
Transformers are Efficient Compilers, Provably

Anonymous Author(s)
Affiliation
Address
email

Abstract

Transformer-based large language models (LLMs) have demonstrated surprisingly1

robust performance across a wide range of language-related tasks, including pro-2

gramming language understanding and generation. In this paper, we take the first3

steps towards a formal investigation of using transformers as compilers from an4

expressive power perspective. To this end, we introduce a representative pro-5

gramming language, Mini-Husky, which encapsulates key features of modern6

C-like languages. We show that if the input code sequence has a bounded depth7

in both the Abstract Syntax Tree (AST) and type inference (reasonable assump-8

tions based on the clean code principle), then the number of parameters required9

by transformers depends only on the logarithm of the input sequence length to10

handle compilation tasks, such as AST construction, symbol resolution, and type11

analysis. A significant technical challenge stems from the fact that transform-12

ers operate at a low level, where each layer processes the input sequence as raw13

vectors without explicitly associating them with predefined structure or meaning.14

In contrast, high-level compiler tasks necessitate managing intricate relationships15

and structured program information. Our primary technical contribution is the16

development of a domain-specific language, Cybertron, which generates formal17

proofs of the transformer’s expressive power, scaling to address compiler tasks.18

We further establish that recurrent neural networks (RNNs) require at least a lin-19

ear number of parameters relative to the input sequence, leading to an exponential20

separation between transformers and RNNs. Finally, we empirically validate our21

theoretical results by comparing transformers and RNNs on compiler tasks within22

Mini-Husky.23

1 Introduction24

Transformers (Vaswani, 2017) have demonstrated remarkable proficiency across various do-25

mains, achieving near-expert performance in solving International Mathematical Olympiad prob-26

lems (Google Deepmind, 2024) and excelling in complex reasoning tasks in science, coding, and27

mathematics (OpenAI, 2024a).. They also handle routine coding tasks with high precision, such28

as translating Agda code into TypeScript, outperforming the outdated and expensive-to-maintain29

AgdaJS compiler (Taelin, 2023b), and integrating into code editors to significantly boost program-30

mers’ productivity (cur, 2024; Taelin, 2023a). Despite these advancements, the full extent of their31

underlying capabilities remains only partially understood.32

In this paper, we aim to deepen our understanding of transformers’ abilities to perform compilation33

tasks. Empirically, transformer-based LLMs have shown rapid progress in code generation and com-34

pilation. For example, MetaLL (Cummins et al., 2024) enables LLMs to optimize code by interpret-35

ing compiler intermediate representations (IRs), assembly language, and optimization techniques.36

Gu (2023) highlights the ability of LLMs to generate high-quality test cases for Golang compil-37

ers. Surprisingly, Taelin (2023b)demonstrates that models like Sonnet-3.5 can compile legacy code38

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

into modern languages like TypeScript, outperforming the now obsolete AgdaJS compiler (Agda39

Development Team, 2024).40

To formally study this problem in a controlled setup, we designed a C-like programming language41

called mini-husky, which encapsulates key features of modern C-like languages such as (Flanagan,42

2011) and Rust (Klabnik & Nichols, 2023). We focus on three representative compilation tasks: ab-43

stract syntax tree (AST) construction, symbol resolution, and type analysis. The AST is a recursive44

structure that represents the input as a tree. From the perspective of programming language design,45

the AST is considered the true representation of the input, with the textual code serving merely as46

a convenient interface for human users (Alfred et al., 2007). All syntactic and semantic processing47

can then be interpreted as specific operations on these trees. Symbol resolution involves verifying48

the validity of references to entities and flagging errors for undefined symbols. Type analysis en-49

compasses both type inference, which assigns types to variables without explicit annotations, and50

type checking, which identifies mismatches between actual and expected types.51

We demonstrate that, under the clean code principle (Martin, 2008), transformers with a number of52

parameters that scale logarithmically with the input length can efficiently perform AST construction,53

symbol resolution, and type analysis. To the best of our knowledge, this is the first theoretical54

demonstration that transformers can function as compilers in a parameter-efficient manner.55

We further compare transformers and recurrent neural networks (RNNs). By connecting the type56

analysis task with the associative recall, we show even under the clean code principle (Martin,57

2008), RNNs require a memory size that scales linearly with the input sequence length to success-58

fully perform type analysis. Consequently, for type analysis in compilation, transformers can be59

exponentially more efficient than RNNs. We also empirically validate our theoretical findings by60

demonstrating the superiority of transformers in the type analysis task.61

Technical Challenges and Our Technique.62

Proving that transformers can perform compilation tasks presents several challenges:63

• Transformers operate at too low a level. Transformers process sequences of floating-point vec-64

tors, akin to raw bits in computers, and proving their ability to perform specific tasks is similar65

to writing specialized parallel machine code. Previous work (Yao et al., 2021) often resorts to66

graphical illustrations for readability, even for basic tasks.67

• Compilers are exceedingly high-level. Compilers are one of the most challenging programming68

projects in our era and early C compilers. Compilers are among the most complex programming69

endeavors of our time. Compilation involves numerous sophisticated procedures, some of which70

are undecidable or computationally expensive, such as code optimization (Alfred et al., 2007))71

and type analysis (Pierce, 2002). For example, type analysis in complex type systems poses72

significant challenges, often requiring the development of advanced logical frameworks (Dunfield73

& Krishnaswami, 2019).74

To overcome these challenges, we design a domain-specific language (DSL) called Cybertron to75

serve as the proof vehicle, i.e., a major part of our proof consists of reasoning about type-correct76

code in Cybertron that represents a transformer. Without using Cybertron, writing an equivalent77

natural language proof would be too complex and intractable. Using code to prove propositions is78

not new to computer science; it is, in fact, the norm in interactive theorem proving (ITP) (Har-79

rison et al., 2014). ITP focuses on generating computer-verifiable proofs through a combination80

of human-guided instructions and software automation. For instance, the correctness of the Ke-81

pler conjecture (Hales et al., 2017) is verified by the combination of the ITP theorem provers HOL82

Light (Harrison, 2009) and Isabelle (Paulson, 1994). o our knowledge, we are the first to apply this83

approach to understanding neural networks.84

Contributions. We summarize our contributions below:85

• A testbed for compilation tasks: We introduce Mini-Husky, a simple yet representative C-like86

programming language, designed to formally assess transformers’ capabilities in programming87

language processing. We anticipate that Mini-Husky will become a standard testbed for this88

purpose.89

• Expressive power theory of transformers as compiler: We provide a formal proof that, when90

the input code sequence has bounded AST depth and inference depth, the number of parameters91

in transformers only needs to scale logarithmically with the input sequence length to handle com-92

2

pilation tasks such as AST construction, symbol resolution, and type analysis. To the best of our93

knowledge, this is the first study exploring the power of transformers as compilers.94

• Transformers vs. RNNs: Theoretically, we demonstrate a negative result, showing that the num-95

ber of parameters in RNNs must scale linearly with the input sequence length to perform type96

analysis correctly. This result establishes an exponential separation between transformers and97

RNNs. We further empirically confirm the advantage of transformers for the type analysis task.98

• A Domain-Specific Language for Proofs: Given the challenges in formal proofs, we design a99

domain-specific language, Cybertron, to serve as a proof vehicle. We believe that Cybertron, and100

the general approach of using DSLs for analysis, can have broader applications in understanding101

transformers and other architectures.102

2 Related Work103

Expressive Power of Transformers. A line of work studies the expressive power of attention-based104

models. One direction focuses on the universal approximation power (Yun et al., 2019; Bhattamishra105

et al., 2020b,c; Dehghani et al., 2018; Pérez et al., 2021). More recent works present fine-grained106

characterizations of the expressive power for certain functions in different settings, sometimes with107

statistical analyses (Edelman et al., 2022; Elhage et al., 2021; Likhosherstov et al., 2021; Akyürek108

et al., 2022; Zhao et al., 2023; Yao et al., 2021; Anil et al., 2022; Barak et al., 2022; Garg et al.,109

2022; Von Oswald et al., 2022; Bai et al., 2023; Olsson et al., 2022; Akyürek et al., 2022; Li et al.,110

2023; Hao et al., 2022; Pérez et al., 2019; Strobl, 2023; Chiang et al., 2023; Wei et al., 2022; Wang111

et al., 2022; Feng et al., 2023; Li et al., 2024; Reddit User, 2013). The most related one is Yao et al.112

(2021) where the authors prove constructively that bounded depth Dyck language can be recognized113

by encoder-only hard attention transformers, which has similarities to our settings of bounded depth114

programming language recognized encoder-only hard attention transformers. The major difference115

is that we introduce concepts and tasks from programming language theory Pierce (2002) to study116

the semantic powers of transformers.117

Transformers vs. RNN. It is important to understand the comparative advantages and disadvantages118

of transformers against RNNs. Empirically, synthetic experiments have shown an advantage of119

transformers against RNNs for long range tasks (Bhattamishra et al., 2023; Arora et al., 2023).120

Theoretically, there has been a rich line of work focusing on comparing transformers and RNNs in121

terms of recognizing formal languages (Bhattamishra et al., 2020a; Hahn, 2019; Merrill et al., 2021),122

which show that the lack of recursive structure of transformers prevent them from recognizing some123

formal languages that RNNs can recognize. However, the gap can be mitigated when we consider124

the bounded length of input or bounded grammar depth (Liu et al., 2022; Yao et al., 2021), which125

is quite reasonable in practice and is used in this paper. On the other side, prior work (Jelassi et al.,126

2024; Wen et al., 2024) proves a representation gap between RNNs and Transformers in repeating127

a long sequence. In summary, it is somehow intuitive that recursive structures with limited memory128

perform badly at tasks which requires information retrieval. Our paper shows that semantic analysis129

for programming languages is such a task.130

DSLs for Transformers. We note that we are not exactly the first one to employ a domain-specific131

language to understand the expressive powers of transformers. Previously, DSLs with simple typings132

like RASP (Weiss et al., 2021) were proposed to prove constructively that transformers can do133

various basic sequence-to-sequence operations. Lindner et al. (2023) writes a compiler that compiles134

RASP into actual transformers, Friedman et al. (2023) shows that RASP can be learned, and Zhou135

et al. (2023) uses RASP to prove that simple transformers can perform certain algorithms. The major136

difference between RASP and our DSL Cybertron is that Cybertron has a powerful algebraic type137

system that helps to prove complicated operations beyond simple algorithms.138

3 Preliminaries139

The major innovation in the transformer architecture is self-attention, which processes input tokens140

in a distributed manner. This capability enables the model to handle long-range dependencies, a141

crucial feature for langauge tasks. We use hard attention and simplified position encoding to simplify142

our theoretical reasoning.143

3

Attention. In practice, attention heads use soft attention. Given model dimension dmodel, num-144

ber of heads H , and a finite set of token positions Pos, an attention layer with simplified position145

encoding is defined as a function fattn : RPos×dmodel → RPos×dmodel given by146

∀p ∈ Pos, fattn(X)p :=WO Concat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)
, (1)

where the hth attention head is defined using soft attention as: Attn(h)(X)p :=
∑

p′∈Pos α
(h)
p,p′V

(h)
p′ .147

The attention weights α(h)
p,p′ given by: α(h)

p,p′ =
exp

(
Q(h)

p

⊤
K

(h)

p′ +λ(h)⊤Ψp′−p

)
∑

p′′∈Pos exp
(
Q

(h)
p

⊤
K

(h)

p′′ +λ(h)⊤Ψp′′−p

) , where WO ∈148

Rdmodel×dmodel are trainable parameters, Q(h)
p ,K

(h)
p , V

(h)
p ∈ Rdmodel/H are linear transformations of149

Xp, λ(h) ∈ R2 depends on the head, and Ψq =

(
q

1q>0

)
∈ R2 accounts for relative position.150

For theoretical convenience, we use hard attention, commonly used in theoretical analysis of trans-151

former (Yao et al., 2021; Hahn, 2019). Hard attention can be viewed as the limit of soft attention152

when the attention logits become infinitely large. The hard attention head is defined as:153

Attn(h)(X)p :=
1

|Sp|
∑
p′∈Sp

V
(h)
p′ , where Sp = arg max

p′∈Pos

(
Q(h)

p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)
(2)

In other words, hard attention selects the positions p′ that maximize the attention score for each154

position p, and averages the corresponding value vectors V (h)
p′ .155

Feed-Forward Layer. Given model dimension dmodel, and a finite set of token positions Pos, a156

feed-forward layer is a fully connected layer applied independently to each position, defined as a157

function fffn : RPos×dmodel → RPos×dmodel given by158

∀p ∈ Pos, fffn(X)p =W2σReLU (W1Xp + b1) + b2, (3)

where W1 ∈ Rdffn×dmodel and W2 ∈ Rdmodel×dffn are trainable weight matrices, b1 ∈ Rdffn and b2 ∈159

Rdmodel are trainable bias vectors, dffn is the hidden dimension of the feed-forward layer, chosen to be160

2dmodel, as commonly used in practice, σReLU is the ReLU activation function.161

Encoder-Only Transformer. Encoder-only transformers consist solely of the encoder stack, mak-162

ing them ideal for tasks like classification, regression, and sequence labeling that do not require163

sequence generation. Each encoder layer includes a multi-head self-attention mechanism and a164

feed-forward network, allowing the model to capture complex dependencies and contextual infor-165

mation.166

One can define it using the following recursion,167

• The input is given by: X(0) = X .168

• For each layer l = 1, 2, . . . , L:169

– Compute attention output: X̂(l) = X(l−1) + f
(l)
attn
(
X(l−1)

)
,170

– Compute feed-forward output: X(l) = X̂(l) + f
(l)
ffn

(
X̂(l)

)
.171

In the above, f (l)attn are the attention layers, and f (l)ffn are the feed-forward layers, with the same model172

dimension dmodel, number of heads H , and set of token positions Pos. For simplicity, layer normal-173

ization is ignored. See Appendix C for full details of transformers and other architectures.174

4 Programming Language Processing and The Target C-Like Language:175

Mini-Husky176

Recently, transformers have expanded to include code analysis and generation (Nijkamp et al., 2023;177

Chen et al., 2021; Anysphere, 2023). Programming languages offer a cleaner foundation for study-178

ing language understanding, as their syntactic and semantic tasks are precisely defined. To formally179

study the language processing capabilities of transformers, we design Mini-Husky, a representative180

4

Raw Text Token Stream Abstract Syntax Tree Semantic Information

Compiler

Tokenizer Transformer

Figure 1: Programming language processing pipeline

mix of modern C-like languages with strong typing and typical syntactic features. It supports user-181

defined types (e.g., structs, enums) and enforces strict type equality, disallowing implicit conver-182

sions. Lexical scoping, including shadowing, ensures proper variable accessibility based on block183

structures, type inference, and checking. These features make the Mini-Husky compiler a rep-184

resentative task to evaluate transformers’ capabilities in syntactic and semantic tasks like symbol185

resolution and type checking. See Appendix D for the full details of Mini-Husky.186

The standard pipeline of processing programming languages is shown in Figure 1 (Alfred et al.,187

2007). The raw text is firstly segmented into parts like literals, identifiers, punctuations, keywords,188

etc, called token stream, then parsed into a tree like structure representation of the generation process189

of the input, finally syntactic and semantic analysis is performed on the tree. In this paper, to simplify190

the presentation, we assume tokenizer has been provided priori. Below we describe key tasks of191

programming language processing.192

Abstract Syntax Tree Construction. Abstract Syntax Tree (AST) is a hierarchical, tree-like repre-193

sentation of the syntactic structure of source code in a programming language. Unlike the raw text of194

the code, the AST abstracts away from surface syntax details, capturing the essential elements and195

their relationships in a structured form. Each node in the AST corresponds to a construct occurring196

in the source code, such as expressions, statements, or declarations. This representation is central197

to various stages of language processing, enabling efficient syntax checking, semantic analysis, and198

code generation. The formal definition of ASTs is standard in the programming language literature199

but is lengthy, so we defer to Appendix A.200

The AST construction task’s final output is the collection all AST nodes. We will show transformers201

can construct AST efficiently.202

Symbol Resolution. In programming languages, symbols are functions, types, generics, variables,203

macros, etc. They are defined in one place and can be used by referring to the corresponding identi-204

fier or path in a certain scope. The scope can be within a certain tree of modules, or within a certain205

curly bracketed scope within one module. For simplicity, we only consider curly bracketed scope.206

In Mini-Husky, the following showcases symbol resolution.207

1 pub fn f() {208
2 fn f1() {}209
3210
4 let a = 1;211
5 let x = a;212
6 let a = 2;213
7 {214
8 let a = 3;215
9 { let a = 4; }216

10 let y = a;217
11 }218
12 let z = a;219
13 }220
14221
15 fn g() { f() }222

The outer function f is accessible everywhere in the body of function g. However, the inner function223

f1 can only be used inside the body of f as it is defined within the body. For variables with the same224

identifier a , the first is accessible from lines 4 and 5, the second is accessible from line 12, the third225

is from line 10, and the fourth is not accessible from anywhere. Thus x = 1, y = 3, z = 2.226

5

The output of the symbol resolution task is the collection of symbol resolution results on all appli-227

cable tokens. More concretely, the output is a sequence of values of type Option<SymbolResolution>228

where Option<SymbolResolution> is the type SymbolResolution with a null value added for non-229

applicability and SymbolResolution is the type storing the result of the symbol resolution, be-230

ing either a success with a resolved symbol of type Symbol or a failure with an error of type231

SymbolResolutionError . We shall prove that transformers can do symbol resolution and that atten-232

tion is crucial.233

Type Analysis. In general, type is essential for conveying the intended usage of the written functions234

and specifying constraints. As a first exploration of this topic, we try to make the type analysis in235

Mini-Husky as simple as possible yet able to bring out the essential difficulty. The type system con-236

sists of four sequential components: (1) Type definition, (2) Type specification, (3) Type inference,237

and (4) Type checking. Due to the page limit, here we only introduce (4) Type checking because it is238

the final step and this is a crucial step which separates transformers and RNNs. See Appendix D.1239

for details of (1) Type definition, (2) Type specification, and (3) Type inference240

(4) Type checking. Type checking ensures that the type expressions agree with its expectations.241

For simplicity, we do not allow implicit type conversion, so the agreement means exact equality of242

types. The arguments of function calls are expected to have types according to the definition of the243

function. The operand type of field access must be a struct type with a field of the same name. The244

type of the last expression of the function body or the expr in the return statement must be equal to245

the return type of the function. For variables defined in the let statement, If the types are annotated,246

the types of the left-hand side and right-hand side should be in agreement.247

1 // Type Error: the return type is ‘i32‘, yet the last expression is of type ‘f32‘248
2 fn f(a: i32) -> i32 { 1.1 }249
3250
4 struct A { x: i32 }251
5252
6 fn g() {253
7 // Type Error: ‘x‘ is of type f32 but it’s assigned by a value of type ‘i32‘254
8 // Type Error: the first argument of ‘f‘ expects be of type ‘i32‘ but gets a float255

literal instead256
9 let x: f32 = f(1.1);257

10 // Type Error: no field named ‘y‘258
11 let y = A { x: 1 }.y;259
12 }260

The above incorporates typical examples of type disagreements that count as type errors. A compiler261

should be able to report these errors.262

The type analysis task’s final output is the collection of all type errors. More concretely, the output263

is a sequence of Option<TypeError> , where Option<TypeError> denoted the type TypeError will a264

null value added and TypeError is the type storing the information of a type error. The position of265

type errors agrees with the source tokens leading to these errors.266

5 Expressive Power of Transformers as Efficient Compilers267

In this section we discuss main theoretical results about the expressive power of transformers to268

perform compilation tasks: AST construction, symbol resolution, and type analysis. In Section 5.4,269

we discuss Cybertron, a DSL specifically designed for our proof.270

5.1 Abstract Syntax Tree Construction271

We start with a definition that characterizes low-complexity codes.272

Definition 1 (Codes with Bounded AST-Depth). Let MiniHuskyD be the set of token sequences273

that can be parsed into valid ASTs in Mini-Husky with a depth less than D.274

D in the above definition is small in practice, and a linear dependency onD is acceptable, but the lin-275

ear dependency on L is not. The fundamental reason is that the clean code principle (Martin, 2008)276

requires one to write code with as little nested layer as possible for greater readility. Readability is of277

6

the utmost importance because “Programs are meant to be read by humans and only incidentally for278

computers to execute” (Abelson et al., 1996). This assumption of bounded hierarchical depth is not279

limited to just programming languages, but is often seen as applicable to natural languages (Frank280

et al., 2012; Brennan & Hale, 2019; Ding et al., 2017), motivating Yao et al. (2021) to have a similar281

boundedness assumption. Below is the main result for AST construction using transformers.282

Theorem 1. There exists a transformer encoder of model dimension and number of layers being283

O(logL + D) and number of heads being O(1) that represents a function that maps any token284

sequence of length L in MiniHuskyD to its abstract syntax tree represented as a sequence.285

We note logL is small because a 64-bit computers can only process context length at most 264 and286

D is small by assumption. Therefore, there exists a transformer with an almost constant number of287

parameters that is able to process comparatively much longer context length.288

Proof Sketch. The idea is to construct ASTs in a bottom-up manner with full parallelism. We shall289

recursively produce the final ASTs in at mostD steps. We shall maintain two values, called pre_asts290

and asts . asts represents ASTs that have already been allocated, although they might not been fully291

initialized. pre_asts represents tokens that have yet to form ASTs and new ASTs that have not been292

fully initialized. For each round, we try to create new ASTs from pre_asts and update asts and293

pre_asts . For the n-th round, we provably allocated all ASTs with depth no more than n. Then for294

the D-th round, all ASTs are properly constructed and allocated. Each round can be represented by295

a transformer of a number of heads O(1), model dimension O(logL +D), and a number of layers296

O(1). Therefore, The end-to-end process is then representable by a transformer of the number of297

headsO(1), model dimensionO(logL+D) and the number of layersO(logL+D). See full details298

in in Appendix F.299

5.2 Symbol Resolution300

Next, we show that transformers can effectively perform symbolic resolution as logL and D are301

almost constant as compared with context length L.302

Theorem 2. There exists a transformer encoder of model dimension and number of layers being303

O(logL + D) and number of heads being O(1) that represents a function that maps any token304

sequence of length L in MiniHuskyD to its symbol resolution represented as a sequence of values305

of type Option<SymbolResolution> .306

Proof Sketch. First, we need to define the type for scopes. It is represented by a tiny sequence of307

indices of curly brace block AST that enclose the type/function/variable. We assign the scope by308

walking through the ASTs in a top-down manner. We not only assign scopes to item definitions,309

we also: (1) assign scopes to ASTs representing curly brace blocks, with these scopes equal to the310

scope of block itself, and (2) assign scopes to identifiers waiting to be resolved, with these scopes311

equal to the maximum possible scope of its resolved definition. The computation process is easily312

represented in Cybertron, indicating attention is expressive enough for this calculation and it only313

takes O(D) number of layers.314

After obtaining all the scopes for all items, it takes only one additional layer to obtain the symbolic315

resolution through attention. As attention is expressed through the dot product of two linear projec-316

tions Q and K, we have to choose the representation of the scope type properly to finish the proof.317

The full details are in Appendix G.318

5.3 Type Analysis319

We need an additional definition to characterize the complexity of codes for type analysis.320

Definition 2 (Codes with Bounded AST-Depth and Type-Inference-Depth). We use321

MiniHuskyAnnotatedD,H to denote the subset of MiniHuskyD with the depth of type in-322

ference no more than H . The depth of type inference is the number of rounds of computation needed323

to infer all the types using the type-inference algorithm (described in Appendix D.1).324

In practice, H is significantly smaller than with context length L for reasonably written code be-325

cause it is upper bounded by the number of statements in a function body which is required to be326

