
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

usepackagexcolor
ROBUST DECENTRALIZED VFL
OVER DYNAMIC DEVICE ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust collaborative learning on a network of edge devices, for vertically split
datasets, is challenging because edge devices may fail due to environment condi-
tions or events such as extreme weather. The current Vertical Federated learning
(VFL) approaches assume a centralized learning setup or assume the active party
or server cannot fail. To address these limitations, we first formalize the problem of
VFL under dynamic network conditions such as faults (named DN-VFL). Then, we
develop a novel DN-VFL method called Multiple Aggregation with Gossip Rounds
and Simulated Faults (MAGS) that synthesizes faults via dropout, replication, and
gossiping to improve robustness significantly over baselines. We also theoreti-
cally analyze our proposed approaches to explain why they enhance robustness.
Extensive empirical results validate that MAGS is robust across a range of fault
rates—including extreme fault rates—compared to prior VFL approaches.

1 INTRODUCTION

Collaborative cross-device learning and inference on IoT or edge devices present unique challenges
not encountered in cross-silo setups (Yuan et al., 2023), such as limited power resources, device
unreliability, and the absence of a centralized server. Particularly, when the application requires
devices to collaborate in predicting a global feature of the environment, these challenges become
critical. For example, deploying a network of sensors for intelligent monitoring in harsh environments
(e.g., deep sea sensors, underground mines, or remote rural areas) involves devices that may fail due to
power constraints or extreme weather conditions. Additionally, internet connectivity may be limited or
non-existent, and no single device can be considered a perfectly reliable central server. Yet, in safety-
critical applications such as search and rescue in underground mines, this intelligent device network
needs to continue operating even under near catastrophic faults (e.g., 50% of devices fail). Therefore,
in this work, we seek to answer the following: Can we develop a cross-device collaborative method
that maintains strong performance at test time even under near-catastrophic faults in the
decentralized setting?

Vertical Federated Learning (VFL) (Liu et al., 2024) emerges as a natural solution for tasks requiring
device collaboration at inference time. In VFL, clients share the same set of samples but have
different features. In our environmental monitoring example, the samples correspond to unique
timestamps, and the features correspond to sensor data from each device—each providing a partial
view of the global environment. Previous research in VFL has explored aspects of fault tolerance and
decentralized learning, primarily focusing on the training phase. For instance, studies have addressed
asynchronous communication to handle device failures during training (Chen et al., 2020; Zhang
et al., 2021; Li et al., 2020; 2023). An exception is the work by Sun et al. (2023), who proposed
Party-wise Dropout to mitigate inference-time faults caused by passive parties (clients) dropping off
unexpectedly, but they assumed that the active party (server) remains fault-free. Other works have
focused on communication efficiency in decentralized VFL (Valdeira et al., 2023). However, to the
best of our knowledge, no prior work simultaneously addresses decentralized learning and arbitrary
faults—including the active party or server—during inference. This gap, as summarized in Table 1,
motivates our research.

1Even though Sun et al. (2023) did not explicitly consider client faults during training, the method from Sun
et al. (2023) could handle training faults by treating them like Party-wise Dropout as discussed in Section 3.1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Our MAGS method considers the cross-device decentralized VFL setting where faults can
occur in both clients and the active party or server, unlike the existing literature in decentralized or
fault-tolerant VFL.

Context Decentralized Faults During Fault Types
Training Inference Client Active Party/Server

STCD(Valdeira et al., 2023) Cross-silo ✓ ✗ ✗ ✗ ✗
VAFL(Chen et al., 2020) Cross-silo ✗ ✓ ✗ ✓ ✗
Straggler VFL(Li et al., 2023) Cross-silo ✗ ✓ ✗ ✓ ✗
Party-wise dropout (Sun et al., 2023) Cross-silo ✗ ✓1 ✓ ✓ ✗
MAGS (ours) Cross-device ✓ ✓ ✓ ✓ ✓

To address these challenges holistically, we first formalize this problem setup and then propose a
solution, Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS). We also define
our context, including, data assumption, network model, and a measure of performance in this context
called Dynamic Risk. A comparison of context presented in this work with vanilla VFL is captured
in Figure 1. MAGS significantly improves robustness by integrating three interconnected methods
that build upon and complement each other. First, during training, we simulate high fault rates via
dropout so that the model can be robust to more missing values at test time. Second, we replicate the
data aggregator to prevent catastrophic failure in case the active party (or server) goes down during
test time. Third, we introduce gossip rounds to implicitly ensemble the predictions from multiple data
aggregators, reducing the prediction variance across devices. Finally, we evaluate the effectiveness of
MAGS by conducting experiments using five datasets (StarCraftMNIST (Kulinski et al., 2023) in
the main paper and MNIST, CIFAR10, CIFAR100, Tiny ImageNet in the appendix) and different
network configurations. The results establish that MAGS is significantly more robust than prior
methods, often improving performance more than 20% over prior methods at high fault rates. We
summarize our contributions as follows:

• We formalize the problem of decentralized VFL under dynamic network conditions, called Dynamic
Network VFL (DN-VFL), and define Dynamic Risk, which measures performance under (extreme)
dynamic network conditions.

• We develop and analyze MAGS, that combines fault simulation, replication, and gossiping to
enable strong fault tolerance for DN-VFL.

• We demonstrate that MAGS is significantly more robust to dynamic network faults than prior
methods across multiple datasets, often improving performance more than 20% compared to prior
methods.

Clie
nt F

au
lt

Features

Sa
m
pl
es Server

!𝑦
1

1

2 Server

Fault

Cl
ie

nt
 2

Client 1

Cl
ie

nt
 4

Client 3

1

2

(a) VFL

Client 1

!𝑦!!

!𝑦!

!𝑦!"

Client 4 Client 3

Communica
tio

n

Fa
ult

Client Fault

3

1)SVFL server and
comm mapping mnot
right
2)Latent reps not
shown in serverless
VFL
3)IN VFI some are
looking as horizontal

3

Client 1
!𝑦!"

