1 to train the R-Net, and then we use the trained R-Net to test

the samples in GROUP 2 and obtain the the corresponding
pseudo labels. Subsequently, all the samples in GROUP 1
with real labels and GROUP 2 with pseudo labels are used
for S-Net training. Finally, the trained S-Net is used to test
the samples in GROUP 3, and the generated saliency maps
are used as the pseudo labels for the next iteration of R-
Net training. At this point, the first iteration is completed.
Noteworthy, in order to prevent the model from overfitting to
real-labeled data and improve the robustness of the model,
we do not load all real-labeled samples into training in the
first iteration, but also use an incremental strategy. To be
specific, in the first iteration, we select 500 samples from
GROUP 1 as the real-labeled sample batch, and the remaining
500 samples are degenerated into contaminated-labeled sample
batch through the rotation, cropping, and occlusion operations.
In subsequent training iterations, we gradually reduce the
number of contaminated-labeled data and increase the amount
of real-labeled data. In the second iteration, we still train R-
Net first, followed by the S-Net. For the R-Net training, 2,000
samples in GROUP 1 and GROUP 3 are used, where the
number of real-labeled samples is increased to 600 and the
number of contaminated-labeled samples is decreased to 400.
Note that, the corresponding pseudo labels in GROUP 3 are
obtained by testing the samples in GROUP 3 using the S-Net
trained in the previous iteration. Then, the new trained R-Net
is utilized to test the GROUP 4. And the samples in GROUPs
1, 2, 4 are used to train the S-Net again. In order to traverse the
entire training dataset (i.e., 10,000 samples), 5 iterations need
to be performed, and the training process for other iterations
can be analogized. In addition, since both R-Net and S-Net are
trained with hybrid labels, in order to ensure the effectiveness
and performability of training, we first train the network under
the pseudo-labeled samples and then fine-tune the real-labeled
samples in a training epoch.

Credibility verification mechanism. The purpose of al-
ternating training of the two networks is to provide better
pseudo labels for each other, so we introduce a credibility
verification mechanism from the second iteration to ensure
the validity of the provided labels. Only when the current
model outperforms the previous best model on the validation
set including 100 images, we use it to generate pseudo-labels
for the corresponding group and participate in the next training
step. Taking the validation process of S-Net as an example, in
the second iteration, if the MAE score of the newly trained R-
Net model using GROUP1 and GROUP3 data on the validation
set is smaller than the MAE score 2 of the previous best R-
Net model (the R-Net model trained in the first iteration at this
time), then we use the current R-Net model to test the GROUP
4 and generate the corresponding pseudo labels, otherwise we
use the R-Net model trained in the first iteration to generate
the pseudo labels. Validation of other iterations is similar to
this process.

2MAE refers to the mean absolute error, which represents the error between
the prediction and the ground truth, and the smaller the value means the better.
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Fig. 5: PR curves curves on five common saliency datasets. Solid lines are fully-supervised methods, dashed lines are weakly-
supervised and unsupervised methods.

D. Loss Function
Referring to the traditional SOD method, we also use the

binary cross-entropy loss as the loss function for R-Net train-
ing. As mentioned earlier, in order to reduce noise pollution
from pseudo labels and enhance the guidance of real labels,
we first train the network under the pseudo-labeled samples
and then fine-tune the real-labeled samples in a training epoch.
Specifically, we treat these two types of labels differently and
change the binary cross-entropy loss to the following form:

lr = −
∑
j∈Dr

[Y rj logR(Xj |Φ)− (1− Y rj ) log(1−R(Xj |Φ))],

(6)

lp = −
∑
k∈Dp

[Y pk logR(Xk|Φ)− (1− Y pk ) log(1−R(Xk|Φ))],

(7)

where lr and lp are all standard BCE losses, but the samples
used in the calculation of the two loss functions are different.
The loss lr calculates the BCE loss of samples with real labels,
while lp calculates the BCE loss of samples with pseudo
labels. Dr and Dp correspond to the training set with real
labels and pseudo labels, respectively. {X,Y } denotes the
training sample in the corresponding set, where X are the
inputs of the R-Net including the RGB image and the corre-
sponding coarse label, and Y is the real label or pseudo label
of the sample. R(·|Φ) denotes the R-Net, and Φ represents the
network parameters of R-Net.

