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ABSTRACT

Text-to-image (T2I) models have achieved remarkable success in generating high-
fidelity images, but they often fail in handling complex spatial relationships, e.g.,
spatial perception, reasoning, or interaction. These critical aspects are largely
overlooked by current benchmarks due to their short or information-sparse prompt
design. In this paper, we introduce SpatialGenEval, a new benchmark designed
to systematically evaluate the spatial intelligence of T2I models, covering two
key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts
across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and
corresponding 10 multi-choice question-answer pairs, ranging from object posi-
tion and layout to occlusion and causality. Our extensive evaluation of 23 state-
of-the-art models reveals that higher-order spatial reasoning remains a primary
bottleneck. (2) To demonstrate that the utility of our information-dense design
goes beyond evaluation, we also construct another SpatialT2I dataset. It contains
15,400 text-image pairs with rewritten prompts to ensure image consistency while
preserving information density. Fine-tuned results on current foundation mod-
els (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent perfor-
mance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations,
highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.

1 INTRODUCTION

Recent developments in text-to-image (T2I) generation have demonstrated remarkable progress to-
wards photorealistic and high-fidelity image generation (Zhang et al., 2023; Bie et al., 2024). This
advancement has been largely driven by architectural innovations, evolving from early generative
adversarial networks (GAN) (Goodfellow et al., 2020) to the dominant diffusion paradigms (Rom-
bach et al., 2022). These paradigms are often augmented by powerful LLM text encoders (Black
Forest Labs, 2024; Wu et al., 2025a) or integrated into unified multimodal architectures that merge
generation and understanding capabilities (Deng et al., 2025; Chen et al., 2025b; OpenAI, 2024b;
Lin et al., 2025; Xie et al., 2024). Among these SOTA T2I models, a core success lies in their abil-
ity to render the fundamental ‘what’ of a scene. They exhibit strong compositional capabilities in
generating specified objects and binding them to their corresponding attributes (e.g., color, material,
shape), thus achieving high fidelity for basic semantic prompt following.

However, the limitations of these models become apparent when the task shifts from merely gener-
ating ‘what’ is in a scene to precisely depicting ‘where’ objects are located, ‘how’ they are arranged,
and ‘why’ they interact within complex real-world scenes. As illustrated by the error cases in Fig-
ure 1, even SOTA T2I models (Wu et al., 2025a; Deng et al., 2025; OpenAI, 2024b) often fail on
such fine-grained prompts. They may misplace objects, incorrectly orient them, disregard relative
numerical comparisons, or fail to render causal interactions. These are not minor aesthetic flaws,
but signal a fundamental shortcoming: a lack of spatial intelligence (Yang et al., 2025a), the core
abilities of spatial perception, reasoning, and interaction with real-world scenes.

Notably, these complex spatial failures are largely overlooked by current benchmarks. As in Figure 1
and Table 1, a significant number of current benchmarks (Wei et al., 2025; Ghosh et al., 2023; Huang
et al., 2023) are structured around short or information-sparse prompts. This design inherently
confines their scope to verifying the presence of objects, their attributes, or simple binary relations.
Additionally, these are typically assessed using coarse-grained metrics, such as classification (Ghosh

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Spatial Perception & Layout: … Two small black 
dogs and a large yellow dog leap across the bridge to 
the right, one after another. …

Spatial Reasoning: … The bride's bouquet has ten 
white roses, five times than the red roses in groom's 
lapel. …

Spatial Interaction··· The wind is blowing, causing 
the traveler’s cloak to billow behind them. ···

Prompt Type: Long & Sparse Info.
In the scene before us, where simplicity meets subtle 
charm, the cubic dice, with their sharp edges and 
intriguing numerical faces, are strategically positioned 
in front of the elegant oval rug, whose soft contours 
and inviting textures contrast beautifully with the 
stark geometry of the dice, creating a harmonious 
balance that captivates the observer's gaze.
Question Type: 
Yes-or-No selections (numbers: five or less)

Prompt Type: Long & Dense Info.
A double exposure portrait features a woman with dark 
hair in profile, facing left. Her silhouette is filled with 
a landscape: on the right, the sun half behind of a 
mountain. On the left, two bare trees stand in the 
center of a river, the right one taller. Five birds fly 
toward the mountain in a “V” shape, and bright 
sunlight casts sharp shadows of the trees.
Question Type: 
Omni-dims multi-choice questions (numbers: all of 10)

Figure 1: (Top): Error cases around spatial perception, reasoning, and interaction from GPT-Image-
1 (OpenAI, 2024b), Qwen-Image (Wu et al., 2025a), and Bagel (Deng et al., 2025). (Bottom): A
comparison of prompt and evaluation formats across current benchmarks (Wei et al., 2025).

et al., 2023) or limited yes-or-no questions (Wei et al., 2025). Although valuable for assessing
basic composition, these evaluations fall far short of probing a model’s spatial capabilities, thus
failing to capture critical deficiencies in higher-order reasoning or interaction. This highlights the
need to explore long, information-dense, spatial-aware prompts and fine-grained evaluations for a
comprehensive assessment of spatial intelligence.

To address this gap, we introduce SpatialGenEval, a new benchmark designed to systematically
evaluate the spatial intelligence of T2I models. SpatialGenEval has two core features: (1) Long &
Information-dense & Spatial-aware Prompts: SpatialGenEval involves a hierarchical decomposition
of spatial intelligence into 4 domains (spatial foundation, perception, reasoning, and interaction),
and 10 corresponding sub-domains, covering a comprehensive range of spatial abilities from object
position and layout to occlusion and causality. Based on these, we construct 1,230 prompts across
25 real-world scenes. Each prompt is designed to integrate all 10 sub-domains, making it inherently
long, information-dense, and suitable for comprehensive spatial evaluation. (2) Omni-dimensional &
Multi-choice Evaluations: For fine-grained evaluations, each prompt is paired with 10 meticulously
crafted omni-dimensional multiple-choice question-answer pairs, enabling precise identification of
a model’s successes and failures in all defined spatial capabilities.

To demonstrate our data’s utility beyond evaluation, we follow the same principles of our Spa-
tialGenEval to create another 1,230 prompts and corresponding 12,300 QAs. After filtering out
low-quality design scenes from the initial 1,230 prompts, the remaining 1,100 prompts are sent to 14
top-performing open-source T2I models (accuracy > 50% on SpatialGenEval) for image generation.
The resulting images are sent to the MLLM (i.e., Qwen2.5-VL-72B) for evaluation, yielding a total
of 15,400 text-image pairs. Subsequently, a powerful MLLM (i.e., Gemini 2.5 Pro (Comanici et al.,
2025)) refines their corresponding prompts to ensure better text-image alignment while preserving
the original information density. Crucially, fine-tuning SOTA models like Stable Diffusion (Rom-
bach et al., 2022), UniWorld-V1 (Lin et al., 2025), and OmniGen2 (Wu et al., 2025b) with this
dataset significantly boosts their spatial intelligence, validating the data-centric approach as a viable
and effective pathway for model improvement. In summary, our contributions are threefold:

• We introduce SpatialGenEval, a new benchmark to systematically evaluate complex spatial intelli-
gence in T2I models. It leverages 1,230 information-dense prompts, each covering 10 spatial sub-
domains and paired with 12,300 corresponding multiple-choice questions to evaluate a model’s
understanding beyond what to generate, to where, how, and why.

• Our extensive evaluation of 23 state-of-the-art models reveals a universal performance bottleneck
in spatial reasoning. While models excel at basic object composition, their accuracy falls when
faced with tasks requiring higher-order spatial understanding, such as relative positioning, occlu-
sion, and causality, revealing this as a primary barrier to current T2I capabilities.

• Beyond evaluation, we explore a spatial-aware dataset (SpatialT2I), designed as a practical
data-centric solution to improve the spatial intelligence of existing models. Fine-tuning results
yield significant and consistent performance gains (+4.2% on Stable Diffusion-XL, +5.7% on
UniWorld-V1, +4.4% on OmniGen2).
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(a) 4 domains, 10 sub-domains (b) 25 real-world scenes (c) Overall Comparisons (d) Detailed Comparisons

Figure 2: Overview of the SpatialGenEval benchmark and key results. The benchmark is structured
around (a) 10 spatial sub-domains and (b) 25 real-world scenes. (c) The evaluation of 23 SOTA T2I
models shows the overall performance ranking and (d) a detailed capability breakdown.

Benchmarks Prompt
Length

Omni-
Eval

QA
Type

Object Attribute Position Orientation Layout Comparison Proximity Occlusion Motion Causal

T2I-CompBench S Yes/No
GenEval S Detect

DPG-Bench L Score
Wise S Score

TIIF-Bench L Yes/No
OneIG-Bench L,S Yes/No

SpatialGenEval L Multi-Choice

Table 1: Comparisons between our SpatialGenEval and current T2I Benchmarks. “L” and “S”
denote long and short prompt. , , and denote full, partial, and no coverage, respectively.

2 SPATIALGENEVAL BENCHMARK

In this section, we introduce SpatialGenEval, a new benchmark designed to evaluate the spatial in-
telligence of text-to-image models with dense information and omni-dimensional evaluations. An
overview of SpatialGenEval is shown in Figure 2. Following, we first outline the key design prin-
ciples of SpatialGenEval in Sec. 2.1. Subsequently, we present the focused spatial aspects and
their definitions in Sec. 2.2, ranging from object position and layout to occlusion and causality. Fi-
nally, we detail the full benchmark construction pipeline in Sec 2.3, covering both the generation of
information-dense prompts and their corresponding 10 omni-dimentional question-answer pairs.

2.1 KEY PRINCIPLES

• Long & information-dense prompts: A primary limitation of current T2I benchmarks is their
reliance on short or information-sparse prompts (Wei et al., 2025; Ghosh et al., 2023; Huang
et al., 2023; Niu et al., 2025), often confined to simple object-attribute pairs or simple relations.
To better capture the complexity of real-world scenes and probe a model’s ability to synthesize
intricate information, SpatialGenEval is designed to utilize longer and information-dense prompts
that are densely packed with multiple and interdependent spatial constraints.

• Omni-dimensional multi-choice questions: Instead of coarse-grained metrics about objects, at-
tributions, and simple spatial relations in a yes-or-no selection (e.g., “Is there any dice in the
image?”), we evaluate models across all distinct sub-domains of spatial intelligence in a multi-
choice format. For each prompt, 10 multi-choice questions across all dimensions are generated,
allowing for a fine-grained diagnosis of where a model succeeds or fails.