7

small according to clean code principle (Martin, 2008). Below, we present the main result of using327

transformers for type analysis. See full details in Appendix H.328

Theorem 3. For L,D,H ∈ N, there exists a transformer encoder of model dimension, and number329

of layers being O(logL+D +H) and number of heads being O(1) that represents a function that330

maps any token sequence of length L in MiniHuskyAnnotatedD,H to its type errors represented as331

a sequence of values of type Option<TypeError> .332

5.4 Proof Vehicle: Cybertron, a Domain-Specific Language333

Here we highlight our main proof technique. Proving that transformers can express complex algo-334

rithms and software like compilers is a significant challenge due to the inherent differences between335

how transformers operate and the nature of high-level tasks they are expected to perform. Trans-336

formers process input at a low level, where each layer manipulates raw token sequences as vectors337

without predefined structure or meaning. However, high-level tasks—such as constructing ASTs338

and performing type and symbol analysis—require handling complex, structured information that339

depends on long-range relationships and interactions across the input. Bridging the gap between340

this raw, unstructured processing and the structured, multi-step logic required for these tasks in-341

troduces significant difficulty. Compilers, for instance, typically rely on rule-based, step-by-step342

operations that are abstract and sequential, which transformers must simulate through their attention343

mechanisms and feedforward layers. The challenge is further compounded by the need to formally344

prove that transformers can handle such tasks efficiently and accurately, despite operating in a fun-345

damentally different manner. To address these challenges, we propose a domain-specific language346

(DSL) called Cybertron, which allows us to systematically prove that transformers are capable of347

expressing complex algorithms while maintaining sufficient readability.348

A key feature of Cybertron is its expressive type system, which provides strong correctness guar-349

antees. The type system ensures that every value is strongly typed, making it easier to reason about350

function composition and ensuring the validity of our proofs. This type system is crucial for man-351

aging how transformers represent and manipulate both local and global types—where local types352

correspond to individual tokens and global types refer to sequences of tokens, encapsulating broader353

program information.354

What transformers output (possibly in the intermediate layers) is a representation in sequences of355

vector of sequences of values in these types. As types are mathematically interpreted in this paper a356

discrete subset of a vector space, Cybertron allows us to construct transformers with an automatic357

value validity guarantees if the Cybertron code is type-correct.358

In Cybertron, complex functions are broken down into “atomic” operations through propositions359

on function compositions and computation graphs (Propositions 11,13,14,2). It is straightforward to360

prove that these “atomic” operations are representable by transformers, either by feedforward layers361

or attention layers. For example:362

• Feedforward layers: boolean operations like AND (Proposition 6), OR (Proposition 7), or NOT363

(Proposition 5), or operations over option types like Option::or (Proposition 9) being applied to364

each token in a sequence.365

• Attention layers: operations that requires information transmission between tokens such as366

nearest_left and nearest_right that collect for each token the nearest left/right non-nil informa-367

tion (Proposition 15).368

This approach allows us to break down complex operations into primitive tasks that transformers369

can simulate. Feedforward layers handle local operations on individual tokens, while attention lay-370

ers manage long-range dependencies and interactions between tokens, simulating the multi-step371

reasoning required for higher-level tasks.372

Cybertron’s expressive type system and function composition framework help bridge the gap be-373

tween the low-level processing transformers perform and the high-level reasoning necessary for374

complex tasks like compilation. For full details, including the mathematical foundations of Cy-375

bertron’s type system and function composition, see Appendix E.376

8

6 Comparisons between Transformers and RNN377

Now we compare transformers and RNNs from both theoretical and empirical perspectives.378

6.1 A Lower Bound for RNNs for Type Checking379

Previously, it has shown that RNN is provably less parameter efficient than transformers for associate380

recall (Wen et al., 2024). Intuitively speaking, type checking step covers associate recall. Based on381

this observation, we obtain the following lower bound for RNNs.382

Theorem 4. ForL,D,H ∈ N, for any RNN that represents a function that maps any token sequence383

of length L in MiniHuskyAnnotatedD,H with D,H = O(1) to its type errors represented as a384

sequence of values of type Option<TypeError> , then its state space size is at least Ω(L).385

Theorem 3 and Theorem 4 give a clear separation between transformers and RNNs in terms of the386

compilation capability. Specifically, if the input codes satisfy D,H ≪ L, which typically the case387

under the clean code principle (Martin, 2008), then transformers at most needO ((logL+D +H))388

number of parameters, which is significantly smaller what RNNs requires, Ω(L).389

6.2 Empirical Comparison between Transformers and RNNs390

We validate our theoretical results by conducting experiments on synthetic data.391

Dataset construction. The synthetic dataset is parameterized by n (the number of data pieces), f392

(the number of functions in a data piece), d (the minimum distance between the declaration and393

the first call of a function, as well as the minimum distance between its consecutive calls), v (the394

probability of using a variable in a function call), and e (the error rate of using an incorrect type in395

a function call).396

The names of the functions are drawn randomly from fx where x ∈ {0, 1, . . . , 99}. For each397

function, there is only one argument whose symbol is randomly drawn from {a, b, ..., z} and398

whose type is randomly drawn from {Int, Float, Bool}. There are at most 5 function calls in399

a function, and those called functions must be declared and not called by at least d functions ahead400

of the current one. In each function call, with probability v, the argument variable of the enclosing401

function is used regardless of its type, with probability (1 − v)(1 − e), a literal of the correct type402

is used, and with probability (1 − v)e an incorrect type literal is used. For integers, the literals are403

from {0, 1, . . . , 99}; for floats, the literals are from {0.1, 1.1, . . . , 99.1}; for booleans, the literals404

are from {true, false}.405

Below is a data piece with f = 10, d = 3, v = 0.2, e = 0.5:406

1 fn f2 (w : Float) { } fn f12 (f : Float) { } fn f98 (l : Bool) { } fn f74 (f : Int407
) { f2 (f) ; } fn f84 (b : Float) { f12 (false) ; } fn f59 (h : Int) { f98 (408
h) ; } fn f25 (n : Int) { f2 (n) ; f74 (n) ; } fn f81 (a : Float) { f84 (409
52.1) ; } fn f85 (a : Bool) { f12 (false) ; f98 (0) ; }410

Model and training. We use customized BERT models (Devlin et al., 2019) and bidirectional RNN411

models (Schuster & Paliwal, 1997) in our experiments. To control the model size (i.e., the number of412

trainable parameters), we adjust only the hidden sizes while keeping other hyperparameters constant.413

Detailed model specifications can be found in Table 1. For both transformers and RNNs, we use the414

hyperparameters listed in Table 2 in Appendix during the training process.415

Results. We experimented with multiple combinations of models (Table 1) and datasets (Table 2).416

For each combination, we conducted independent runs using a fixed set of k = 5 random seeds.417

When plotting the figures, we took the top t = 5 evaluation losses/accuracies from each run and418

averaged over all the k × t values. We plotted separate figures for each dataset and separate sub-419

figures for each metric. In each sub-figure, the x-axis represents the number of trainable parameters,420

and the y-axis represents the averaged values. Results are shown in Figure 2. They demonstrate421

that customized BERT models are able to perform better at type checking than bidirectional RNN422

models when both sizes scale up, corroborating our theories. Other results are in Appendix J.423

9

0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ex
pe

ct
ed

_t
yp

e_
ac

c

n100000-f10-d3-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ex
pe

ct
ed

_t
yp

e_
ac

c

n100000-f20-d5-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ex
pe

ct
ed

_t
yp

e_
ac

c

n100000-f40-d10-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ex
pe

ct
ed

_t
yp

e_
ac

c

n100000-f80-d20-v0.20-e0.50

rnn
transformer

Figure 2: Figures depicting the evaluation accuracy of the expected type (see Section 5.3) across dif-
ferent models, measured by their number of trainable parameters, when trained on various datasets.
The first 8 points of each model in each experiment are not aligned with the x-axis because the
number of trainable parameters scales with hidden sizes differently for different models.

7 Conclusion424

We demonstrated that transformers can efficiently handle syntactic and semantic analysis in C-like425

languages, using Cybertron to prove their capacity for tasks like AST generation, symbol resolution,426

and type analysis. We show a theoretical advantage of transformers over RNNs, particularly in427

their ability to manage long-range dependencies with logarithmic parameter scaling. In a sense,428

transformers have the right inductive bias for language tasks. Our experiments confirmed these429

theoretical insights, showing strong performance on synthetic and real datasets, underscoring the430

expressiveness and efficiency of transformers in sequence-based learning.431

References432

Cursor: Ai-powered code editor, 2024. URL https://www.cursor.com/. Accessed: Septem-433

ber 29, 2024.434

Harold Abelson, Gerald Jay Sussman, and with Julie Sussman. Structure and Interpretation of435

Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd editon edition, 1996. ISBN436

0-262-01153-0.437

Agda Development Team. Agda compilers manual v2.6.4.2, 2024. URL https:438

//agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#439

javascript-backend.440

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-441

rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,442

2022.443

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles, techniques & tools.444

pearson Education, 2007.445

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-446

brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization447

in large language models. arXiv preprint arXiv:2207.04901, 2022.448

Anysphere. Cursor, 2023. URL https://www.cursor.com/features.449

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri450

Rudra, and Christopher R’e. Zoology: Measuring and improving recall in efficient language451

models. ArXiv, abs/2312.04927, 2023. URL https://api.semanticscholar.org/452

CorpusID:266149332.453

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Prov-454

able in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,455

2023.456

10

https://www.cursor.com/
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://agda.readthedocs.io/en/v2.6.4.2/tools/compilers.html#javascript-backend
https://www.cursor.com/features
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:266149332
https://api.semanticscholar.org/CorpusID:266149332

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-457

den progress in deep learning: Sgd learns parities near the computational limit. Advances in458

Neural Information Processing Systems, 35:21750–21764, 2022.459

S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers to460

recognize formal languages. In Conference on Empirical Methods in Natural Language Process-461

ing, 2020a. URL https://api.semanticscholar.org/CorpusID:222225236.462

S. Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context learning463

in transformers and llms by learning to learn discrete functions. ArXiv, abs/2310.03016, 2023.464

URL https://api.semanticscholar.org/CorpusID:263620583.465

S. Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-466

tational capabilities of transformers and recurrent architectures. ArXiv, abs/2406.09347, 2024.467

URL https://api.semanticscholar.org/CorpusID:270440803.468

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers469

to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020b.470

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers471

and its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020c.472

Jonathan Brennan and John Tracy Hale. Hierarchical structure guides rapid linguistic pre-473

dictions during naturalistic listening. PLoS ONE, 14, 2019. URL https://api.474

semanticscholar.org/CorpusID:260538292.475

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared476

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large477

language models trained on code. arXiv preprint arXiv:2107.03374, 2021.478

David Chiang, Peter A. Cholak, and Anand Pillay. Tighter bounds on the expressivity of transformer479

encoders. In International Conference on Machine Learning, 2023. URL https://api.480

semanticscholar.org/CorpusID:256231094.481

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Rozière, Jonas Gehring, Gabriele Syn-482

naeve, and Hugh Leather. Meta large language model compiler: Foundation models of com-483

piler optimization. ArXiv, abs/2407.02524, 2024. URL https://api.semanticscholar.484

org/CorpusID:270924331.485

Valentin David. Language Constructs for C++-like languages. PhD thesis, University of Bergen,486

2009.487

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal488

transformers. arXiv preprint arXiv:1807.03819, 2018.489

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep490

bidirectional transformers for language understanding, 2019. URL https://arxiv.org/491

abs/1810.04805.492

Nai Ding, Lucia Melloni, Xing Tian, and David Poeppel. Rule-based and word-level statistics-based493

processing of language: insights from neuroscience. Language, Cognition and Neuroscience, 32:494

570 – 575, 2017. URL https://api.semanticscholar.org/CorpusID:46747073.495

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas496

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An497

image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint498

arXiv:2010.11929, 2020.499

Jana Dunfield and Neelakantan R Krishnaswami. Sound and complete bidirectional typechecking500

for higher-rank polymorphism with existentials and indexed types. Proceedings of the ACM on501

Programming Languages, 3(POPL):1–28, 2019.502

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable503

creation in self-attention mechanisms. In International Conference on Machine Learning, pp.504

5793–5831. PMLR, 2022.505

11

https://api.semanticscholar.org/CorpusID:222225236
https://api.semanticscholar.org/CorpusID:263620583
https://api.semanticscholar.org/CorpusID:270440803
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:260538292
https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:256231094
https://api.semanticscholar.org/CorpusID:270924331
https://api.semanticscholar.org/CorpusID:270924331
https://api.semanticscholar.org/CorpusID:270924331
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:46747073

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph, B Mann, A Askell, Y Bai, A Chen, T Conerly,506

et al. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.507

Guhao Feng, Yuntian Gu, Bohang Zhang, Haotian Ye, Di He, and Liwei Wang. Towards revealing508

the mystery behind chain of thought: a theoretical perspective. ArXiv, abs/2305.15408, 2023.509

URL https://api.semanticscholar.org/CorpusID:258865989.510

David Flanagan. JavaScript: The definitive guide: Activate your web pages. " O’Reilly Media,511

Inc.", 2011.512

Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In Proceedings513

of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.514

111–122, 2004.515

S. Frank, Rens Bod, and Morten H. Christiansen. How hierarchical is language use? Proceedings516

of the Royal Society B: Biological Sciences, 279:4522 – 4531, 2012. URL https://api.517

semanticscholar.org/CorpusID:11969171.518

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. ArXiv,519

abs/2306.01128, 2023. URL https://api.semanticscholar.org/CorpusID:520

259064324.521

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn522

in-context? a case study of simple function classes. Advances in Neural Information Processing523

Systems, 35:30583–30598, 2022.524

Google Deepmind. Ai achieves silver-medal standard solving international mathematical525

olympiad problems, July 2024. URL https://deepmind.google/discover/blog/526

ai-solves-imo-problems-at-silver-medal-level/.527

Qiuhan Gu. Llm-based code generation method for golang compiler testing. Proceedings of the 31st528

ACM Joint European Software Engineering Conference and Symposium on the Foundations of529

Software Engineering, 2023. URL https://api.semanticscholar.org/CorpusID:530

265509921.531

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions532

of the Association for Computational Linguistics, 8:156–171, 2019. URL https://api.533

semanticscholar.org/CorpusID:189928186.534

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang Le Truong,535

Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Tat Thang Nguyen, et al. A formal proof536

of the kepler conjecture. In Forum of mathematics, Pi, volume 5, pp. e2. Cambridge University537

Press, 2017.538

Sophie Hao, Dana Angluin, and Roberta Frank. Formal language recognition by hard attention539

transformers: Perspectives from circuit complexity. Transactions of the Association for Com-540

putational Linguistics, 10:800–810, 2022. URL https://api.semanticscholar.org/541

CorpusID:248177889.542

John Harrison. Hol light: An overview. In International Conference on Theorem Proving in Higher543

Order Logics, pp. 60–66. Springer, 2009.544

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem proving. In Hand-545

book of the History of Logic, volume 9, pp. 135–214. Elsevier, 2014.546

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-547

formers are better than state space models at copying. ArXiv, abs/2402.01032, 2024. URL548

https://api.semanticscholar.org/CorpusID:267406617.549

Steve Klabnik and Carol Nichols. The Rust programming language. No Starch Press, 2023.550

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and551

weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.552

12

https://api.semanticscholar.org/CorpusID:258865989
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:11969171
https://api.semanticscholar.org/CorpusID:259064324
https://api.semanticscholar.org/CorpusID:259064324
https://api.semanticscholar.org/CorpusID:259064324
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:265509921
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:189928186
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:248177889
https://api.semanticscholar.org/CorpusID:267406617

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to553

solve inherently serial problems. In The Twelfth International Conference on Learning Represen-554

tations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.555

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of556

self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.557

David Lindner, J’anos Kram’ar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr:558

Compiled transformers as a laboratory for interpretability. ArXiv, abs/2301.05062, 2023. URL559

https://api.semanticscholar.org/CorpusID:255749093.560

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-561

formers learn shortcuts to automata. ArXiv, abs/2210.10749, 2022. URL https://api.562

semanticscholar.org/CorpusID:252992725.563

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall PTR,564

USA, 1 edition, 2008. ISBN 0132350882.565

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth566

threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,567

2021. URL https://api.semanticscholar.org/CorpusID:248085924.568

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:569

Lessons for training llms on programming and natural languages. ICLR, 2023.570

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,571

Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction572

heads. arXiv preprint arXiv:2209.11895, 2022.573

OpenAI. Openai o1 system card, September 2024a. URL https://openai.com/index/574

openai-o1-system-card/.575

OpenAI. Sora: Creating video from text, February 2024b. URL https://openai.com/576

index/sora/.577

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.578

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of mod-579

ern neural network architectures. ArXiv, abs/1901.03429, 2019. URL https://api.580

semanticscholar.org/CorpusID:57825721.581

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of582

Machine Learning Research, 22(1):3463–3497, 2021.583

Benjamin C Pierce. Types and programming languages. MIT press, 2002.584

The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics.585

arXiv preprint arXiv:1308.0729, 2013.586

Reddit User. I think the main secret sauce of o1 is the data. https://www.reddit.com/587

r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_588

o1_is_the_data/, 2013. Accessed: 2024-09-28.589

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions590

on Signal Processing, 45(11):2673–2681, 1997.591

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold cir-592

cuits. ArXiv, abs/2308.03212, 2023. URL https://api.semanticscholar.org/593

CorpusID:260680416.594

Victor Taelin. Ai and the future of coding. https://medium.com/jonathans-musings/595

ai-and-the-future-of-coding-43caad31c3d3, 2023a. Accessed: 2024-10-01.596

Victor Taelin. Agda to typescript compilation with sonnet-3.5, 2023b. URL https://x.com/597

VictorTaelin/status/1837925011187027994. Accessed: September 29, 2024.598

13

https://openreview.net/forum?id=3EWTEy9MTM
https://api.semanticscholar.org/CorpusID:255749093
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:252992725
https://api.semanticscholar.org/CorpusID:248085924
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/sora/
https://openai.com/index/sora/
https://openai.com/index/sora/
https://api.semanticscholar.org/CorpusID:57825721
https://api.semanticscholar.org/CorpusID:57825721
https://api.semanticscholar.org/CorpusID:57825721
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://www.reddit.com/r/singularity/comments/1fi6yy9/i_think_the_main_secret_sauce_of_o1_is_the_data/
https://api.semanticscholar.org/CorpusID:260680416
https://api.semanticscholar.org/CorpusID:260680416
https://api.semanticscholar.org/CorpusID:260680416
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://medium.com/jonathans-musings/ai-and-the-future-of-coding-43caad31c3d3
https://x.com/VictorTaelin/status/1837925011187027994
https://x.com/VictorTaelin/status/1837925011187027994
https://x.com/VictorTaelin/status/1837925011187027994

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.599

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-600

intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient601

descent. arXiv preprint arXiv:2212.07677, 2022.602

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-603

consistency improves chain of thought reasoning in language models. ArXiv, abs/2203.11171,604

2022. URL https://api.semanticscholar.org/CorpusID:247595263.605

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc606

Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language mod-607

els. ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/608

CorpusID:246411621.609

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. ArXiv, abs/2106.06981,610

2021. URL https://api.semanticscholar.org/CorpusID:235421630.611

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key612

bottleneck on in-context retrieval. ArXiv, abs/2402.18510, 2024. URL https://api.613

semanticscholar.org/CorpusID:268041425.614

Shangda Wu, Xu Tan, Zili Wang, Rui Wang, Xiaobing Li, and Maosong Sun. Beyond language615

models: Byte models are digital world simulators. ArXiv, abs/2402.19155, 2024. URL https:616

//api.semanticscholar.org/CorpusID:268063492.617

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention618

networks can process bounded hierarchical languages. In Annual Meeting of the Associa-619

tion for Computational Linguistics, 2021. URL https://api.semanticscholar.org/620

CorpusID:235166395.621

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.622

Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint623

arXiv:1912.10077, 2019.624

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-625

dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.626

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Ben-627

gio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length gener-628

alization. ArXiv, abs/2310.16028, 2023. URL https://api.semanticscholar.org/629

CorpusID:264439160.630

14

https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:235421630
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:268063492
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:235166395
https://api.semanticscholar.org/CorpusID:264439160
https://api.semanticscholar.org/CorpusID:264439160
https://api.semanticscholar.org/CorpusID:264439160

A Tree631

To define a syntax tree, one commonly resorts to generation rules, such as context-free grammars632

(CFG) (Alfred et al., 2007) and parsing expression grammars (PEG) (Ford, 2004). In most cases,633

just generation rules themselves are not sufficient to define properly a language. Many practical634

languages like C and C++ cannot be solely described by these rules (David, 2009). Furthermore, se-635

mantic constraints like type correctness are intrinsically contextual and cannot be expressed through636

CFG or similar rules. However, CFG or other rules provide a valuable construct, the AST. With637

an AST, one can refine the language definition by putting restrictions on the syntax tree through638

tree operations. Effectively, a language can be seen as a subset of trees, not as a subset of strings.639

Semantic analysis like symbol resolution and type checking can be described effectively based on640

trees.641

A.1 What are Trees642

Trees in data structures have slightly additional meaning as compared to trees in mathematics. In643

this paper, all trees are trees in data structures. For clarity, we lay down the precise definition of644

trees in data structure.645

Definition 3 (Tree). A tree T is a set of nodes storing elements such that the nodes have a parent-646

child relationship that satisfies the following:647

• If T is not empty, it has a special node called the root that has no parent.648

• Each node v of T other than the root has a unique parent node w; each node with parent649

w is a child of w.650

We denote the nodes of T as N(T).651

Definition 4 (Recursive Definition of a Tree). A tree T is either empty or consists of a node r (the652

root) and a possibly empty set of trees whose roots are the children of r.653

However, the above definition is too permissive. We shall define a typed version as follows:654

Definition 5 (Typed Tree). A tree type consists of a set of values V and a set of relationships655

C ⊆ V × N, and a typed tree under this type is any tree T such that for each node, a value v ∈ V656

is assigned such that (v, n) ∈ C where n is the number of the children of the node.657

All trees in this paper are typed.658

Example 1 (AST as Typed Tree). Consider an AST for a simple arithmetic expression. Let the set659

of values V be:660

V = { num , add , sub , mul , div }
and the set of relationships C ⊆ V × N specify the allowed number of children for each value:661

C = {(num , 0), (add , 2), (sub , 2), (mul , 2), (div , 2)}

An example AST for the arithmetic expression (3 + 5)× 2 is the following typed tree:662

• The root node is labeled mul (multiplication), and it has two children.663

– The left child is labeled add (addition), and it has two children:664

* The left child of add is labeled num with the value 3.665

* The right child of add is labeled num with the value 5.666

– The right child of mul is labeled num with the value 2.667

This tree conforms to the typing rules because:668

• num has 0 children,669

• add has 2 children,670

• mul has 2 children,671

all of which satisfy the relationships in C.672

15

A.2 Representations of Trees673

It’s also important to talk about tree representations. We are studying transformers, and then it’s674

necessary to represent large trees as a sequence, otherwise the model dimension is not large enough675

to contain the information locally. Let’s first talk about the classical arena pattern used in sys-676

tem programming for representing trees and we shall slightly adapt it to our use case for studying677

transformers.678

Arena Pattern. To represent trees efficiently in memory, especially when trees are frequently679

modified (such as insertions or deletions of nodes), an arena pattern is often used. The arena pattern680

provides a way to manage memory allocation for tree structures, allowing for efficient memory usage681

and avoiding fragmentation. Here’s how the arena pattern works in the context of tree representation:682

Definition 6 (Arena Pattern in Tree Representation). In the arena pattern, a tree is represented by683

an array (or vector) of nodes, called an arena. Each node in the arena contains:684

• An element or value stored in the node.685

• References (often indices or pointers) to the node’s children and possibly to its parent.686

The key characteristics of the arena pattern are:687

• Memory Contiguity: All nodes are stored contiguously in memory within the arena, which688

allows for efficient traversal and modification operations.689

• Fixed Capacity: The arena has a fixed or dynamically resizable capacity, and nodes are690

added sequentially. This avoids the overhead of allocating individual nodes on the heap.691

• Index-based References: Instead of using pointers, the nodes reference each other using692

indices within the array, which simplifies memory management and can lead to cache-693

friendly operations.694

• Efficient Allocation and Deallocation: Nodes can be efficiently allocated and deallocated695

within the arena without requiring complex memory management techniques like garbage696

collection or reference counting.697

The arena pattern is particularly useful in scenarios where the structure of the tree is highly dynamic698

or when performance is critical. It allows for a simple and efficient way to manage and traverse trees699

without the typical overhead associated with more traditional pointer-based tree representations.700