!𝑦!#

!𝑦!$

!𝑦!%
Client 4

Client 2

Client 3

3

1

1

(b) Decentralized VFL

Figure 1: Vanilla VFL (Figure 1a) assumes samples are split across clients with a central server. The
data context in our study is the same as VFL where the features are split across clients. However, in
our case, no centralized server node is assumed, and clients serve as data aggregators (Figure 1b).
Our goal is to obtain robust test time performance even under highly dynamic networks such as
client/device faults (1⃝), server faults (2⃝) and communication faults (3⃝).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.1 RELATED WORKS

Network Dynamic Resilient FL In VFL, network dynamics has mostly been studied during the
training phase for asynchronous client participation Chen et al. (2020); Zhang et al. (2021); Li et al.
(2020; 2023). Research on VFL network dynamics during inference is limited. Ceballos et al. (2020)
noted performance drops due to random client failures during testing, and Sun et al. (2023) studied
passive parties dropping off randomly during inference and proposed Party-wise Dropout (PD). Thus,
prior dynamic network resilient VFL methods have majorly focused on train-time faults and assumed
a special node (server or active party) that is immune to failure. As VFL differs significantly from
the horizontal FL (HFL) setting (Yang et al., 2019), where clients share the same set of features
but have different samples, HFL methods for handling faults (e.g., adaptive aggregation of different
models Ruan et al. (2021)) are inapplicable in our scenario. Additionally, unlike HFL, where faults
only affect training, faults in VFL can disrupt both training and inference due to the need for client
communication during inference.

Decentralized FL Conventional FL uses a central server for aggregation. However, this approach
results in server being the single point of failure. To address such limitations, Decentralized FL has
been considered (Yuan et al., 2023). Unlike, the extensively studied HFL decentralized methods
(Tang et al. (2022); Lalitha et al. (2019); Feng et al. (2021); Gabrielli et al. (2023)), VFL decentralized
methods are limited. For the special case of simple linear models, He et al. (2018) proposed
decentralized algorithm COLA. For more general split-NN models, Valdeira et al. (2023) proposed
decentralized, STCD, and a semi-decentralized, MTCD, methods. Neither COLA nor STCD/MTCD
analyze network dynamics such as faults during inference time.

2 PROBLEM FORMULATION

We define a novel formulation, DN-VFL, which specifies both an operating context and the desired
properties of a learning system. The context is comprised of two entities: the data context and the
network context, which we define in the first subsection. The desired property of the system is
robustness under dynamic conditions, which we formally define via Dynamic Risk and corresponding
metrics in the next two subsections.

Notation Let (X ∈ X , Y ∈ Y) denote the random variables corresponding to the input features
and target, respectively, whose joint distribution is p(X,Y). With a slight abuse of notation, we
will use Y to denote one-hot encoded class labels and probability vectors (for predictions). Let
D = {(xi, yi)}ni=1 denote a training dataset of of n samples i.i.d. samples from p(X,Y) with d input
features xi and corresponding target yi. Let xS denote the subvector associated with the indices
in S ⊆ {1, 2, · · · , d}, e.g., if S = {1, 5, 8}, then xS = [x1, x5, x8]

T . For C clients, the dataset at
each client c ∈ {1, 2, · · · , C} will be denoted by Dc. Let G = (C, E) denote a network (or graph)
of clients, where C ⊆ {1, 2, · · · , C} ∪ {0} denotes the clients plus an entity (possibly an external
entity or one of the clients itself) that represents the device that collects the final prediction and has
the labels during training (further details in Section 2.2) and E denotes the communication edges.

2.1 DYNAMIC NETWORK VFL CONTEXT

Data and Network Context A partial features data context means that each client has access to
a subset of the features, i.e., Dc = {xi,Sc}ni=1, where Sc ⊂ {1, 2, · · · , d} for each client c. This
is the same data context as SplitVFL (Liu et al., 2022), a variant of VFL, which incorporates the
idea of split learning (Vepakomma et al., 2018), and jointly trains models at both server and clients.
Furthermore, in this study we assume that the features with each client is a partition of the feature set
of a sample and each client has disjoint set of features for each sample. However, we do allow for
scenarios where the clients can have features among one another that are correlated. For instance,
there can be two sensors that can have correlated features due to their physical proximity. Unlike
vanilla VFL, in DN-VFL we allow the clients to act as data aggregators and communicate with one
another. This leads to the realization of Decentralized VFL. Through the rest of the paper, the terms
clients and devices are used interchangeably.
Definition 1 (Dynamic Network Context). A dynamic network means that the communication graph
can change across time indexed by t, i.e., G(t) = (C(t), E(t)), where the changes over time can be
either deterministic or stochastic functions of t.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This dynamic network context includes many possible scenarios including various network topologies,
clients joining or leaving the network, and communication being limited or intermittent due to power
constraints or physical connection interference. We provide two concrete dynamic models where
there are device failures or communication failures. For simplicity, we will assume there is a base
network topology Gbase = (Cbase, Ebase) (e.g., complete graph, grid graph or preferential-attachment
graph), and we will assume a discrete-time version of a dynamic network where t ∈ {0, 1, 2, · · · },
which designates a synchronous communication round. Given this, we can formally define two
simple dynamic network models that encode random device and communication faults.

Definition 2 (Device Fault Dynamic Network). Given a fault rate r and a baseline topology Gbase, a
device fault dynamic network Gr(t) means that a client is in the network at time t with probability
1− r, i.e., Pr(c ∈ Cr(t)) = 1− r, ∀c ∈ Cbase and Er(t) = {(c, c′) ∈ Ebase : c, c′ ∈ Cr(t)}.
Definition 3 (Communication Fault Dynamic Network). Given a fault rate r and a baseline topology
Gbase, a communication fault dynamic network GCF

r (t) means that a communication edge (excluding
self-communication) is in the network at time t with probability 1 − r, i.e., CCF

r (t) = Cbase and
Pr((c, c′) ∈ ECF

r (t)) = 1− r, ∀(c, c′) ∈ Ebase where c ̸= c′.