• Image-dependent answer (no answer leakage): Recent MMStar (Chen et al., 2024c) has re-
vealed a significant flaw in MLLMs: some MLLMs can generate answers without accessing im-
ages. For this case, we do not send the “text-to-image prompt” to the evaluator to prevent “answer
leakage”. Additionally, the questions are also checked with humans to avoid “answer leakage”.

• Refuse to answer (not guess): For each multiple-choice question, the MLLM evaluation task is
instructed to select the best-matching option. To avoid cases where the model is forced to select
an incorrect option when all options (A/B/C/D) are not faithful to the generated image (Yu et al.,
2023), we include another “E: None” option to account for such generation failures.
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S1: Object Category S2: Object Attribution

S4: Spatial Orientation S5: Spatial Layout

Q: Based on the toddler's movement, what is the toddler 
facing towards? 
A: The ficus tree              B: Away from the rubber duck
C: The colorful blocks   D: The window          E: None

Q: From a third-person view, where is the family at the 
picnic table located? 
A: On the right         B: In the front
C: To the left             D: In the center          E: None

Q: Besides the two children, what other object categories are mentioned in the scene? 
A: Rug, books, toy car, and teddy bear     B: Window, curtain, plant, and clock
C: Backpack, pencil, crayon, and paper        D: Shelf, lamp, table, and chair       E: None

S3: Spatial Position

S7: Spatial Proximity S8: Spatial OcclusionS6: Spatial Comparison

S9: Spatial Motion Interaction S10: Spatial Causal Interaction

Prompt: 
In a library, two children sit back-to-back on a colorful rug in the 
foreground. <···>, holds a large picture book, <···>. A toy car rolls 
from the boy <···>, its path partially blocked by a plush teddy bear.

Prompt: 
In a park's BBQ area, <···> . To the left, 
a family of four sits at a picnic table. 
<···>

Prompt: 
In a sunlit living room, <···>. On a 
central jute rug, a toddler crawls 
towards three colorful blocks <···>.

Q: How are the children arranged around the storyteller? 
A: In a straight line       B: In a square formation
C: In a semi-circle       D: In a full circle         E: None

Prompt: 
Under a giant oak tree, an old storyteller 
sits on a stool in the center, facing five 
children sitting in a semi-circle <···>.

Q: According to the scene, what object is nearby the 
bicycle? 
A: The sports car B: A building
C: A traffic light D: A newspaper stand E: None

Prompt: 
<···>. The red chair in the foreground 
appears twice as large as the blue 
chair in the background. <···>

Prompt: 
<···>. The bicycle‘s front wheel is 
partially occluded by a nearby 
newspaper stand. <···>.

Q: What is partially obscuring the woman's face? 
A:The waterfall's mist     B: The hummingbird
C:Her camera D: The vibrant green fern leaves E: None

Prompt: 
<···>. Her face is partially obscured by 
vibrant green fern leaves arranged in 
front of her. <···>.

Q: What is the direct cause of the glass shattering? 
A: The singer touching it            B: The heat from the spotlight  
C: The sound wave hitting it    D: The table collapsing               E: None

Prompt: 
<···>. a female player in a yellow bikini is in the center, jumping to 
spike a white volleyball over the net on the left. <···>.

Prompt: 
Cartoon: Under a spotlight, a large opera singer in a tuxedo stands 
center stage. <···>. The sound wave hits the glass, causing it to 
shatter.

Q: What are the described attributes of the snail on the right?
A: Green and smooth-shelled        B: Brown and cracked-shelled
C: Grey and slimy                          D: Red and small                           E: None

Q: What is the primary motion described between the player and the volleyball? 
A: The player is serving the volleyball B: The player is bumping the volleyball
C: The player is setting the volleyball  C: The player is jumping to spike the volleyball 
E: None

Prompt: 
Cartoon: <···>. On the left, a green snail is stretching to cross the red 
finish line tape in the center. The brown, cracked-shell snail on the 
right is far behind, both facing the finish line. <···>.

Q: How does the apparent size of the red chair compare to 
the blue chair? 
A: Red and blue are same B: Red is twice larger than blue
C: Red is half of blue D: Red is three times larger than blue
E: None

Figure 3: Examples of SpatialGenEval. Each image is generated from an information-dense prompt
covering all 10 spatial sub-domains and evaluated with 10 corresponding multiple-choice questions.

2.2 FOCUSED ASPECTS

Motivated by advances in spatial cognition (Ruan et al., 2025; Malanchini et al., 2020) and recent
studies about spatial intelligence (Yang et al., 2025b;a; Cai et al., 2025; Stogiannidis et al., 2025),
the definition of spatial intelligence has evolved to include perception, reasoning, and interaction
with the environment. Following this comprehensive view, we define spatial intelligence in Spatial-
GenEval through a hierarchical framework that begins with Spatial Foundation (representing objects
and their attributions), moves to Spatial Perception (perceiving their arrangement in space), advances
to Spatial Reasoning (inferring relationships between them), and culminates in Spatial Interaction
(understanding dynamic events and their causes). Representative examples are shown in Figure 3.

Spatial Foundation (S1/S2). This domain evaluates the model’s ability to generate semantically
correct objects, focusing on compositional completeness and attribute binding, including: (S1) Ob-
ject Category evaluates compositional completeness by testing the model’s ability to generate men-
tioned objects without omission or hallucination. (S2) Object Attribution evaluates attribute bind-
ing by examining whether the model correctly assigns attributes (e.g., color, shape, material) to their
designated objects, preventing attribute leakage.

Spatial Perception (S3/S4/S5). Building upon the foundational generation of objects, this domain
evaluates the model’s ability to interpret and render its geometric and relational arrangements on
the 2D canvas. It focuses on the accurate translation of spatial language into visual form, through
three sub-dimensions: (S3) Spatial Position evaluates the localization of an object using absolute
(e.g., top-left, bottom) or relative (e.g., to the right of the book, to his left side) terms. (S4) Spatial
Orientation focuses on rotational alignment, such as generating objects with specified facing direc-
tions (e.g., facing left, upside down). A common challenge is that models often lean towards default
poses (e.g., front view). (S5) Spatial Layout assesses the model’s understanding of multi-object
arrangements. This extends beyond individual positions to collective configurations, such as linear
sequences (e.g., in a line from left to right), circular formations, or other specified group structures.
This sub-dimension is crucial for testing the comprehension of group-level spatial patterns.

Spatial Reasoning (S6/S7/S8). This domain moves beyond direct perception to assess a model’s
higher-order cognitive ability to understand and render abstract, implicit, and 3D-aware spatial rela-
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s

Scene: Classroom

(b) Prompt & 10 Omni-QAs Generation
Domains: Descriptions of all 10 sub-domains

Generated Prompt: 
- On a wooden tabletop, a rusty tin robot, a clear glass vase, and a thick 

blue book are lined up from left to right. 

- The robot, facing right, is taller than the book but shorter than the vase. 

- With its hand on the clear glass vase, the robot is pushing it over. 

- The vase is tipping, spilling water and partially obscuring the book.

object attributionlayout

orientation comparison

proximity motion

causal interaction occlusion

position

(c) T2I Generation & Omni-Eval(a) Domain & Scene

Select
All

s
Q: What is partially obscuring the view of book?

A: The robot's body   B: The spilled water
C: The tipping vase   D: The tabletop's edge  E: None

10 sub-
domains

25
scenes

7/10 4/10 4/10

s
Q: Where is the position of vase?

A: To the left of robot     B: Between robot and book
C: To the right of book   D: On top of book  E: None

5/10

...

Select
One

Figure 4: SpatialGenEval Construction Pipeline. (a) The process begins by selecting one of 25 real-
world scenes and combining it with the definitions of all 10 spatial sub-domains. (b) The MLLM
sequentially synthesizes an information-dense prompt that integrates all 10 constraints, along with
10 corresponding omni-dimensional QA pairs. (c) T2I models generate an image from the prompt,
which is then evaluated against the QA pairs to yield a fine-grained spatial intelligence score.

tionships, involving: (S6) Spatial Comparison evaluates the model’s grasp of relative quantitative
attributes. This involves generating objects that adhere to comparative statements about their prop-
erties, such as size (e.g., three times taller than), quantity, or length. This tests whether the model
can perform reasoning rather than merely generating objects in isolation. (S7) Spatial Proximity
focuses on the fine-grained physical distance between objects. It challenges the model to render
precise interactions like “touching”, “closest to”, or “far from”. This subdimension is critical for
assessing the model’s ability to control object boundaries and depict intimate spatial relationships,
which are often overlooked in favor of simple co-occurrence. (S8) Spatial Occlusion assesses the
model’s implicit understanding of 3D scene structure and depth. This requires generating a scene
where one object partially or fully obscures another (e.g., the vase is partially obscuring the book).
Success in this area indicates a more sophisticated world model that can reason about viewpoint and
object layering, moving beyond a flat, 2D composition.

Spatial Interaction (S9/S10). This is the most advanced domain, evaluating the model’s ability
to depict dynamic events and physical causality. It moves beyond static scene composition to test
whether a model possesses a rudimentary understanding of physics and temporal progression. This
capability is divided into two distinct but related forms of interaction: (S9) Spatial Motion Interac-
tion focuses on generating objects in dynamic states or mid-action sequences. It requires capturing
a specific temporal moment, such as “a dog jumping over a log” or “a mid-flight ball”. This tests
the model’s ability to convey movement through pose, trajectory, and contextual cues rather than
relying on static or canonical placements. (S10) Spatial Causal Interaction evaluates the capacity
of the model to illustrate explicit cause-effect relationships between objects or environments. Ex-
amples include “a rock hitting water and causing ripples” or “a hammer striking a nail into wood”.
Success in this dimension implies that the model can reason about functional physical relationships
and translate latent dynamics into visually consistent and logically plausible images.

2.3 BENCHMARK CONSTRUCTION

Following the definition of 10 spatial-aware aspects, the construction for the SpatialGenEval bench-
mark involves two main stages: information-dense & spatial-aware prompt generation (Sec. 2.3.1)
and the generation of their corresponding omni-dimensional question-answer pairs (Sec. 2.3.2).

2.3.1 INFORMATION-DENSE & SPATIAL-AWARE PROMPT GENERATION

Automated prompt generation. As illustrated in Figure 4, we instruct Gemini 2.5 Pro (Comanici
et al., 2025) using two inputs: a specific scene from a curated set of 25 real-world scenes (i.e.,
nature, indoor, outdoor, human, and design, as detailed in Appendix A.1) and the definitions of
10 spatial sub-domains. The model’s task is to seamlessly integrate all 10 spatial constraints into
a single, fluent, and logically sound prompt based on one given scene. The target length is set to
approximately 60 words, balancing compatibility (77 tokens) with CLIP encoders (Radford et al.,
2021) and the need for high information density. The meta instruction is shown in the Appendix A.4.