In general, the whole loss of the R-Net consists of the
dominant loss ldom on the final prediction and three auxiliary
losses liaux on the side outputs generated by the middle three

layers of the decoder, which is formulated as:

LR = lk,dom +

3∑
i=1

λil
i
k,aux, (8)

where k = {r, p} indexes the real-labeled data or pseudo-
labeled data, and λi are the hyper-parameters that control the
weight of each auxiliary loss, which are set to (0.2, 0.4, 0.8)
in experiments.

Since the S-Net in this paper is replaceable, we still follow
the loss function of the original paper in the training order of
‘first real labels, then pseudo labels’.

IV. EXPERIMENT

A. Implementation Details and Setup

1) Datasets: Five widely-used salient object detection
benchmark datasets are employed to evaluate the entire per-
formance, including:

• DUTS [41] dataset contains 10,553 training images
(DUTS-TR) and 5,019 testing images (DUTS-TE), with
pixel-wise saliency ground truth.

• ECSSD [79] dataset consists of real images of complex
scenes, containing 1,000 complex images with the corre-
sponding the pixel-wise saliency ground truths.

• HKU-IS [80] dataset includes 4,447 challenging images,
most of which are low-contrast or have multiple salient
objects.

• PASCAL-S [81] dataset consists of 850 images from the
PASCAL VOC 2010 validation set, with multiple salient
objects in the scene.
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TABLE I: Quantitative results of different methods on five SOD benchmark datasets, ↑ and ↓ respectively indicate that the
larger and smaller the score, the better. ‘F’ means fully supervision, ‘I’ means image-level weakly supervision, and ‘S’ means
scribble-level weakly supervision, ‘Sub’ means subitizing supervision, ‘M’ means multi-source weakly supervision, ‘Un’ is for
unsupervision, and ‘H’ denotes hybird supervision. The best performance is marked in BOLD, and the second best performance
is marked in UNDERLINE.

DUTS-TE ECSSD HKU-IS PASCAL-S THUR

SUP YEAR Fmaxβ ↑ Sm ↑ MAE ↓ Fmaxβ ↑ Sm ↑ MAE ↓ Fmaxβ ↑ Sm ↑ MAE ↓ Fmaxβ ↑ Sm ↑ MAE ↓ Fmaxβ ↑ Sm ↑ MAE ↓

DGRL F 2018 0.805 0.842 0.050 0.913 0.903 0.041 0.900 0.894 0.036 0.837 0.836 0.072 0.746 0.813 0.076

PiCANet F 2018 0.840 0.863 0.040 0.928 0.916 0.035 0.913 0.905 0.031 0.848 0.846 0.065 - - -

PAGR F 2018 0.816 0.838 0.056 0.904 0.889 0.061 0.897 0.887 0.048 0.822 0.819 0.092 0.769 0.830 0.070

MLMSNet F 2019 0.825 0.861 0.049 0.917 0.911 0.045 0.910 0.906 0.039 0.841 0.845 0.074 0.752 0.819 0.079

CPD F 2019 0.840 0.869 0.043 0.926 0.918 0.037 0.911 0.905 0.034 0.842 0.847 0.072 0.774 0.834 0.068

AFNet F 2019 0.836 0.867 0.046 0.924 0.913 0.042 0.909 0.905 0.036 0.848 0.849 0.071 - - -

BASNet F 2019 0.838 0.866 0.048 0.931 0.916 0.037 0.919 0.909 0.032 0.842 0.836 0.077 - - -

PFAN F 2019 0.850 0.874 0.041 0.914 0.904 0.045 0.918 0.914 0.032 0.866 0.862 0.065 0.722 0.781 0.104

GCPANet F 2020 0.866 0.891 0.038 0.936 0.927 0.035 0.926 0.920 0.031 0.859 0.866 0.062 0.784 0.840 0.070

MINet F 2020 0.863 0.881 0.039 0.937 0.923 0.036 0.922 0.914 0.030 0.856 0.855 0.062 0.778 0.836 0.066