Adaptations for Transformers For transformers, inputs, intermediate values and outputs are all701

sequences. So the trees are represented as sequences of nodes with node reference representable by702

token position encoding.703

B Context Free Grammar704

In this section, we lay down the well-known definitions of context free grammar, derivations, and705

parse trees.706

A context-free grammar (CFG) is defined as a 4-tuple G = (V,Σ, R, S), where:707

• V is a finite set of variables (non-terminal symbols).708

• Σ is a finite set of terminal symbols, disjoint from V . Sequences of Σ, i.e., elements of Σ∗709

are called strings.710

• R ⊂ V ×(V ∪Σ)∗ is a finite set of production rules, where each rule is of the formA→ α,711

with A ∈ V and α ∈ (V ∪ Σ)∗.712

• S ∈ V is the start symbol.713

Given a context-free grammar G = (V,Σ, R, S), we define derivation as follows:714

16

• A derivation is a sequence of steps where, starting from the start symbol S, each step715

replaces a non-terminal with the right-hand side of a production rule.716

• Formally, we write u ⇒ v if u = αAβ and v = αγβ for some production A → γ in R,717

where α, β ∈ (V ∪ Σ)∗ and A ∈ V .718

• A leftmost derivation is a derivation in which, at each step, the leftmost non-terminal is719

replaced.720

• A rightmost derivation is a derivation in which, at each step, the rightmost non-terminal721

is replaced.722

• We denote a derivation sequence as S ⇒∗ w, where w ∈ Σ∗ is a string derived from S in723

zero or more steps.724

A parse tree (or syntax tree) for a context-free grammar G = (V,Σ, R, S) is a tree that satisfies725

the following conditions:726

• The root of the tree is labeled with the start symbol S.727

• Each leaf of the tree is labeled with a terminal symbol from Σ or the empty string ϵ.728

• Each internal node of the tree is labeled with a non-terminal symbol from V .729

• If an internal node is labeled with a non-terminal A and has children labeled with730

X1, X2, . . . , Xn, then there is a production rule A→ X1X2 . . . Xn in R.731

• The yield of the parse tree, which is the concatenation of the labels of the leaves (in left-to-732

right order), forms a string in Σ∗ that is derived from the start symbol S.733

C Neural Architectures734

In this section, we lay down the precise mathematical definitions of neural architectures we are going735

to use in our proof.736

Definition 7 (Single-Layer Fully Connected Network with 4× Intermediate Space).737

Given model dimension dmodel, a single-layer feed-forward network with an intermediate space ex-738

panded to 4 times the input dimension is a function from Rdmodel to Rdmodel , denoted by ffcn and defined739

as follows:740

given X ∈ Rdmodel , weights W1 ∈ R4dmodel×dmodel , W2 ∈ Rdmodel×4dmodel , and biases B1 ∈ R4dmodel ,741

B2 ∈ Rdmodel , the output ffcn(X) is computed as:742

ffcn(X) =W2σReLU(W1X +B1) +B2,

where σReLU : R4dmodel → R4dmodel is the Rectified Linear Unit activation function applied element-743

wise, defined by:744

σReLU(z) = (max(z1, 0),max(z2, 0), . . . ,max(z4dmodel , 0))
⊤
,

for z = (z1, z2, . . . , z4dmodel)
⊤ ∈ R4dmodel .745

The choice of a 4× intermediate space is common in practice, often used in Transformer architec-746

tures. Interestingly, this empirical choice turns out to have a useful theoretical property: it allows747

the network to express any affine transformation, as we’ll see in the following proposition.748

Proposition 1. A single-layer fully connected network with a 4× intermediate space, as defined749

previously, can express any affine map from Rdmodel to Rdmodel .750

Proof. Let f : Rdmodel → Rdmodel be any affine map given by f(X) = AX+b, whereA ∈ Rdmodel×dmodel751

and b ∈ Rdmodel . We will construct weights W1 ∈ R4dmodel×dmodel , W2 ∈ Rdmodel×4dmodel and biases752

B1 ∈ R4dmodel , B2 ∈ Rdmodel such that ffcn(X) = f(X) for all X ∈ Rdmodel .753

17

Define:754

W1 =

 Idmodel

−Idmodel

0
0

 , B1 = 0 ∈ R4dmodel ,

where Idmodel is the dmodel × dmodel identity matrix, and 0 represents zero matrices of appropriate755

dimensions. Set:756

W2 = (A −A 0 0) , B2 = b.

For any X ∈ Rdmodel , compute:757

ffcn(X) =W2 σReLU(W1X +B1) +B2

= (A −A 0 0) σReLU


 X
−X
0
0


+ b

= (A −A 0 0)

 σReLU (X)
σReLU (−X)

0
0

+ b

= AσReLU (X)−AσReLU (−X) + b.

Noting that σReLU (X)− σReLU (−X) = X (applied element-wise), we have:758

ffcn(X) = AX + b = f(X).

Therefore, the network can represent any affine map from Rdmodel to Rdmodel .759

Definition 8 (Single-Layer Feed Forward Network with 4× Intermediate Space). Given model760

dimension dmodel and position set Pos, the Transformer Feed Forward Network is a function761

fffn : RPos×dmodel → RPos×dmodel defined as follows:762

For an input X ∈ RPos×dmodel , the output fffn(X) is computed by applying the single-layer feed-763

forward network ffcn (as defined previously) independently to each position:764

fffn(X)p = ffcn(Xp) ∀p ∈ Pos

where Xp ∈ Rdmodel is the p-th row of X , corresponding to the p-th position in the input sequence.765

Next, we define the attention mechanism, which is a key component of the Transformer architecture.766

This definition presents a hard attention layer with a simplified position encoding. We use hard767

attention here for theoretical simplicity, as it represents a discrete limit of the more commonly used768

soft attention mechanism. Hard attention forces the model to make a clear choice about which inputs769

to focus on, which can simplify analysis and provide clearer insights into the model’s behavior. It770

can be viewed as the limiting case of soft attention as the temperature approaches zero, where the771

softmax operation becomes increasingly peaked and eventually converges to a one-hot vector.772

Definition 9 (Hard Attention Layer with Simplified Position Encoding). Given model dimension773

dmodel, number of heads H , and number of layers L, a transformer with simplified position encoding774

and hard attention is defined to be a function fattn : RPos×dmodel → RPos×dmodel defined by775

∀p ∈ Pos, fattn(X)p :=WOConcat
(

Attn(1)(X)p, . . . ,Attn(H)(X)p

)
, (4)

where the hth attention head uses hard attention, defined as:776

Attn(h)(X)p :=
1

|Sp|
∑
p′∈Sp

V
(h)
p′ , (5)

where777

• WO ∈ Rdmodel×dmodel are trainable parameters;778

18

• Sp = argmaxp′∈Pos

(
Q

(h)
p

⊤
K

(h)
p′ + λ(h)⊤Ψp′−p

)
with Q

(h)
p ,K

(h)
p , V

(h)
p , λ(h),Ψq de-779

fined by780

– Q
(h)
p =W

(h)
Q Xp,K

(h)
p =W

(h)
K Xp are vectors of dimension dmodel/H , with trainable781

parameters W (h)
Q ,W

(h)
K ∈ R(dmodel/H)×dmodel ;782

– V
(h)
p = W

(h)
V Xp are vectors of dimension dmodel/H , linear transformations of Xp783

with trainable parameters W (h)
V ∈ R(dmodel/H)×dmodel ;784

– λ(h) ∈ R2 are constants depending only on head count h;785

– Ψq ∈ R2 are 2-dimensional vectors depending on relative position q but not on head786

count h. It is explicitly defined as787

Ψq =

(
q

1q>0

)
. (6)

This formulation allows for both past and future masking.788

Having defined the basic components, we can now proceed to describe the full Transformer archi-789

tecture. This definition builds upon the previously introduced concepts, incorporating them into a790

complete model structure.791

Definition 10 (Transformer). A Transformer is a function ftf : RPos×dmodel → RPos×dmodel that maps792

an input sequence to an output sequence through a series of layers, each consisting of a multi-head793

attention mechanism and a position-wise feed-forward network (MLP).794

Given:795

• Input sequence X ∈ RPos×dmodel , where Pos is the set of positions and dmodel is the model796

dimension.797

• Number of layers L.798

• Number of attention heads H .799

The Transformer computes the output Y = X(L) through recursive application of attention and800

feed-forward layers:801

• Initialization is given by:802

X(0) = X.

• For each layer l = 1, 2, . . . , L:803

– Compute attention output:804

X̂(l) = X(l−1) + f
(l)
attn

(
X(l−1)

)
– Compute feed-forward output:805

X(l) = X̂(l) + f
(l)
ffn

(
X̂(l)

)
Here:806

• f (l)attn are hard attention layers with simplified position encoding as previously defined. It807

operates on X(l−1) and produces an output in RPos×dmodel .808

• f (l)ffn are feed-forward networks with 4× intermediate space as previously defined. It oper-809

ates position-wise on X̂(l) and produces an output in RPos×dmodel .810

Remark 1. For simplicity, we have omitted the Layer Normalization component typically present811

in Transformer architectures. This simplification allows us to focus on the core attention and feed-812

forward mechanisms while maintaining the essential structure of the Transformer.813

19

We use Tfdmodel
H,L to denote the set of transformers of model size dmodel, number of headsH and number814

of layers L as functions from Rdmodel∗ to Rdmodel∗.815

For purpose of proof, we shall also need residual multi-layer perceptron. Functions over local types816

are first represented by multi-layer perception, then by Proposition 2 applications of these func-817

tions over sequences can be representable by transformers. Residual multi-layer perceptron can be818

assembled through composition or computer graph, as we shall see.819

Here’s the definition of a residual MLP Network.820

Definition 11 (Residual Multi-Layer Perceptron). A Residual Multi-Layer Perceptron (ResMLP) is821

a function fresmlp : Rdmodel → Rdmodel defined recursively by822

X(0) = X, X(l) = X(l−1) + ffcn

(
X(l−1)

)
, l = 1, 2, . . . , L, fresmlp(X) = X(L)

where X ∈ Rdmodel is the input vector, L is the total number of layers, and ffcn : Rdmodel → Rdmodel823

is the Single-Layer Fully Connected Network with 4× Intermediate Space as previously defined in824

Definition 1.825

We use ResMlpdmodel
L ⊂ Rdmodel

Rdmodel
to represent the set of residual MLPs with dimension dmodel and826

L layers, as defined in Definition 11.827

The following proposition is quite basic. It demonstrates that any function representable by a828

ResMLP can be applied position-wise by a Transformer.829

Proposition 2 (Position-wise ResMLP Application is Representable by Transformers). Let f :830

Rdmodel → Rdmodel be a function representable by a Residual Multi-Layer Perceptron (ResMLP) as831

defined in Definition 11. Then the function F : RPos×dmodel → RPos×dmodel , defined by applying f832

position-wise,833

F (X)p = f(Xp), ∀p ∈ Pos,

is representable by a Transformer as defined in Definition 10.834

Proof. Since f is representable by a ResMLP with L layers, it is defined recursively by835

X(0) = X, X(l) = X(l−1) + ffcn

(
X(l−1)

)
for l = 1, . . . , L,

and836

f(X) = X(L),

where ffcn : Rdmodel → Rdmodel is the Single-Layer Fully Connected Network with 4× intermediate837

space (Definition 1).838

We construct a Transformer with L layers such that, for any input sequence X ∈ RPos×dmodel , the839

output Y = ftf(X) satisfies Yp = f(Xp) for all p ∈ Pos.840

To achieve this, we configure the Transformer so that the attention mechanism outputs zero at each841

layer. This can be done by setting the attention weights to zero, ensuring fattn(X
(l−1)) = 0. Conse-842

quently, the update equations simplify to843

X̂(l) = X(l−1).

We then set the feed-forward network fffn in the Transformer to have the same weights and biases844

as ffcn in the ResMLP. The Transformer layer update becomes845

X(l) = X̂(l) + fffn

(
X̂(l)

)
= X(l−1) +

(
ffcn

(
X(l−1)

p

))
p∈Pos

.

This recursion matches that of the ResMLP applied position-wise to X . Therefore, after L layers,846

the Transformer output satisfies ftf(X)p = f(Xp) for all p ∈ Pos.847

848

20

D Mini-Husky Details849

Here’s the BNF of the Mini-Husky language:850

⟨ast⟩ ::= ⟨literal⟩
| ⟨ident⟩
| ⟨prefix⟩
| ⟨binary⟩
| ⟨suffix⟩
| ⟨delimited⟩
| ⟨separated_item⟩
| ⟨call⟩
| ⟨let_init⟩
| ⟨if_stmt⟩
| ⟨else_stmt⟩
| ⟨defn⟩

⟨literal⟩ ::= ...

⟨ident⟩ ::= ...

⟨prefix⟩ ::= ⟨prefix_opr⟩ ⟨ast⟩
⟨binary⟩ ::= ⟨ast⟩ ⟨binary_opr⟩ ⟨ast⟩
⟨suffix⟩ ::= ⟨ast⟩ ⟨suffix_opr⟩
⟨delimited⟩ ::= ⟨left_delimiter⟩ ⟨separated_item⟩* ⟨right_delimiter⟩
⟨separated_item⟩ ::= [⟨ast⟩] ⟨separator⟩
⟨call⟩ ::= ⟨ast⟩ ⟨left_delimiter⟩ ⟨ast⟩* ⟨right_delimiter⟩
⟨let_init⟩ ::= let ⟨ast⟩
⟨if_stmt⟩ ::= if ⟨ast⟩ ⟨delimited⟩
⟨else_stmt⟩ ::= ⟨if_stmt⟩ else (⟨delimited⟩ | ⟨else_stmt⟩)
⟨defn⟩ ::= ⟨defn_keyword⟩ ⟨ident⟩ ⟨ast⟩
⟨prefix_opr⟩ ::= + | - | ! | ...

⟨binary_opr⟩ ::= + | - | * | / | ...

⟨suffix_opr⟩ ::= ++ | -- | ...

⟨left_delimiter⟩ ::= ‘(’ | [| {

⟨right_delimiter⟩ ::= ‘)’ |] | }

⟨separator⟩ ::= , | ;

⟨defn_keyword⟩ ::= def | fn | ...
851

Below is a sample piece of codes:852

1 struct Dog { weight: f32, .. }853
2854
3 fn see_vet(dog: Dog) -> f32 {855
4 assert dog.weight < 100;856
5 let mut fee = dog.weight * 10.0;857
6 fee +=100.0;858
7 return fee859
8 }860

It should be noted that the above is not the full story. There are additional constraints put on the861

ASTs. However, these can be easily implemented as tree functions that are easy for transformers to862

express. As we are focusing on higher level language processing capabilities, we ignore the details863

here.864

Additionally, we need to require that for semantic correctness, we must have proper symbol resolu-865

tion and type correctness.866

21

D.1 Additional Details about Compiler Tasks.867

The outputs of the tasks are defined using Cybertron as follows:868

• The construction of AST task’s final output is the collection all AST nodes. More concretely,869

the output is a sequence of Option<Ast> with length equal to the input token sequence’s length,870

where Option<Ast> denoted the type Ast will a null value added and Ast is the type storing the871

information of a node, including its parent, and its data of type AstData . In Cybertron, we define872

Ast and AstData explicitly as follows:873

1 /// Represents a node in an Abstract Syntax Tree (AST).874
2 ///875
3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds876
4 /// the associated syntax data (such as expressions, statements, or other877
5 /// constructs defined in the ‘AstData‘ enum).878
6 pub struct Ast {879
7 /// The index of the parent node in the AST, if it exists.880
8 ///881
9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.882

10 /// - ‘None‘: The node is the root or does not have a parent.883
11 pub parent: Option<Idx>,884
12 /// The data associated with this AST node.885
13 pub data: AstData,886
14 }887
15888
16 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes889
17 pub enum AstData {890
18 /// Represents a literal value (e.g., integer, string)891
19 Literal(Literal),892
20 /// Represents an identifier (e.g., variable name)893
21 Ident(Ident),894
22 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)895
23 Binary {896
24 /// Index of the left operand897
25 lopd: Idx,898
26 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)899
27 opr: BinaryOpr,900
28 /// Index of the right operand901
29 ropd: Idx,902
30 },903
31 ... // other variants904
32 }905

• The output of the symbol resolution task is the collection of symbol resolution results906

on all applicable tokens. More concretely, the output is a sequence of values of type907

Option<SymbolResolution> where Option<SymbolResolution> is the type SymbolResolution with908

a null value added for non-applicability and SymbolResolution is the type storing the result of the909

symbol resolution, being either a success with a resolved symbol of type Symbol or a failure with910

an error of type SymbolResolutionError . In Cybertron, we define SymbolResolution explicitly as911

follows:912

1 // an enum type definition, basically a tagged union type913
2 pub enum SymbolResolution {914
3 Ok(Symbol), // enum type variant for success with a resolved symbol915
4 Err(SymbolResolutionError), // enum type variant for failure with an error916
5 }917

• The type analysis task’s final output is the collection of all type errors. More concretely, the output918

is a sequence of Option<TypeError> , where Option<TypeError> denoted the type TypeError will919

a null value added and TypeError is the type storing the information of a type error. The position920

of type errors agrees with the source tokens leading to these errors. In Cybertron, we define921

TypeError explicitly as follows:922

1 // This enum represents various kinds of type errors923
2 pub enum TypeError {924
3 // This variant indicates a type mismatch925
4 // ‘expected‘ is the type that was anticipated926
5 // ‘actual‘ is the type that was encountered927
6 TypeMismatch { expected: Type, actual: Type },928
7 }929

22

One can expand the definition to include other kinds of type errors.930

(1) Type definition. Types are either identified uniquely by a single identifier like <identifier> , or931

builtin generic types Option<<identifier>> or Vec<<identifier>> . Users can define custom types932

without generics like the following (f32 means float32 and i32 means int32 below):933

1 struct Dog { weight: f32 }934
2935
3 enum Animal {936
4 Dog,937
5 Cat,938
6 }939

This part is actually a part of the AST task and type definition is a variant of the AstData type:940

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes941
2 pub enum AstData {942
3 ...943
4 /// Represents a function or variable definition944
5 ///945
6 /// # defn946
7 ///947
8 Defn {948
9 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)949

10 keyword: DefnKeyword,950
11 /// Index of the identifier in the definition951
12 ident_idx: Idx,952
13 /// The identifier being defined (e.g., function name, variable name)953
14 ident: Ident,954
15 /// Index of the content or body of the definition955
16 content: Idx,956
17 },957
18 }958

(2) Type specification. Each appeared variable has a unique type, either by specification or specu-959

lation. All parameters of a function must be specified explicitly by users. Variables defined by let960

statements might or might not be specified, as follows:961

1 fn f(a: i32) { // type of ‘a‘ must be specified962
2 let x: i32 = a; // type of ‘x‘ specified963
3 let y = a; // type of ‘y‘ unspecified964
4 }965

The return type of functions must be specified. The field type of structs and enum variants must be966

specified. the type of expressions of function calls and field access will be determined correspond-967

ingly.968

The output of the task is the collection of all type signatures, represented as a sequence of values of969

type Option<TypeSignature> where TypeSignature is the type holding the essential information of970

type specifications. In Cybertron, TypeSignature is defined as,971

1 pub struct TypeSignature {972
2 pub key: TypeSignatureKey,973
3 pub ty: Type,974
4 }975
5976
6 pub enum TypeSignatureKey {977
7 FnParameter { fn_ident: Ident, rank: Rank },978
8 FnOutput { fn_ident: Ident },979
9 StructField { ty_ident: Ident, field_ident: Ident },980

10 }981

(3) Type inference. As discussed above, not all variables have their types specified.982

1 fn f() {983
2 let x: i32 = 1;984
3 let y = x;985
4 let z = y;986
5 }987

In the above code, 1 is an ambiguous literal that can be of type i32 , i64 , u32 , u64 , etc, and988

the types of y and z is not specified. However, one easily sees that there exists one and only one989

23

choice of the types of 1 , y , and z such that the whole code is type correct. Utilizing this property,990

the user can opt out of a significant portion of type specification, achieving static guarantees.991

A Type Inference Algorithm: For simplicity, we shall prove transformers can implement a simple992

type inference algorithm: we maintain a table of type assignments for variables. We update the993

entries of the table by means of reduction, i.e., assuming the whole code is correctly typed and infer994

more and more unspecified types until we encounter errors or all types are inferred. The process is995

largely parallel, and we call the number of rounds needed the depth of type inference.996

In the above code, the first round, we determine that the type of both 1 and the type of y are equal997

to the type of x which is i32 . But we have no way to determine the type of z because the type998

of y is unknown at the first round. In the second round, z can be determined to be of type i32999

because the type of y is already inferred.1000

The output of the task is the collection all types inferred, represented as a sequence of values of type1001

Option<TypeInference> where TypeInference is the type holding the inferred type. In Cybertron,1002

TypeSignature is defined as,1003

1 pub struct TypeInference {1004
2 pub ty: Type,1005
3 }1006

E Cybertron1007

E.1 Introduction1008

It’s often difficult to directly prove that transformers or in general other low level forms of computa-1009

tion can express complicated algorithms and even complex software. There are way too many details1010

as compared with typical mathematical proofs in machine learning theory. Hence, we propose the1011

domain specific language Cybertron, where we can systematically prove transformers can express1012

complicated algorithms and complex software with sufficient readability.1013

(Note: Cybertron is fundamentally different from Mini-Husky! Mini-Husky is the target language1014

that we want transformers to analyze yet Cybertron is the domain specific language we use to prove1015

that transformers can do that.)1016

RASP (Weiss et al., 2021) is quite close to Cybertron in terms of its design purpose. However,1017

Cybertron is more powerful with advanced algebraic type system, global and local function con-1018

structions, etc. Thus, using Cybertron one can argue more complicated operations can be simulated1019

by transformers than simple algorithms.1020

In the broader perspective of computer science, it’s not uncommon to use code to prove things. In1021

fact, in the formal verification community, mathematical proofs are viewed as a special case of a1022

much larger universe of possible proof systems.1023

Essentially, Cybertron works as follows:1024

1. in Cybertron, one builds complicated functions from the composition of smaller functions.1025

We have lemmas that prove that the composed functions are representable by certain archi-1026

tecture given that smaller functions are representable.1027

For example:1028

1 fn f(a: f32, b: f32) -> f32 {1029
2 a + b1030
3 }1031

2. in Cybertron, there is an algebraic type system and every value is strongly typed and im-1032

mutable, making it highly readable and easy to reason about;1033

For example:1034

1 fn f(a: f32, b: f32) -> f32 {1035
2 a + b1036
3 }1037

24

3. in Cybertron, there is a distinction between global and local types/functions. Local types1038

are those information hovered over a single token, and global types are sequences of local1039

types, i.e., the collection of information over the whole token stream. One can define a1040

global function by mapping a local function.1041

For example:1042

1 fn f(a: f32, b: f32) -> f32 {1043
2 a + b1044
3 }1045

4. in Cybertron, there are many functions that is defined externally, requiring external expla-1046

nation that they can be represented by transformers.1047

For example:1048

1 fn f(a: f32, b: f32) -> f32 {1049
2 a + b1050
3 }1051

It’s implemented as a subset of the Rust programming language that can be understood as computa-1052

tion graphs over sequences. It can be executed for testing purposes and we’ve tested our implemen-1053

tation for a range of inputs and validated its correctness.1054

E.2 Philosophy: Sequential Representation of Everything1055

Before going through the full details, let’s first talk about the fundamental philosophy behind trans-1056

former and Cybertron.1057

One of the fundamental reasons transformers can be easily adapted across multiple modalities, in-1058

cluding NLP and CV, is their sequence-to-sequence operation. Everything can be represented as an1059

arbitrary-length sequence. Texts are sequences of words, images are sequences of image patches,1060

videos are sequences of spacetime patches (OpenAI, 2024b), and even graphs with sparse spatial1061

structures can be represented as sequences of indexed nodes with additional information like parent1062

node indices. Since inputs of various modalities can be cast into vector sequences, transformers can1063

be applied to different domains without modifications to their architecture (Dosovitskiy et al., 2020).1064