Human-in-the-loop refinement. While powerful, MLLMs can generate prompts that are stylisti-
cally awkward, logically unsound, or unfairly complex. To guarantee prompt quality, each MLLM-
generated output is meticulously reviewed by human experts with the same guidebook. For example,
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(1) disjointed phrases like “There is a robot. It is rusty.” will be combined into a natural phrase like
“A rusty robot”. (2) Logical impossibilities like a cyclical layout (“A is left of B, B is left of C,
C is left of A”) will be identified and corrected. (3) Furthermore, to ensure that our focus is on
spatial reasoning rather than lexical knowledge, ambiguous or unusual words (e.g., vermilion, nos-
talgic, futuristic, bustling, tranquil) will be removed or replaced with more common synonyms (e.g.,
vermilion −→ bright red). Totally, this validation process yields our final set of 1,230 high-quality,
information-dense prompts across 25 real-world scenes. More details are shown in Appendix A.2.

2.3.2 OMNI-DIMENSIONAL QAS GENERATION

Automated omni-dimensional QAs generation. For each of the 1,230 prompts, we instruct a
powerful Multimodal Large Language Model (i.e., Gemini 2.5 Pro) to automatically generate 10
multiple-choice questions, with each question targeting exactly one of the 10 spatial sub-domains.
To guide the model effectively, its input for each prompt includes three parts: the prompt, the defi-
nitions of all 10 spatial sub-domains, and a set of example questions. The model is then instructed
to generate all 10 QA pairs at once. Each generated pair consists of the question, a ground-truth
answer drawn from the prompt, and three other plausible but incorrect options designed to test a
model’s detailed understanding. The meta instruction is shown in the Appendix A.4.

Human-in-the-loop refinement. Following automated generation, every QA pair undergoes a rig-
orous human validation process with the same guidebook to confirm that: (1) To prevent answer
leakage, the explicit task of human annotators is to identify and eliminate the question containing an
explicit answer, where the answer lies in the question. For example, the question “What is the layout
of the leaves that are arranged in a circle?” should be revised into “What is the layout of the leaves in
the image?”. (2) Refuse to answer (not guess): After the above validation, we programmatically ap-
pend a “E: None” option in each question. This allows the evaluator to refuse a forced choice when
none of the options are faithful to the generated image. More details are shown in Appendix A.2.

3 EXPERIMENTAL RESULTS

3.1 SETUP

Text-to-Image models. We test a wide range of well-known text-to-image models with diverse
model architectures and model scales, covering 23 open-source and closed-source models: (1) Dif-
fusion Models: Stable-Diffusion-series (Rombach et al., 2022), PixArt-series (Chen et al., 2023;
2024b), Flux-series (Black Forest Labs, 2024), playground-v2.5 (Li et al., 2024), SANA-1.5 (Xie
et al., 2025), and more recent Qwen-Image (Wu et al., 2025a). (2) AutoRegressive Models: Omni-
Gen2 (Wu et al., 2025b), NextStep-1 (NextStep Team et al., 2025), and Infinity (Han et al., 2025).
(3) Unified Models: Janus-Pro (Chen et al., 2025b), Show-o (Xie et al., 2024), UniWorld-V1 (Lin
et al., 2025), UniPic-v2 (Skywork Multimodality Team, 2025), and Bagel (Deng et al., 2025). (4)
Closed-source Models: DALL-E-3 (Ramesh et al., 2021), GPT-Image-1 (OpenAI, 2024b), Nano
Banana (Gemini-2.5-Flash-Image) (Google, 2025), and Seed Dream 4.0 (ByteDance, 2025).

MLLM as a judge. If not specific, we formulate the evaluation as a zero-shot, multiple-choice VQA
task, using an open-source MLLM (i.e., Qwen2.5-VL-72B (Bai et al., 2025)) as the primary evalu-
ator. This choice leverages the model’s SOTA capabilities while ensuring long-term reproducibility
and avoiding reliance on closed-source APIs. For a comparison with closed-source MLLM, we also
evaluate with GPT-4o-250306 (OpenAI, 2024a), and the results are presented in Appendix A.3.

Evaluation details. (1) For the evaluation, the MLLM evaluator is presented with a generated image
and its 10 corresponding questions from 10 sub-domains. The evaluator’s task is to select the most
accurate description from five options: four plausible choices (A-D) derived from the prompt and
a crucial fifth option, “E: None”. To enhance the stability of this automated evaluation and reduce
randomness, we implement a 5-round voting mechanism (Wang et al., 2022). A response is consid-
ered correct only if the MLLM selects the ground-truth answer in at least 4 of the 5 rounds. The
final score is then reported as the accuracy on each of the 10 spatial sub-domains, calculated as the
percentage of correctly answered questions. (2) For time cost, we conduct the evaluation on 8×H20
GPUs and deploy vllm framework (Kwon et al., 2023) in local environment. The evaluation time
cost is around 1.8 seconds per image, completing all 1230 generated images in about 40 minutes.
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Model Size Overall Spatial Foundation Spatial Perception Spatial Reasoning Spatial Interaction

Object Attribute Position Orientation Layout Comparison Proximity Occlusion Motion Causal

Random - 19.8 20.1 19.3 19.8 19.8 19.7 20.3 19.5 19.6 20.1 19.8

1. Diffusion Generative Model
SD-1.5 0.86B 28.5 8.5 33.7 19.5 29.2 38.2 12.8 37.7 15.6 42.0 47.6

PixArt-alpha 0.6B 38.2 20.9 49.3 29.2 43.1 45.3 16.2 45.9 21.5 52.9 57.3
SD-XL 3.5B 41.2 25.7 52.8 32.0 40.9 49.3 19.1 50.7 22.4 56.7 62.0

Playground-v2.5 2.5B 41.4 27.0 55.8 31.3 41.5 49.0 18.5 49.8 22.4 55.2 63.3
PixArt-sigma 0.6B 51.0 42.8 67.6 43.7 49.1 58.0 25.9 57.6 27.0 67.0 71.0

SD-3-M 2B 54.6 52.6 72.1 46.9 50.7 62.4 26.1 62.7 27.4 71.4 74.1
SD-3.5-L 8B 54.0 52.4 72.0 44.7 52.0 62.7 25.4 61.3 27.4 69.4 72.6
SANA 1.5 4.8B 53.8 48.5 70.0 47.3 51.1 62.2 25.9 59.9 28.5 70.0 75.0

FLUX.1-dev 12B 56.5 51.7 73.8 50.0 55.5 66.7 28.2 62.9 28.9 73.1 73.8
FLUX.1-krea 12B 58.5 58.0 75.4 50.7 55.7 67.1 28.3 66.7 28.0 76.0 78.8
Qwen-Image 20B 60.6 61.0 77.2 55.6 56.7 69.7 28.6 67.7 30.8 78.1 80.2

2. AutoRegressive Generative Model
NextStep-1 14B 55.0 45.4 69.0 46.7 52.3 64.0 26.7 62.5 32.0 73.7 77.4
OmniGen2 4B 56.4 51.5 73.6 55.9 55.5 65.4 26.0 64.2 27.3 72.0 72.6

Infinity 8B 57.4 53.7 73.0 53.7 57.5 65.2 27.9 64.5 29.1 72.6 76.3

3. Unified Generative Model
Janus-Pro 7B 50.6 30.9 62.0 43.2 47.4 60.2 26.3 60.2 31.5 70.2 74.3
Show-o 1.3B 52.8 41.7 68.3 46.7 48.2 60.8 26.6 61.1 28.9 69.5 75.8

UniWorld-V1 12B 54.2 46.8 71.3 50.1 53.1 64.0 26.1 62.0 26.8 69.6 72.4
UniPic-v2 9B 54.3 41.4 69.1 44.9 51.0 63.3 27.8 63.1 30.0 75.1 77.1

Bagel 7B 57.0 55.3 73.7 51.2 54.0 62.9 28.6 64.1 29.0 74.4 76.7

4. Closed-source Generative Model
DALL-E-3 - 54.8 51.1 67.9 41.5 52.9 63.3 28.4 62.4 28.0 75.2 77.4

GPT-Image-1 - 60.5 56.3 74.1 53.3 58.9 70.4 31.4 66.8 30.2 80.9 82.2
Nano Banana - 61.7 58.5 75.3 55.5 58.9 70.9 31.8 68.7 33.5 81.4 82.2

Seed Dream 4.0 - 62.7 59.9 80.2 57.2 58.9 70.1 32.1 68.3 33.8 83.0 83.8

Table 2: SpatialGenEval leaderboard based on Qwen 2.5 VL (72B). “Random”: random selection.

3.2 MAIN RESULTS OF SPATIALGENEVAL BENCHMARK

Overall findings of SpatialGenEval. Building on the overall leaderboard results (Table 2) of Spa-
tialGenEval across 23 open-source and closed-source generative models, several key findings are
revealed regarding model performance, core weaknesses, and promising development strategies.

• Open-source models are catching up to closed-source ones, yet spatial intelligence remains
a significant challenge. Across all models, the overall performance on SpatialGenEval generally
reflects the continuous improvement of SOTA T2I models over time. Notably, the gap between
open-source and closed-source models is narrowing, with the best open-source model, Qwen-
Image (60.6%), now catching up to the leading closed-source model, Seed Dream 4.0 (62.7%).
Despite this progress, the highest score remains around the 60-point passing threshold, highlight-
ing that even SOTA models possess only a rudimentary grasp of complex spatial intelligence.

• Imbalanced performance between spatial foundation and higher-order spatial intelligence.
A key finding across all models is the performance gap between basic and advanced spatial skills.
For spatial foundation tasks, top models like Qwen-Image and Bagel score above 70.0% on object
and attribute generation. However, the performance drops on tasks that require complex thinking
in complex spatial perception, reasoning, and interaction. This suggests that while models can
draw objects correctly, they struggle to organize them according to specific rules.

• Spatial reasoning emerges as the primary bottleneck. Notably, spatial reasoning is the main
weakness across all spatial domains. Scores for subtasks like comparison and occlusion are often
below 30%, near the random selection (20%). This reveals a core failure of current T2I models:
they can render objects correctly but cannot bind the semantic properties of objects to the structural
logic of a scene, such as relative size or physical layering. Moreover, the most gap of open-source
and closed-source models also lies in the spatial reasoning and interaction sub-domains.