SVF Un 2017 - - - 0.832 0.832 0.091 - - - 0.734 0.757 0.134 - - -

MNL Un 2018 0.725 - 0.075 0.810 - 0.091 0.820 - 0.065 0.747 - 0.157 - - -

WSS I 2017 0.633 - 0.100 0.767 - 0.108 0.773 - 0.078 0.697 - 0.184 - - -

ASMO I 2018 0.568 - 0.115 0.762 - 0.068 0.762 - 0.088 0.653 - 0.205 - - -

MSW M 2019 0.705 0.752 0.091 0.851 0.820 0.099 0.828 0.812 0.086 0.759 0.762 0.136 - - -

MFNet I 2021 0.733 0.775 0.076 0.858 0.835 0.084 0.859 0.847 0.058 0.764 0.768 0.117 0.731 0.795 0.075

WSSD Sub 2021 - - - 0.873 0.827 0.119 0.884 0.870 0.082 0.820 0.814 0.128 0.703 0.768 0.114

WSSA S 2020 0.755 0.803 0.062 0.871 0.865 0.059 0.864 0.865 0.047 0.788 0.796 0.094 0.736 0.800 0.077

Ours H 0.803 0.837 0.050 0.899 0.886 0.051 0.892 0.887 0.038 0.827 0.828 0.076 0.755 0.813 0.069

• THUR [82] dataset collects 15,000 images from the
Internet and annotates each image with the corresponding
pixel-level saliency ground truth.

2) Evaluation Metrics: We adopt Precision-Recall (PR)
curve [83], [84], max F-measure score [85], [86], S-measure
score [87], and MAE score [88], [89] as the evaluation metrics.
As the PR curve is closer to the upper right corner, the model
performance is better. The larger the F-measure and S-measure
values, the better the performance, while the MAE score is just
the opposite.

3) Implementation Details: We select the first 1,000 sam-
ples in the DUTS-TR dataset [41] as the real-labeled data,
providing the pixel-wise real ground truth. Then, we use the
MB method [73] to generate the saliency maps for all the
images in the DUTS-TR dataset [41], thereby forming the
coarse-labeled set. The validation set includes a total of 100
images from the SOD dataset [90].

We use the Pytorch toolbox to implement the proposed
network and accelerate training by an NVIDIA GeForce RTX
3090 GPU card. We also implement our network by using
the MindSpore Lite tool3. The ResNet-50 is used as the
backbone of the R-Net to extract encoding features, with initial
parameters loaded from the pre-trained model on ImageNet
[91]. The MINet [55] is used as S-Net in our implementa-
tion. For the R-Net, the training images are first resized to
288 × 288 by uniform resizing and random cropping. All
training samples are then augmented using random horizontal
flips and rotations. For the S-Net, we directly resize all images

3https://www.mindspore.cn/

to 320×320 during training and inference, and then apply the
same augmentation strategy to R-Net. During training, the R-
Net and S-Net are optimized by Adam optimizer with the batch
size of 8, momentum of 0.9, and the weight decay of 5e−4.
The initial learning rate is set to 1e−4, and divided by ten every
ten epochs. The overall network is trained for a total of five
iterations, and we design the same number of epochs (i.e., 30
epochs) for each iteration of the training process, whether it is
R-Net or S-Net. Note that we only use the warm-up strategy
in the first iteration. In the R-Net, we need to concatenate
the RGB image and coarse label together into the backbone,
for a total of 4 channels. Following the setting in [92], we
duplicate the original three channels of the ResNet model and
its parameter once to form 6 channels, and then take the first
four channels as the input layer of the new model.

B. Comparison with State-of-the-arts

We compare the proposed method with other state-of-the-
art models, including fully-supervised methods (i.e., PAGR
[93], MLMSNet [94], CPD [95], AFNet [58], BASNet [96],
GCPANet [18], DGRL [97], PiCANet [98], PFAN [99], and
MINet [55]), weakly-supervised methods (i.e., MSW [61],
WSSA [62], ASMO [100], WSS [41], MFNet [64], and WSSD
[43]) and unsupervised methods (i.e., SVF [101] and MNL
[42]). For a fair comparison, the saliency maps of the different
methods are provided by the authors or obtained by running
the released code with default parameters.