Interestingly, this sequence-based thinking is not new. We’ve actually been representing every-1065

thing as sequences since the very early days of computer science. This has been the foundation1066

of how data is stored and processed in computers. However, sequence representations were tradi-1067

tionally viewed as low-level and sometimes inefficient for practical use, prompting the development1068

of higher-level abstractions for programming. The rise of transformers, with their scalable learning1069

capabilities, encourages us to reconsider the significance of sequence-based representations.1070

From a systems perspective, viewing everything as a sequence is the foundational approach in com-1071

puter science. Data in a computer is stored as a continuous stream of bits. Whether it’s text, images,1072

videos, or graphs, this data is represented in computer memory as an ordered sequence of bits. This1073

aligns with how transformers handle different types of input by transforming them into sequences1074

of vectors. Thus, the sequence-based operation of transformers mirrors the sequence-based repre-1075

sentation of data in computer memory.1076

In essence, if a data structure can be represented in computer memory using N bits, it can1077

be processed as a sequence of bits of length N . This natural sequence representation in memory1078

is consistent with how transformers process data, which makes them particularly flexible across1079

different modalities. For example, recent state-of-the-art approaches Wu et al. (2024) show that1080

transformers can even be trained directly on raw bits of data, further emphasizing this connection.1081

Moreover, this sequence-based viewpoint offers fresh insights when applied to the domain of pro-1082

gramming, particularly in areas such as code generation and analysis. With tools like ChatGPT and1083

Copilot being widely used by developers, the impact of transformers on programming workflows1084

is growing. Understanding the complexity of algorithms and programs expressed in sequence form1085

becomes an interesting area of study, as it reveals new possibilities for how we approach computa-1086

tion.1087

In comparison to traditional systems like CPUs and human cognition, transformers are highly paral-1088

lel but shallow in their operation. A transformer processes data in a fixed number of layers, while a1089

25

CPU executes 109 cycles per second, and humans may take days to process information like reading1090

a book. Transformers, therefore, represent a fundamentally different computational model that is1091

worth studying further in the context of sequence-based operations.1092

Example 2. Image to Sequence: In computer memory, an image is typically stored as a continuous1093

block of pixel values, often in row-major order, where each pixel’s value is encoded as bits in a1094

sequence. When a transformer processes an image, it divides the image into patches (e.g., 16 ×1095

16 pixels), and each patch is flattened into a vector of pixel values. This creates a sequence of1096

patches, where each patch corresponds to a vector. The way transformers represent these patches1097

as a sequence closely aligns with how the image data is sequentially stored in computer memory.1098

Example 3. Video to Sequence: A video is stored in computer memory as a sequence of frames,1099

where each frame is essentially an image. In a similar manner to images, these frames are stored as1100

continuous pixel values. Transformers process videos by dividing the frames into spacetime patches,1101

where each patch captures a small region of space over a short segment of time. These spacetime1102

patches are flattened and arranged into a sequence for the transformer to process. The sequential1103

ordering of these patches matches how video frames and pixel data are stored in computer memory.1104

Example 4. Graph to Sequence: In computer memory, a graph is typically stored using an adja-1105

cency list or adjacency matrix, where nodes and their connections (edges) are stored sequentially1106

in a data structure. Transformers process graphs by representing each node and its features as a1107

vector, and then creating a sequence of these vectors. The sequence may also encode additional1108

information, such as the parent-child relationships between nodes. This sequence-based represen-1109

tation of graphs is consistent with how graph data is stored in memory, where nodes and edges are1110

arranged in a structured order.1111

Example 5. Text to Sequence: Text is naturally stored in computer memory as a sequence of char-1112

acters or words, where each character is encoded as a sequence of bits (such as ASCII or Unicode1113

values). When transformers process text, they convert each word into a word embedding, which is a1114

vector of real numbers. The sequence of word embeddings corresponds to the sequence of charac-1115

ters or words stored in memory. This natural sequential representation of text in both memory and1116

transformers ensures efficient handling of linguistic data.1117

Example 6. AST (Abstract Syntax Tree) to Sequence: In computer memory, an abstract syntax1118

tree (AST) is typically stored as a tree-like structure, where each node represents a component of1119

the program (e.g., operators, variables, or statements). However, this tree can be linearized into a1120

sequence by traversing it in a specific order (e.g., pre-order traversal). When transformers process1121

an AST, they convert it into a sequence of tokens, where each token corresponds to a node in the tree.1122

This sequential representation of the tree in transformers mirrors how the tree is stored as nodes and1123

edges in memory, and how it can be flattened into a linear sequence.1124

In conclusion, the sequence-based representation in transformers is not just a novel approach for1125

deep learning but is deeply rooted in how data has been stored and processed in computer memory1126

since the early days of computing. This consistency between how data is stored in memory and how1127

transformers process data as sequences is a key factor in their adaptability across different domains.1128

E.3 Local and Global Types1129

Now we define the type foundation of Cybertron.1130

Types are fundamental objects for programming language theory. Here we use types to faciliate our1131

proofs. Type signatures contain rich information that help guarantee correctness of the program.1132

Here, we choose a mathematical definition of types that is most convenient for the discussion in1133

this paper. We introduce the notion of “local type”. Roughly speaking, they are types without heap1134

allocation and intended to be represented with Rdmodel over a single token. For more complicated1135

heap-allocated data structures like trees, graphs, etc., we shall represent them by sequences of these1136

“local type”s, which translates directly to vector sequences for transformers.1137

Definition 12 (Local Type). Given a base space B with at least two elements and a countably1138

infinite identification space Ψ, a local type T over B is a finite set S together with an embedding ϕ1139

from S to Bd and some fixed d ∈ N and an identification ψ ∈ Ψ.1140

For convenience, define Set (T) = S, dT = d and ϕT = ϕ and ψT = ψ. And let 0B , and 1B be two1141

different elements of B. And B0 := {0B} so that
∣∣Bi
∣∣ = |B|i holds for all i ∈ N.1142

26

Remark 2. We need B to be at least size 2, so that Bd can be as large as we want for d large1143

enough.For typical computer representation, we can take B to be 2 = {0, 1}. For transformers1144

or neural networks in general, we can take B to be R if we ignore precision. If we dont’ ignore1145

precision, B should be some finite set of floating point numbers. Thus, we shall keep the generality1146

of B throughout our discussion as all of these settings are important.1147

Remark 3. The role of identification ψT ∈ Ψ is to make two types mathematically different even if1148

they have the same underlying set, encoding dimension, and encoding. Basically we are establishing1149

a specialized type of theory tailored towards the expressive power of transformers upon a foundation1150

of intuitive set theory.1151

Example 7 (Finite Set). In mathematics, we have the finite set denoted by [n] = {0, 1, . . . , n− 1}.1152

Here we use a slightly different notation for a type with underlying set JnK and some encoding.1153

Example 8 (Position Encoding). Position encoding can be viewed as the encoding of a type denoted1154

by Pos (n) with the underlying set being [n] where n is the context length. Although it has the same1155

underlying set as type JnK, it is a different type for a different purpose and might have different1156

encoding.1157

If B is R, then the position encoding can be understood as the encoding of type JLK where L is the1158

context length. More explicitly, we have1159

ϕ(x) = (eiL
−i/dx)i∈[d/2], (7)

viewed as a d dimensional R-vector through the natural conversion of C to R2, since d is even.1160

It’s too cumbersome to manually give the underlying set and the encoding. Here we introduce a1161

classical concept from programming language theory Program (2013) that makes it super easy to1162

construct new types and make things fairly readable.1163

Definition 13 (Finite Algebraic Data Type, Mathematical Forms). We define two ways of creating1164

new types by combining existing types:1165

1. Sum type. Given types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we define the1166

sum type of Ti, denoted by
∑n

i=1 Ti, as follows,1167

• let S = ({1} × S1) ⊔ . . . ⊔ ({n} × Sn);1168

• let d = dJnK +maxni=1 di;1169

• let ϕ : S → Bd be such that1170

∀i ∈ JnK, s ∈ Si, ϕ((i, s)) = ϕJnK(i)⊕ ϕi(s) ∈ BdJnK+di ⊆ Bd. (8)

Note that |S| =
∑n

i=1 |Si|, thus the name sum type.1171

2. Product type. Given Local Types Ti = (Si, ϕi, di) over base space B for i = 1, . . . , n, we1172

define the product type of Ti, denoted by
∏n

i=1 Ti, as follows,1173

• let S = S1 × . . .× Sn;1174

• let d =
∑n

i=1 di;1175

• let ϕ : S → Bd be such that1176

∀s = (s1, . . . , sn) ∈ S, ϕ(s) = ϕ1(s1)⊕ . . . ϕn(sn) ∈ Bd. (9)

Note that |S| =
∏n

i=1 |Si|, thus the name product type.1177

Although we can define things and refer to things in terms of mathematical equations, it’s sometimes1178

cumbersome to do so. So we shall frequently refer to types using a programming language form,1179

like CybertronForm or more complicated things like Option<T> a builtin generic type.1180

Definition 14 (Unit Type). The unit type is a type with S = {0} and ϕ : S → B0, 0 7→ 0B . In1181

Cybertron, it’s denoted as () .1182

Definition 15 (Array Type). Given a type T , the array type of T with length ℓ ∈ N is the type with1183

S = S(T)ℓ, d = ℓdT and ϕ : S → BℓdT , (s1, . . . , sℓ) 7→ ϕT (s1) ⊕ . . . ⊕ ϕT (sℓ). It’s denoted by1184

T ℓ. In Cybertron, it’s denoted as [T;N] .1185

27

Definition 16 (Vector Type of Finite Capacity). Given a type T , the vector type of finite capacity of1186

T with maximal length ℓ ∈ N is the type with S =
⊔ℓ

i=1 Set (T)
i, d = dJℓK + ℓdT and ϕ : S →1187

BdJℓK+ℓdT , (s1, . . . , si) 7→ ϕJℓK(i) ⊕ ϕT (s1) ⊕ . . . ⊕ ϕT (si) ⊕ 0B ⊕ . . . ⊕ 0B with just enough1188

number of copies of 0B such that the dimensionality matches. It’s denoted by T ≤ℓ.In cybertron, it’s1189

denoted as BoundedVec<T,N> .1190

However, it’s cumbersome and obtuse to define and operate in mathematical forms only. So we shall1191

give a definition closer to actual programming that is more convenient and easy to read.1192

Definition 17 (Finite Algebraic Data Type, the Code Forms). We define two ways to create new1193

types:1194

1. Enum type. An enum type is the sum type of a finite set of variant types. Each variant type1195

is associated with a different identifier and can be1196

• unit like, a unit type;1197

• struct like, a product of several types, each called a field of the variant, and associated1198

with an identifier;1199

• tuple like, a product of several types, each called a field of the variant, but not associ-1200

ated with an identifier.1201

Syntactically, an enum type is specified as follows,1202

1 enum <type-name> {1203
2 <identifier> { // 1st variant, struct like1204
3 <identifier>: <type>, // 1st named field of 1st variant1205
4 <identifier>: <type>, // 2nd named field of 1st variant1206
5 ...1207
6 },1208
7 <identifier> { // 2nd variant, struct like1209
8 <identifier>: <type>, // 1st field of 2nd variant1210
9 ...1211

10 },1212
11 <identifier> (// 3rd variant, tuple like1213
12 <type>, // 1st tuple field of 3rd variant1214
13 <type>, // 2nd tuple field of 3rd variant1215
14 ...1216
15),1217
16 <identifier>, // 4th variant, unit like1218
17 ...1219
18 }1220

For example,1221

1 enum Expr {1222
2 Variable(IdentToken), // 1st variant, tuple like1223
3 Binary { // 2nd variant, struct like1224
4 lopd: ExprId,1225
5 opr: BinaryOprToken,1226
6 ropd: ExprId,1227
7 },1228
8 Prefix { // 3rd variant, struct like1229
9 opr: PrefixOprToken,1230

10 opd: ExprId,1231
11 },1232
12 Suffix { // 4th variant, struct like1233
13 opd: ExprId,1234
14 opr: SuffixOprToken,1235
15 },1236
16 Panic, // 5th variant, unit like1237
17 }1238

2. Struct type. A struct type is just the product type of1239

1 struct <type-name> {1240
2 <identifier>: <type>,1241
3 <identifier>: <type>,1242
4 ...1243
5 }1244

1 struct A {1245
2 a: i321246
3 }1247

28

To show how convenient this is, we can define the very useful option type as follows,1248

Definition 18 (Option type). For a local type T , we can define the local as1249

1 enum Option<T> {1250
2 Some(T),1251
3 None1252
4 }1253

Definition 19 (Global Types). Global types are defined to be sequences of local types.1254

Example 9 (Representation of Graphs). Graphs can be represented as sequences of its nodes. We1255

can use position index to use as node references.1256

E.4 Computation Graph1257

For convenience, we shall use computation graph as a vehicle to describe complicated computa-1258

tion processes. Computation graph is close to actual computation process and one can derive an1259

understanding of the computation difficulty from the graph’s mathematic properties (width, depth,1260

etc.)1261

Definition 20 (Directed Simple Graph). A directed simple graph G is a pair (V,E) where V is a1262

finite set, and E ⊆ V × V is called edges.1263

In the following, we shall simplify the "directed simple graph" to just graph.1264

Definition 21 (Computation Graph). A computation graph is an acyclic directed graph G = (V,E)1265

with additional structures:1266

1. for each vertex v ∈ V , there is an associated type, denoted by Tv;1267

2. for each vertex v ∈ V with a positive number of incoming edges, let v1, . . . , vn be the other1268

vertices for the incoming edges, then there is an associated function fv from Tv1×· · ·×Tvn1269

to Tv .1270

A computation graph naturally generates a function from source vertices to sink vertices. Let1271

vin1 , . . . , v
in
n be the set of vertices with no incoming edges, and let vout1 , . . . , voutm be the set of vertices1272

with no outgoing edges. Then we can construct a function from Tvin
1
×· · ·×Tvin

n
to Tvout

1
×· · ·×Tvout

m
1273

in the following obvious manner:1274

1. let (x1, . . . , xn) ∈ Tvin
1
× · · · × Tvin

n
be an input;1275

2. for each vini , assign it with value xi;1276

3. for each vertex v ∈ V with all its incoming vertices v1, . . . , vl assigned with a value, assign1277

it with the value fv(xv1 , . . . , xvl) where xvi denotes the value assigned to vi;1278

4. repeat the process until all vertices are assigned a value, then take (xvout
1
, . . . , xvout

m
) as the1279

output.1280

Our goal is to make a hypothesis class using the above graph. To control the statistical and compu-1281

tational complexity, we put restrictions on the choice of Tv and fv , as follows:1282

Definition 22 (Restricted Computation Graph). Let U be a set of types, and for any A,B ∈ U , there1283

is a set of functions Mor(A,B) from A to B. We require that Tv, T in
v ∈ U and fv ∈ Mor(T in

v , Tv)1284

where T in
v :=

∏
v′v∈E

Tv′ . We also require that the underlying graph G satisfies certain conditions1285

(width, depth, etc.)1286

Definition 23 (Restricted Computation Graph Of Sequences). Let U be a universe such that for a set1287

of types U0 all types in U are of the form A∗ for some type A ∈ U0, and Mor(A∗, B∗) are functions1288

that preserve sequence lengths.1289

Given a restriction, the class of functions generated by restricted computation graphs is the central1290

object to study in this paper. We shall use an even more restricted computation graph of sequences.1291

We shall argue about the class of functions formed that1292

1. it’s rich enough to contain many interesting operations including SQL, compiler (type in-1293

ference, static analysis)1294

29

2. it’s computationally reasonable, and can be represented by transformers with pragmatic1295

bounds1296

3. it has a reasonable statistical complexity1297

As a corollary, our theories suggest that transformers can possibly learn to do many interesting things1298

with reasonable computational and statistical complexity.1299

To our knowledge, this is the first theoretical paper that gives pragmatic optimistic bounds for the1300

power of transformers in a wide range of meaningful language tasks.1301

Now we introduce graph-theoretical measures that will play key roles in our new complexity theory.1302

The most basic one is the following:1303

Definition 24 (Depth of Graph). The depth of a computation graph is defined to the length of the1304

longest path, denoted by Depth(G).1305

For convenience, we define the following vertex-wise depth.1306

Definition 25 (Depth of Graph Vertex). The depth of a vertex v of a computation graph is defined1307

as the length of the longest path with end v, denoted by Depth(v).1308

The smaller dG is, the more parallel the computation is.1309

However, we shall discuss a more nuanced measure, containment, as follows:1310

E.5 Functions over Local Types1311

Definition 26 (Functions over Local Types). Given Local Types T ,R, the functions from T to R1312

are defined to be just the functions from Set (T) to Set (R).1313

Remark 4. The domains and codomains are all finite sets, so there aren’t many constraints we want1314

to enforce here. Basically, these are “discrete” functions.1315

Definition 27 (Functions over Algebraic Data Types). Let T ,S1, . . . ,Sm,R be Local Types, and1316

suppose that T is an algebraic data type, then we can construct functions from T × S1 × . . .× Sm1317

to R as follows,1318

1. suppose that T is the sum type of T1, . . . , Tn. Then given functions fi : Ti×S1×· · ·×Sm1319

for i = 1, . . . , n, we can construct a function f , by letting1320

f((i, t), s1, . . . , sm) = fi(t, s1, . . . , sm), (10)

for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).1321

(Note that we use the pair (i, t) because the underlying set of T is
⊔n

i=1 {i} × Set (Ti).)1322

2. suppose that T is the product type of T1, . . . , Tn. Then given a function f∗ : T1 × · · · ×1323

Tn × S1 × · · · × Sm for i = 1, . . . , n, we can construct a function f , by letting1324

f((t1, . . . , tn), s1, . . . , sm) = f∗(t1, . . . , tn, s1, . . . , sm), (11)

for each t ∈ Set (Ti), s1 ∈ Set (S1), . . . , sm ∈ Set (Sm).1325

It is not enough to just mathematically construct. We should also discuss how neural networks can1326

represent these functions. We define the representation of functions over Local Types formally as1327

follows:1328

Definition 28 (Representation of Functions over Local Types Using Multi-Layer Perceptions). Let1329

T ,R be Local Types. Given a function f from T to R, we say it is representable by MLP of1330

dimension d ≥ max {dT , dR} and number of layers L, if there exists f̃ ∈ ResMlpdL such that1331

ι1 ◦ ϕR ◦ f = f̃ ◦ ι2 ◦ ϕT , (12)

where ι1 : RdR → Rd and ι2 : RdT → Rd are the canonical embeddings by putting zeros to fit the1332

dimensionalities.1333

Here are some trivially true facts:1334

30

Proposition 3. [Identities are Representable] For any Local Type T , the identity map IdT is repre-1335

sentable in ResMlpdT
1 .1336

Proof. Just take W (1)
0 = Id,W

(1)
1 =W

(2)
2 = 0, B

(1)
1 = B

(2)
2 = 0.1337

Proposition 4. [Equality is Representable] The equality function for any local type T is repre-1338

sentable in ResMlp2d2 , where d is the encoding dimension of T .1339

Proof. Let x, y ∈ T be the inputs. We encode them as ϕT (x), ϕT (y) ∈ Rd. The equality function1340

can be represented as:1341

feq(x, y) = min

(
1, A

d∑
i=1

|ϕT (x)i − ϕT (y)i|

)
,

where A is a large enough positive constant such that the RHS is either 1 or 0.1342

This can be implemented in two-layer ResMLP with dimension 2d.1343

Proposition 5. [Boolean NOT is Representable] The Boolean NOT function is representable in1344

ResMlp11.1345

Proof. It’s affine.1346

Proposition 6. [Boolean AND is Representable] The Boolean AND function is representable in1347

ResMlp21.1348

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then AND is1349

just taking the minimum. By min(a, b) = b− σReLU (b− a), we’re done.1350

Proposition 7. [Boolean OR is Representable] The Boolean OR function is representable in1351

ResMlp21.1352

Proof. Represent each Boolean value as a binary flag within a 1-dimensional vector. Then OR is1353

just taking the maximum. By max(a, b) = a+ σReLU (b− a), we’re done.1354

Proposition 8. [THEN_SOME is Representable] The function Bool::then_some : Bool × T →1355

Option T returns Some t if the boolean is true and None otherwise. This function is representable1356

in ResMlpd+1
1 .1357

Proof. Encode the boolean as a binary flag in a (d+ 1)-dimensional vector, where the first compo-1358

nent indicates the boolean value and the remaining d components hold the value of type T . The1359

residual MLP fresmlp constructs the output Option T by assembling the flag and the value split into1360

positive and negative parts influenced by the flag:1361

fresmlp(X) =

(
x1

σReLU (x2:d+1 −Ax1)− σReLU (−x2:d+1 −Ax1)

)
.

Here, A is a vector of dimension d with all entries positive and large enough to ensure proper1362

thresholding. Specifically, each entry of A should be larger than the maximum absolute value that1363

can be represented in the corresponding dimension of type T . This ensures that when x1 = 1, the1364

subtraction x2:d+1 −A will always be negative, and when x1 = 0, it will not affect the value.1365

When the flag is true (x1 = 1), σReLU (x2:d+1 −A) = 0 and σReLU (−x2:d+1 −A) retains the1366

negated value, resulting in Some t . When the flag is false (x1 = 0), both ReLU terms preserve the1367

value, yielding None . Thus, fresmlp effectively implements Bool::then_some within a single layer1368

of the MLP.1369

31

ϕT (x)
L1 layers

MLP
ϕS(f(x))

L2 layers
MLP

ϕR(g(f(x)))

Figure 3: Transformation from ϕT (x) to ϕS(f(x)) to ϕR(g(f(x))) with MLP layers.

Proposition 9. [Option Or is Representable] Let T be a local type, let Option::or be the function1370

that maps two values a,b of type Option T to a value c of type Option T such that c is equal to a1371

when a is not none, and equal to b otherwise. Then Option::or is representable in ResMlp
2(d+1)
1 .1372

Proof. Each Option T is represented as a (d+ 1)-dimensional vector, where the first component is1373

a binary flag indicating the presence (1 for Some , 0 for None), and the remaining d components1374

encode the value. Given inputs a, b ∈ Option T , the residual MLP fresmlp processes the concatenated1375

vector1376

X =

aflag
aval
bflag
bval

 .