• Text encoder capability emerges as a key determinant of spatial intelligence. Our results
reveal a clear trend where models with stronger text encoders, particularly those leveraging pow-
erful LLMs, consistently outperform those with standard CLIP encoders. For example, the top-
performing open-source model, Qwen-Image (60.6%), utilizes a powerful LLM encoder. Simi-
larly, models that enhance the standard CLIP architecture with more advanced encoders, such as
FLUX.1 (56.5-58.5%) and SD-3 (54.0-54.6%) using T5, significantly outperform older models
reliant solely on CLIP, like SD-1.5 (28.5%). This strongly suggests that a deeper understanding
of complex, information-dense prompts is critical to achieve high-fidelity spatial generation.
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36.0%25.3%22.8% 16.0% 36.4%24.6%22.4% 16.6%

36.4%26.9%21.7% 15.0%

36.1%25.6%22.4% 16.0%

38.7%26.5%20.8% 14.0%
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Figure 5: Distribution of error types across scenes (left, based on all T2I models) and some examples
of T2I models (right) in our SpatialGenEval.

Model GenEval DPG-Bench Wise TIIF-Bench Meta-Rank SpatialGenEval (Ours) Rank (Ours)

Janus-Pro 0.80 84.19 0.35 65.02 5 50.60 5
SD-3.5-L 0.71 84.08 0.46 66.96 4 54.00 4

Flux.1-dev 0.82 83.84 0.50 71.78 2 56.50 3
Bagel 0.82 67.20 0.52 71.70 3 57.00 2

Qwen-Image 0.91 88.32 0.62 86.83 1 60.60 1

Table 3: Meta-ranking consistency of five popular models on two commonly used text-to-image
benchmarks (GenEval (Ghosh et al., 2023), DPG-Bench (Hu et al., 2024a)), two newly proposed
benchmarks (Wise (Niu et al., 2025), TIIF-Bench (Wei et al., 2025)), and our SpatialGenEval.

• Model scale and architecture are two possible pathways for advanced spatial intelligence.
Our results also reveal two concurrent trends driving improvements in spatial intelligence. (1)
For model scale, specialized diffusion models generally follow a trend where performance corre-
lates with model size. For example, the 20B Qwen-Image (60.6%) significantly outperforms the
8B SD-3.5-L (54.0%). (2) For model architecture, unified models demonstrate greater parame-
ter efficiency by integrating understanding and generative abilities. For example, the 7B Bagel
model (57.0%) achieves a score comparable to the much larger 12B FLUX.1-krea (58.5%). This
highlights their potential to advance spatial intelligence without relying solely on parameter count.

Failure cases analysis. Our analysis in Figure 5 provides a detailed breakdown of failure cases
across scenes and models. Models first face Basic Composition and generally succeed with low er-
ror rates. The next challenge of Visual Perception is more difficult. Its errors are highest in complex
Nature scenes at 28.5%. A significant increase in difficulty then occurs with Relational Reasoning.
This skill is the primary failure point for all models, and its error rates often exceed 35%. Inter-
estingly, Motion Interaction is a less frequent source of error, with rates typically remaining below
18%. This distribution suggests that the principal barrier to achieving advanced spatial intelligence
is not a linear progression of skills, but a critical weakness in processing relational logic.

Correlation with other benchmarks. In Table 3, the model rankings on SpatialGenEval closely
align with the meta-rankings from four other major benchmarks. This strong correlation validates
our benchmark as a reliable indicator of a model’s overall generative capability.

Model GPT-4o-250306 Qwen2.5-VL (72B)

Overall Rank Overall Rank

Janus-Pro 48.0 5 50.6 5
SD-3.5-L 52.9 4 54.0 4
Flux.1-dev 54.3 3 56.5 3
Bagel 56.6 2 57.0 2
Qwen-Image 60.8 1 60.6 1

Table 4: Overall ranking consistency of closed-
and open-source evaluations on SpatialGenEval.

Other evaluation models as the judge. To
test for judge-dependency, we evaluate mod-
els using both GPT-4o (OpenAI, 2024a) and
Qwen2.5-VL-72B (Bai et al., 2025). As shown
in Table 4, both judges produce similar model
rankings and numbers. The consistency of the
similar ranking and number validates the ro-
bustness of our benchmark and the selected
evaluator, demonstrating that its relative results
are not biased by the choice of evaluator.

MLLMs Foundation Perception Reasoning Interaction Overall

Qwen2.5-VL-72B 87.0 76.5 73.3 84.8 80.4
GPT-4o 82.8 76.7 72.5 83.3 78.8
Gemini-2.5-Pro 91.0 81.5 78.2 86.0 84.2

Table 5: Human alignment study across open-
source and closed-source MLLMs based on the
balanced accuracy (%).

Human Alignment Study. To evaluate the ef-
fectiveness of MLLMs as evaluators, we con-
duct a human alignment study with three top-
performing models: the open-source Qwen2.5-
VL-72B and the closed-source GPT-4o and
Gemini-2.5-Pro. We randomly sample 200 im-
ages from Qwen-Image (8 from each of 25
scenes). Following the principles in Section 2.1, five human annotators work independently to select
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Model Overall Spatial Foundation Spatial Perception Spatial Reasoning Spatial Interaction

Object Attribute Position Orientation Layout Comparison Proximity Occlusion Motion Causal

SD-XL 41.2 25.7 52.8 32.0 40.9 49.3 19.1 50.7 22.4 56.7 62.0
+ SptialT2I 45.4 29.0 55.7 38.6 48.3 53.6 23.0 54.8 27.2 61.6 63.2

UniWorld-V1 54.2 46.8 71.3 50.1 53.1 64.0 26.1 62.0 26.8 69.6 72.4
+ SptialT2I 59.9 50.8 74.8 58.5 63.5 70.4 34.6 70.7 31.6 66.0 78.5

OmniGen2 56.4 51.5 73.6 55.9 55.5 65.4 26.0 64.2 27.3 72.0 72.6
+ SptialT2I 60.8 61.8 71.8 62.1 59.9 67.2 35.3 66.3 34.2 74.5 74.8

Table 6: Quantitative fine-tuned results of recent T2I models on SpatialGenEval.
Prompt 1: In a forest, a grey squirrel on a left branch of a massive oak tree drops an acorn towards a red squirrel at the 
bottom-center. The two squirrels face each other. Above them, a wise-looking owl with yellow eyes, partially obscured by 
its tree hole, faces the observer. The oak tree is much taller than a nearby mossy log. The red squirrel is close to a small 

pile of three brown acorns, illuminated by a sunbeam.

Prompt 2: In a forest clearing, a family of three—two adults with a child between them—sits on a red and white checkered 
blanket. They face away from the viewer, looking up at fireworks. A golden retriever lies next to the child, and a picnic 

basket is on the blanket's right side. A tall tree on the left partially blocks the fireworks. One adult pulls the child close 
as a gentle wind rustles the leaves.

GPT-Image-1 Qwen-Image OmniGen2 +SpatialT2IUniWorld-V1Flux.1 dev Bagel

Figure 6: Qualitative comparisons of recent T2I models on SpatialGenEval.

the best option based solely on the given image and 10 questions, with no access to the original text-
to-image prompt to prevent “leakage”. We measure alignment using balanced accuracy (Brodersen
et al., 2010), following (Li et al., 2025). Table 5 shows that all MLLMs align well with human
judgment, with Gemini-2.5-Pro performing best. Moreover, alignment correlates with sub-domain
difficulty of each sub-domain. The alignment is higher on simpler dimensions like Spatial Foun-
dation/Perception/Interaction, while lower on the Spatial Reasoning sub-domain. Despite this, the
alignment score still nears 80%, validating their effectiveness as evaluators in SpatialGenEval.

4 SUPERVISED FINE-TUNING (SFT)

To further validate the other utilities of our information-dense and omni-dimensional data, this sec-
tion investigates its application in constructing a new supervised fine-tuning (SFT) dataset to en-
hance the spatial intelligence of existing T2I models.

Additional SFT data construction. SpatialT2I is constructed separately and has no overlap with
our evaluation benchmark. The construction of SpatialT2I involves two stages:

• Stage 1: Prompt and Omni-dimensional QAs generation. This stage follows the same principles
of our SpatialGenEval in Section 2.3. Totally, we obtain another 1,230 prompts and 12,300 QAs.

• Stage 2: Rewrite prompt to obtain text-image pair. We curated outputs from 14 top-performing T2I
models with average scores above 50% (Table 2,10), along with their generation prompts. These
are processed by a strong MLLM (e.g., Gemini 2.5 Pro) to produce mildly rewritten prompts
that better match the corresponding images, improving text-image consistency while preserving
information density and all dimensions of spatial intelligence. The meta instruction of SpatialT2I
construction is shown in the Appendix A.5. It is worth noting that data from “Design” scenes (130
prompts) are excluded due to low image quality. In total, we construct (1230−130)×14 = 15, 400
image-text pairs from 22 scenes, forming the SpatialT2I dataset for the following SFT stage.

Training details and SFT results. We fine-tune the recent UniWorld-V1 (Lin et al., 2025), Om-
niGen2 (Wu et al., 2025b), and Stable Diffusion-XL (Rombach et al., 2022) based on their official
settings and our SpatialT2I dataset. As shown in Table 6, the fine-tuned models consistently achieve
better spatial abilities in SpatialGenEval. Finally, we select fine-tuned OmniGen2 as our final model,
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and the qualitative comparisons with recent SOTA T2I models are presented in Figure 6. The gen-
erated images exhibit competitive results and more realistic effects.
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Figure 7: (Top) Ablations of the contribution of
three different SpatialT2I subsets to fine-tuning
performance. The selected subsets are arranged
from top to bottom in order of their performance.
(Bottom) Data scaling trend observed when incre-
mentally adding better subsets to the training data.

Ablation study of SpatialT2I and trend on
data scaling. To assess the impact of data
quality and quantity in SpatialT2I, we con-
duct two experiments as follows. (1) We fol-
low SPRIGHT (Chatterjee et al., 2024) and se-
lect three subsets arranged by increasing perfor-
mance in Table 2, i.e., Unipic-v2 (54.3), Bagel
(57.0), and Qwen-Image (60.6). Each subset in-
cludes 1100 text-image pairs. As shown in Fig-
ure 7, fine-tuning on both the diffusion model
(SD-XL) and non-diffusion model (OmniGen2)
reveals that all subsets yield performance gains,
and higher-scoring ones contribute more signif-
icantly. (2) We observe a data scaling trend
in Figure 7, as performance consistently im-
proves when increasing training data from 0%
to 100%, by progressively adding higher-scoring subsets. These findings reveal the value of explor-
ing information-dense, spatial-aware data and suggest that further scaling is a promising direction.