As this work focuses on the foundations of Dynamic Network VFL, we only experimented with these
two dynamic network models. However, more complex dynamic models could be explored in the
future. For example, the networks could change smoothly over time (e.g., one connection being
removed or added at every time point). Or, a network could model a catastrophic event at a particular
time t′ followed by a slow recovery of the network as devices are reconnected or restarted. We leave
the investigation of more complex dynamic models to future work.

2.2 DN-VFL PROBLEM FORMULATION VIA DYNAMIC RISK

Given these context definitions, we now define the goal of DN-VFL in terms of the Dynamic Risk
which we define next. For now, we will assume the existence of a distributed inference algorithm
Ψ(x; θ,G(t)) : X → YC , where each client makes a prediction across the data-split network under
the dynamic conditions given by G(t). In section 3, we will propose a natural message passing
distributed inference algorithm that generalizes VFL. Furthermore, we will use a (possibly stochastic)
post-processing function h : YC → Y to model the final communication round between the clients
and another entity (which may be external or may be one of the clients), which owns the labels for
training and collects the final prediction during the test time. The h can model different scenarios
including where the entity has access to all or only a single client’s predictions. As an example,
the entity could represent a drone passing over a remote sensing network to gather predictions or a
physical connection to the devices at test time (e.g., when the sensors are ultra-low power and cannot
directly connect to the internet). Or, this entity could represent a power intensive connection via
satellite to some base station that would only activate when requested to save power.

Definition 4 (Dynamic Risk). Assuming the partial features data context (subsection 2.1) and
given a dynamic network G(t) (Definition 1), the Dynamic Risk is defined as: Rh(θ;G(t)) ≜
EX,Y,G(t),h[ℓh(Ψ(X; θ,G(t)), Y)] , where Ψ : X → YC is a distributed inference algorithm param-
eterized by θ that outputs one prediction for each client and ℓh(y, y) ≜ ℓ(h(y;G(T)), y) is a loss
function where h : YC → Y (which could be stochastic) post-processes the client-specific outputs to
create a single output based on the communication graph at the final inference time T , and ℓ could
be any standard loss function.

This risk modifies the usual risk by also taking an expectation w.r.t. the dynamic graph (which could
be stochastic over time) and a the client selection function h, which will be described more below.
We assume that the distributed inference algorithm produces a a prediction for every client and the h
function (stochastically) selects the final output (note how the composition is a normal prediction
function, i.e., h ◦Ψ : X → Y). We will use the term “system” or “network” instead of “model” as all
computation must be computed in a distributed manner. This means that the network’s parameters
θ are distributed across all clients. We also note that the model at each client could have different
parameters and even different architectures, unlike in HFL.

Now we will define the final processing function h which represents the communication to the
external entity. We consider two practical scenarios and two oracle methods that depend on how h
selects the final output of the distributed inference algorithm. These four methods for defining h will

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

represent Dynamic Risks under different scenarios and form the basis for the test metrics used in
the experiments. The output of the inference algorithm forms the basis on which the test accuracy
is computed. We first formally define an active set A of clients at the last communication round
as A(G(T)) ≜ {c : (0, c) ∈ E(T), c ∈ C(T)}, which means the devices that could communicate
to the special entity denoted by 0 at the last communication round (other devices are not able to
communicate their predictions).

Select Active Client One natural measure is to use the output of a randomly selected active client
and if there are no active clients then output the dummy marginal probability of Y (corresponding
to a catastrophic failure of all devices), i.e., Pr(hactive(ŷ) = ŷc | |A| > 0) = 1

|A| ,∀c ∈ A and
Pr(hactive(ŷ) = p(Y) | |A| = 0) = 1.

Select Oracle Best and Worst Active Client We now provide two bounds on selecting the best
and worst client in the active set (A). These are oracle functions because they require access to the
true label y. Intuitively, for oracle best, if any active client prediction is correct, we predict the correct
label. Similarly, for oracle worst, if any active client prediction is incorrect, we predict the wrong
label. The worst case lower bounds a single client prediction, i.e., the system’s accuracy even if the
worst client is selected every time. We can formally define these as:

hbest(ŷ) ≜

{
y, if y ∈ {argmaxj ŷc,j : c ∈ A}
y′, otherwise, where y′ ̸= y

and hworst(ŷ) ≜

{
y′, if ∃y′ ∈ A, y′ ̸= y

y, otherwise
.

Select Any Client Finally, a different case is the prediction if a device is chosen at random
from all devices both active and inactive. This models the case where the external entity queries
a specific device but does not know whether the device can communicate its output or not. If the
randomly selected device is not in the active set, then this h will give the dummy prediction of
p(Y). Formally, the select any client hany can be defined as Pr(hany(ŷ) = ŷc) =

1
C ,∀c ∈ A and

Pr(hany(ŷ) = p(Y)) = C−|A|
C .

3 MULTIPLE AGGREGATION WITH GOSSIP ROUNDS AND SIMULATED FAULTS
(MAGS)

Given the novel DN-VFL context, we now propose our message passing distributed inference
algorithm MAGS for DN-VFL and present the relevant theoretical insights. First, we extend and
discuss dropout methods for simulating faults during training to enhance the robustness of the
network with faults at test time. Second, we overcome the problem where VFL catastrophic fails
if the single aggregator node faults by enabling multiple clients to be data aggregators. Third, we
improve both the ML performance and decrease the variability of client-specific predictions by
using gossip rounds to average the final output across devices. We assume that the aggregator of
neighbor representations is simply concatenation and the network architecture are based on simple
multi-layer perceptrons (MLP), which is similar to vanilla VFL architectures. We summarize the
different proposed techniques and contrasts them with VFL in Figure 3 (in Appendix) and present the
MAGS inference algorithm in Algorithm 1.