The MLP is designed to separate bval into positive and negative parts (b+, b− respectively) influenced1377

by aflag. Specifically, it computes:1378

fresmlp(X) = aval + σReLU (b+ −Aaflag)− σReLU (b− −Aaflag)

= aval + σReLU (bval −Aaflag)− σReLU (−bval −Aaflag),
(13)

where A is a vector with large positive entries that ensures the ReLU activation zeroes out the non-1379

selected parts based on the flag. When aflag = 1, the terms involving b are suppressed, resulting in1380

c = a. Conversely, when aflag = 0, the positive part of b remains, effectively selecting b. Thus,1381

fresmlp accurately implements the Option::or function, demonstrating that it is representable within1382

ResMlp
2(d+1)
1 .1383

Proposition 10 (Field Access Is Representable in ResMlp). For algebraic data type, either struct1384

field access, enum discriminator, and variant field access can be represented in ResMlpd1 where d is1385

the encoding dimension.1386

Proof. Obvious because these operations are linear.1387

Proposition 11. [Composition of Functions Representable in ResMlp] For local types T ,S,R, with1388

maps f : T → S and map g : S → R representable in ResMlpd1

L1
and ResMlpd2

L2
respectively.1389

Then g ◦ f is representable in ResMlp
max{d1,d2}
L1+L2

.1390

Proof. Obvious by using the first L1 layers to map from T to S and using the rest L2 layers to map1391

from S to R. The process can be visualized as in Figure 3.1392

1393

Proposition 12. [Computation Graph of Functions Representable in ResMlp] Let G be a com-1394

putation graph, with each vertex v being of some local type Tv , and the construction functions are1395

representable in ResMlpdv

Lv
. For convenience, if v is a source vertex, dv is defined to be the encoding1396

dimension of Tv and Lv = 0. Then the function induced by the computation graph is representable1397

in ResMlp
∑

v∈G dv

Depth(G)(maxv∈G Lv+1)+1.1398

Proof. We construct a global residual multi-layer perceptron (ResMLP) that simulates the com-1399

putation graph G by aggregating and updating the states of all vertices simultaneously. Let1400

32

D =
∑

v∈G dv be the total dimension, where dv is the dimension associated with vertex v. The1401

global ResMLP will have a depth of Depth(G)(maxv Lv + 1).1402

Consider the concatenated state vector X(t) ∈ RD, which is a concatenation of the states of all1403

vertices:1404

X(t) =
(
X(t)

v

)
v∈G

,

where X(t)
v ∈ Rdv is the state of vertex v at layer t.1405

Initialization occurs at depth zero, corresponding to the source vertices of the computation graph.1406

The state vector X(0) is set by assigning the input vectors to the source vertices and initializing all1407

other vertices to zero. Formally, if V0 denotes the set of source vertices, then:1408

X(0)
v =

{
xv if v ∈ V0,

0 otherwise,

where xv ∈ Rdv is the input to source vertex v. Because X(0)
v is of dimensionality dv equal to the1409

encoding dimension, this agrees with our convention for representing functions over local types.1410

We proceed inductively over the depth levels of the computation graph. For each depth level k =1411

1, 2, . . . ,Depth(G), we perform the following steps in the global ResMLP.1412

1. Input Aggregation Layer. We apply a linear transformation to gather the outputs from the1413

predecessor vertices of each vertex at depth k and feed them as inputs to these vertices.1414

Specifically, we define a linear mapping W (k)
agg ∈ RD×D such that:1415

X̃(tk) =W (k)
agg X

(tk−1),

where tk−1 is the layer after processing depth k − 1, and X̃(tk) is the aggregated input1416

for the vertices at depth k. The matrix W (k)
agg rearranges and combines the outputs from1417

predecessor vertices to provide the correct inputs to each vertex at depth k. Specifically,1418

for each vertex v at depth k, and for each predecessor u of v in the computation graph, the1419

matrix W (k)
agg contains entries that copy the output of u into the input positions of v. All1420

other entries in W (k)
agg are set to zero or identity as appropriate.1421

2. Local Computation Layers. For each vertex v at depth k, we simulate its local ResMLP of1422

depth Lv . Since the depths Lv may vary, we pad the local ResMLPs to have a uniform1423

depth L = maxv Lv by adding identity mappings where necessary. The updates for vertex1424

v are computed as:1425

X(tk+1)
v = X̃(tk)

v + ffcnv

(
X̃(tk)

v

)
,

X(tk+k′)
v = X(tk+k′−1)

v + ffcnv

(
X(tk+k′−1)

v

)
, for k′ = 2, . . . , Lv,

X(tk+k′)
v = X(tk+k′−1)

v , for k′ = Lv + 1, . . . , L.

Here, ffcnv denotes the single-layer fully connected network (as per Definition 1) for vertex1426

v.1427

3. State Update. After completing the local computations for depth k, we update the global1428

state vector X(tk+L) by concatenating the updated states of all vertices:1429

X(tk+L) =
(
X(tk+L)

v

)
v∈G

.

The total number of layers added for depth k is L + 1, accounting for the input aggregation layer1430

and the L layers simulating the local ResMLPs.1431

By repeating this process for each depth level k = 1, 2, . . . ,Depth(G), we simulate the entire1432

computation graph within a global ResMLP of depth Depth(G)(maxv Lv + 1).1433

Lastly, we use the final layer to perform a linear mapping so that the output is in the correct linear1434

representation, clearing out the intermediate values.1435

33

Therefore, the function computed by the global ResMLP is equivalent to the function induced by1436

the computation graph G, and it is representable in ResMlpDDepth(G)(maxv Lv+1).1437

Remark 5. We only prove things around MLPs here. Later, we shall show that this will imply that1438

the induced map operation over sequences can be represented by transformers.1439

E.6 Functions over Global Types1440

The task we want transformers to express is too complicated to be cleanly described in one shot. So1441

we introduce the following lemma to significantly simplify things. The lemma shall be useful for1442

our future papers on this topic.1443

Proposition 13. [Composition of Functions Representable in Transformers] For local types T , S,1444

R, with maps f : T ∗ → S∗ and g : S∗ → R∗ representable in Tfd1

H1,L1
and Tfd2

H2,L2
respectively.1445

Then the composition g ◦ f is representable in Tf
max{d1,d2}
max{H1,H2},L1+L2

.1446

Proof. This is basically the same as the proof of Proposition 11.1447

Proposition 14. [Computation Graphs of Functions Representable in Transformers] Suppose we1448

have a computation graph G = (V,E) with types Tv = T ∗
v together with encoding map ψv : Tv →1449

Rdv and decoding map ϕv : Rdv → Tv , satisfying ϕv ◦ ψv ≡ idTv , and there exists some positive1450

integer d0 such that for each v ∈ V , fv can be represented in1451

TfdHv,Lv

Let f be the function generated by the computation graph. Then f can be represented in TfdH,L if1452

d ≥
∑

v dv +Hd0, L ≥ |G|
H + dG where dG is the depth of the graph.1453

Remark 6. This doesn’t really cover the above. The bound in Proposition 14 isn’t always tight for1454

model dimension when the computation graph is deep and Proposition 13 complements it.1455

Proof. WLOG, assume that d =
∑

v∈V dv +Hd0. Then1456

Rd =

(⊕
v∈V

Rdv

)
︸ ︷︷ ︸

C

⊕

⊕
h∈[H]

Rd0


︸ ︷︷ ︸

A

. (14)

Here C stands for "cache" used for storing computed values, and A stands for "active" used for1457

storing intermediate computation results.1458

Make an order of all the nodes in the graph, say V =
{
v1, . . . , v|G|

}
such that Depth(vi) ≤1459

Depth(vj) if i ≤ j.1460

We now imagine the transformer computation process as gradually evaluating the value of each1461

vertex, starting from v1 to v|G|. Every maxv Lv layers form a layer group, and after each layer1462

group, at mostH vertices are assigned values. The equation 14 implies that we have enough memory1463

to cache the computed values and intermediate values in small transformers.1464

Now let this process continue until we compute all the values. It must be finite because after each1465

layer group, at least one of the vertices is computed. But this bound is too loose. We claim the1466

following:1467

Claim: the number of layer groups where less than H vertices are assigned values is smaller than1468

Depth(G).1469

Sketch of Proof of Claim: for any layer group where less than H vertices are assigned, all the1470

vertices that aren’t assigned after this layer group must have larger depth than any vertices that are1471

assigned values before this layer group, otherwise such a vertice can be evaluated in this layer group.1472

Define the depth of any layer group to be the smallest depth of vertices evaluated in this layer group.1473

Then for any unsatiated layer group, it must have a larger depth than the previous layer group. But1474

depth can only increase Depth(G) times, thus there are at most Depth(G) unsatiated layer groups.1475

34

Proof of Claim: let V1, . . . , Vl be the vertices evaluated at each layer group. Note that l is a different1476

symbol than L and means that the number of layer groups rather than the number of layers.1477

For convenience, let Di be the minimum of the depths of vertices in Vi.1478

Suppose that the ith layer group is unsatiated, then i < l. We want to show that Di < Di+1.1479

Suppose otherwise, i.e., Di = Di+1. Because the ith layer group is unsatiated, for any v ∈ Vi+1,1480

v must have dependencies that haven’t been evaluated before the ith layer group. Choose v0 ∈1481

Vi, v1 ∈ Vi+1 such that Depth(v0) = Depth(v1) = Di = Di+1. Note that any dependency of v11482

must have smaller depths than v0, then must have already be evaluated before the ith layer group.1483

Contradiction!1484

Now given the claim, we have that for all but at most Depth(G) choices of i = 1, . . . , l, we have1485

|Vi| = H , then we have1486

|G| =
l∑

i=1

|Vi| ≥ (l −Depth(G))H (15)

Then l ≤ |G|
H +Depth(G).1487

Then L ≤ l ·maxv∈G Lv =
(

|G|
H +Depth(G)

)
maxv∈G.1488

1489

Proposition 15. [Nearest Left/Right] For any local type T , consider the function that maps a1490

sequence of type Option<T> to nearest left/right neighbors that are not none. It’s representable in1491

Tfd+1
1,11492

Proof. There is only one layer and one head needed, so we can omit the layer and head index.1493

WLOG, we consider the nearest left case.1494

We just need to make the attention exponential look like this:1495

Q⊤
p Kp′ + λΨp′−p = aflag,p′ − 1p′−p>0, (16)

where aflag,p′ ∈ {0, 1} indicates whether the value at position p′ is some or none.1496

We set Vp′ to represent the value of type Option<T> .1497

For the starter token p0, we make it such that1498

Q⊤
p Kp0 + λΨp0−p = 1, (17)

and1499

Vp0
= 0, (18)

so that when there are no some to the left, it will give us none.1500

Proposition 16. [Nearest Two Left/Right] For any local type T , consider the function that maps a1501

sequence of type Option<T> to nearest two left/right neighbors that are not none. It’s representable1502

in Tf
O(d)
O(1),O(1) where d is the encoding dimension of T .1503

Proof. We can utilize Proposition 15 and 14.1504

The nearest two left or right is equivalent to first computing the nearest left/right, and then packing1505

them together into one and compute its nearest left/right. The process is represented by a small1506

constant computation graph, then we’re done.1507

E.7 Syntax and Semantics of Cybertron1508

Having laid the necessary mathematical foundation behind Cybertron, we now turn to explaining1509

its surface—its syntax and semantics. Cybertron serves as a syntax sugar for expressing local1510

and global computation graphs, which are the vehicles used to demonstrate the expressive power of1511

transformers. In Cybertron, computations are divided into two layers: the local world and the global1512

world. These layers play distinct but complementary roles in constructing computation graphs.1513

35

E.7.1 Local World1514

The local world in Cybertron corresponds to the feed-forward layers of a transformer, focusing on1515

computations over local types. Local types represent individual tokens or data points, and compu-1516

tations in this world handle operations on tokens independently of their surrounding context.1517

Data Types. Local types in Cybertron include basic types such as Bool , Idx , Pos , Fin<n> ,1518

BoundedVec<T, N> , etc. These types are essential for building local computation graphs that operate1519

over individual tokens. Compound types, like structs and enums, can also be defined for more1520

complex token representations. These types serve as the building blocks for the local computation1521

graphs that transform data at the token level.1522

1 struct Node {1523
2 id: Idx,1524
3 position: Pos,1525
4 }1526
51527
6 enum Operation {1528
7 Add {1529
8 lhs: Pos,1530
9 rhs: Pos,1531

10 },1532
11 Multiply {1533
12 factor: Pos,1534
13 },1535
14 }1536

Functions. Functions in the local world define operations upon information over individual tokens.1537

These operations form nodes in the local computation graphs. For instance, operations like binary1538

or unary expressions, conditionals, and matches on token types are transformed into computation1539

graphs by handling each individual token’s data.1540

1 fn process_ast(ast: AstData) -> Option<Role> {1541
2 match ast {1542
3 AstData::LetInit { pattern, initial_value, .. } => {1543
4 Some(Role::LetStmt { pattern, initial_value })1544
5 }1545
6 AstData::Defn { keyword, ident, .. } => {1546
7 Some(match keyword {1547
8 DefnKeyword::Struct => Role::StructDefn(ident),1548
9 DefnKeyword::Enum => Role::EnumDefn(ident),1549

10 DefnKeyword::Fn => Role::FnDefn(ident),1550
11 })1551
12 }1552
13 _ => None,1553
14 }1554
15 }1555

Control Flow. In the local world, control flow structures such as if and match are transformed1556

into computation graphs by treating each branch or arm as an expression that returns an Option1557

based on conditions. These Option values are then combined using the Option::or function. Ac-1558

cording to Proposition 9, Option::or maps two Option<T> values and returns the first non- None1559

value, or the second one otherwise. This allows conditional branches to be represented in com-1560

putation graphs as sequential option evaluations, where the first matching condition provides the1561

result.1562

E.7.2 Global World1563

The global world extends beyond individual tokens to sequences of tokens, represented as global1564

types. These global types are denoted as Seq<T> , where T is a local type. The global world1565

represents the full transformer, focusing on operations involving sequences of tokens, including1566

variable definitions, expressions involving variable references, and function calls.1567

Variable Definitions. Variables in the global world are defined using global types, which represent1568

sequences of local tokens. These definitions correspond to nodes in the global computation graph.1569

36

Expressions. Expressions in the global world consist of references to variables or function calls.1570

Since the global world operates over sequences of tokens, these expressions are translated into1571

sequence-level operations in the computation graph.1572

Function Calls. Function calls are key elements of the global world. They are represented by1573

applying global functions to sequences of tokens. Cybertron provides map functions to elevate1574

local functions to global functions by mapping them across sequences. Additionally, attention1575

methods like nearest_left and nearest_right handle dependencies between tokens in the sequence1576

by identifying relationships based on their positions.1577

1 let result = seq_of_values.nearest_left();1578

In the global world, computation graphs are built by composing map functions and attention meth-1579

ods. These graphs, unlike those in the local world, do not include control flow mechanisms.1580

E.8 Dyck Language1581

This section demonstrates how the local world in Cybertron operates over token-level computations1582

and how the global world handles sequence-level operations. We use a Dyck language example to1583

explain the interactions between these two worlds. The example processes a sequence of delimiters1584

(like parentheses) and checks for matching pairs.1585

Local World. In Cybertron, the local world operates on individual tokens. Here, the local types1586

are simple, such as Delimiter and PreAst , which represent information associated with individual1587

tokens. These types allow for token-level operations like comparisons and transformations.1588

We define a struct to represent a delimiter and an enum to classify delimiters as either left or right.1589

These definitions reflect local types, as they hold information over a single token.1590

1 // Define a struct ‘Delimiter‘ that wraps a ‘u8‘ value.1591
2 #[derive(Debug, Clone, Copy, PartialEq, Eq)]1592
3 pub struct Delimiter(u8);1593
41594
5 // Define an enum ‘PreAst‘ which represents a left or right delimiter.1595
6 #[derive(Debug, Clone, Copy, PartialEq, Eq)]1596
7 pub enum PreAst {1597
8 LeftDelimiter(Delimiter),1598
9 RightDelimiter(Delimiter),1599

10 }1600

Here, the local types Delimiter and PreAst define operations upon individual tokens, representing1601

fundamental units of the computation graph at the local level. The local world is responsible for1602

handling these small, token-level computations independently of the global sequence.1603

Global World. In the global world, Cybertron operates on sequences of tokens, treating the col-1604

lection of local types as a single unit of computation. The global world introduces global types such1605

as Seq<Option<PreAst>> , which represents a sequence of optional delimiters. The global world han-1606

dles sequence-level operations by applying functions like nearest_left and nearest_right to capture1607

the relationships between tokens in the sequence.1608

The following function operates on a sequence of PreAst , reducing matched pre-asts. The recursive1609

application of step gives us the classifier for Dyck language.1610

1 fn step(pre_asts: Seq<Option<PreAst>>) -> Seq<Option<PreAst>> {1611
2 let pre_asts_nearest_left = pre_asts.nearest_left();1612
3 let pre_asts_nearest_right = pre_asts.nearest_right();1613
4 step_aux.apply(pre_asts_nearest_left, pre_asts, pre_asts_nearest_right)1614
5 }1615

Local Worlds. The step_aux function matches tokens based on their nearest neighbors within the1616

sequence, eliminating pre-asts if a match is found.1617

1 fn step_aux(1618
2 pre_ast_nearest_left: Option<(Idx, PreAst)>,1619

37

3 pre_ast: Option<PreAst>,1620
4 pre_ast_nearest_right: Option<(Idx, PreAst)>1621
5) -> Option<PreAst> {1622
6 match pre_ast? {1623
7 PreAst::LeftDelimiter(delimiter) => match pre_ast_nearest_right {1624
8 Some((_, PreAst::RightDelimiter(delimiter1))) if delimiter1 == delimiter =>1625

None,1626
9 _ => pre_ast,1627

10 },1628
11 PreAst::RightDelimiter(delimiter) => match pre_ast_nearest_left {1629
12 Some((_, PreAst::LeftDelimiter(delimiter1))) if delimiter1 == delimiter =>1630

None,1631
13 _ => pre_ast,1632
14 },1633
15 }1634
16 }1635

In this example, the global function step uses nearest_left and nearest_right to capture sequence-1636

level dependencies, while the local function step_aux uses conditional logic to check for matching1637

pairs of delimiters. The local world handles token-level logic, while the global world coordinates1638

operations across the entire sequence. This separation reflects how Cybertron handles computations1639

at different levels of granularity.1640

Thus, this example illustrates how Cybertron leverages both the local and global worlds to build1641

comprehensive computation graphs in a convenient, comprehensive yet rigorous manner. The local1642

world performs individual tokenwise operations, and the global world captures relationships be-1643

tween tokens in a sequence, demonstrating how Cybertron enables transformers to express complex1644

computations.1645

F Transformer AST Proof1646

F.1 High Level Overview1647

Here we give the full details of the proof of transformers being able to parse ASTs.1648

On a high level, we are going to see the parsing of ASTs as an assembly process. First, we im-1649

mediately get the atomic ones, like identifiers, literals, etc. Then we assembly all composite ASTs1650

with enough precedence util all tokens are consumed. We can prove that at the nth round, all ASTs1651

with depth no more than n are already constructed. In the process, we must keep track of the un-1652

consumed tokens and newly constructed ASTs (to be consumed as children for new ASTs in the1653

next round, as we are going bottom up). We use pre_asts to denote all the unconsumed tokens and1654

newly constructed ASTs and use asts to denote all the constructed(allocated) ASTs. For correctness1655

guarantees, we give detailed type specifications for tokens, ASTs, and PreASTs as follows.1656

We define the Token type as follows:1657

1 /// The ‘Token‘ enum represents the various types of tokens that can be1658
2 /// identified during the lexical analysis phase of a compiler. Each variant1659
3 /// corresponds to a specific category of token that can be encountered1660
4 /// in the source code.1661
5 pub enum Token {1662
6 /// A literal value, which can be a number, string, or other primitive type.1663
7 Literal(Literal),1664
8 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.1665
9 Keyword(Keyword),1666

10 /// An identifier, typically representing variable names, function names,1667
11 /// or other user-defined symbols.1668
12 Ident(Ident),1669
13 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical1670
14 /// or logical operations.1671
15 Opr(Opr),1672
16 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of1673
17 /// a block, list, or expression.1674
18 LeftDelimiter(LeftDelimiter),1675
19 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a1676
20 /// block, list, or expression.1677
21 RightDelimiter(RightDelimiter),1678
22 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or1679
23 /// statements in a block.1680
24 Separator(Separator),1681
25 }1682

38

The type has an encoding dimenion dToken = Θ(logL), which is large enough to faithfully represent1683

its information.1684

More specifically, the types Literal , Keyword , Ident , Opr , LeftDelimiter , RightDelimiter ,1685

Separator are local types assumed to have encoding dimension less than dToken. Keyword , Opr ,1686

LeftDelimiter , RightDelimiter , Separator are small, so they can be encoded in a straight-forward1687

manner entirely using dToken. However, Literal and Ident are larger than representable by a lim-1688

ited number of bits because potentially a Literal can be a string literal of arbitrary length and an1689

Ident can also be of arbitrary length. This can be solved through methods like interning, which1690

gives all literals and identifiers that actually appear in the input distinct encodings. As the context1691

length is L, the number of different literals/identifiers are bounded by context length and interning1692

needs O(dToken) = O(logL) to work. As far as our theories are concerned, it’s totally reasonable to1693

assume that all these types are assumed to have encoding dimension less than dToken = O(logL).1694

We define AST type as follows:1695

1 /// Represents a node in an Abstract Syntax Tree (AST).1696
2 ///1697
3 /// Each ‘Ast‘ node has a reference to its parent node (if any) and holds1698
4 /// the associated syntax data (such as expressions, statements, or other1699
5 /// constructs defined in the ‘AstData‘ enum).1700
6 pub struct Ast {1701
7 /// The index of the parent node in the AST, if it exists.1702
8 ///1703
9 /// - ‘Some(Idx)‘: The node has a parent, and ‘Idx‘ represents its position.1704

10 /// - ‘None‘: The node is the root or does not have a parent.1705
11 pub parent: Option<Idx>,1706
12 /// The data associated with this AST node.1707
13 ///1708
14 /// This field holds the actual syntax information, which is typically1709
15 /// defined by the ‘AstData‘ enum. This could represent literals, expressions,1710
16 /// statements, and other constructs in the source language.1711
17 pub data: AstData,1712
18 }1713

Note that we intentionally structure the tree by always storing the parent but not necessarily storing1714

all children information. In our assumptions, we only control the depth of ASTs but don’t control1715

the number of children. More specifically, a function can have as many statements as possible. To1716

avoid overflowing, we don’t store all children information. As we shall see, parent information alone1717

is enough for transformers to perform tree operations.1718

The AstData is the most complicated we define in this paper, as follows:1719

1 /// Enumeration representing different types of Abstract Syntax Tree (AST) nodes1720
2 pub enum AstData {1721
3 /// Represents a literal value (e.g., integer, string)1722
4 Literal(Literal),1723
5 /// Represents an identifier (e.g., variable name)1724
6 Ident(Ident),1725
7 /// Represents a prefix expression (e.g., ‘!x‘, ‘-x‘)1726
8 ///1727
9 /// # exprs1728

10 ///1729
11 Prefix {1730
12 /// Operator in the prefix expression (e.g., ‘!‘, ‘-‘)1731
13 opr: PrefixOpr,1732
14 /// Operand index of the expression1733
15 opd: Idx,1734
16 },1735
17 /// Represents a binary expression (e.g., ‘x + y‘, ‘a * b‘)1736
18 Binary {1737
19 /// Index of the left operand1738
20 lopd: Idx,1739
21 /// Operator in the binary expression (e.g., ‘+‘, ‘*‘)1740
22 opr: BinaryOpr,1741
23 /// Index of the right operand1742
24 ropd: Idx,1743
25 },1744
26 /// Represents a suffix expression (e.g., ‘x++‘, ‘y--‘)1745
27 Suffix {1746
28 /// Index of the operand1747
29 opd: Idx,1748
30 /// Operator in the suffix expression (e.g., ‘++‘, ‘--‘)1749

39

31 opr: SuffixOpr,1750
32 },1751
33 /// Represents a delimited expression (e.g., ‘(x + y)‘, ‘{a, b, c}‘)1752
34 Delimited {1753
35 /// Index of the left delimiter in the expression1754
36 left_delimiter_idx: Idx,1755
37 /// The left delimiter (e.g., ‘(‘, ‘{‘)1756
38 left_delimiter: LeftDelimiter,1757
39 /// The right delimiter (e.g., ‘)‘, ‘}‘)1758
40 right_delimiter: RightDelimiter,1759
41 },1760
42 /// Represents an item separated by a separator (e.g., elements in an array or list)1761
43 SeparatedItem {1762
44 /// Index of the content, if any1763
45 content: Option<Idx>,1764
46 /// The separator (e.g., ‘,‘, ‘;‘)1765
47 separator: Separator,1766
48 },1767
49 /// Represents a function call or array access (e.g., ‘f(...)‘, ‘a[...]‘)1768
50 ///1769
51 /// things like ‘f(...)‘ or ‘a[...]‘1770
52 Call {1771
53 /// Index of the caller (e.g., function or array)1772
54 caller: Idx,1773
55 /// The left delimiter of the call (e.g., ‘(‘, ‘[‘)1774
56 left_delimiter: LeftDelimiter,1775
57 /// The right delimiter of the call (e.g., ‘)‘, ‘]‘)1776
58 right_delimiter: RightDelimiter,1777
59 /// Index of the delimited arguments in the call1778
60 delimited_arguments: Idx,1779
61 },1780
62 /// Represents a ‘let‘ statement with an initialization (e.g., ‘let x = 5;‘)1781
63 ///1782
64 /// # stmts1783
65 ///1784
66 LetInit {1785
67 /// Index of the expression in the initialization1786
68 expr: Idx,1787
69 /// Index of the pattern being initialized1788
70 pattern: Idx,1789
71 /// Optional index of the initial value1790
72 initial_value: Option<Idx>,1791
73 },1792
74 /// Represents an ‘if‘ statement1793
75 If {1794
76 /// Index of the condition in the ‘if‘ statement1795
77 condition: Idx,1796
78 /// Index of the body of the ‘if‘ statement1797
79 body: Idx,1798
80 },1799
81 /// Represents an ‘else‘ statement1800
82 Else {1801
83 /// Index of the associated ‘if‘ statement1802
84 if_stmt: Idx,1803
85 /// Index of the body of the ‘else‘ statement1804
86 body: Idx,1805
87 },1806
88 /// Represents a function or variable definition1807
89 ///1808
90 /// # defn1809
91 ///1810
92 Defn {1811
93 /// The keyword in the definition (e.g., ‘fn‘, ‘enum‘)1812
94 keyword: DefnKeyword,1813
95 /// Index of the identifier in the definition1814
96 ident_idx: Idx,1815
97 /// The identifier being defined (e.g., function name, variable name)1816
98 ident: Ident,1817
99 /// Index of the content or body of the definition1818