5 RELATED WORK

Text-to-Image models. Text-to-image generation relies on several key architectural approaches.
Diffusion models (Rombach et al., 2022) are the dominant paradigm, prized for a parallel generation
process that yields high efficiency and global coherence. Innovations within this framework include
scaling the generative backbone with transformer architectures (Black Forest Labs, 2024; Peebles
& Xie, 2023) and improving semantic comprehension with powerful LLM text encoders (Hu et al.,
2024b). Beyond diffusion, autoregressive models (Wu et al., 2025b; Han et al., 2025; NextStep Team
et al., 2025) regard image generation as a token-by-token process, a sequential nature that inherently
models strong dependencies between visual tokens while offering finer compositional control. A
recent trend is unified multimodal architectures (Deng et al., 2025; Chen et al., 2025b; Xie et al.,
2024; Lin et al., 2025; Skywork Multimodality Team, 2025), which integrate visual understanding
and generation into a single model for more holistic reasoning. Totally, all these diverse models
have enabled models to excel at generating high-fidelity images with basic compositional elements.

Text-to-Image benchmarks. The evaluation of T2I models has co-evolved with their capabilities,
leading to distinct categories of benchmarks. The first category targets foundational semantic align-
ment, verifying object presence and attribute binding with metrics like object detection (Ghosh et al.,
2023; Huang et al., 2023). A more recent category addresses complex instruction following and re-
lational understanding, using longer prompts and question-answering formats to assess multi-object
relationships (Wei et al., 2025; Hu et al., 2024a; Chang et al., 2025; Chatterjee et al., 2024). Fur-
thermore, a growing number of specialized benchmarks have emerged to probe even higher-order
capabilities, such as world knowledge (Niu et al., 2025), physical plausibility (Meng et al., 2024),
broader reasoning skills (Chen et al., 2025a), and comprehensive quantitative understanding of T2I
models’ capabilities and risks (Lee et al., 2023). This evolution highlights a clear shift in research
focus of T2I evaluation, from object-level fidelity towards scene-level compositional logic.

6 CONCLUSION

In this paper, we introduce SpatialGenEval, a benchmark that systematically evaluates the spatial
intelligence of text-to-image (T2I) models. It is built upon a hierarchical framework and utilizes
information-dense prompts to test model capabilities in scenarios of real-world complexity. Our
extensive evaluation of current models reveals a stark performance disparity between basic object
generation and advanced spatial tasks, pinpointing spatial reasoning as the primary bottleneck. Fur-
thermore, by demonstrating the effectiveness of our supervised fine-tuning dataset, SpatialT2I, we
validate a data-centric approach as a practical path toward resolving these shortcomings.
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ETHICS STATEMENT

This paper introduces SpatialGenEval, a benchmark for evaluating the spatial intelligence of text-to-
image models. Its creation uses large multimodal models (MLLMs) with rigorous human oversight.
All generated prompt and question-answer pairs are reviewed by human experts to ensure it is logi-
cal, neutral, and free of harmful or personally identifiable information. The benchmark is based on
common, real-world scenes to ensure broad applicability. Our research aims to transparently identify
current AI limitations, thereby fostering the development of more capable and reliable text-to-image
generative models.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, this paper provides comprehensive methodological details, and all re-
sources are made publicly available. The construction of the SpatialGenEval benchmark is detailed
in Section 2 and Appendix A.2, A.4. Our experimental setup, including the models, judges, and
evaluation protocol, is described in Section 3. The creation of the SpatialT2I dataset is outlined in
Section 4 and Appendix A.5. The complete benchmark, dataset, and evaluation code are available
to the research community for verification and future work.
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A APPENDIX

A.1 BENCHMARK STATISTICS AND ANALYSIS

This section provides a detailed statistical overview (Table 7) of our SpatialGenEval benchmark,
followed by a discussion of the selection principles that ensure its diversity and comprehensiveness.

Statistic Number

Number of prompts 1,230
- max length (words) 97
- min length (words) 46
- average length (words) 66

Number of scenes 25 (1,230)
- Nature 7 (350, 28.5%)
- Indoor 4 (200, 16.3%)
- Outdoor 8 (400, 32.5%)
- Human 3 (150, 12.2%)
- Design 3 (130, 10.6%)

Number of questions 12,300
- Multi-choice QAs 12,300 (100%)

Number of spatial domains 4
Number of spatial sub-domains 10

Table 7: Statistics results of our SpatialGenEval benchmark.

Scene selection and diversity. As illustrated in Figure 8, our selection of 5 primary scenes (nature,
indoor, outdoor, human, and design) and their corresponding 25 sub-scenes is designed to form the
representative samples of real-world applications where spatial intelligence is crucial. This set is a
practical balance between broad coverage and a manageable benchmark size. Moreover, our focus
on diverse, real-world scenes is also timely, developing in parallel with a similar emphasis from
leading models like Qwen-Image (Wu et al., 2025a) and benchmarks like OneIG-Bench (Chang
et al., 2025). Specifically, the detailed scenes are as follows.

• Outdoor (32.5%). As the largest category, this focuses on complex, public human environments. It
includes transportation hubs (Airport, Railway), recreational areas (Park, Zoo), and commercial/-
cultural spaces (Shopping Mall, Art Gallery, Cafe, Library). These scenes challenge models with
high-density object layouts, crowd dynamics, and understanding large-scale functional designs.

• Nature (28.5%). This category spans large-scale environments from natural landscapes (Forest,
Mountain, Desert, Beach, Underwater) to human settlements (Cityspace, Village). These scenes
test reasoning about organic layouts, vast scales, and perspective (e.g., the relative size of moun-
tains or the dense arrangement of trees).

• Indoor (16.3%). This category includes common, confined spaces where function dictates object
placement. Scenes like Kitchen, Classroom, Living Room, and Office test a model’s understand-
ing of strict physical constraints, containment, and the functional relationships between objects
(e.g., a chair’s position relative to a desk).

• Human (12.2%). This category centers on people and their interactions. Scenes like Sports,
Human Activities, and Portraits require reasoning about body poses, relative positions between
multiple people, and human-object interactions, which are critical for depicting action and social
context.

• Design (10.6%). This category tests spatial intelligence in non-photorealistic and conceptual con-
texts. Scenes like Cartoon, Advertisement, and Story challenge a model to generalize beyond
real-world physics, understanding instead principles of artistic composition, narrative flow, and
symbolic spatial arrangements.

Domain selection and diversity. Our selection of 4 domains and 10 sub-domains is not a random
list, but a structured framework based on the definition of spatial intelligence. Drawing from studies
in cognitive science (Malanchini et al., 2020; Gupta et al., 2021; Ruan et al., 2025) and computer
vision (Yang et al., 2025a; Stogiannidis et al., 2025; Gong et al., 2025; Yang et al., 2025b; Cai
et al., 2025), spatial intelligence can be seen as a series of steps. The process starts with the basic
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Models Year Resolution Source URL

1. Diffusion Generative Model

SD-1.5 2021.12 1024×1024 checkpoint https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
PixArt-alpha 2023.10 1024×1024 checkpoint https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS

Playground-v2.5 2024.02 1024×1024 checkpoint https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
SD-XL 2023.07 1024×1024 checkpoint https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

PixArt-sigma 2024.04 1024×1024 checkpoint https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS
SD-3-M 2024.03 1024×1024 checkpoint https://huggingface.co/stabilityai/stable-diffusion-3-medium
SD-3.5-L 2024.11 1024×1024 checkpoint https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-3.5-large
SANA 1.5 2025.01 1024×1024 checkpoint https://huggingface.co/Efficient-Large-Model/SANA1.5_4.8B_1024px_diffusers

FLUX.1-dev 2024.12 1024×1024 checkpoint https://huggingface.co/black-forest-labs/FLUX.1-dev
FLUX.1-krea 2025.07 1024×1024 checkpoint https://huggingface.co/black-forest-labs/FLUX.1-Krea-dev
Qwen-Image 2025.08 1328×1328 checkpoint https://huggingface.co/Qwen/Qwen-Image

2. AutoRegressive Generative Model

OminiGen2 2025.06 1024×1024 checkpoint https://github.com/VectorSpaceLab/OmniGen2
NextStep-1 2025.08 512×512 checkpoint https://github.com/stepfun-ai/NextStep-1

Infinity 2024.12 1024×1024 checkpoint https://github.com/FoundationVision/Infinity

3. Unified Generative Model

Show-o 2024.08 512×512 checkpoint https://github.com/showlab/Show-o
Janus-Pro 2025.01 384×384 checkpoint https://github.com/deepseek-ai/Janus

UniWorld-V1 2025.06 1024×1024 checkpoint https://github.com/PKU-YuanGroup/UniWorld-V1
UniPic-v2 2025.08 512×384 checkpoint https://github.com/SkyworkAI/UniPic/tree/main/UniPic-2

Bagel 2025.05 1024×1024 checkpoint https://github.com/ByteDance-Seed/Bagel

4. Closed-source Generative Model

DALL-E-3 2023.10 1024×1024 API https://openai.com/zh-Hans-CN/index/dall-e-3
GPT-Image-1 2025.04 1024×1024 API https://platform.openai.com
Nano Banana 2025.08 1024×1024 API https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image

Seed Dream 4.0 2025.08 1024×1024 API https://research.doubao.com/zh/seedream4_0

Table 8: The release time, resolution, model source, and URL of T2I models on our SpatialGenEval.

step of identifying what objects are present. It then moves on to perceiving their static properties
and arrangements. The next step is to infer the relationships between them. The final stage is
understanding the dynamics and causes of events. Our framework is designed to follow this logical
progression, making it a powerful diagnostic tool.

T2I model selection and diversity. To provide a comprehensive overview of the current T2I land-
scape, we select 23 representative models, as detailed in Table 8. Our selection spans multiple
architectural paradigms, including dominant diffusion models (Rombach et al., 2022; Chen et al.,
2023; 2024b; Li et al., 2024; Xie et al., 2025; Black Forest Labs, 2024; Wu et al., 2025a), autoregres-
sive models (Wu et al., 2025b; NextStep Team et al., 2025; Han et al., 2025), and emerging unified
architectures (Xie et al., 2024; Chen et al., 2025b; Skywork Multimodality Team, 2025; Lin et al.,
2025; Deng et al., 2025). Crucially, our evaluation includes both open-source checkpoint models and
leading closed-source API systems, such as DALL-E-3 (Ramesh et al., 2021), GPT-Image-1 (Ope-
nAI, 2024b), and Nano Banana (Google, 2025). This dual approach allows for a direct comparison
between community-driven and commercial efforts, ensuring our benchmark’s findings are robust
and widely applicable across the entire T2I ecosystem.

Question examples. As the question examples shown in Table 9, our question design deliberately
moves beyond simple checks to probe deeper and more complex spatial understanding as follows.

• For Spatial Foundation, instead of asking for the presence of a single object, we test comprehen-
sive scene awareness by asking what else exists besides a given set of objects. For Attribute, we
query for multi-attribute combinations rather than just single, isolated properties.