1) Quantitative Evaluation: First of all, the PR curves are
shown in Fig. 5. Our method (red dashed line) achieves the

https://www.mindspore.cn/
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Fig. 6: Visual comparisons with other state-of-the-art methods in various representative scenes.

best performance in most cases compared to other weakly su-
pervised and unsupervised methods on five common datasets,
which is consistent with the quantitative scores reported in
Table I. Compared with the unsupervised SVF method [101]
on the PASCAL-S dataset, the percentage gain of our method
reaches 12.7% for max F-measure, 9.4% for S-measure and
43.3% for MAE score. Compared with the WSSD method with
subitizing supervision [43] and MFNet method with image-
level supervision [64] on the HKU-IS dataset, the percentage
gain reaches 53.7% and 34.5% for MAE score.

In addition, our method also achieves more competitive
performance against the weakly-supervised SOD models with
stronger supervision. For example, compared with the MSW
method [61] with a variety of combination supervision labels,
the percentage gain of S-measure reaches 11.3% on the DUTS-
TE dataset, and the the percentage gain of max F-measure
also wins 13.9%. For the scribble based weakly-supervised
SOD method (e.g., WSSA [62]), although the proportion of
annotations is relatively small, each sample clearly defines the
foreground and background regions. That is, the supervision
information given by the scribble is perfectly accurate. By
contrast, the hybrid labels we use contain 90% coarse labels
with a lot of uncertain noise, but our model outperforms the
WSSA method overall on all metrics across all datasets. For
example, compared with the WSSA [62] on the DUTS-TE
dataset, the percentage gains of max F-measure, S-measure,
and MAE score reach 6.4%, 4.2%, and 7.1%, respectively.
It is worth mentioning that our method catches up or even
surpasses some fully-supervised methods on certain datasets
(e.g., THUR dataset). In our proposed framework, we choose

the MINet [55] as our S-Net for training, and achieve the
original performance of 80% ∼ 90% using only 1/10 of the
original training set. Of course, there is still a lot of room for
improvement in the performance.

2) Qualitative Comparison: Some visual comparisons are
shown in Fig. 6. It can be seen that our method surpasses
the unsupervised and weakly-supervised methods in terms of
structural integrity and accuracy, and achieves comparable re-
sults to fully supervised methods. Our advantages are reflected
in the following aspects:

• Advantages in background suppression: Our model can
effectively suppress noise and accurately locate the posi-
tion of salient objects. For example, in the second image,
the unsupervised SVF method [101] and scribble-based
WSSA method [62] fail to accurately locate the boundary
between the snow and the sheep from the complex
backgrounds. Also, in the fourth image, some weakly-
supervised methods (e.g., WSSD [43], WSSA [62]), as
well as several fully-supervised methods (e.g., CPD [95],
PAGR [93], PFAN [99]), are wrongly detect the hand
as the salient object. In contrast, our model has better
results in terms of location accuracy and background
suppression.

• Advantages in detail depiction: Our model has a better
ability to capture detailed information such as sharp
boundaries and complete structure. In the third image,
other weakly-supervised methods either fail to detect the
dog’s limbs completely, or fail to distinguish the boundary
between the limbs and the grass background. Similarly,
neither the cow in the fifth image nor the person in the
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TABLE II: The effectiveness analyses of overall framework
on the PASCAL-S, DUTS-TE and HKU-IS datasets.

PASCAL-S DUTS-TE HKU-IS
Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓

M1 0.690 0.161 0.622 0.136 0.775 0.101
M2 0.783 0.120 0.741 0.089 0.855 0.070
M3 0.801 0.093 0.755 0.065 0.868 0.048

Ours 0.827 0.076 0.803 0.050 0.892 0.038

Image GT Coarse Label M1 M2 OursM3

Fig. 7: Visualization results for effectiveness of the overall
framework.

sixth image can be detected completely. In contrast, our
method is not only able to detect the relatively complete
structure of these salient objects, but also has clearer and
sharper boundaries. In the last image, our method has a
clear advantage in characterizing the horns and limbs of
the cow compared to other weakly-supervised methods,
especially our method can accurately detect the cow feet
at a distance, producing more complete result.