100 content: Idx,1819
101 },1820
102 }1821

1 /// The ‘PreAst‘ enum represents the intermediate forms of tokens and ASTs that are1822
2 /// encountered during the parsing phase, before the final AST is constructed.1823
3 /// Each variant corresponds to a specific type of token or partial1824
4 /// AST node that contributes to the construction of the final AST.1825
5 #[derive(Clone, Copy, PartialEq, Eq)]1826
6 pub enum PreAst {1827
7 /// A reserved keyword in the language, such as ‘if‘, ‘else‘, ‘while‘, etc.1828
8 Keyword(Keyword),1829

40

9 /// An operator, such as ‘+‘, ‘-‘, ‘*‘, ‘==‘, etc., representing mathematical1830
10 /// or logical operations.1831
11 Opr(Opr),1832
12 /// A left delimiter, such as ‘(‘, ‘{‘, ‘[‘, used to denote the beginning of1833
13 /// a block, list, or expression.1834
14 LeftDelimiter(LeftDelimiter),1835
15 /// A right delimiter, such as ‘)‘, ‘}‘, ‘]‘, used to denote the end of a1836
16 /// block, list, or expression.1837
17 RightDelimiter(RightDelimiter),1838
18 /// A partially constructed AST node, representing a more complex structure1839
19 /// that will be further processed to build the final AST.1840
20 Ast(AstData),1841
21 /// A separator, such as ‘,‘ or ‘;‘, used to separate elements in a list or1842
22 /// statements in a block.1843
23 Separator(Separator),1844
24 }1845

1 /// this is beyond the scope of Cybertron1846
2 ///1847
3 /// rather a general Rust function to integrate for testing1848
4 pub fn calc_asts_from_input(input: &str, n: usize) -> (Seq<Option<PreAst>>,1849

Seq<Option<Ast>>) {1850
5 let tokens = tokenize(input);1851
6 let pre_asts = calc_pre_ast_initial_seq(tokens);1852
7 let allocated_asts: Seq<Option<Ast>> = tokens.map(|token| token.into());1853
8 reduce_n_times(pre_asts, allocated_asts, n)1854
9 }1855

The reduce function in Cybertron is designed to progressively refine sequences of pre-abstract1856

syntax trees (pre-ASTs) and allocated abstract syntax trees (ASTs). The function takes two input1857

sequences: pre_asts , which is a sequence of optional pre-ASTs, and allocated_asts , which is a1858

sequence of optional ASTs. It returns a tuple containing the reduced sequences of pre-ASTs and1859

allocated ASTs.1860

The reduction process is carried out in multiple stages, each focusing on different syntactic con-1861

structs:1862

1. reduce_by_opr : This step handles reduction by dealing with operators and their precedence.1863

It simplifies expressions involving operations to form more compact ASTs.1864

2. reduce_by_delimited : This step reduces constructs that are delimited, such as those involv-1865

ing parentheses, braces, or other grouping symbols. It ensures that delimited blocks are1866

properly nested and combined in the AST.1867

3. reduce_by_call : In this stage, function or method calls are reduced. This involves iden-1868

tifying and structuring calls within the AST, ensuring correct representation of function1869

invocations.1870

4. reduce_by_stmt : This reduction step addresses statements, ensuring that individual state-1871

ments are correctly parsed and represented within the AST, such as assignment statements,1872

loops, and conditionals.1873

5. reduce_by_defn : Finally, reduction by definition handles the parsing of definitions, such1874

as variable or function declarations. This step ensures that all definitions are correctly1875

represented within the AST.1876

By sequentially applying these reduction steps, the reduce function progressively transforms the1877

initial sequences into their most refined forms, ready for further syntactic or semantic analysis.1878

1 pub fn reduce(1879
2 pre_asts: Seq<Option<PreAst>>,1880
3 allocated_asts: Seq<Option<Ast>>,1881
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {1882
5 // Reduce ASTs by handling operators and precedence1883
6 let (pre_asts, allocated_asts) = reduce_by_opr(pre_asts, allocated_asts);1884
71885
8 // Reduce ASTs by handling delimited constructs like parentheses or braces1886
9 let (pre_asts, allocated_asts) = reduce_by_delimited(pre_asts, allocated_asts);1887

101888
11 // Reduce ASTs by handling function or method calls1889
12 let (pre_asts, allocated_asts) = reduce_by_call(pre_asts, allocated_asts);1890

41

131891
14 // Reduce ASTs by handling statements, ensuring proper syntax structure1892
15 let (pre_asts, allocated_asts) = reduce_by_stmt(pre_asts, allocated_asts);1893
161894
17 // Reduce ASTs by handling definitions, like variables or functions1895
18 let (pre_asts, allocated_asts) = reduce_by_defn(pre_asts, allocated_asts);1896
191897
20 // Return the final reduced sequences of pre-ASTs and allocated ASTs1898
21 (pre_asts, allocated_asts)1899
22 }1900

1 pub fn reduce_n_times(1901
2 mut pre_asts: Seq<Option<PreAst>>,1902
3 mut allocated_asts: Seq<Option<Ast>>,1903
4 n: usize,1904
5) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {1905
6 for _ in 0..n {1906
7 let (pre_asts1, allocated_asts1) = reduce(pre_asts, allocated_asts);1907
8 pre_asts = pre_asts1;1908
9 allocated_asts = allocated_asts1;1909

10 }1910
11 (pre_asts, allocated_asts)1911
12 }1912

In the above definition, we actually used Rust’s mutable variable semantics. However, it’s straight-1913

forward to see that it translates to a computation graph that is a sequential composition of subgraphs1914

with sequential length n. Because the AST’s depth is bounded by D, we can just take n to be D.1915

Each subgraph is generated from the reduce function, then they are all constant graphs constructed1916

by global and local functions, then by Proposition 13,11 and 2 they translate to transformers with1917

O(logL+D) depth, model dimension, and number of heads, where logL comes from the encoding1918

of types like Token .1919

Below we give full details of the various reduction functions.1920

As these are implemented as Rust functions, they have been tested against a number of inputs. We1921

don’t guarantee an industry level of correctness, but the key point is well illustrated.1922

F.2 Operators1923

In this section, we lay down the definition of reduce_by_opr .1924

1 pub(super) fn reduce_by_opr(1925
2 pre_asts: Seq<Option<PreAst>>,1926
3 allocated_asts: Seq<Option<Ast>>,1927
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {1928
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();1929
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();1930
7 let new_opr_asts = new_opr_ast.apply(pre_asts_nearest_left2, pre_asts,1931

pre_asts_nearest_right2);1932
8 let (pre_asts_reduced, new_parents) = reduce_pre_asts_by_opr(pre_asts, new_opr_asts);1933
9 let pre_asts = update_pre_asts_by_new_asts(pre_asts_reduced, new_opr_asts);1934

10 let allocated_asts =1935
11 allocate_asts_and_update_parents(allocated_asts, new_opr_asts, new_parents);1936
12 (pre_asts, allocated_asts)1937
13 }1938

1 /// a finite function1939
2 pub(crate) fn new_opr_ast(1940
3 nearest_left2: Option2<(Idx, PreAst)>,1941
4 current: Option<PreAst>,1942
5 nearest_right2: Option2<(Idx, PreAst)>,1943
6) -> Option<AstData> {1944
7 let Some(PreAst::Opr(opr)) = current else {1945
8 return None;1946
9 };1947

10 match opr {1948
11 Opr::Prefix(opr) => {1949
12 let Some((opd, PreAst::Ast(_))) = nearest_right2.first() else {1950
13 return None;1951
14 };1952
15 if let Some((_, ast)) = nearest_right2.second() {1953
16 match ast {1954
17 PreAst::Keyword(_) => (),1955
18 PreAst::Opr(right_opr) => match right_opr {1956

42

19 Opr::Prefix(_) => (),1957
20 Opr::Binary(right_opr) => {1958
21 // every binary opr in our small language is left associative,1959

so ‘<‘ instead of ‘<=‘1960
22 if right_opr.precedence() > opr.precedence() {1961
23 return None;1962
24 }1963
25 }1964
26 Opr::Suffix(right_opr) => {1965
27 if right_opr.precedence() > opr.precedence() {1966
28 return None;1967
29 }1968
30 }1969
31 },1970
32 PreAst::Ast(_) => (),1971
33 // function call or index takes higher precedence1972
34 PreAst::LeftDelimiter(_) => return None,1973
35 PreAst::RightDelimiter(_) => (),1974
36 PreAst::Separator(_) => (),1975
37 }1976
38 };1977
39 Some(AstData::Prefix { opr, opd })1978
40 }1979
41 Opr::Binary(opr) => {1980
42 let Some((lopd, PreAst::Ast(_))) = nearest_left2.first() else {1981
43 return None;1982
44 };1983
45 let Some((ropd, PreAst::Ast(_))) = nearest_right2.first() else {1984
46 return None;1985
47 };1986
48 if let Some((_, ast)) = nearest_left2.second() {1987
49 match ast {1988
50 PreAst::Keyword(kw) => (),1989
51 PreAst::Opr(left_opr) => match left_opr {1990
52 Opr::Prefix(left_opr) => {1991
53 if left_opr.precedence() >= opr.precedence() {1992
54 return None;1993
55 }1994
56 }1995
57 Opr::Binary(left_opr) => {1996
58 /// every binary opr in our small language is left1997

associative, so ‘>=‘ instead of ‘>‘1998
59 if left_opr.precedence() >= opr.precedence() {1999
60 return None;2000
61 }2001
62 }2002
63 Opr::Suffix(_) => (), // actually this will be a syntax error2003
64 },2004
65 PreAst::Ast(_) => {2005
66 if opr != BinaryOpr::LightArrow {2006
67 return None;2007
68 }2008
69 }2009
70 PreAst::LeftDelimiter(_) => (),2010
71 PreAst::RightDelimiter(_) => return None,2011
72 PreAst::Separator(_) => (),2012
73 }2013
74 };2014
75 if let Some((_, ast)) = nearest_right2.second() {2015
76 match ast {2016
77 PreAst::Keyword(kw) => match kw {2017
78 Keyword::ELSE => return None,2018
79 _ => (),2019
80 },2020
81 PreAst::Opr(right_opr) => match right_opr {2021
82 Opr::Prefix(_) => (), // actually this will be a syntax error2022
83 Opr::Binary(right_opr) => {2023
84 /// every binary opr in our small language is left2024

associative, so ‘<‘ instead of ‘<=‘2025
85 if right_opr.precedence() > opr.precedence() {2026
86 return None;2027
87 }2028
88 }2029
89 Opr::Suffix(right_opr) => {2030
90 if right_opr.precedence() >= opr.precedence() {2031
91 return None;2032
92 }2033
93 }2034
94 },2035
95 // function call or index takes higher precedence2036
96 PreAst::LeftDelimiter(_) => return None,2037

43

97 PreAst::RightDelimiter(_) => (),2038
98 PreAst::Ast(_) => (),2039
99 PreAst::Separator(_) => (),2040

100 }2041
101 };2042
102 Some(AstData::Binary { lopd, opr, ropd })2043
103 }2044
104 Opr::Suffix(opr) => {2045
105 let Some((opd, PreAst::Ast(_))) = nearest_left2.first() else {2046
106 return None;2047
107 };2048
108 if let Some((_, ast)) = nearest_left2.second() {2049
109 match ast {2050
110 PreAst::Keyword(_) => (),2051
111 PreAst::Opr(right_opr) => match right_opr {2052
112 Opr::Prefix(right_opr) => {2053
113 if right_opr.precedence() > opr.precedence() {2054
114 return None;2055
115 }2056
116 }2057
117 Opr::Binary(right_opr) => {2058
118 /// every binary opr in our small language is left2059

associative, so ‘<‘ instead of ‘<=‘2060
119 if right_opr.precedence() > opr.precedence() {2061
120 return None;2062
121 }2063
122 }2064
123 Opr::Suffix(_) => (),2065
124 },2066
125 PreAst::LeftDelimiter(_) => (),2067
126 PreAst::RightDelimiter(_) => return None,2068
127 PreAst::Ast(_) => return None,2069
128 PreAst::Separator(_) => (),2070
129 }2071
130 };2072
131 Some(AstData::Suffix { opr, opd })2073
132 }2074
133 }2075
134 }2076

1 /// returns sequence of remaining PreAsts and new parent idxs2077
2 pub(crate) fn reduce_pre_asts_by_opr(2078
3 pre_asts: Seq<Option<PreAst>>,2079
4 new_asts: Seq<Option<AstData>>,2080
5) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {2081
6 let new_asts_nearest_left = new_asts.nearest_left();2082
7 let pre_asts = reduce_pre_ast_by_new_ast.apply(pre_asts, new_asts);2083
8 let (pre_asts, new_parents) = reduce_pre_ast_by_opr_left2084
9 .apply_enumerated(new_asts_nearest_left, pre_asts)2085

10 .decouple();2086
11 let new_asts_nearest_right = new_asts.nearest_right();2087
12 reduce_pre_ast_by_opr_right2088
13 .apply_enumerated(new_asts_nearest_right, pre_asts, new_parents)2089
14 .decouple()2090
15 }2091

1 fn reduce_pre_ast_by_new_ast(pre_ast: Option<PreAst>, new_ast: Option<AstData>) ->2092
Option<PreAst> {2093

2 if new_ast.is_some() {2094
3 None2095
4 } else {2096
5 pre_ast2097
6 }2098
7 }2099

1 fn reduce_pre_ast_by_opr_left(2100
2 idx: Idx,2101
3 new_ast_nearest_left: Option<(Idx, AstData)>,2102
4 pre_ast: Option<PreAst>,2103
5) -> (Option<PreAst>, Option<Idx>) {2104
6 let Some(pre_ast) = pre_ast else {2105
7 return (None, None);2106
8 };2107
9 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_left else {2108

10 return (Some(pre_ast), None);2109
11 };2110
12 match new_ast_data {2111
13 AstData::Binary { ropd: opd, .. } | AstData::Prefix { opd, .. } if opd == idx => {2112
14 (None, Some(new_ast_idx))2113
15 }2114

44

16 _ => (Some(pre_ast), None),2115
17 }2116
18 }2117

1 fn reduce_pre_ast_by_opr_right(2118
2 idx: Idx,2119
3 new_ast_nearest_right: Option<(Idx, AstData)>,2120
4 pre_ast: Option<PreAst>,2121
5 new_parent: Option<Idx>,2122
6) -> (Option<PreAst>, Option<Idx>) {2123
7 let Some(pre_ast) = pre_ast else {2124
8 return (None, new_parent);2125
9 };2126

10 if let Some(new_parent) = new_parent {2127
11 return (None, Some(new_parent));2128
12 }2129
13 let Some((new_ast_idx, new_ast_data)) = new_ast_nearest_right else {2130
14 return (Some(pre_ast), None);2131
15 };2132
16 match new_ast_data {2133
17 AstData::Binary { lopd: opd, .. } | AstData::Suffix { opd, .. } if opd == idx => {2134
18 (None, Some(new_ast_idx))2135
19 }2136
20 _ => (Some(pre_ast), None),2137
21 }2138
22 }2139

F.3 Statements2140

In this section, we lay down the definition of reduce_by_stmt .2141

1 pub(super) fn reduce_by_stmt(2142
2 pre_asts: Seq<Option<PreAst>>,2143
3 allocated_asts: Seq<Option<Ast>>,2144
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {2145
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();2146
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();2147
7 let new_stmt_asts =2148
8 new_stmt_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);2149
9 let (pre_asts, new_parents) = reduce_pre_asts_by_stmt(pre_asts, new_stmt_asts);2150

10 let allocated_asts =2151
11 allocate_asts_and_update_parents(allocated_asts, new_stmt_asts, new_parents);2152
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_stmt_asts);2153
13 (pre_asts, allocated_asts)2154
14 }2155

1 fn new_stmt_ast(2156
2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,2157
3 pre_ast: Option<PreAst>,2158
4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,2159
5) -> Option<AstData> {2160
6 let PreAst::Keyword(Keyword::Stmt(kw)) = pre_ast? else {2161
7 return None;2162
8 };2163
9 match kw {2164

10 StmtKeyword::Let => {2165
11 let Some((idx1, PreAst::Ast(ast))) = pre_ast_nearest_right2.first() else {2166
12 return None;2167
13 };2168
14 if let Some((_, pre_ast)) = pre_ast_nearest_right2.second() {2169
15 match pre_ast {2170
16 PreAst::Keyword(_) => (),2171
17 PreAst::Opr(_) | PreAst::LeftDelimiter(_) => return None,2172
18 PreAst::RightDelimiter(_) => (),2173
19 PreAst::Ast(_) => return None,2174
20 PreAst::Separator(separator) => match separator {2175
21 Separator::Comma => return None,2176
22 Separator::Semicolon => (),2177
23 },2178
24 }2179
25 }2180
26 let (pattern, initial_value) = match ast {2181
27 AstData::Binary {2182
28 lopd,2183
29 opr: BinaryOpr::Assign,2184
30 ropd,2185
31 } => (lopd, Some(ropd)),2186

45

32 AstData::Ident(_)2187
33 | AstData::Prefix { .. }2188
34 | AstData::Binary { .. }2189
35 | AstData::Delimited { .. }2190
36 | AstData::Call { .. } => (idx1, None),2191
37 _ => return None,2192
38 };2193
39 Some(AstData::LetInit {2194
40 expr: idx1,2195
41 pattern,2196
42 initial_value,2197
43 })2198
44 }2199
45 StmtKeyword::If => {2200
46 let Some((condition, PreAst::Ast(ast1))) = pre_ast_nearest_right2.first() else2201

{2202
47 return None;2203
48 };2204
49 let Some((2205
50 body,2206
51 PreAst::Ast(AstData::Delimited {2207
52 left_delimiter: LCURL,2208
53 right_delimiter: RCURL,2209
54 ..2210
55 }),2211
56)) = pre_ast_nearest_right2.second()2212
57 else {2213
58 return None;2214
59 };2215
60 Some(AstData::If { condition, body })2216
61 }2217
62 StmtKeyword::Else => {2218
63 let Some((if_stmt, PreAst::Ast(AstData::If { .. }))) =2219

pre_ast_nearest_left2.first()2220
64 else {2221
65 return None;2222
66 };2223
67 let Some((2224
68 body,2225
69 PreAst::Ast(2226
70 AstData::Delimited {2227
71 left_delimiter: LCURL,2228
72 right_delimiter: RCURL,2229
73 ..2230
74 }2231
75 | AstData::If { .. }2232
76 | AstData::Else { .. },2233
77),2234
78)) = pre_ast_nearest_right2.first()2235
79 else {2236
80 return None;2237
81 };2238
82 if let Some((_, PreAst::Keyword(Keyword::ELSE))) =2239

pre_ast_nearest_right2.second() {2240
83 return None;2241
84 }2242
85 Some(AstData::Else { if_stmt, body })2243
86 }2244
87 }2245
88 }2246

1 fn reduce_pre_asts_by_stmt(2247
2 pre_asts: Seq<Option<PreAst>>,2248
3 new_asts: Seq<Option<AstData>>,2249
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {2250
5 let new_asts_nearest_left = new_asts.nearest_left();2251
6 let new_asts_nearest_right = new_asts.nearest_right();2252
7 reduce_pre_ast_by_stmt2253
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)2254
9 .decouple()2255

10 }2256

1 fn reduce_pre_ast_by_stmt(2257
2 idx: Idx,2258
3 new_ast_nearest_left: Option<(Idx, AstData)>,2259
4 new_ast_nearest_right: Option<(Idx, AstData)>,2260
5 pre_ast: Option<PreAst>,2261
6) -> (Option<PreAst>, Option<Idx>) {2262
7 if let Some((idx1, ast)) = new_ast_nearest_left {2263
8 match ast {2264

46

9 AstData::LetInit { expr, .. } if expr == idx => (None, Some(idx1)),2265
10 AstData::If {2266
11 condition, body, ..2267
12 } if condition == idx || body == idx => (None, Some(idx1)),2268
13 AstData::Else { body, .. } if body == idx => (None, Some(idx1)),2269
14 _ => (pre_ast, None),2270
15 }2271
16 } else if let Some((idx1, AstData::Else { if_stmt, .. })) = new_ast_nearest_right2272
17 && if_stmt == idx2273
18 {2274
19 (None, Some(idx1))2275
20 } else {2276
21 (pre_ast, None)2277
22 }2278
23 }2279

F.4 Generalized Call Forms2280

In this section, we lay down the definition of reduce_by_call .2281

1 pub(super) fn reduce_by_call(2282
2 pre_asts: Seq<Option<PreAst>>,2283
3 allocated_asts: Seq<Option<Ast>>,2284
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {2285
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();2286
6 let pre_asts_nearest_right = pre_asts.nearest_right();2287
7 let new_call_asts =2288
8 new_call_ast.apply_enumerated(pre_asts_nearest_left2, pre_asts_nearest_right);2289
9 let (pre_asts, new_parents) = reduce_pre_asts_by_call(pre_asts, new_call_asts);2290

10 let allocated_asts =2291
11 allocate_asts_and_update_parents(allocated_asts, new_call_asts, new_parents);2292
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_call_asts);2293
13 (pre_asts, allocated_asts)2294
14 }2295

1 fn new_call_ast(2296
2 idx: Idx,2297
3 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,2298
4 pre_ast_nearest_right: Option<(Idx, PreAst)>,2299
5) -> Option<AstData> {2300
6 let (caller, PreAst::Ast(caller_ast)) = pre_ast_nearest_left2.first()? else {2301
7 return None;2302
8 };2303
9 let (2304

10 delimited_arguments,2305
11 PreAst::Ast(AstData::Delimited {2306
12 left_delimiter_idx,2307
13 left_delimiter,2308
14 right_delimiter,2309
15 }),2310
16) = pre_ast_nearest_right?2311
17 else {2312
18 return None;2313
19 };2314
20 if let Some((_, snd)) = pre_ast_nearest_left2.second() {2315
21 match snd {2316
22 PreAst::Keyword(kw) => match kw {2317
23 Keyword::Defn(kw) => match kw {2318
24 DefnKeyword::Struct | DefnKeyword::Enum => return None,2319
25 DefnKeyword::Fn => match left_delimiter.delimiter() {2320
26 Delimiter::Parenthesis | Delimiter::Box => return None,2321
27 Delimiter::Curly => (),2322
28 },2323
29 },2324
30 Keyword::Stmt(kw) => match kw {2325
31 StmtKeyword::Let => (),2326
32 StmtKeyword::If => match left_delimiter.delimiter() {2327
33 Delimiter::Parenthesis | Delimiter::Box => (),2328
34 Delimiter::Curly => return None,2329
35 },2330
36 StmtKeyword::Else => return None,2331
37 },2332
38 },2333
39 PreAst::Opr(opr) => match opr {2334
40 Opr::Prefix(_) | Opr::Binary(_) => match left_delimiter.delimiter() {2335
41 Delimiter::Parenthesis | Delimiter::Box => (),2336
42 Delimiter::Curly => return None,2337
43 },2338