Algorithm 1 MAGS Inference Algorithm

1: Input: Input features {xc}Cc=1, parameters {θ(t)c : ∀c, t}, and dynamic graph G(t) = (C(t), E(t))
2: z

(0)
c = f

(0)
c (xc; θ

(0)
c), ∀c ∈ C(0) {Process input at all clients}

3: z̃
(1)
k = g({z(0)

c′ : (k, c′) ∈ E(1)}), ∀k ∈ K ∩ C(1) {Aggregate messages from neighbors}
4: z

(1)
k = f

(1)
k

(
z̃
(1)
k ; θ

(1)
k

)
, ∀k ∈ K ∩ C(1) {Apply prediction function to aggregated output}

5: for t← 2, . . . , G+ 1 do {Gossip prediction probabilities to neighbors}
6: z

(t)
k = Avg({z(t−1)

k′ : (k, k′) ∈ E(t), k′ ∈ K ∩ C(t)}), ∀k ∈ K ∩ C(t)
7: end for
8: return {z(G+1)

k ∈ Y}k∈K {Return all aggregator-specific predictions}

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 DECENTRALIZED TRAINING OF MAGS WITH REAL AND SIMULATED FAULTS VIA
DROPOUT

To train MAGS, we use a standard VFL backpropagation algorithm without gossip rounds2., which
only requires two communication rounds: one for the forward pass and one for the backward pass. In
both passes, faults can be treated similarly to dropout, where missing values are imputed with zeros
(see appendix for more details). Our training algorithm assumes all devices have access to the labels,
which is similar to an assumption made in Castiglia et al. (2022) and is valid for our setup, involving
a trusted but unreliable device network, where robustness is our primary goal. While we aim for
robustness against severe, potentially catastrophic faults, we expect a relatively stable and reliable
device network during normal training, with a small fault rate (e.g., 1%-5%). However, training
solely with a low fault rate may leave the model vulnerable to higher fault rates during inference,
which can occur due to external factors like extreme weather. This presents a challenge, as large-scale
inference-time faults lead to missing values, causing a distribution shift between the training and test
data. Such shifts can severely degrade model performance, as noted by Koh et al. (2021).

A natural way to address this issue is to simulate inference-time faults during training using dropout.
Sun et al. (2023) introduced Party-wise Dropout (PD) for server-based VFL, simulating random client
failures during communication with the server. However, since DN-VFL operates in a decentralized
environment where clients communicate with each other, PD is insufficient. To model this decen-
tralized communication, we propose Communication-wise Dropout (CD), which applies dropout
to client-to-client communication instead of just client-to-server communication. PD simulates
device failures, while CD simulates communication failures. For further clarity, we provide detailed
comparisons between PD and CD configurations in the decentralized setting in the appendix.

To enhance model robustness, we introduce additional dropout beyond what occurs naturally from
real network faults, simulating higher fault rates during training. This approach is based on the
theoretical understanding of dropout’s regularizing effect, as discussed in the literature. Baldi &
Sadowski (2013) demonstrated that dropout can act as a regularizer during training. Mianjy &
Arora (2020) further showed that a model trained with dropout and tested without it can achieve
near-optimal test performance in O(1/ϵ) iterations. Their work also provides evidence that, in
over-parameterized models, dropout-regularized networks can generalize well even when dropout
is applied during testing—exactly what is needed in DN-VFL, where faults may occur during both
training and inference.

3.2 MULTIPLE AGGREGATORS IN DECENTRALIZED VFL (MVFL)

Because we are in the decentralized setting, a key problem in the conventional VFL setup is that there
is a single point of failure, i.e., the single server or data aggregator. Thus, the server going down
results in a catastrophic failure and a higher lower bound on Rh(θ;Gr(t)). Hence, to significantly
reduce this system-level failure, we propose the use of all clients as data aggregators to introduce
fault-tolerance via redundancy. We call this Multiple VFL (MVFL) for the decentralized VFL setup.
In Algorithm 1 lines 3 and 4 denote using multiple data aggregators. An MVFL setup can tolerate the
failure of any node and the probability of failure of all nodes is given by rC , which is very small if C
is large. However, having all nodes act as aggregators could increase the communication cost. Thus,
we develop K-MVFL as a low communication cost alternative to MVFL. In K-MVFL, we assume
there is a set of clients K ⊆ C that act as data aggregators. The number of aggregators (K ≜ |K|)
will generally be less than the total number of devices, resulting in lower communication cost than
MVFL. We now theoretically prove a bound on the risk that critically depends on the probability of
catastrophic failure, i.e., when there are no active aggregators |A| = 0.

Proposition 1. Given a device fault rate r, the number of data aggregators K ≤ C and the post-
processing function hactive, and assuming the risk of a predictor (data aggregator) with faults is
higher than that without faults, then the dynamic risk with faults is lower bounded by:

Rh(θ;Gr(t))︸ ︷︷ ︸
Risk with faults

≥ (1− rK) · Rh(θ;Gbase)︸ ︷︷ ︸
Risk without faults

+ rK︸︷︷︸
Pr(|A|=0)

· E[ℓ(Y, p(Y))]︸ ︷︷ ︸
Risk of random predictor

. (1)

2By training without gossip, the classifier head on each device is trained independently to maximize its
own performance so that its errors are uncorrelated with other devices when using gossiping as an ensembling
approach as discussed in Section 3.3

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof is in the appendix. As a simple application, suppose that the fault rate is very high at r = 0.3,
this would mean that with VFL 30% of the time the system would fail and the dynamic risk would
reduce to random guessing. However, with just four aggregators, the chance of failure reduces to
less than 1%. While having multiple aggregators addresses the fundamental problem of catastrophic
failures, each model is often insufficient given only one communication round especially for sparse
base graphs or high fault rates. Additionally, each device may have widely varying performance
characteristics due to its local neighborhood. Thus, further enhancements are needed for robustness
and stability.