• Advantages in low-contrast scene: Our model can iden-
tify the salient object although in low-contrast scenes.
For example, The color of the eagle¡¯s wings and the
mountain behind it are so close that it is difficult for
even fully-supervised methods to fully detect this region,
such as CPD [95] and PAGR [93]. As you can easily
imagine, all other weakly-supervised methods also fail
in this region. Fortunately, thanks to the entire network
architecture and the multi-dimensional feature fusion, the
method proposed in this paper successfully detects the
left wing of the eagle. Furthermore, in the eighth image,
not only is the color of the leopard very close to the tree
trunk, but part of its legs are covered by the tree trunk,
which increases the difficulty of detection. However, our
model can still detect the entire leopard’s legs based on
the relationship between objects, which even exceeds the
detection ability of some strongly supervised models.

C. Ablation Study

To validate the effectiveness of our proposed network, we
conduct comprehensive ablation experiments on the HKU-
IS, DUTS-TE, and PASCAL-S datasets, including the overall
framework, the design of R-Net, and the training strategy.

1) Effectiveness of the overall framework: In the face of
hybrid labels, Fig. 2 shows two SOD framework pipelines. One
is direct hybrid training, as shown in Fig. 2(a), or even training
with only real labels, and the other is our proposed framework
in this paper, where label refinement and SOD are alternately
trained under hybrid labels. To verify the effectiveness of our

TABLE III: Ablation study of BGA on the PASCAL-S, HKU-
IS and DUTS-TE datasets, where ‘B’ is the baseline model,
and ‘G’ denotes the guidance stage, and the ‘A’ represents the
aggregation stage.

B G A
PASCAL-S DUTS-TE HKU-IS

Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓
X 0.792 0.098 0.766 0.069 0.865 0.053

X X 0.803 0.086 0.786 0.056 0.880 0.045

X X 0.809 0.083 0.791 0.053 0.882 0.043

X X X 0.827 0.076 0.803 0.050 0.892 0.038

overall framework, we design three ablation experiments. (1)
M1: we first train the S-Net with 9,000 coarse-labeled samples
and then fine-tune it with 1,000 real-labeled samples. (2) M2:
we only train the S-Net with 1,000 real-labeled samples. (3)
M3: we first train the S-Net using 1,000 samples with real
labels, then use the trained S-Net to predict and update the
original coarse labels for the remaining 9,000 samples, and
finally retrain the S-Net by using the updated coarse-labeled
samples and real-labeled samples. The quantitative results on
the PASCAL-S, DUTS-TE and HKU-IS datasets are reported
in Table II, and some visual comparisons are shown in Fig. 7.

Comparing M1 and M2, we can see that directly introducing
coarse labels leads to a significant drop in performance, mainly
due to the unreliable noise of coarse labels. Compared with
these two schemes, our proposed framework guarantees that
better results can still be achieved when training with coarse
labels. For example, on the DUTS-TE dataset, the percentage
gain of max F-measure against the M2 model is 8.4%, and
the percentage gain of max F-measure against the M1 model
reaches 29.1%. All these results demonstrate the effectiveness
of our overall framework. As can be seen from Fig. 7,
experiment M1 can only detect the main part of the object,
with obvious omissions (such as the chicken on the far right in
the first image and the pomegranate on the left in the second
image). Furthermore, the results of experiment M1 are inferior
to those of experiment M2 trained with only 1,000 real-labeled
data. However, the M2 still contains a lot of noise and has very
limited ability to describe the details (such as the duck’s paws
in the first image).

In addition, the performance of experiment M3 outperforms
the experiment M2, but our model still has obvious advantages
in performance. For example, on the DUTS-TE dataset, com-
pared with experiment M3, the max F-measure score of the
full model is improved from 0.755 to 0.803 with a percentage
gain of 6.3%, and the MAE score is improved from 0.065
to 0.050 with a percentage gain of 23.1%. On the HKU-IS
dataset, the max F-measure score of the full model is improved
from 0.868 to 0.892 with a percentage gain of 2.8% compared
with experiment M3, and the MAE score is improved from
0.048 to 0.038 with a percentage gain of 20.8%. For the
experiment M3, although the noise is significantly reduced,
the performance is still inferior to our framework in terms of
details, such as chicken feet. All these experiments verify the
effectiveness of our overall framework.
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Fig. 8: Visual comparisons for showing the benefits of the
proposed modules.

2) Effectiveness of the R-Net: In the design of R-Net, the
BGA module is a crucial core module, including the guidance
stage and aggregation stage. In order to demonstrate the
effectiveness of the designed BGA module R-Net, we conduct
the ablation experiments on the PASCAL-S, DUTS-TE and
HKU-IS datasets, and the quantitative and quantitative results
are reported in Table III and Fig. 8.