47

44 Opr::Suffix(_) => return None,2339
45 },2340
46 PreAst::LeftDelimiter(_) => (),2341
47 PreAst::RightDelimiter(_) => return None,2342
48 PreAst::Ast(snd_ast) => {2343
49 if let AstData::Ident(_) = snd_ast2344
50 && left_delimiter == LCURL2345
51 {2346
52 match caller_ast {2347
53 AstData::Binary {2348
54 opr: BinaryOpr::LightArrow,2349
55 ..2350
56 }2351
57 | AstData::Delimited {2352
58 left_delimiter: LPAR,2353
59 right_delimiter: RPAR,2354
60 ..2355
61 } => (),2356
62 _ => return None,2357
63 }2358
64 } else {2359
65 return None;2360
66 }2361
67 }2362
68 PreAst::Separator(_) => (),2363
69 }2364
70 }2365
71 if left_delimiter_idx != idx {2366
72 return None;2367
73 }2368
74 Some(AstData::Call {2369
75 caller,2370
76 delimited_arguments,2371
77 left_delimiter,2372
78 right_delimiter,2373
79 })2374
80 }2375

1 fn reduce_pre_asts_by_call(2376
2 pre_asts: Seq<Option<PreAst>>,2377
3 new_asts: Seq<Option<AstData>>,2378
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {2379
5 let new_asts_nearest_left = new_asts.nearest_left();2380
6 let new_asts_nearest_right = new_asts.nearest_right();2381
7 reduce_pre_ast_by_call2382
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)2383
9 .decouple()2384

10 }2385

1 fn reduce_pre_ast_by_call(2386
2 idx: Idx,2387
3 new_ast_nearest_left: Option<(Idx, AstData)>,2388
4 new_ast_nearest_right: Option<(Idx, AstData)>,2389
5 pre_ast: Option<PreAst>,2390
6) -> (Option<PreAst>, Option<Idx>) {2391
7 if let Some((2392
8 idx1,2393
9 AstData::Call {2394

10 delimited_arguments,2395
11 ..2396
12 },2397
13)) = new_ast_nearest_left2398
14 && delimited_arguments == idx2399
15 {2400
16 (None, Some(idx1))2401
17 } else if let Some((idx1, AstData::Call { caller, .. })) = new_ast_nearest_right2402
18 && caller == idx2403
19 {2404
20 (None, Some(idx1))2405
21 } else {2406
22 (pre_ast, None)2407
23 }2408
24 }2409

F.5 Definitions2410

In this section, we lay down the definition of reduce_by_defn .2411

48

1 pub(super) fn reduce_by_defn(2412
2 pre_asts: Seq<Option<PreAst>>,2413
3 allocated_asts: Seq<Option<Ast>>,2414
4) -> (Seq<Option<PreAst>>, Seq<Option<Ast>>) {2415
5 let pre_asts_nearest_left2 = pre_asts.nearest_left2();2416
6 let pre_asts_nearest_right2 = pre_asts.nearest_right2();2417
7 let new_defn_asts =2418
8 new_defn_ast.apply(pre_asts_nearest_left2, pre_asts, pre_asts_nearest_right2);2419
9 let (pre_asts, new_parents) = reduce_pre_asts_by_defn(pre_asts, new_defn_asts);2420

10 let allocated_asts =2421
11 allocate_asts_and_update_parents(allocated_asts, new_defn_asts, new_parents);2422
12 let pre_asts = update_pre_asts_by_new_asts(pre_asts, new_defn_asts);2423
13 (pre_asts, allocated_asts)2424
14 }2425

1 fn new_defn_ast(2426
2 pre_ast_nearest_left2: Option2<(Idx, PreAst)>,2427
3 pre_ast: Option<PreAst>,2428
4 pre_ast_nearest_right2: Option2<(Idx, PreAst)>,2429
5) -> Option<AstData> {2430
6 let PreAst::Keyword(Keyword::Defn(keyword)) = pre_ast? else {2431
7 return None;2432
8 };2433
9 {2434

10 let Some((ident_idx, PreAst::Ast(AstData::Ident(ident)))) =2435
pre_ast_nearest_right2.first()2436

11 else {2437
12 return None;2438
13 };2439
14 let Some((content, PreAst::Ast(content_ast))) = pre_ast_nearest_right2.second()2440

else {2441
15 return None;2442
16 };2443
17 match keyword {2444
18 DefnKeyword::Struct => match content_ast {2445
19 AstData::Delimited { .. } => (),2446
20 _ => return None,2447
21 },2448
22 DefnKeyword::Enum => match content_ast {2449
23 AstData::Delimited { .. } => (),2450
24 _ => return None,2451
25 },2452
26 DefnKeyword::Fn => match content_ast {2453
27 AstData::Call { .. } => (),2454
28 _ => return None,2455
29 },2456
30 }2457
31 Some(AstData::Defn {2458
32 keyword,2459
33 ident,2460
34 ident_idx,2461
35 content,2462
36 })2463
37 }2464
38 }2465

1 fn reduce_pre_asts_by_defn(2466
2 pre_asts: Seq<Option<PreAst>>,2467
3 new_asts: Seq<Option<AstData>>,2468
4) -> (Seq<Option<PreAst>>, Seq<Option<Idx>>) {2469
5 let new_asts_nearest_left = new_asts.nearest_left();2470
6 let new_asts_nearest_right = new_asts.nearest_right();2471
7 reduce_pre_ast_by_defn2472
8 .apply_enumerated(new_asts_nearest_left, new_asts_nearest_right, pre_asts)2473
9 .decouple()2474

10 }2475

1 fn reduce_pre_ast_by_defn(2476
2 idx: Idx,2477
3 new_ast_nearest_left: Option<(Idx, AstData)>,2478
4 new_ast_nearest_right: Option<(Idx, AstData)>,2479
5 pre_ast: Option<PreAst>,2480
6) -> (Option<PreAst>, Option<Idx>) {2481
7 if let Some((idx1, ast)) = new_ast_nearest_left {2482
8 match ast {2483
9 AstData::Defn {2484

10 keyword,2485
11 ident_idx,2486
12 ident,2487
13 content,2488

49

14 ..2489
15 } if ident_idx == idx || content == idx => (None, Some(idx1)),2490
16 _ => (pre_ast, None),2491
17 }2492
18 } else if let Some((idx1, AstData::Defn { .. })) = new_ast_nearest_right2493
19 && false2494
20 {2495
21 (None, Some(idx1))2496
22 } else {2497
23 (pre_ast, None)2498
24 }2499
25 }2500

G Transformer Symbol Resolution Proof2501

Here we lay down the code for symbol resolution. The actual process involves many details such as2502

computing ranks (the exact position of an AST node among its siblings), scopes, and roles (a more2503

precise version of AST, computed from its parent recursively), definitions and resolutions.2504

G.1 Ranks2505

1 #[derive(Debug, Default, PartialEq, Eq, Clone, Copy)]2506
2 pub struct Rank(u8);2507
32508
4 impl Rank {2509
5 fn next(self) -> Self {2510
6 Self(self.0 + 1)2511
7 }2512
8 }2513
92514

10 pub fn calc_ranks(asts: Seq<Option<Ast>>) -> Seq<Option<Rank>> {2515
11 let counts = asts.count_past_by_attention(asts, |ast, ast1| {2516
12 let Some(ast) = ast else { return false };2517
13 let Some(ast1) = ast1 else { return false };2518
14 ast.parent == ast1.parent2519
15 });2520
16 (|c: usize, ast| {2521
17 ast?;2522
18 Some(Rank(c.try_into().unwrap()))2523
19 })2524
20 .apply(counts, asts)2525
21 }2526
222527
23 pub fn calc_ranks1(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Rank>> {2528
24 let mut ranks: Seq<Option<Rank>> = asts.map(|_| None);2529
25 for _ in 0..n {2530
26 ranks = calc_sibling_indicies_step(asts, ranks);2531
27 }2532
28 ranks2533
29 }2534
302535
31 fn calc_sibling_indicies_step(2536
32 asts: Seq<Option<Ast>>,2537
33 ranks: Seq<Option<Rank>>,2538
34) -> Seq<Option<Rank>> {2539
35 let previous_ranks = ranks.nearest_left_filtered_by_attention(asts, asts, |ast, ast1| {2540
36 let Some(ast) = ast else { return false };2541
37 let Some(ast1) = ast1 else { return false };2542
38 ast.parent == ast1.parent2543
39 });2544
40 let ranks = (|ast, rank, previous_rank: Option<Option<Rank>>| {2545
41 let _ = ast?;2546
42 if let Some(rank) = rank {2547
43 return Some(rank);2548
44 }2549
45 let Some(previous_rank) = previous_rank else {2550
46 return Some(Default::default());2551
47 };2552
48 Some(previous_rank?.next())2553
49 })2554
50 .apply(asts, ranks, previous_ranks);2555
51 ranks2556
52 }2557

50

In the above, count_past_by_attention that count is representable by transformers by utilizing directly2558

hard attention and the starter token. If the count is c, we shall get c/(c+1) from the attention directly.2559

G.2 Scopes2560

1 const D: usize = 8usize;2561
22562
3 pub struct Scope {2563
4 enclosing_blocks: BoundedVec<Idx, D>,2564
5 }2565
62566
7 impl Scope {2567
8 pub fn from_ast(idx: Idx, ast: AstData, parent_scope: Scope) -> Self {2568
9 match ast {2569

10 AstData::Delimited {2570
11 left_delimiter_idx,2571
12 left_delimiter: LCURL,2572
13 right_delimiter: RCURL,2573
14 } => Self {2574
15 enclosing_blocks: parent_scope.enclosing_blocks.append(idx),2575
16 },2576
17 _ => parent_scope,2577
18 }2578
19 }2579
202580
21 pub fn new(idx: Idx) -> Self {2581
22 Self {2582
23 enclosing_blocks: todo!(),2583
24 }2584
25 }2585
262586
27 pub fn append(self, idx: Idx) -> Self {2587
28 Self {2588
29 enclosing_blocks: self.enclosing_blocks.append(idx),2589
30 }2590
31 }2591
32 }2592
332593
34 impl Scope {2594
35 pub fn contains(self, other: Self) -> bool {2595
36 let len = self.enclosing_blocks.len();2596
37 if len > other.enclosing_blocks.len() {2597
38 return false;2598
39 }2599
40 for i in 0..len {2600
41 if self.enclosing_blocks[i] != other.enclosing_blocks[i] {2601
42 return false;2602
43 }2603
44 }2604
45 true2605
46 }2606
47 }2607
482608
49 pub fn infer_scopes(asts: Seq<Option<Ast>>, n: usize) -> Seq<Option<Scope>> {2609
50 let mut scopes = initial_scope.apply_enumerated(asts);2610
51 for _ in 0..n {2611
52 let parent_scopes = parent_queries(asts, scopes);2612
53 scopes = infer_scopes_step(asts, parent_scopes, scopes);2613
54 }2614
55 scopes2615
56 }2616
572617
58 fn initial_scope(idx: Idx, ast: Option<Ast>) -> Option<Scope> {2618
59 let ast = ast?;2619
60 if ast.parent.is_some() {2620
61 return None;2621
62 }2622
63 let scope = Scope::default();2623
64 Some(Scope::from_ast(idx, ast.data, scope))2624
65 }2625
662626
67 fn infer_scopes_step(2627
68 asts: Seq<Option<Ast>>,2628
69 parent_scopes: Seq<Option<Scope>>,2629
70 scopes: Seq<Option<Scope>>,2630
71) -> Seq<Option<Scope>> {2631
72 infer_scope_step.apply_enumerated(asts, parent_scopes, scopes)2632
73 }2633
742634

51

75 fn infer_scope_step(2635
76 idx: Idx,2636
77 ast: Option<Ast>,2637
78 parent_scope: Option<Scope>,2638
79 scope: Option<Scope>,2639
80) -> Option<Scope> {2640
81 if let Some(scope) = scope {2641
82 return Some(scope);2642
83 }2643
84 Some(Scope::from_ast(idx, ast?.data, parent_scope?))2644
85 }2645

G.3 Roles2646

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]2647
2 pub enum Role {2648
3 LetStmt {2649
4 pattern: Idx,2650
5 initial_value: Option<Idx>,2651
6 },2652
7 LetStmtInner {2653
8 pattern: Idx,2654
9 initial_value: Idx,2655

10 },2656
11 LetStmtIdent,2657
12 LetStmtTypedVariables {2658
13 variables: Idx,2659
14 ty: Idx,2660
15 },2661
16 StructDefn(Ident),2662
17 EnumDefn(Ident),2663
18 FnDefn(Ident),2664
19 FnDefnCallForm {2665
20 fn_ident: Ident,2666
21 scope: Scope,2667
22 },2668
23 FnParameters {2669
24 fn_ident: Ident,2670
25 has_return_ty: bool,2671
26 scope: Scope,2672
27 },2673
28 FnParametersAndReturnType {2674
29 fn_ident: Ident,2675
30 parameters: Idx,2676
31 scope: Scope,2677
32 return_ty: Idx,2678
33 },2679
34 FnBody(Ident),2680
35 StructFields(Ident),2681
36 FnParameter {2682
37 fn_ident: Ident,2683
38 rank: Rank,2684
39 ty: Idx,2685
40 fn_ident_idx: Idx,2686
41 scope: Scope,2687
42 },2688
43 FnParameterIdent {2689
44 scope: Scope,2690
45 },2691
46 FnParameterSeparated {2692
47 fn_ident: Ident,2693
48 rank: Rank,2694
49 scope: Scope,2695
50 },2696
51 FnParameterType {2697
52 fn_ident: Ident,2698
53 rank: Rank,2699
54 },2700
55 FnOutputType {2701
56 fn_ident: Ident,2702
57 },2703
58 StructField {2704
59 ty_ident: Ident,2705
60 field_ident: Ident,2706
61 ty_idx: Idx,2707
62 },2708
63 StructFieldType {2709
64 ty_ident: Ident,2710
65 field_ident: Ident,2711

52

66 },2712
67 TypeArgument,2713
68 TypeArguments,2714
69 StructFieldSeparated(Ident),2715
70 LetStmtVariablesType,2716
71 LetStmtVariables,2717
72 }2718

1 impl Ast {2719
2 fn role(self) -> Option<Role> {2720
3 match self.data {2721
4 AstData::LetInit {2722
5 expr,2723
6 pattern,2724
7 initial_value,2725
8 } => Some(Role::LetStmt {2726
9 pattern,2727

10 initial_value,2728
11 }),2729
12 AstData::Defn {2730
13 keyword,2731
14 ident_idx,2732
15 ident,2733
16 content,2734
17 } => Some(match keyword {2735
18 DefnKeyword::Struct => Role::StructDefn(ident),2736
19 DefnKeyword::Enum => Role::EnumDefn(ident),2737
20 DefnKeyword::Fn => Role::FnDefn(ident),2738
21 }),2739
22 _ => None,2740
23 }2741
24 }2742
25 }2743

1 pub fn calc_roles(2744
2 asts: Seq<Option<Ast>>,2745
3 scopes: Seq<Option<Scope>>,2746
4 n: usize,2747
5) -> Seq<Option<Role>> {2748
6 let mut roles: Seq<Option<Role>> = asts.map(|ast| ast?.role());2749
7 let ranks = calc_ranks(asts);2750
8 for _ in 0..n {2751
9 let parent_roles = parent_queries(asts, roles);2752

10 roles = calc_roles_step(asts, parent_roles, roles, ranks, scopes);2753
11 }2754
12 roles2755
13 }2756

1 fn calc_roles_step(2757
2 asts: Seq<Option<Ast>>,2758
3 parent_roles: Seq<Option<Role>>,2759
4 roles: Seq<Option<Role>>,2760
5 ranks: Seq<Option<Rank>>,2761
6 scopes: Seq<Option<Scope>>,2762
7) -> Seq<Option<Role>> {2763
8 calc_role_step.apply_enumerated(asts, parent_roles, roles, ranks, scopes)2764
9 }2765

1 fn calc_role_step(2766
2 idx: Idx,2767
3 ast: Option<Ast>,2768
4 parent_role: Option<Role>,2769
5 role: Option<Role>,2770
6 rank: Option<Rank>,2771
7 scope: Option<Scope>,2772
8) -> Option<Role> {2773
9 if let Some(role) = role {2774

10 return Some(role);2775
11 }2776
12 let ast = ast?;2777
13 if let Some(role) = ast.role() {2778
14 return Some(role);2779
15 }2780
16 match parent_role? {2781
17 Role::LetStmt {2782
18 pattern,2783
19 initial_value,2784
20 } => match ast.data {2785
21 AstData::Ident(ident) if idx == pattern => Some(Role::LetStmtIdent),2786

53

22 AstData::Binary {2787
23 lopd,2788
24 opr: BinaryOpr::Assign,2789
25 ropd,2790
26 lopd_ident,2791
27 } if lopd == pattern => Some(Role::LetStmtInner {2792
28 pattern,2793
29 initial_value: ropd,2794
30 }),2795
31 _ => None,2796
32 },2797
33 Role::LetStmtInner {2798
34 pattern,2799
35 initial_value,2800
36 } => {2801
37 if idx == pattern {2802
38 match ast.data {2803
39 AstData::Ident(ident) => Some(Role::LetStmtIdent),2804
40 AstData::Binary {2805
41 lopd,2806
42 lopd_ident,2807
43 opr,2808
44 ropd,2809
45 } => Some(Role::LetStmtTypedVariables {2810
46 variables: lopd,2811
47 ty: ropd,2812
48 }),2813
49 _ => todo!(),2814
50 }2815
51 } else {2816
52 None2817
53 }2818
54 }2819
55 Role::LetStmtIdent => todo!(),2820
56 Role::FnParameterIdent { scope } => todo!(),2821
57 Role::StructDefn(ident) => match ast.data {2822
58 AstData::Literal(_) => todo!(),2823
59 AstData::Ident(_) => None,2824
60 AstData::Prefix { opr, opd } => todo!(),2825
61 AstData::Binary {2826
62 lopd,2827
63 opr,2828
64 ropd,2829
65 lopd_ident,2830
66 } => todo!(),2831
67 AstData::Suffix { opd, opr } => todo!(),2832
68 AstData::Delimited {2833
69 left_delimiter_idx,2834
70 left_delimiter,2835
71 right_delimiter,2836
72 } => Some(Role::StructFields(ident)),2837
73 AstData::SeparatedItem { content, separator } => todo!(),2838
74 AstData::Call { .. } => todo!(),2839
75 AstData::LetInit {2840
76 expr,2841
77 pattern,2842
78 initial_value,2843
79 } => todo!(),2844
80 AstData::Return { result } => todo!(),2845
81 AstData::Assert { condition } => todo!(),2846
82 AstData::If { condition, body } => todo!(),2847
83 AstData::Else { if_stmt, body } => todo!(),2848
84 AstData::Defn {2849
85 keyword,2850
86 ident_idx,2851
87 ident,2852
88 content,2853
89 } => todo!(),2854
90 },2855
91 Role::EnumDefn(_) => None, // ad hoc2856
92 Role::FnDefn(fn_ident) => match ast.data {2857
93 AstData::Literal(_) => todo!(),2858
94 AstData::Ident(_) => None,2859
95 AstData::Prefix { opr, opd } => todo!(),2860
96 AstData::Binary {2861
97 lopd,2862
98 opr,2863
99 ropd,2864

100 lopd_ident,2865
101 } => todo!(),2866
102 AstData::Suffix { opd, opr } => todo!(),2867

54

103 AstData::Delimited {2868
104 left_delimiter_idx,2869
105 left_delimiter,2870
106 right_delimiter,2871
107 } => todo!(),2872
108 AstData::SeparatedItem { content, separator } => todo!(),2873
109 AstData::Call {2874
110 delimited_arguments,2875
111 ..2876
112 } => Some(Role::FnDefnCallForm {2877
113 fn_ident,2878
114 scope: match scope {2879
115 Some(scope) => scope.append(delimited_arguments),2880
116 None => Scope::new(delimited_arguments),2881
117 },2882
118 }),2883
119 AstData::LetInit {2884
120 expr,2885
121 pattern,2886
122 initial_value,2887
123 } => todo!(),2888
124 AstData::Return { result } => todo!(),2889
125 AstData::Assert { condition } => todo!(),2890
126 AstData::If { condition, body } => todo!(),2891
127 AstData::Else { if_stmt, body } => todo!(),2892
128 AstData::Defn {2893
129 keyword,2894
130 ident_idx,2895
131 ident,2896
132 content,2897
133 } => todo!(),2898
134 },2899
135 Role::FnDefnCallForm { fn_ident, scope } => match ast.data {2900
136 AstData::Literal(_) => todo!(),2901
137 AstData::Ident(_) => todo!(),2902
138 AstData::Prefix { opr, opd } => todo!(),2903
139 AstData::Binary {2904
140 lopd,2905
141 opr,2906
142 ropd,2907
143 lopd_ident,2908
144 } => {2909
145 if opr == BinaryOpr::LightArrow {2910
146 Some(Role::FnParametersAndReturnType {2911
147 fn_ident,2912
148 parameters: lopd,2913
149 return_ty: ropd,2914
150 scope,2915
151 })2916
152 } else {2917
153 unreachable!()2918
154 }2919
155 }2920
156 AstData::Suffix { opd, opr } => todo!(),2921
157 AstData::Delimited {2922
158 left_delimiter_idx,2923
159 left_delimiter,2924
160 right_delimiter,2925
161 } => match left_delimiter.delimiter() {2926
162 Delimiter::Parenthesis => Some(Role::FnParameters {2927
163 fn_ident,2928
164 has_return_ty: false,2929
165 scope,2930
166 }),2931
167 Delimiter::Box => todo!(),2932
168 Delimiter::Curly => Some(Role::FnBody(fn_ident)),2933
169 },2934
170 AstData::SeparatedItem { content, separator } => todo!(),2935
171 AstData::Call { .. } => todo!(),2936
172 AstData::LetInit {2937
173 expr,2938
174 pattern,2939
175 initial_value,2940
176 } => todo!(),2941
177 AstData::Return { result } => todo!(),2942
178 AstData::Assert { condition } => todo!(),2943
179 AstData::If { condition, body } => todo!(),2944
180 AstData::Else { if_stmt, body } => todo!(),2945
181 AstData::Defn {2946
182 keyword,2947
183 ident_idx,2948

55

184 ident,2949
185 content,2950
186 } => todo!(),2951
187 },2952
188 Role::FnParameters {2953
189 fn_ident, scope, ..2954
190 } => match ast.data {2955
191 AstData::Binary {2956
192 lopd,2957
193 opr,2958
194 ropd,2959
195 lopd_ident,2960
196 } => {2961
197 if opr == BinaryOpr::TypeIs {2962
198 Some(Role::FnParameter {2963
199 fn_ident,2964
200 fn_ident_idx: lopd,2965
201 rank: rank.unwrap(),2966
202 ty: ropd,2967
203 scope,2968
204 })2969
205 } else {2970
206 unreachable!()2971
207 }2972
208 }2973
209 AstData::SeparatedItem { .. } => Some(Role::FnParameterSeparated {2974
210 fn_ident,2975
211 rank: rank.unwrap(),2976
212 scope,2977
213 }),2978
214 _ => unreachable!(),2979
215 },2980
216 Role::FnBody(_) => None,2981
217 Role::StructFields(ty_ident) => match ast.data {2982
218 AstData::Binary {2983
219 lopd,2984
220 opr,2985
221 ropd,2986
222 lopd_ident,2987
223 } => {2988
224 assert_eq!(opr, BinaryOpr::TypeIs);2989
225 Some(Role::StructField {2990
226 ty_ident,2991
227 field_ident: lopd_ident.unwrap(),2992
228 ty_idx: ropd,2993
229 })2994
230 }2995
231 AstData::SeparatedItem { content, separator } => {2996
232 Some(Role::StructFieldSeparated(ty_ident))2997
233 }2998
234 _ => None,2999
235 },3000
236 Role::FnParameter {3001
237 fn_ident,3002
238 fn_ident_idx,3003
239 rank,3004
240 ty,3005
241 scope,3006
242 ..3007
243 } => {3008
244 if idx == ty {3009
245 Some(Role::FnParameterType { fn_ident, rank })3010
246 } else if idx == fn_ident_idx {3011
247 Some(Role::FnParameterIdent { scope })3012
248 } else {3013
249 None3014
250 }3015
251 }3016
252 Role::FnParameterSeparated {3017
253 fn_ident,3018
254 rank,3019
255 scope,3020
256 } => match ast.data {3021
257 AstData::Binary {3022
258 lopd,3023
259 opr,3024
260 ropd,3025
261 lopd_ident,3026
262 } => {3027
263 if opr == BinaryOpr::TypeIs {3028
264 Some(Role::FnParameter {3029