3.3 GOSSIP LAYERS TO ENSEMBLE AGGREGATOR PREDICTIONS

While multiple data aggregators help avoid system-level failures, the performance of each data
aggregator may be poor due to faults, which could result in overall high dynamic risk even if
catastrophic failures are alleviated. Because gossip is not used during training, each of data aggregator
model is different because each will have access to different client representations due to the graph
topology and faults at test time (see “Active Worst” metric). Additionally, this variability between data
aggregators translates to inconsistent performance when viewed by an external entity as it depends on
which device is selected and the best device may differ for each inference query (see the difference
between “Active Worst” and “Active Best” metrics). Thus, we propose to use gossip layers to combine
predictions among data aggregators and in Algorithm 1, lines 5 and 6 denotes how it is accomplished
algorithmically. From one perspective, gossip implicitly produces an ensemble prediction at each
aggregator, which we prove always has better or equal dynamic risk. From another perspective,
gossiping will cause the aggregator predictions to converge to the same prediction—which means
that the system performance will be the same regardless of which device is selected.

To analyze the ML performance of gossip, we leverage the formalization of ensemble diversity related
to risk as developed in Wood et al. (2023). Wood et al. (2023) showed that ensemble diversity can
be conceptually viewed as another dimension to the bias-variance risk decomposition. In particular,
Wood et al. (2023) showed that the ensemble risk can be decomposed into individual risks minus
a diversity term (which will reduce the risk if positive). We leverage this theory to prove that the
dynamic risk of our ensemble is equal to the non-ensemble dynamic risk minus a diversity term—
which is always non-negative and positive if there is any diversity in prediction. This proposition
shows that gossiping at inference time, which implicitly creates ensembles, will almost always
improve the dynamic risk compared to not using gossip. (Proof is in appendix.)
Proposition 2. The dynamic risk of an ensemble over aggregators is equal to the non-ensemble risk
minus a non-negative diversity term:

Rens
h (θ;G(t)) = Rh(θ;G(t))︸ ︷︷ ︸

Non-ensemble risk

− Ex,G(t),h[
1
K

∑K
k=1 ℓh(Ψk(x; θ),Ψ

ens(x; θ))]︸ ︷︷ ︸
Diversity term (non-negative)

≤ Rh(θ;G(t)) ,

where Rens
h is the ensemble risk; Ψk is the k-th aggregator model; Ψens is the ensemble model where

Ψens
k (x; θ,G(t)) ≜ Z−1 exp(

∑K
k′=1 Ψk′(x; θ,G(t))),∀k ∈ K, where Z is the normalizing constant;

and where the notational dependence of Ψ on G(t) is suppressed and ℓh in the diversity term applies
h to both loss arguments with a slight abuse of notation.

To analyze output variability using gossip, we turn to gossip consensus results. We first introduce
some additional notation. Let A be the adjacency matrix of graph G = {C, E} and let V = D−1A
denote the consensus matrix where D is the degree matrix (note that V is row stochastic) and let λ
denote the largest eigenvalue of V − 11T

C , also known as the spectral radius. The result below proves
that with simple averagning the variability decreases exponentially with increasing gossip rounds
based on the spectral radius of the (faulted) graph.
Proposition 3. If simple averaging is used during gossip, the difference between the average output
over all devices, denoted ȳ, and the original output of the i-th device, denoted yi, after G gossip
rounds is bounded as follows: ∥ȳ − yi∥2 ≤ λG

√
Cmaxj,j′∈C ∥yj − yj′∥2,∀c ∈ C.

Proposition 3 follows as a special case of the proof in Lin et al. (2021). Thus, assuming the graph is
connected (i.e., λ < 1), the variability between aggregators shrinks to zero exponentially w.r.t. the
number of gossip rounds G based on the spectral radius λ. Intuitively, the spectral radius is small for
dense graphs and large for sparse graphs. As a consequence, test-time faults will make the spectral

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

radius increase. However, as long as the graph is still connected, this gossip protocol can significantly
reduce device variability even after only a few gossip rounds.

4 EXPERIMENTS

Datasets To cover a diversity of datasets, we test with MNIST, StarCraftMNIST (Kulinski et al.,
2023), CIFAR10, CIFAR100 and Tiny ImageNet. StarCraftMNIST (Kulinski et al., 2023) is a spatial
reasoning dataset constructed from replays of humans playing the StarCraft II real-time strategy game.
Due to space constraints, we only show results for StarCraftMNIST as it is specifically designed
to study tasks over a geospatial sensor network, which matches with the context described in the
use-cases (Section 1). To simulate a sensor network grid, we split the images into a grid of patches
and assign one client to each patch. We mainly present results using 16 clients in a 4x4 grid for
StarCraftMNIST. Additional results with different datasets and different numbers of devices can be
found in Appendix G.

Method Baseline methods are vanilla VFL and VFL with partywise dropout (PD-VFL) from
Sun et al. (2023). We then include various versions of our MAGS to show the importance of
each component to robust DN-VFL performance. Specifically, MVFL refers to using all clients as
aggregators. 4-MVFL refers to the low communication version of MVFL, where 4 was chosen based
on Proposition 1. The prefix of PD- or CD- refers to using party-wise or communication-wise dropout
during training. And the suffix of -Gg denotes that g gossip rounds were used. See Appendix for
specifics about model architecture and hyperparameters.

Baseline Communication Network We consider a diversity of graph types and levels of sparsity
including the dense complete graph, a grid graph, and a sparse ring graph. We also consider a random
geometric graph that generalizes the grid graph such that all devices within a specified distance are
connected. We assume a synchronous communication model as is standard in most FL and VFL
works (e.g., McMahan et al. (2017); Wang et al. (2022b); Crawshaw et al. (2024); Li et al. (2023);
Jiang et al. (2022)).