• For Spatial Perception, questions require models to determine an object’s position or orientation
from another object’s viewpoint, not just a global third-person perspective. This tests a more
sophisticated understanding of relative and absolute spatial arrangements.

• For Spatial Reasoning, our questions shift from qualitative judgments to quantitative analysis. For
instance, Comparison tasks demand reasoning about how many times a quantity or by how much
larger, going beyond simple “more/less” distinctions. We also probe 3D spatial understanding
through Occlusion and physical distance-based Proximity.

• For Spatial Interaction, we focus on the dynamics between multiple objects and their effects.
Questions target the causal outcomes of these interactions, demanding a level of reasoning far
beyond the description of simple, isolated motions.
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Task Question Examples

Object - Besides [object A] and [object B], what other objects are mentioned in the image?
- Which option can better describe [all objects] exist in the image?

Attribute - Which option can better describe the attributes of the [object A] and [object B] in the image?
- What is the [attribute A], [attribute B], and [attribute C] of the [object] in the image?

Position - From the third-person perspective, where is the [object] in the image?
- From the [object A]’s perspective, where is the [object] in the image?

Orientation
- From the third-person perspective, what is the facing orientation of the [object] in the image?
- From the [object A]’s perspective, what is the facing orientation of the [object B] in the image?
- From the third-person perspective, what are the [object A] and [object B] facing orientations in the image?

Layout
- How are the objects arranged in the image?
- How are the [object A] and [object B] arranged in the image?
- How are the [a group of object A] and [object B] arranged in the image?

Comparison - How many times the quantity of [object A] that of [object B]?
- What is the size/height/numerical difference between the [object A], [object B], and [object C] in the image?

Proximity - What is the closest object to the [object A] in the image?
- Which objects are [nearby object A] in the image?

Occlusion - Is the [object A] fully visible in the image?
- What part of the [object A] is partially occluding the [object B] in the image?

Motion - What is the motion interaction between the [object A] and [object B] in the image?
- What is the interaction between [object A], [object B], and [object C] in the image?

Causal - What caused the flag to flutter in the wind in the image?
- What caused the floor to become illuminated in the image?

Table 9: Question examples of all spatial sub-domains in SpatialGenEval.

A.2 HUMAN ANNOTATION INTERFACE

To ensure the quality and accuracy of SpatialGenEval, we employ a rigorous two-stage human re-
finement process. This process involves five expert annotators and requires over 168 person-hours
to complete. To maintain high inter-annotator agreement, all annotators first complete a calibra-
tion phase using a detailed guidebook. The details of the two stages are as follows. The human
annotation interface is shown in Figure 9.

• Prompt refinement. In this stage, annotators revise the initial text prompts to improve clarity,
fluency, and logical consistency. Specifically, they follow two strict guidelines: (a) simplifying
vocabulary by replacing or removing uncommon words, and (b) verifying that each prompt com-
prehensively covers all 10 spatial sub-domains without omission.

• QA refinement. In the second stage, annotators review the generated question-answer pairs against
the refined prompts. This refinement process adheres to three key principles: (a) ensuring each
question precisely targets a specific spatial sub-domain, (b) removing any information from the
question that could directly leak the answer, and (c) correcting phrasing inaccuracies, such as
changing “in the prompt” to “in the scene” or “in the image”. After refinement, each QA pair is
independently validated by Qwen2.5-VL (Bai et al., 2025) for consistency evaluation.

A.3 ADDITIONAL CLOSED-SOURCE EVALUATION

In line with current leading benchmarks (Wei et al., 2025; Li et al., 2025), we conduct a secondary
evaluation using a powerful closed-source model, GPT-4o-250306, as an alternative evaluator. Ta-
ble 10 presents the full results. The model rankings from GPT-4o are highly consistent with those
from our primary evaluation using Qwen2.5-VL-72B. This consistency confirms the robustness of
our main analysis, demonstrating that our conclusions are not dependent on a single evaluator.

A.4 META INSTRUCTION OF SPATIALGENEVAL CONSTRUCTION

The construction of our benchmark and dataset follows a semi-automated pipeline, leveraging large
multimodal models (MLLMs) with human oversight. In this section, we detail the core meta in-
structions used at each stage of the data generation process.
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Model Size Overall Spatial Foundation Spatial Perception Spatial Reasoning Spatial Interaction

Object Attribute Position Orientation Layout Comparison Proximity Occlusion Motion Causal

1. Diffusion Generative Model
SD-1.5 0.86B 24.6 35.3 43.4 15.5 20.2 29.4 8.0 24.2 13.7 28.0 28.1

PixArt-alpha 0.6B 35.1 44.2 58.8 28.2 39.9 38.4 11.4 35.0 17.9 35.5 42.1
Playground-v2.5 3.5B 38.6 54.6 64.2 29.8 41.0 42.5 12.3 39.7 19.4 37.6 44.8

SD-XL 6.5B 38.6 55.1 60.8 28.0 39.6 45.4 13.3 40.5 21.6 39.3 42.2
PixArt-sigma 0.6B 48.0 66.7 74.4 39.3 47.8 51.1 16.8 50.4 26.4 49.4 58.0

SD-3-M 2B 51.1 74.6 76.2 42.8 49.8 57.5 20.3 56.2 22.8 52.0 58.5
SD-3.5-L 8.1B 52.9 74.2 79.0 39.8 51.4 58.9 19.9 56.9 29.5 58.1 61.5
SANA 1.5 4.8B 53.0 71.5 78.0 43.3 51.5 57.2 18.6 56.7 27.9 58.3 66.7

FLUX.1-dev 12B 54.3 74.6 78.3 44.8 56.4 60.5 20.3 59.7 27.6 60.2 60.7
FLUX.1-krea 12B 58.0 79.5 79.8 48.9 55.9 63.8 20.7 63.7 29.8 65.6 71.9
Qwen-Image 20B 60.8 78.3 83.7 49.3 59.3 66.7 21.7 66.4 36.0 72.5 74.1

2. AutoRegressive Generative Model
OmniGen2 4B 52.3 73.9 75.0 50.2 51.4 60.6 18.9 57.8 23.9 53.2 57.9
NextStep-1 14B 52.4 67.2 69.8 44.7 53.5 59.9 20.5 56.0 28.6 56.6 67.4

Infinity 8B 54.6 74.9 75.7 50.0 56.3 62.4 20.0 58.9 28.2 56.0 64.1

3. Unified Generative Model
Janus-Pro 7B 48.0 61.1 64.1 42.7 47.4 55.4 17.2 53.3 27.6 50.2 61.2
Show-o 1.3B 48.9 63.6 69.1 44.7 48.0 56.3 18.8 51.7 24.7 51.4 60.3

UniWorld-V1 12B 50.9 72.6 71.6 45.9 52.4 59.8 18.7 54.6 22.8 54.6 56.0
UniPic-v2 9B 51.6 64.1 70.4 45.6 50.5 59.1 21.4 57.0 27.9 55.1 65.2

Bagel 7B 56.6 76.7 79.8 45.9 55.7 62.4 20.6 62.1 31.3 64.2 67.6

4. Closed-Source Generative Model
DALL-E-3 - 51.8 66.7 69.3 40.2 53.7 59.5 21.1 56.3 24.6 61.5 65.4

GPT-Image-1 - 59.2 70.4 73.5 52.2 61.3 65.4 24.1 67.2 30.8 73.3 74.0
Nano Banana - 61.6 68.0 74.5 56.3 62.0 69.0 26.4 70.7 36.1 74.6 78.3

Seed Dream 4.0 - 62.1 66.5 77.6 52.2 62.3 68.6 26.4 70.3 38.0 77.1 81.5

Table 10: SpatialGenEval leaderboard based on GPT-4o.

Stage 1: Meta instruction for prompt generation. Following the key design principles of long,
information-dense, and spatial-aware settings, we instruct the MLLM to synthesize a coherent scene
description that incorporates all 10 spatial sub-domains based on the given scene as follows.

Stage 1: Meta Instruction for Prompt Generation

[Task Description]
I am creating a text-to-image evaluation benchmark to challenge the spatial intelligence of
text-to-image models. You are an assistant tasked with generating 50 distinct and dynamic
text-to-image prompts based on the provided scene. Each prompt MUST involve 10 types
of spatial sub-domains as follows.

[Scene]
###Scene###

[Definitions of 4 Spatial Primary-domains]
4 primary spatial domains involve spatial foundation, spatial perception, spatial reasoning,
and spatial interaction.

[Definitions of 10 Spatial Sub-domains]
10 spatial sub-domains involve object, attribute, position, orientation, layout, comparison,
proximity, occlusion, motion interaction, and causal motion interaction.

[Instructions]
1. The prompt should clearly describe all 10 spatial sub-domains around 60 words.
2. The generated 50 prompts should be distinct and involve various cases.

[Output Format]
Please output your response in valid JSON format as follows.
{scene: ###Scene###, prompt: ###The generated prompt 1###},
{scene: ###Scene###, prompt: ###The generated prompt 2###},
{......},
{scene: ###Scene###, prompt: ###The generated prompt 50###}
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Stage 2: Meta instruction for QAs generation. For each generated prompt, we instruct the MLLM
(i.e., Gemini 2.5 Pro (Comanici et al., 2025)) to create 10 corresponding multiple-choice questions,
each targeting one of the 10 spatial sub-domains to enable omni-dimensional evaluations as follows.

Stage 2: Meta Instruction for Question-Answer Pairs Generation

[Task Description]
I am creating a text-to-image evaluation benchmark to challenge the spatial understanding
ability of text-to-image models. You are an assistant tasked with generating **10 multiple-
choice question-answers** based on the given **text-to-image prompt**. Each question
MUST involve one of the following 10 spatial sub-domains. Please avoid including any
question that introduces irrelevant or mythological information not present in the prompt.

[Definitions of 4 spatial primary-domains]
4 spatial primary-domains involve spatial foundation, spatial perception, spatial reasoning,
and spatial interaction.

[Definitions of 10 spatial sub-domains]
10 spatial sub-domains involve object, attribute, position, orientation, layout, comparison,
proximity, occlusion, motion interaction, and causal motion interaction.

[Output Format]
Based on the following ###prompt### to generate 10 multiple-choice question-answers
and fill in the following “questions” and “answers” fields. The questions MUST be in the
same order as the “question type” field. Please avoid including any question that introduces
irrelevant or mythological information not present in the prompt.
{id: ###id###, scene: ###scene###, prompt: ###prompt###, question type: ###question
type###, questions: [###question 1###, ###question-2###, ..., ###question-10###], an-
swers: [###answer-1###, ###answer-2###, ..., ###answer-10###]}

Stage 3: Meta instruction of MLLM evaluation. To evaluate a generated image, we provide an
image and its 10 corresponding multiple-choice questions to an MLLM evaluator. The instruction
explicitly forbids the use of external knowledge and enforces a visually-grounded answering process.
The meta instruction is as follows.