First, we replace the BGA module with a simple
concatenation-convolution fusion, thereby forming the base-
line model. Based on the baseline model, we separately
add the guidance and aggregation stages in the verification
experiments. In the guidance stage, the saliency-refinement
mainstream branch is supplemented and enriched with the
guidance information (e.g., object localization and complete-
ness) of the RGB-image guidance branch. As shown in the
Table III, compared with the baseline model on the DUTS-TE
dataset, the max F-measure is improved from 0.766 to 0.786
by only introducing the guidance stage, with a percentage gain
of 2.6%. The visualization results in Fig. 8 show that some
irrelevant backgrounds are effectively suppressed (such as the
left region in the first image), and some salient regions can
also be recovered (such as the lower wing region in the third
image), but there are also some cases where the detection is
incomplete (such as top wing in the third image). In addition,
the aggregation stage aims to more comprehensively integrate
the corresponding encoder features, previous decoder features,
and global context features. When only the aggregation stage
is introduced, we can achieve better performance than the
baseline model, and even slightly better than the model only
with the guidance stage, which also illustrates the importance
of effective multi-level fusion. For example, only with the
aggregation stage on the DUTS-TE dataset, the max F-measure
is improved from 0.766 to 0.791, with a percentage gain
of 3.3%. From the visualization results, it can be seen that
the aggregation stage can better complete the object structure
(such as the upper wing in the third image), but still introduces
some additional noise and interference. By contrast, the model
that includes both stages achieves the best performance. On the
PASCAL-S, DUTS-TE and HKU-IS datasets, the percentage
gain of the max F-measure reaches 4.4%, 4.8% and 3.1%
against the baseline model, respectively. Also, the structure of
the final result is more complete, and irrelevant background
regions are suppressed more thoroughly.

TABLE IV: Ablation study of RGB Branch in R-Net on the
PASCAL-S, DUTS-TE and HKU-IS datasets.

PASCAL-S DUTS-TE HKU-IS

Fmaxβ ↑MAE ↓Fmaxβ ↑MAE ↓Fmaxβ ↑MAE ↓

w/o RGB 0.791 0.109 0.761 0.077 0.873 0.054

Full model 0.827 0.076 0.803 0.050 0.892 0.038

Besides, to verify the effectiveness of the introduction of
the RGB-image guidance branch in the R-Net, we add an
ablation experiment. As a comparison, we remove the RGB-
image guidance branch from the full model, denoted as w/o
RGB. From the Table IV, we can see that the performance
of the network degrades after removing the RGB branch on
three testing datasets. For example, on the DUTS-TE dataset,
compared with the model without the RGB branch, the max
F-measure score is improved from 0.761 to 0.803 with a
percentage gain of 5.5%, and the MAE score is improved from
0.077 to 0.050 with a percentage gain of 35.1%.

3) Effectiveness of Training Strategy: To validate the ef-
fectiveness of our proposed training strategy, we conduct two
ablation experiments: (1) No.1: we simplify the designed
training strategy. The training of the two networks is no longer
performed alternately, but directly trains R-Net on 1,000 real-
labeled samples, then tests 9,000 samples with coarse labels
to obtain the corresponding pseudo labels, and finally uses
the pseudo-labeled and real-labeled samples to train the S-
Net. This experiment is designed to verify the effectiveness
of the overall training strategy. (2) No.2: we remove the
credibility verification mechanism in each iteration to verify
its effectiveness. (3) No.3: we use all refined coarse labels and
real labels as supervision in the fifth iteration of S-Net training.
(4) No.4: we remove contaminated data from each iteration
and participate in each iteration using real-labeled samples,
which is used to verify the effectiveness of the contamination
mechanism on the real-labeled data.