Fault Models We compute dynamic risk under both device faults and communication faults defined
in Definition 2 and Definition 3, respectively. We investigate a wide range of fault rates up to 50%
faults, which showcases the method’s performance under extreme fault scenarios. Here we present
results such that the faulted graph remains constant through duration of an inference. In appendix,
results are presented with temporally varying inference fault model.

Different Test Fault Rates and Patterns As seen in Figure 2, across multiple test fault rates, fault
types, and baseline networks, the performance of most approaches degrades significantly from about
80% to 30% while our proposed methods (PD-MVFL-G4 and CD-MVFL-G4) are relatively resilient
to the increasing fault percentage. By comparing MVFL to VFL, it appears that using multiple
data aggregators improves resilience to faults. This observation is in line with Proposition 1 and
substantiates the benefit of having multiple data aggregators to deal with DN-VFL. Furthermore,
dropout during training leads to improved resilience. MVFL models trained using PD or CD are
more robust than MVFL. Such result provides empirical evidence to support the claim that simulating
training fault via dropout is a valuable technique to handle inference faults.

The gossip variants of the proposed methods provide a performance boost when combined with PD
and CD variants across different fault rates. This underscores the importance of using gossiping as a
part of MAGS. The performance of CD/PD-4-MVFL-G2 in Figure 2, indicates that better robustness
to inference faults than VFL can be achieved at a much lower communication cost than that of MVFL.
In summary, the combined effect of having a decentralized setup, gossiping and dropout clearly
outperforms other methods. In the Appendix we present some more investigation (Ablation Study)
on number of gossip rounds and different dropout rates for CD and PD. In addition, an extended
version of Figure 2 can be found in the Appendix.

Communication and Performance Analysis To study the trade-off between communication
and accuracy, Table 2 presents the performance and approximated number of communication (#
Comm.) for different baseline networks. An extended version of Table 2 can be found in the
Appendix. Across varying level of graph sparseness, using a decentralized setup with gossiping
improves performance by at least 10 percent points and can be as high as 32 percent points when
compared to VFL. As expected, this significant improvement in performance comes at the cost of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

 (a) : Complete device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
MVFL
MVFL-G4
PD-VFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

 (b) : Complete communication

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
MVFL
MVFL-G4
CD-VFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

 (c) : Grid device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
MVFL
MVFL-G4
PD-VFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

 (d) : Grid communication

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
MVFL
MVFL-G4
CD-VFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

Figure 2: Test accuracy with and without communication (CD-) and party-wise (PD-) Dropout
method for StarCraftMNIST with 16 devices. Here we include models trained under an dropout rate
of 30% (marked by ’PD-’ or ’CD-’). All results are averaged over 16 runs, and the error bar represents
standard deviation. Across different configurations, MVFL-G4 trained with feature omissions has the
highest average performance, while vanilla VFL performance is not robust as fault rate increases. As
our experiments are repeated multiple times, what we report is the expectation (Avg) over the random
active client selection.

higher communication, which enables redundancy in the system. Nonetheless, from the results of
4-MVFL, it can be concluded that major improvement over VFL is achieved by just having 4 devices
acting as aggregators. Comparing the performance and communication cost of 4-MVFL and MVFL,
reveals an efficient trade-off between robustness and communication cost. The ideal setting for the
number of aggregators will depend on the context and the cost of a loss in performance. Furthermore,
4-MVFL with a poorly connected graph is still better than VFL with well connected graph, such
as 4-MVFL with RGG (r=1) versus VFL with Complete, where the number of communications are
similar in magnitude. This indicates that given a fixed communication budget, VFL may not be the
best solution despite its low communication cost. Additionally, we observed reduced impact from
gossip communication in sparser networks, implying that increased communication does not always
lead to improved performance in dynamic environments.

Table 2: Active Rand (Avg) performance at test time with 30% communication fault rate. Compared
to VFL, MVFL performs better but it comes at higher communication cost. Thus we propose 4-
MVFL, which is shown to be a low communication cost alternative to MVFL.

Complete RGG
r=2.5

RGG
r=2

RGG
r=1.5

RGG
r=1 Ring

Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm.
VFL 0.430 10.6 0.406 7.4 0.407 5.2 0.375 3.5 0.386 2.0 0.385 1.4
4-MVFL 0.591 42 0.572 29 0.555 20.4 0.517 14.8 0.488 7.98 0.485 5.6
4-MVFL-G2 0.687 126 0.661 87 0.623 61.2 0.566 44.8 0.491 23.94 0.484 16.8
MVFL 0.594 168.5 0.581 114.9 0.558 80.8 0.528 58.7 0.503 33.5 0.507 22.7
MVFL-G4 0.732 836.2 0.728 572.1 0.721 407.2 0.689 293.9 0.62 168.2 0.558 113.4

Best, Worst and Select Any Metrics To better understand our methods, particularly the gossip
aggregations, we show the results for all four metrics on 3 datasets for 50% communication fault
rate on a complete network in Table 3. In the Appendix, Table 3 also includes 30% communication
fault rate. The dropout rate during training for PD-VFL and the communication dropout rate for
CD-MVFL is the same at 30%. The trends support our theoretic analysis and support the idea that
gossip improves ML performance and reduces client variablity as seen by the gap between the Best
and Worst oracle metrics. Furthermore, the improved performance of communication-wise dropout
improves the performance of each client individually. This enables CD-MVFL-G4 to match or
significantly outperform all other approaches across the two fault rates. Finally, we note that the Any

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Rand metric is the hardest because some devices may fail to communicate and thus the prediction is
random.
Table 3: Best models for 50% complete-communication test fault rates within 1 standard deviation
are bolded. More detailed results with standard deviation are shown in the Appendix.