Stage 3: MLLM Evaluation Instruction

[Task Description]
You are tasked with carefully examining the provided image and answering the following
10 multiple-choice questions. You MUST ONLY rely on the provided image to answer
the questions. DO NOT use any external resources like world knowledge or external
information beyond the provided image.

[Multiple-Choice Questions]
###Multiple-Choice Questions###

[Instructions]
1. Answer these 10 questions on a separate 10 lines, beginning with the correct choice option
(A/B/C/D/E) and followed by a detailed reason (in the same line as the answer).
2. Maintain the exact order of the questions in your answers.
3. Provide only one answer per question.
4. Each answer must be on its own line.
5. Ensure the index of answers matches the index of questions.
6. Select the option “E: None” when the image can not answer the question.
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A.5 META INSTRUCTION OF SPATIALT2I CONSTRUCTION

Meta instruction for rewritten prompt generation of SpatialT2I. To create the SpatialT2I dataset,
we use an MLLM (i.e., GPT-4o (OpenAI, 2024a)) to rewrite the original prompts to accurately de-
scribe the content of the generated images, thereby correcting spatial failures in text-image align-
ment. The core instruction is as follows.

Meta Instruction for SpatialT2I Construction (Rewrite Prompt based on MLLM)

[Task Description]
You are an expert AI assistant specializing in image prompt analysis and refinement. Your
task is to analyze a generated image and its corresponding metadata to rewrite the original
text-to-image prompt. The goal is to create a new prompt that accurately describes the spatial
foundation, perception, reasoning, and interaction of the generated image.

[Input Data]
You will receive two primary inputs for each task:
1. A generated image: This is the visual ground truth and your primary source of informa-
tion. Your final rewritten prompt must be a faithful description of this image.
2. A JSON input containing the following 7 keys:
{id: ###id###, scene: ###scene###, prompt: ###prompt###, question ###questions###,
ground-truth answers: ###answers###, image path: ###image path###, answers from gen-
erated image: ###model preds###}

[Instructions]
Your process is to rewrite the prompt fully based on the real generated image as follows.
Step 1: Pinpoint discrepancies: Your primary task is to systematically compare the “ground-
truth answers” with the “answers from generated image”.
• If the answers match: This means the aspect of the image described by the question is

generated correctly, and the corresponding part of the original prompt is accurate.
• If the answers DO NOT match: This is a critical signal. It tells you exactly where the

generated image failed to follow the original prompt’s instructions. The “answers from
generated image” becomes your source of truth for this specific detail.

Step 2: Synthesize the rewritten prompt: Based on your analysis from Step 1 and direct
observation of the image, you will construct a new, cohesive prompt.
• Embrace the reality: Your new prompt must be built from the facts presented in the

“answers based on generated image” and confirmed by your own visual inspection.
• Integrate corrections holistically: Do not simply swap words. Weave the corrected details

(object order, actions, attributes, etc.) into a new, flowing, and descriptive sentence.
• Be specific: Use precise and descriptive language that captures the nuances of the gener-

ated image. If the image shows a “rusty blue robot” instead of just a “rusty robot”, your
new prompt must include “blue.”

• Verify everything: Before finalizing, re-read your rewrite prompt and ensure every single
clause is verifiably true by looking at the provided image.

[Output Format]
Please ONLY output your response in a valid JSON format as follows.
{id: ###id###, scene: ###scene###, image path: ###image path###, original prompt:
###prompt###, rewrite prompt: ###rewrite prompt###}

A.6 META INSTRUCTION OF PROMPT REWRITING

Meta instruction for prompt rewriting. We instruct Gemini 2.5 Pro (Comanici et al., 2025) to
rewrite the original prompts with the specific goal of making our defined 10 spatial dimensions
more explicit and unambiguous. The meta instruction is as follows.
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Model Overall Spatial Foundation Spatial Perception Spatial Reasoning Spatial Interaction

Object Attribute Position Orientation Layout Comparison Proximity Occlusion Motion Causal

SD-3.5-L 54.0 52.4 72.0 44.7 52.0 62.7 25.4 61.3 27.4 69.4 72.6
+ Rewriting 56.3 53.6 73.5 49.4 52.4 65.0 27.7 65.5 27.6 72.8 75.7

OmniGen2 56.4 51.5 73.6 55.9 55.5 65.4 26.0 64.2 27.3 72.0 72.6
+ Rewriting 58.5 53.8 75.6 60.1 55.5 68.4 30.5 63.8 27.7 75.0 75.0

UniWorld-V1 54.2 46.8 71.3 50.1 53.1 64.0 26.1 62.0 26.8 69.6 72.4
+ Rewriting 55.9 47.6 72.1 53.8 53.4 66.0 29.1 64.8 26.9 71.5 73.8
Qwen-Image 60.6 61.0 77.2 55.6 56.7 69.7 28.6 67.7 30.8 78.1 80.2
+ Rewriting 61.7 62.8 80.8 57.6 56.4 70.2 29.7 68.6 30.4 79.0 81.1

Table 11: Quantitative results of recent T2I models based on prompt rewriting.

Meta Instruction of Prompt Rewriting to Improve Spatial Intelligence

[Task Description]
You are an expert Text-to-Image prompt rewriter. You will receive a long, information-dense
text-to-image prompt designed to evaluate the spatial intelligence of generative models.
Your task is to rewrite this prompt to accurately and clearly describe its contents, attributes,
spatial perception, spatial reasoning, and spatial interaction. The ultimate goal is to make
the rewritten prompt suitable for downstream text-to-image generation.

[Input Data]
A JSON input containing the following 6 keys:
{id: ###id###, scene: ###scene###, prompt: ###prompt###, question type: ###question
type###, question: ###questions###, ground-truth answers: ###answers###}

[Instructions]
Step 1: Analyze Input: Carefully examine all keys in the input JSON, especially the prompt,
questions, and ground-truth answers.
Step 2: Deconstruct the Scene: Systematically go through each of the 10 question-answer
pairs. Each answer provides a non-negotiable fact about the scene’s final state (e.g., what
objects exist, their attributes, exact positions, layout, relative sizes, occlusion state, and the
result of any interactions).
Step 3: Synthesize the Rewritten Prompt: Construct a clear prompt by integrating all 10
facts you confirmed in the previous step. Start with the foundational elements and layer in
the perceptual, reasoning, and interactional details.
Step 4: Review your rewritten prompt to ensure it is a single, clear paragraph.

[Output Format]
Please ONLY output your response in a valid JSON format as follows.
{id: ###id###, scene: ###scene###, question type: ###question type###, original prompt:
###prompt###, rewrite prompt: ###rewrite prompt###}

A.7 IMPACT OF PROMPT REWRITING TO IMPROVE SPATIAL INTELLIGENCE

To explore other solutions to improve the spatial intelligence of T2I models, we explore another
potential method: prompt rewriting. We instruct Gemini 2.5 Pro (Comanici et al., 2025) to rewrite
the original prompts with the specific goal of making our defined 10 spatial dimensions more ex-
plicit and unambiguous. These enhanced prompts are then sent to the text-to-image models (across
diffusion-based, autoregressive-based, and unified-based) for evaluation. The results in Table 11
show that prompt rewriting is a viable strategy for improving model performance. The detailed
breakdown reveals three key insights:

• Enhanced prompt decomposition is a valuable path for T2I models. The results show that all mod-
els benefit from rewriting, confirming that a model’s core ability to deconstruct complex prompts
is a critical bottleneck. Notably, the improvement is more pronounced for models that initially
struggle with text reasoning (e.g., SD-3.5-L shows a +2.3% gain), suggesting that improving this
native capability is a promising research direction.

• Rewriting achieves greater gains on explicit spatial relationships. Rewriting proves highly effec-
tive at resolving textual ambiguity in categories like Position, Comparison, and Layout. This leads
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to substantial score increases (e.g., +4.5% in Comparison for OmniGen2, +4.7% in Position for
SD-3.5-L), demonstrating its ability to clarify relational instructions.

• Minimal impact on implicit visual reasoning. Conversely, rewriting offers little benefit for com-
plex visual reasoning tasks like Occlusion and Orientation. This indicates the failure stems not
from text comprehension, but from a core lack of 3D and physical reasoning in the generator.
Such challenges require solutions beyond prompt engineering, such as specialized fine-tuning or
unified-based design for joint optimization.

A.8 THE USE OF LLMS

This work utilizes several multimodal large language models (Comanici et al., 2025; OpenAI, 2024a;
Bai et al., 2025) for benchmark construction, SFT data construction, and improving paper writing.
We transparently document their roles, and our rationale for choosing them is as follows.

• Gemini 2.5 Pro (Comanici et al., 2025). We leverage Gemini 2.5 Pro for the initial data generation
phase of SpatialGenEval and prompt rewriting for improvement, including (1) information-dense
prompt generation, (2) omni-dimensional QA pairs generation, and (3) prompt rewriting to search
for enhanced text understanding for generation. In preliminary comparisons against other MLLMs
such as GPT-4o (OpenAI, 2024a), Qwen2.5-VL-72B (Bai et al., 2025), DeepSeek-V3 (DeepSeek-
AI Team. et al., 2025), and Gemini-1.5-Pro (Gemini Team. et al., 2024), our human evaluations
find that Gemini 2.5 Pro demonstrates a superior creative capability for generating novel, com-
plex, and diverse content from scratch. This observation aligns well with the recent performance
comparisons of MLLMs (OpenCompass, 2023).

• Qwen2.5-VL-72B (Bai et al., 2025). We employ Qwen2.5-VL-72B as the primary evaluator
(judge), which is renowned for its strong open-source multimodal understanding capabilities. This
choice ensures the long-term reproducibility of our evaluation results and validates our findings
independently of closed-source APIs.

• GPT-4o (OpenAI, 2024a). GPT-4o serves two critical roles in our pipeline: (1) acting as the
secondary closed-source evaluator (judge) for our benchmark, and (2) performing the prompt
rewriting for the SpatialT2I dataset. We select it due to its widespread adoption, consistently
stable multimodal understanding, and superior inference speed, which are crucial for our large-
scale evaluation and data refinement tasks.

A.9 DISCUSSION

A.9.1 DISCUSSION ABOUT THE CHOICE OF GEMINI 2.5 PRO TO CREATE T2I PROMPTS

The choice of Gemini 2.5 Pro stems from its strong creative ability (less repetition than others across
50 prompts within the same scene). Specifically, the construction of SpatialGenEval benchmark
concentrates on two abilities as follows.