As can be found in Table V, even with our designed
framework pipeline of label refinement and SOD, without
our proposed training strategy, the network cannot exert its
maximum advantage. For example, on the DUTS-TE dataset,
the max F-measure of experiment No.1 drops from 0.803
to 0.763 compared to the model with full training strategy,
a decrease of 4%. In addition, we introduce a credibility
verification mechanism from the second iteration to ensure the
validity of the pseudo labels. It can also be seen from the table
that after removing this mechanism for experiment No.2, the
indicators on all datasets decreased. From experiment No.3,
we can see that although the amount of data for training S-
Net is increased, the balance of data is disrupted, resulting
in a slight decrease in the performance of the model instead
of increasing. For example, compared with original training
strategy, the max F-measure score of experiment No.3 drops
from 0.827 to 0.824 on PASCAL-S dataset, and from 0.803 to
0.800 on the DUTS-TE dataset. Moreover, the training time
of experiment No.3 is much longer than the full model. In
addition, the role of the contamination labels is to prevent
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TABLE V: Ablation study of Training Strategy with Hybrid
Labels on PASCAL-S, DUTS-TE and HKU-IS datasets.

PASCAL-S DUTS-TE HKU-IS
Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓ Fmaxβ ↑ MAE ↓

No.1 0.786 0.095 0.763 0.071 0.863 0.059
No.2 0.819 0.083 0.792 0.054 0.880 0.043
No.3 0.824 0.075 0.800 0.050 0.889 0.039
No.4 0.812 0.080 0.796 0.053 0.878 0.042
Ours 0.827 0.076 0.803 0.050 0.892 0.038

the network from overfitting the 1,000 samples with real
labels, since these samples are involved in each round of
training. From Table V, it can be seen that the participation
of contaminated real-labeled data in training improves the
robustness and performance of the network. Compared to the
version without the contamination mechanism on the real-
labeled data, the MAE score is improved from 0.080 to 0.076
with a percentage gain of 5.2% on the PASCAL-S dataset,
and from 0.042 to 0.038 with a percentage gain of 10.5%
on the HKU-IS dataset. In summary, our model framework
equipped with the designed training strategy achieves apparent
advantages in the detection performance on the PASCAL-S,
HKU-IS and DUTS-TE datasets.

4) Impact of the Group Settings: Considering the sample
imbalance issue caused by the difference in the number of
real-labeled samples and coarse-labeled samples, we propose a
group-wise incremental mechanism to avoid network collapse
caused by importing a large amount of pseudo-labeled data
at a time. In implementation, we divide all training samples
into some groups, and gradually increase the amount of data
with pseudo labels in each training iteration. The number
of groups simply reflects the number of samples embedded
in each iteration and does not have a significant impact on
performance theoretically, but the larger the number of groups,
the more iterations required and the longer the training time.
To this end, we design ablation experiments with different
number of groups (i.e., 5 and 15), as reported in Table VI.
When the number of groups is set to 5, the 1,000 samples
with real labels are still grouped into GROUP 1. The remaining
9,000 samples with coarse labels are divided into four groups
for training, each containing 2,250 samples. Since the number
of training iterations is related to the number of groups, we
add one group of data for each iteration, and these five groups
are iterated three times in total. Similarly, when the number of
groups is set to 15, the remaining 9,000 samples with coarse
labels are divided into 14 groups of 642 or 643 images each,
and the whole training process requires 8 iterations. It can be
seen from Table VI that the performance of different grouping
numbers is slightly different, which is also consistent with our
theoretical analysis.

V. CONCLUSION

In this paper, we propose a weakly-supervised learning
framework for SOD tasks with hybrid labels, which is decou-
pled into a R-Net and a S-Net. In order to make full use of
the limited annotation information, the R-Net equipped with

TABLE VI: Ablation study of Different Group Settings.

PASCAL-S DUTS-TE HKU-IS

Fmaxβ ↑MAE ↓Fmaxβ ↑MAE ↓Fmaxβ ↑MAE ↓

5 Groups 0.824 0.074 0.798 0.049 0.889 0.039

15 Groups 0.824 0.075 0.801 0.049 0.890 0.039

10 Groups (Ours) 0.827 0.076 0.803 0.050 0.892 0.038

Blender with Guidance and Aggregation Mechanisms is de-
signed to refine the coarse label and generate the pseudo label
for S-Net training. In addition, we design three training mech-
anisms to guarantee the effectiveness and efficiency of network
training, including alternate iteration mechanism, group-wise
incremental mechanism, and credibility verification mecha-
nism. Evaluations of five benchmark datasets demonstrate the
effectiveness of our approach.
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