56

265 fn_ident,3030
266 fn_ident_idx: lopd,3031
267 rank,3032
268 ty: ropd,3033
269 scope,3034
270 })3035
271 } else {3036
272 unreachable!()3037
273 }3038
274 }3039
275 _ => unreachable!(),3040
276 },3041
277 Role::StructField {3042
278 ty_ident,3043
279 field_ident,3044
280 ty_idx,3045
281 } => {3046
282 if idx == ty_idx {3047
283 Some(Role::StructFieldType {3048
284 ty_ident,3049
285 field_ident,3050
286 })3051
287 } else {3052
288 None3053
289 }3054
290 }3055
291 Role::StructFieldSeparated(ty_ident) => match ast.data {3056
292 AstData::Binary {3057
293 lopd,3058
294 opr,3059
295 ropd,3060
296 lopd_ident,3061
297 } => {3062
298 assert_eq!(opr, BinaryOpr::TypeIs);3063
299 Some(Role::StructField {3064
300 ty_ident,3065
301 field_ident: lopd_ident.unwrap(),3066
302 ty_idx: ropd,3067
303 })3068
304 }3069
305 _ => unreachable!(),3070
306 },3071
307 Role::FnParameterType { .. } | Role::StructFieldType { .. } | Role::TypeArgument3072

=> {3073
308 match ast.data {3074
309 AstData::Delimited {3075
310 left_delimiter_idx,3076
311 left_delimiter,3077
312 right_delimiter,3078
313 } => Some(Role::TypeArguments),3079
314 _ => None,3080
315 }3081
316 }3082
317 Role::TypeArguments => match ast.data {3083
318 AstData::Ident(_) => Some(Role::TypeArgument),3084
319 AstData::Delimited {3085
320 left_delimiter_idx,3086
321 left_delimiter,3087
322 right_delimiter,3088
323 } => todo!(),3089
324 AstData::SeparatedItem { content, separator } => todo!(),3090
325 AstData::Call {3091
326 caller,3092
327 caller_ident,3093
328 left_delimiter,3094
329 right_delimiter,3095
330 delimited_arguments,3096
331 } => todo!(),3097
332 _ => None,3098
333 },3099
334 Role::FnParametersAndReturnType {3100
335 fn_ident,3101
336 parameters,3102
337 return_ty,3103
338 scope,3104
339 } => {3105
340 if idx == parameters {3106
341 Some(Role::FnParameters {3107
342 fn_ident,3108
343 has_return_ty: true,3109
344 scope,3110

57

345 })3111
346 } else if idx == return_ty {3112
347 Some(Role::FnOutputType { fn_ident })3113
348 } else {3114
349 unreachable!()3115
350 }3116
351 }3117
352 Role::FnOutputType { fn_ident } => todo!(),3118
353 Role::LetStmtTypedVariables { variables, ty } => {3119
354 if idx == variables {3120
355 Some(Role::LetStmtVariables)3121
356 } else if idx == ty {3122
357 Some(Role::LetStmtVariablesType)3123
358 } else {3124
359 unreachable!()3125
360 }3126
361 }3127
362 Role::LetStmtVariablesType => todo!(),3128
363 Role::LetStmtVariables => todo!(),3129
364 }3130
365 }3131

G.4 Defns3132

1 #[derive(Debug, Clone, Copy, PartialEq, Eq)]3133
2 pub struct SymbolDefn {3134
3 pub symbol: Symbol,3135
4 pub scope: Option<Scope>,3136
5 }3137

1 pub fn calc_symbol_defns(3138
2 asts: Seq<Option<Ast>>,3139
3 scopes: Seq<Option<Scope>>,3140
4 n: usize,3141
5) -> Seq<Option<SymbolDefn>> {3142
6 let roles = calc_roles(asts, scopes, n);3143
7 calc_symbol_defn.apply_enumerated(asts, roles, scopes)3144
8 }3145

1 fn calc_symbol_defn(3146
2 idx: Idx,3147
3 ast: Option<Ast>,3148
4 role: Option<Role>,3149
5 scope: Option<Scope>,3150
6) -> Option<SymbolDefn> {3151
7 match ast?.data {3152
8 AstData::Ident(ident) => match role? {3153
9 Role::LetStmt { .. } => unreachable!(),3154

10 Role::LetStmtVariables | Role::LetStmtIdent => Some(SymbolDefn {3155
11 symbol: Symbol {3156
12 ident,3157
13 source: idx,3158
14 data: SymbolData::Variable,3159
15 },3160
16 scope,3161
17 }),3162
18 Role::FnParameterIdent { scope } => Some(SymbolDefn {3163
19 symbol: Symbol {3164
20 ident,3165
21 source: idx,3166
22 data: SymbolData::Variable,3167
23 },3168
24 scope: Some(scope),3169
25 }),3170
26 _ => None,3171
27 },3172
28 AstData::Defn {3173
29 keyword,3174
30 ident_idx,3175
31 ident,3176
32 content,3177
33 } => Some(SymbolDefn {3178
34 symbol: Symbol {3179
35 ident,3180
36 source: idx,3181
37 data: SymbolData::Item {3182
38 kind: keyword.into(),3183
39 },3184

58

40 },3185
41 scope,3186
42 }),3187
43 _ => None,3188
44 }3189
45 }3190

G.5 Resolutions3191

1 pub enum SymbolResolution {3192
2 Ok(Symbol),3193
3 Err(SymbolResolutionError),3194
4 }3195

1 pub enum SymbolResolutionError {3196
2 NotResolved,3197
3 NotYetDeclared(Symbol),3198
4 }3199

1 pub fn calc_symbol_resolutions(asts: Seq<Option<Ast>>, n: usize) ->3200
Seq<Option<SymbolResolution>> {3201

2 let scopes = infer_scopes(asts, n);3202
3 let symbol_defns = calc_symbol_defns(asts, scopes, n);3203
4 let idents = asts.map(|ast| match ast?.data {3204
5 AstData::Ident(ident) => Some(ident),3205
6 _ => None,3206
7 });3207
8 let symbols = symbol_defns3208
9 .map(|symbol_defn| Some(symbol_defn?.symbol))3209

10 .first_filtered_by_attention(3210
11 (|ident, scope| (ident, scope)).apply(idents, scopes),3211
12 symbol_defns,3212
13 |(ident, scope), symbol_defn| {3213
14 let Some(ident) = ident else { return false };3214
15 let Some(symbol_defn) = symbol_defn else {3215
16 return false;3216
17 };3217
18 if let Some(symbol_defn_scope) = symbol_defn.scope {3218
19 if !symbol_defn_scope.contains(scope.unwrap()) {3219
20 return false;3220
21 }3221
22 }3222
23 symbol_defn.symbol.ident == ident3223
24 },3224
25)3225
26 .map(|s| s.flatten());3226
27 finalize.apply_enumerated(idents, symbols)3227
28 }3228

In the above code, we use a somehow complicated attention which we should illustrate why it’s3229

representable by transformers. The essence is to prove symbol_defn_scope.contains(scope.unwrap())3230

can be represented as part of the inner product in Q⊤K. This can be done by looking closer to3231

what contains does. Consider two scopes, scope1 and scope2 , which are sequences of bracket ast3232

indices (can be null). The function returns true if the sequence of scope1 contains the sequence of3233

scope2 as prefix, which can be achieved by
∑

i x
⊤
i yi where xi, yi are the encoding of ith ast indices3234

of scope1 and scope2 after some transformations (different transformations because the function3235

is asymmetric) so that x⊤i yi = 0 if and only if either xi is a None or xi represents the same thing3236

as yi, and x⊤i yi < 0 otherwise. More concretely, if xi is a None, xi = 0 by choice, and equal to3237

(1, ui) otherwise where ui corresponds to the encoding of the ith ast index of scope1 ; if yi is a3238

None, yi = 0 by choice, and equal to (−1, vi) otherwise where A > 0 and vi corresponds to the3239

encoding of the ith ast index of scope2 . We should choose the encoding ui, vi such that u⊤i vi = 13240

if and only if they encode the same index, which is obviously easy enough.3241

1 fn finalize(idx: Idx, ident: Option<Ident>, symbol: Option<Symbol>) ->3242
Option<SymbolResolution> {3243

2 let _ = ident?;3244
3 let Some(symbol) = symbol else {3245
4 return Some(SymbolResolution::Err(SymbolResolutionError::NotResolved));3246
5 };3247

59

6 match symbol.data {3248
7 SymbolData::Item { .. } => (),3249
8 SymbolData::Variable => {3250
9 if idx < symbol.source {3251

10 return Some(SymbolResolution::Err(3252
11 SymbolResolutionError::NotYetDeclared(symbol),3253
12));3254
13 }3255
14 }3256
15 }3257
16 Some(SymbolResolution::Ok(symbol))3258
17 }3259

H Transformer Type Checking Proof3260

Here we lay down the code for type analysis. It should be noted that we didn’t completely implement3261

all the details. Things like struct fields, enum variant fields are left out. However, we already cover3262

the essential mechanism of type analysis, making it sufficient for proof purposes.3263

H.1 Type Signatures3264

1 #[derive(Debug, PartialEq, Eq, Clone, Copy)]3265
2 pub struct TypeSignature {3266
3 pub key: TypeSignatureKey,3267
4 pub ty: Type,3268
5 }3269

1 #[derive(Debug, PartialEq, Eq, Clone, Copy)]3270
2 pub enum TypeSignatureKey {3271
3 FnParameter { fn_ident: Ident, rank: Rank },3272
4 FnOutput { fn_ident: Ident },3273
5 StructField { ty_ident: Ident, field_ident: Ident },3274
6 }3275

1 pub(super) fn calc_ty_signatures(3276
2 asts: Seq<Option<Ast>>,3277
3 roles: Seq<Option<Role>>,3278
4 ty_terms: Seq<Option<Type>>,3279
5) -> Seq<Option<TypeSignature>> {3280
6 calc_ty_signature.apply(roles, ty_terms)3281
7 }3282

1 fn calc_ty_signature(role: Option<Role>, ty_term: Option<Type>) -> Option<TypeSignature> {3283
2 let key = match role? {3284
3 Role::FnParameterType { fn_ident, rank } => {3285
4 TypeSignatureKey::FnParameter { fn_ident, rank }3286
5 }3287
6 Role::StructFieldType {3288
7 ty_ident,3289
8 field_ident,3290
9 } => TypeSignatureKey::StructField {3291

10 ty_ident,3292
11 field_ident,3293
12 },3294
13 Role::FnOutputType { fn_ident } => TypeSignatureKey::FnOutput { fn_ident },3295
14 Role::FnParameters {3296
15 fn_ident,3297
16 has_return_ty: false,3298
17 scope,3299
18 } => {3300
19 let key = TypeSignatureKey::FnOutput { fn_ident };3301
20 let ty = Type::new_ident(Ident::new("unit"));3302
21 return Some(TypeSignature { key, ty });3303
22 }3304
23 _ => return None,3305
24 };3306
25 // put it here!3307
26 let ty = ty_term?;3308
27 Some(TypeSignature { key, ty })3309
28 }3310

60

H.2 Type Inference3311

1 pub struct TypeInference {3312
2 pub ty: Type,3313
3 }3314

1 pub fn calc_ty_inferences(3315
2 asts: Seq<Option<Ast>>,3316
3 symbol_resolutions: Seq<Option<SymbolResolution>>,3317
4 roles: Seq<Option<Role>>,3318
5 ty_terms: Seq<Option<Type>>,3319
6 ty_signatures: Seq<Option<TypeSignature>>,3320
7 n: usize,3321
8) -> Seq<Option<TypeInference>> {3322
9 let mut ty_inferences = infer_tys_initial(asts, ty_signatures);3323

10 let mut ty_designations =3324
11 calc_initial_ty_designations(asts, roles, symbol_resolutions, ty_inferences,3325

ty_terms);3326
12 for _ in 0..n {3327
13 ty_inferences |= infer_tys_step(asts, symbol_resolutions, ty_inferences,3328

ty_designations);3329
14 ty_designations |= calc_ty_designations_step(roles, symbol_resolutions,3330

ty_inferences);3331
15 }3332
16 ty_inferences3333
17 }3334

1 fn infer_tys_initial(3335
2 asts: Seq<Option<Ast>>,3336
3 ty_signatures: Seq<Option<TypeSignature>>,3337
4) -> Seq<Option<TypeInference>> {3338
5 inference_literal_tys(asts).or(infer_fn_call_tys(asts, ty_signatures))3339
6 }3340

1 fn inference_literal_tys(asts: Seq<Option<Ast>>) -> Seq<Option<TypeInference>> {3341
2 asts.map(|ast| match ast?.data {3342
3 AstData::Literal(lit) => match lit {3343
4 Literal::Int(_) => Some(TypeInference {3344
5 ty: Type::new_ident(Ident::new("Int")),3345
6 }),3346
7 Literal::Float(_) => Some(TypeInference {3347
8 ty: Type::new_ident(Ident::new("Float")),3348
9 }),3349

10 },3350
11 _ => None,3351
12 })3352
13 }3353

1 fn infer_fn_call_tys(3354
2 asts: Seq<Option<Ast>>,3355
3 ty_signatures: Seq<Option<TypeSignature>>,3356
4) -> Seq<Option<TypeInference>> {3357
5 ty_signatures3358
6 .first_filtered_by_attention(asts, ty_signatures, |ast, ty_signature| {3359
7 let Some(ast) = ast else { return false };3360
8 let Some(TypeSignature {3361
9 key: TypeSignatureKey::FnOutput { fn_ident },3362

10 ..3363
11 }) = ty_signature3364
12 else {3365
13 return false;3366
14 };3367
15 match ast.data {3368
16 AstData::Call {3369
17 caller,3370
18 caller_ident,3371
19 left_delimiter,3372
20 right_delimiter,3373
21 delimited_arguments,3374
22 } if caller_ident == Some(fn_ident) => true,3375
23 _ => false,3376
24 }3377
25 })3378
26 .map(|ty_inference| {3379
27 Some(TypeInference {3380
28 ty: ty_inference??.ty,3381
29 })3382
30 })3383
31 }3384

61

H.3 Type Expectations3385

1 pub struct TypeExpectation {3386
2 pub ty: Type,3387
3 pub source: TypeExpectationSource,3388
4 }3389

1 pub enum TypeExpectationSource {3390
2 CallArgument { caller_ident: Ident, rank: Rank },3391
3 }3392

1 pub fn calc_ty_expectations(3393
2 asts: Seq<Option<Ast>>,3394
3 ranks: Seq<Option<Rank>>,3395
4 ty_signatures: Seq<Option<TypeSignature>>,3396
5) -> Seq<Option<TypeExpectation>> {3397
6 let parent_asts = asts.index(asts.map(|ast| ast?.parent)).map(Option::flatten);3398
7 let grandparent_asts = asts3399
8 .index(parent_asts.map(|parent_ast| parent_ast?.parent))3400
9 .map(Option::flatten);3401

10 let ty_expectation_sources = calc_ty_expectation_source.apply(grandparent_asts, ranks);3402
11 let retrieved_ty_signatures = ty_signatures3403
12 .first_filtered_by_attention(3404
13 ty_expectation_sources,3405
14 ty_signatures,3406
15 |ty_expection_source, ty_signature| {3407
16 let Some(type_expectation_source) = ty_expection_source else {3408
17 return false;3409
18 };3410
19 let Some(type_signature) = ty_signature else {3411
20 return false;3412
21 };3413
22 match (type_expectation_source, type_signature.key()) {3414
23 (3415
24 TypeExpectationSource::CallArgument {3416
25 caller_ident,3417
26 rank: rank0,3418
27 },3419
28 TypeSignatureKey::FnParameter {3420
29 fn_ident,3421
30 rank: rank1,3422
31 },3423
32) if caller_ident == fn_ident && rank0 == rank1 => true,3424
33 _ => false,3425
34 }3426
35 },3427
36)3428
37 .map(Option::flatten);3429
38 (|ty_expectation_source: Option<TypeExpectationSource>,3430
39 retrieved_ty_signature: Option<TypeSignature>| {3431
40 Some(TypeExpectation {3432
41 ty: retrieved_ty_signature?.ty(),3433
42 source: ty_expectation_source?,3434
43 })3435
44 })3436
45 .apply(ty_expectation_sources, retrieved_ty_signatures)3437
46 }3438

1 fn calc_ty_expectation_source(3439
2 grandparent_ast: Option<Ast>,3440
3 rank: Option<Rank>,3441
4) -> Option<TypeExpectationSource> {3442
5 let grandparent_ast = grandparent_ast?;3443
6 let rank = rank?;3444
7 match grandparent_ast.data {3445
8 AstData::Call {3446
9 caller,3447

10 caller_ident: Some(caller_ident),3448
11 left_delimiter,3449
12 right_delimiter,3450
13 delimited_arguments,3451
14 } => Some(TypeExpectationSource::CallArgument { caller_ident, rank }),3452
15 _ => None,3453
16 }3454
17 }3455

H.4 Type Errors3456

62

1 pub enum TypeError {3457
2 TypeMismatch { expected: Type, actual: Type },3458
3 }3459

1 pub fn calc_ty_errors(3460
2 ty_inferences: Seq<Option<TypeInference>>,3461
3 ty_expectations: Seq<Option<TypeExpectation>>,3462
4) -> Seq<Option<TypeError>> {3463
5 calc_ty_error.apply(ty_inferences, ty_expectations)3464
6 }3465

1 fn calc_ty_error(3466
2 ty_inference: Option<TypeInference>,3467
3 ty_expectation: Option<TypeExpectation>,3468
4) -> Option<TypeError> {3469
5 let ty_inference = ty_inference?;3470
6 let ty_expectation = ty_expectation?;3471
7 if ty_inference.ty == ty_expectation.ty {3472
8 None3473
9 } else {3474

10 Some(TypeError::TypeMismatch {3475
11 expected: ty_expectation.ty,3476
12 actual: ty_inference.ty,3477
13 })3478
14 }3479
15 }3480

I Lower Bounds3481

1 struct <ty-ident-1> {}3482
2 struct <ty-ident-2> {}3483
3 struct <ty-ident-3> {}3484
4 struct <ty-ident-4> {}3485
53486
6 fn <f-ident-1>(a: <arg-ty-ident-1>) {}3487
7 fn <f-ident-2>(a: <arg-ty-ident-2>) {}3488
8 fn <f-ident-3>(a: <arg-ty-ident-3>) {}3489
9 fn <f-ident-4>(a: <arg-ty-ident-4>) {}3490

103491
11 fn g() {3492
12 let x: <ty-ident> = ...;3493
13 <f-ident>(x);3494
14 }3495

I.1 Lower bounds for RNN: Easy Bounds due to Memory3496

Proof of Theorem 4. Our proof resonates with the proof of Theorem 4.6 in Wen et al. (2024)3497

and Theorem 8 in Bhattamishra et al. (2024). For L,D,H ∈ N, suppose that D makes3498

MiniHuskyAnnotatedD,H to be nontrivial, i.e., one can define functions with one parameter and3499

use function calls. Simple calculations shows we can choose D = 7 and H = 1. If a RNN rep-3500

resents a function maps any token sequence of length L in MiniHuskyAnnotatedD,H to its type3501

errors represented as a sequence of values of type Option<TypeError> , then the memory right be-3502

fore type checking must store all previous type signatures, the number of which can be as many as3503

Ω(L) in the worst case. Assuming proper numerical discretization, the memorization of these type3504

signatures would require the memory size to be Ω(L) in the worst case.3505

J Additional Experiment Details3506

J.1 Setups3507

Model details are shown in Table 1, and other hyperparameters are shown in Table 2.3508

J.2 Additional Results3509

Figures 4,5,6,7 are other metrics in the experiments. Here the loss function is the summation of cross3510

entropies for each sub task.3511

63

0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ac
tu

al
_t

yp
e_

ac
c

n100000-f10-d3-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

as
t_

ki
nd

_a
cc

n100000-f10-d3-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

sy
m

bo
l_r

es
ol

ut
io

n_
ac

c

n100000-f10-d3-v0.20-e0.50

rnn
transformer

0 250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

300325
1e4#Params

lo
ss

n100000-f10-d3-v0.20-e0.50
rnn
transformer

Figure 4: Figures for the dataset with (f, d, v, e) = (10, 3, 0.2, 0.5).

0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ac
tu

al
_t

yp
e_

ac
c

n100000-f20-d5-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

as
t_

ki
nd

_a
cc

n100000-f20-d5-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

sy
m

bo
l_r

es
ol

ut
io

n_
ac

c

n100000-f20-d5-v0.20-e0.50

rnn
transformer

0 250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

300325
1e4#Params

lo
ss

n100000-f20-d5-v0.20-e0.50
rnn
transformer

Figure 5: Figures for the dataset with (f, d, v, e) = (20, 5, 0.2, 0.5).

0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ac
tu

al
_t

yp
e_

ac
c

n100000-f40-d10-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

as
t_

ki
nd

_a
cc

n100000-f40-d10-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

sy
m

bo
l_r

es
ol

ut
io

n_
ac

c

n100000-f40-d10-v0.20-e0.50

rnn
transformer

0 250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

300325
1e4#Params

lo
ss

n100000-f40-d10-v0.20-e0.50
rnn
transformer

Figure 6: Figures for the dataset with (f, d, v, e) = (40, 10, 0.2, 0.5).

0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

ac
tu

al
_t

yp
e_

ac
c

n100000-f80-d20-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

as
t_

ki
nd

_a
cc

n100000-f80-d20-v0.20-e0.50

rnn
transformer 0.6

0.7

0.8

0.9

1.0

0 250.0 300325
1e4#Params

sy
m

bo
l_r

es
ol

ut
io

n_
ac

c

n100000-f80-d20-v0.20-e0.50

rnn
transformer

0 250.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

300325
1e4#Params

lo
ss

n100000-f80-d20-v0.20-e0.50
rnn
transformer

Figure 7: Figures for the dataset with (f, d, v, e) = (80, 20, 0.2, 0.5).

64

Table 1: Model specification

Specification Value
Transformer

- Hidden size (dh) {8k|1 ≤ k ≤ 8}
∪{208}

- Num attention heads min{4, dh}
- Num hidden layers 8
- Intermediate size 2dh
- Max position embeddings ≤ 2048
RNN

- Hidden size {8k|1 ≤ k ≤ 8}
∪{256}

- Num layers 8

Table 2: Hyperparameters of experiments

Hyperparameter Value
Dataset

- (f, d) {(10, 3), (20, 5)
(40, 10), (80, 20)}

- (n, v, e) (105, 0.2, 0.5)
Number of epochs 20
Train batch size 512
Optimizer Adam
LR scheduler Linear warmup-decay
- Warmup min lr 1× 10−5

- Warmup max lr 1× 10−3

- Warmup steps 990

65

	Introduction
	Related Work
	Preliminaries
	Programming Language Processing and The Target C-Like Language: Mini-Husky
	Expressive Power of Transformers as Efficient Compilers
	Abstract Syntax Tree Construction
	Symbol Resolution
	Type Analysis
	Proof Vehicle: Cybertron, a Domain-Specific Language

	Comparisons between Transformers and RNN
	A Lower Bound for RNNs for Type Checking
	Empirical Comparison between Transformers and RNNs

	Conclusion
	Tree
	What are Trees
	Representations of Trees

	Context Free Grammar
	Neural Architectures
	Mini-Husky Details
	Additional Details about Compiler Tasks.

	Cybertron
	Introduction
	Philosophy: Sequential Representation of Everything
	Local and Global Types
	Computation Graph
	Functions over Local Types
	Functions over Global Types
	Syntax and Semantics of Cybertron
	Local World
	Global World

	Dyck Language

	Transformer AST Proof
	High Level Overview
	Operators
	Statements
	Generalized Call Forms
	Definitions

	Transformer Symbol Resolution Proof
	Ranks
	Scopes
	Roles
	Defns
	Resolutions

	Transformer Type Checking Proof
	Type Signatures
	Type Inference
	Type Expectations
	Type Errors

	Lower Bounds
	Lower bounds for RNN: Easy Bounds due to Memory

	Additional Experiment Details
	Setups
	Additional Results