• Strong instruction following ability: As stated in Section 2.3, the prompt generation process must
strictly follow the instructions to generate each text-to-image prompt based on a given scene (e.g.,
classroom) while seamlessly integrating all 10 pre-defined spatial sub-domains.

• Strong creative ability (less repetition): As stated in Appendix A.4, we instruct the model to
generate 50 distinct text-to-image prompts all at once. This requires a strong creative ability to
avoid generating repetitive outputs.

During the implementation, we conducted a controlled experiment where we instructed three top-
performing MLLMs (Gemini 2.5 Pro, GPT-4o, and Qwen2.5-VL-72B) for prompt generation. We
found that all three models demonstrate strong instruction following ability, but Gemini 2.5 Pro
outperformed the others in terms of creative ability. This observation stems from: (1) consistent
decision from all five human annotators, and (2) Gemini 2.5 Pro shows lower average sentence
similarity (Reimers & Gurevych, 2019) across all text-to-image prompts within the same scene, i.e.,
Gemini 2.5 Pro (0.4938) < GPT-4o (0.5125) < Qwen2.5-VL-72B (0.5548).
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Model Spatial Foundation Spatial Perception Spatial Reasoning Spatial Interaction Overall

No Image Input 7.3 19.2 13.5 28.1 16.9
Random Choice 19.7 19.7 19.8 20.0 19.8
Qwen-Image 69.1 60.7 42.4 79.2 60.6

Table 12: Analysis of the potential visual bias from MLLM predictions.

A.9.2 DISCUSSION ABOUT THE POTENTIAL BIAS FROM MLLM PREDICTIONS

To mitigate the potential biases from model predictions (e.g., which favors reliance on implicit world
knowledge to answer, or other aesthetic and stylistic preferences), our evaluation protocol is robust
with three safeguards.

• No external knowledge instruction. The MLLM is explicitly instructed: DO NOT use any external
resources like world knowledge. This discourages guessing based on prior knowledge.

• Refuse to answer (add another “E: None” option). The inclusion of the “E: None option” is
crucial. If the image does not provide the necessary visual evidence to answer the question, the
evaluator is instructed to select "E: None", preventing forced-choice guessing.

• Majority voting. We employ a 5-round voting mechanism, where a response is only considered
correct if the ground-truth answer is selected in at least 4 of the 5 rounds. This enhances evaluation
stability and reduces the impact of random inference.

• Questions are designed to be aesthetic-agnostic. The task of MLLM evaluator is to perform
direct Visual Question Answering (VQA) based on factual spatial correctness (e.g., “How are the
children arranged around the storyteller?”). The questions have no aesthetic or stylistic preference.

Finally, to empirically validate that our questions are visually grounded, we conduct a new ablation
study: evaluating the questions without any image input. The results in Table 12 show that the
overall accuracy drops to 16.9%, lower than the random guess accuracy of 19.8%. These results
indicate that although the model may exhibit some slight biases (e.g., 28.1% vs. 20.0% in Spatial
Interaction), their impact remains minimal. This result also strongly indicates that without visual
context, the model cannot deduce the correct answers and often correctly refuses to answer (by
selecting “E: None”, which is marked as an incorrect answer since the ground truth is A-D).

A.9.3 DISCUSSION ABOUT THE RELIANCE OF MLLM FOR EVALUATION.

Although current MLLMs remain working on handling highly complex spatial reasoning (Liu et al.,
2023; Chen et al., 2024a; Zhang et al., 2024), we would like to clarify that current leading MLLMs
are suitable and capable in evaluating the questions in our SpatialGenEval benchmark, based on
three key aspects:

• Design philosophy: The primary burden of spatial intelligence of our SpatialGenEval lies in the
generative T2I model, not the VLM evaluator. The T2I model must integrate the long, information-
dense prompt to create an image with all defined spatial relationships. In contrast, the MLLM’s
task is simplified to simple visual checks based on the direct visual evidence. This design choice
decouples the complex reasoning required for generation from the simpler verification required
for evaluation.

• Problem difficulty: Unlike benchmarks designed to push the boundaries of MLLM spatial un-
derstanding, SpatialGenEval focuses on evaluating generative task and consists of simpler QAs.
Unlike recent spatial intelligence benchmarks such as VSI-Bench (Yang et al., 2025a), MMSI-
Bench (Yang et al., 2025b), and Space-10 (Gong et al., 2025), which target understanding task
and focus on more abstract or complex long-range reasoning (e.g., estimating real-world distances
or path planning), SpatialGenEval is targeted to generative task and concentrates on evaluating
more simpler visual relationships like relative position, layout, occlusion, and interaction. These
tasks can be verified directly from the image’s visual content, making them more suitable for
current MLLMs.

• Human alignment: Current leading MLLMs align well with human evaluation in our Spatial-
GenEval. Our human alignment study in the Section 3 provides direct numerical validation that
current MLLMs are capable of handling our designed questions. The results reveal an exception-
ally high correlation between the MLLM and human evaluations.
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A.10 LIMITATIONS

While our work establishes a new benchmark for evaluating spatial intelligence, we acknowledge
two limitations. (1) Scale concern: The construction of SpatialGenEval relies on a semi-automated,
human-in-the-loop pipeline. While this ensures high data quality, the process is labor-intensive and
presents challenges for scaling the benchmark to an even larger size or to new domains. (2) Scope
expansion concern: Our hierarchical framework of 10 spatial sub-domains, while comprehensive,
is an abstraction of the near-infinite complexity of real-world spatial phenomena. More nuanced
or dynamic spatial effects (Chen et al., 2024d; Chang, 2025), such as fluid dynamics, complex
deformations, or multi-agent predictive interactions, are worth future exploration.

A.11 FUTURE WORK

Our work encourages a shift from evaluating simple fidelity to complex compositional logic and
opens several avenues for future research. (1) Dataset-level extension: Our key principles of
information-dense prompts and omni-dimensional evaluation can be extended to other generative
capabilities, such as stylistic control, textual rendering, and world knowledge. Extending this frame-
work to text-to-video is also a crucial step for assessing spatio-temporal reasoning. (2) Object-
level extension: Leveraging information-dense settings by increasing object number is a promis-
ing approach to improve fine-grained perception and generation (Li et al., 2025; Chatterjee et al.,
2024). (3) Post-training strategies: Beyond simple fine-tuning, SpatialT2I enables exploring more
advanced data-centric strategies. This includes curriculum learning (from simple to complex spatial
tasks (Croitoru et al., 2025)) and reinforcement learning (Wang et al., 2025; Liu et al., 2025; Chu
et al., 2025) from MLLM feedback to further boost model performance.

A.12 BROADER IMPACT

(1) Creative tools: Improving spatial intelligence can lead to more useful tools for artists, architects,
and designers by enabling precise control over object placement and scene layout. (2) Embodied AI:
Models with a stronger grasp of spatial relationships are a crucial step towards advancing AI agents
for robotics and embodied intelligence (Duan et al., 2022), which must understand and interact with
the physical world.
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Figure 8: Samples of generated results from all selected 25 scenes in SpatialGenEval.
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Figure 9: Illustration depicting the human annotation interface, where the experts are presented with
the prompt and corresponding question-answer pairs for final refinement.
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S1: Spatial Foundation: Object
Q1: Besides a woman, trees, and birds, what 
other major natural features are mentioned as 
being part of the landscape? 
A: A mountain and a river
B: A forest and a lake
C: A desert and a moon
D: A valley and clouds        E: None

S2: Spatial Foundation: Attribution
Q2: What are the described attributes of the woman's hair and the 
trees? 
A: Blonde hair, leafy trees        B: Dark hair, bare trees
C: Red hair, tall trees                D: Dark hair, green trees            
E: None

S3: Spatial Position
Q3: Where are the two bare trees located within 
the landscape inside the silhouette? 
A: On the right side, on the mountain
B: In the center, near the birds
C: On the left side, in a river
D: On the right side, in a river
E: None

S5: Spatial Layout
Q5: How are the five birds arranged in the sky? 
A: In a straight line     B: In a scattered group
C: In a V formation     D: In a circle        E: None

S4: Spatial Orientation
Q4: What is the facing orientation of the woman 
in the portrait? 
A: She is facing forward, looking at the viewer
B: She is in profile, facing right
C: Her back is to the viewer
D: She is in profile, facing left        E: None

S10: Spatial Motion Causal Interaction
Q10: According to the scene, what is the direct 
cause of the trees' sharp shadows?
A: The darkness of the woman's hair
B: The reflection from the river
C: The bright sunlight
D: The mountain blocking the light        
E: None

S7: Spatial Proximity
Q7: What is the spatial relationship between the 
two trees and the river? 
A: The trees are standing next to the river
B: The trees are far away from the river
C: The trees are standing in the river
D: The trees are on a bridge over the river
E: None

S6: Spatial Comparison
Q6: How do the two bare trees compare in height? 
A: The left tree is taller  
B: They are the same height
C: The right one is taller
D: Their heights are not mentioned     E: None

S9: Spatial Motion Interaction
Q9: What is the direction of the birds' flight in relation to the 
landscape?
A: They are flying away from the mountain
B: They are flying toward the mountain
C: They are flying toward the trees
D: They are flying in a circle above the river
E: None

S8: Spatial Occlusion
Q8: Which object is partially obscuring the sun?
A: The trees
B: The woman's silhouette
C: The birds
D: The large mountain
E: None

Prompt: A double exposure portrait features a woman with dark hair in profile, facing left. Her 
silhouette is filled with a landscape: on the right, the sun peeks over a large mountain. On the 
left, two bare trees stand in a river, the right one taller. Five birds fly toward the mountain in a 
V formation, and bright sunlight casts sharp shadows of the trees.

Figure 10: A data sample from the SpatialGenEval benchmark, where the generated image is chal-
lenged by 10 question-answer pairs across 4 key dimensions: Spatial Foundation (S1, S2), Spatial
Perception (S3-S5), Spatial Reasoning (S6-S8), and Spatial Interaction (S9, S10). The generated
images are from 12 top-performing T2I models from top-left to bottom-right, i.e., Qwen-Image (Wu
et al., 2025a), GPT-4o (OpenAI, 2024b), Flux.1-krea (Black Forest Labs, 2024), Infinity Han et al.
(2025), Bagel (Deng et al., 2025), Flux.1-dev (Black Forest Labs, 2024), OmniGen2 (Wu et al.,
2025b), NextStep-1 (NextStep Team et al., 2025), DALL-E-3 (Ramesh et al., 2021), SD-3-M (Rom-
bach et al., 2022), UniWorld-V1 (Lin et al., 2025), SD-3.5-L (Rombach et al., 2022).
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