MNIST SCMNIST CIFAR10

Active Any Active Any Active Any

Worst Rand Best Rand Worst Rand Best Rand Worst Rand Best Rand

Test
Fault
Rate =
0.5

VFL nan 0.294 nan nan nan 0.258 nan nan nan 0.181 nan nan
PD-VFL nan 0.488 nan nan nan 0.424 nan nan nan 0.263 nan nan
4-MVFL-G2 0.564 0.612 0.721 0.423 0.466 0.519 0.620 0.368 0.251 0.303 0.387 0.228
MVFL 0.042 0.518 0.966 0.313 0.035 0.465 0.925 0.280 0.007 0.264 0.762 0.182
MVFL-G4 0.843 0.847 0.851 0.474 0.676 0.680 0.684 0.389 0.402 0.401 0.413 0.252
CD-4-MVFL-G2 0.863 0.852 0.923 0.581 0.693 0.691 0.763 0.482 0.392 0.422 0.499 0.305
CD-MVFL-G4 0.974 0.975 0.976 0.538 0.785 0.786 0.787 0.443 0.501 0.504 0.507 0.301

5 CONCLUSION AND DISCUSSION

In this paper, we carefully defined DN-VFL, proposed and theoretically analyzed MAGS as a method
for DN-VFL, developed a testbed, and evaluated and compared performance across various fault
models and datasets. Simulated faults via dropout increase the robustness of MAGS to distribution
shifts. Multiple VFL allows MAGS to avoid catastrophic faults since any device (including active
parties) can fail. Gossiping outputs at inference time implicitly ensembles the predictions for
neighboring devices that theoretically improves the robustness and reduces the variance. Our work
lays the foundation for DN-VFL, opening up many directions for future research, such as handling
heterogeneous devices or models, exploring new architectures, and considering different fault models.

Furthermore, we emphasize that our focus was on the machine learning aspects of decentralized
VFL robustness. Our level of analysis (e.g., communication cost and simple simulation of devices)
is comparable to that of many other studies in HFL (McMahan et al., 2017; Wang et al., 2022b;
Crawshaw et al., 2024) and VFL (Li et al., 2023; Castiglia et al., 2023; Jin et al., 2021; Jiang et al.,
2022). While we discuss some system-level aspects (communication bottlenecks and latency) in the
appendix, real-world deployment would require more detailed system-level research and represents
an important future direction. Additionally, we assume a synchronous communication model and
asynchronous models could be a natural extension for future systems in the DN-VFL context. Finally,
in the appendix, we compare MAGS to an alternative solution using the fault-tolerant consensus
algorithms like Paxos or Raft (Lamport, 2001; Ongaro & Ousterhout, 2014), showing that these are
insufficient for the DN-VFL context.

Another interesting topic to explore further is the impact of faults during training. As discussed in
the appendix, our method could handle faults in the backward propagation phase. However, a more
thorough analysis of backward faults—particularly when a high fault rate is expected during training—
remains an open issue beyond the scope of this work, where we focus on near-catastrophic faults at
inference. If very high fault rates were introduced during training, synchronized backpropagation
may break down. We hypothesize that fully synchronized backpropagation training may not be
ideal in such scenarios. Therefore, localized learning approaches could be beneficial. Methods
such as Forward-Forward algorithms (Hinton, 2022), dual propagation (Høier et al., 2023), and
other localized learning techniques (Detorakis et al., 2018; Movellan, 1991; Czarnecki et al., 2017;
Belilovsky et al., 2019; 2020) could be explored to enhance robustness during training. We leave a
more detailed investigation of training with extreme faults to future work. Finally, while we focused
on the robustness aspects, in practice, more advanced architectures such as CNN-based or transformer-
based could be leveraged for better absolute performance. We believe our MAGS techniques could
be easily adapted to different architectures and thus provide an orthogonal contribution compared to
architecture design.

REFERENCES

Khandaker Mamun Ahmed, Ahmed Imteaj, and M Hadi Amini. Federated deep learning for
heterogeneous edge computing. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 1146–1152. IEEE, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in neural information processing
systems, 26, 2013.

Paul Baran. On Distributed Communications: I. Introduction to Distributed Communications
Networks. RAND Corporation, Santa Monica, CA, 1964. doi: 10.7249/RM3420.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In International Conference on Machine Learning, pp. 736–745. PMLR, 2020.

Timothy Castiglia, Shiqiang Wang, and Stacy Patterson. Flexible vertical federated learning with
heterogeneous parties. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Timothy J Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. Compressed-vfl:
Communication-efficient learning with vertically partitioned data. In International Conference on
Machine Learning, pp. 2738–2766. PMLR, 2022.

Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth
Vepakomma, and Ramesh Raskar. Splitnn-driven vertical partitioning. arXiv preprint
arXiv:2008.04137, 2020.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous
federated learning. arXiv preprint arXiv:2007.06081, 2020.

Michael Crawshaw, Yajie Bao, and Mingrui Liu. Federated learning with client subsampling, data
heterogeneity, and unbounded smoothness: A new algorithm and lower bounds. Advances in
Neural Information Processing Systems, 36, 2024.

Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals, and
Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural interfaces. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 904–912. PMLR, 06–11
Aug 2017. URL https://proceedings.mlr.press/v70/czarnecki17a.html.

Georgios Detorakis, Travis Bartley, and Emre Neftci. Contrastive hebbian learning with random
feedback weights. CoRR, abs/1806.07406, 2018. URL http://arxiv.org/abs/1806.
07406.

Chaosheng Feng, Bin Liu, Keping Yu, Sotirios K Goudos, and Shaohua Wan. Blockchain-empowered
decentralized horizontal federated learning for 5g-enabled uavs. IEEE Transactions on Industrial
Informatics, 18(5):3582–3592, 2021.

Edoardo Gabrielli, Giovanni Pica, and Gabriele Tolomei. A survey on decentralized federated
learning. arXiv preprint arXiv:2308.04604, 2023.

Lie He, An Bian, and Martin Jaggi. Cola: Decentralized linear learning. Advances in Neural
Information Processing Systems, 31, 2018.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Rasmus Høier, D. Staudt, and Christopher Zach. Dual propagation: Accelerating contrastive hebbian
learning with dyadic neurons, 2023.

Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bolin Ding, Bo Du, Anwar Hithnawi, Bo Li, and
Ce Zhang. Vf-ps: How to select important participants in vertical federated learning, efficiently
and securely? Advances in Neural Information Processing Systems, 35:2088–2101, 2022.

Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe: Catastrophic data leakage
in vertical federated learning. Advances in Neural Information Processing Systems, 34:994–1006,
2021.

11

https://proceedings.mlr.press/v70/czarnecki17a.html
http://arxiv.org/abs/1806.07406
http://arxiv.org/abs/1806.07406

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning, pp.
5637–5664. PMLR, 2021.

Sean Kulinski, Nicholas R Waytowich, James Z Hare, and David I Inouye. Starcraftimage: A dataset
for prototyping spatial reasoning methods for multi-agent environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22004–22013, 2023.

Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-peer federated
learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001), pp. 51–58, 2001.

Ming Li, Yiwei Chen, Yiqin Wang, and Yu Pan. Efficient asynchronous vertical federated learning
via gradient prediction and double-end sparse compression. In 2020 16th international conference
on control, automation, robotics and vision (ICARCV), pp. 291–296. IEEE, 2020.

Songze Li, Duanyi Yao, and Jin Liu. Fedvs: Straggler-resilient and privacy-preserving vertical
federated learning for split models. arXiv preprint arXiv:2304.13407, 2023.

Frank Po-Chen Lin, Seyyedali Hosseinalipour, Sheikh Shams Azam, Christopher G Brinton, and
Nicolo Michelusi. Semi-decentralized federated learning with cooperative d2d local model
aggregations. IEEE Journal on Selected Areas in Communications, 39(12):3851–3869, 2021.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning. arXiv preprint arXiv:2211.12814, 2022.

Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin
Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. IEEE
Transactions on Knowledge and Data Engineering, 2024.

Xiaofeng Lu, Yuying Liao, Chao Liu, Pietro Lio, and Pan Hui. Heterogeneous model fusion federated
learning mechanism based on model mapping. IEEE Internet of Things Journal, 9(8):6058–6068,
2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Poorya Mianjy and Raman Arora. On convergence and generalization of dropout training. Advances
in Neural Information Processing Systems, 33:21151–21161, 2020.

Javier R. Movellan. Contrastive hebbian learning in the continuous hopfield model. In David S.
Touretzky, Jeffrey L. Elman, Terrence J. Sejnowski, and Geoffrey E. Hinton (eds.), Connec-
tionist Models, pp. 10–17. Morgan Kaufmann, 1991. ISBN 978-1-4832-1448-1. doi: https:
//doi.org/10.1016/B978-1-4832-1448-1.50007-X. URL https://www.sciencedirect.
com/science/article/pii/B978148321448150007X.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In 2014
USENIX annual technical conference (USENIX ATC 14), pp. 305–319, 2014.

Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong. Towards flexible device partici-
pation in federated learning. In International Conference on Artificial Intelligence and Statistics,
pp. 3403–3411. PMLR, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Yumeng Shao, Jun Li, Long Shi, Kang Wei, Ming Ding, Qianmu Li, Zengxiang Li, Wen Chen, and Shi
Jin. Robust model aggregation for heterogeneous federated learning: Analysis and optimizations.
arXiv preprint arXiv:2405.06993, 2024.

12

https://www.sciencedirect.com/science/article/pii/B978148321448150007X
https://www.sciencedirect.com/science/article/pii/B978148321448150007X

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jingwei Sun, Zhixu Du, Anna Dai, Saleh Baghersalimi, Alireza Amirshahi, David Atienza, and Yiran
Chen. Robust and ip-protecting vertical federated learning against unexpected quitting of parties.
arXiv preprint arXiv:2303.18178, 2023.

Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. Gossipfl: A decentralized federated learning
framework with sparsified and adaptive communication. IEEE Transactions on Parallel and
Distributed Systems, 34(3):909–922, 2022.

Linh Tran, Sanjay Chari, Md Saikat Islam Khan, Aaron Zachariah, Stacy Patterson, and Oshani
Seneviratne. A differentially private blockchain-based approach for vertical federated learning. In
2024 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS),
pp. 86–92. IEEE, 2024.

Pedro Valdeira, Yuejie Chi, Cláudia Soares, and João Xavier. A multi-token coordinate descent
method for semi-decentralized vertical federated learning. arXiv preprint arXiv:2309.09977, 2023.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Lun Wang, Yang Xu, Hongli Xu, Min Chen, and Liusheng Huang. Accelerating decentralized
federated learning in heterogeneous edge computing. IEEE Transactions on Mobile Computing,
22(9):5001–5016, 2022a.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. In
International Conference on Machine Learning, pp. 22802–22838. PMLR, 2022b.

Danny Wood, Tingting Mu, Andrew M Webb, Henry WJ Reeve, Mikel Lujan, and Gavin Brown. A
unified theory of diversity in ensemble learning. Journal of Machine Learning Research, 24(359):
1–49, 2023.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Liangqi Yuan, Lichao Sun, Philip S Yu, and Ziran Wang. Decentralized federated learning: A survey
and perspective. arXiv preprint arXiv:2306.01603, 2023.

Qingsong Zhang, Bin Gu, Cheng Deng, and Heng Huang. Secure bilevel asynchronous vertical
federated learning with backward updating. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 10896–10904, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Illustration of Methods and Faults 14

A.1 Illustration of MAGS Proposed Techniques . 14
A.2 Device and Communication Fault Visualization 14
A.3 Party-wise Dropout and Communication-wise Dropout MVFL 14

B Proofs 15
B.1 Proof of Proposition 1 . 15
B.2 Proof of Proposition 2 . 18

C Handling Backward Pass for Training with Faults 18

D Deep MVFL 18

E Further Discussion and Limitations 19

F Experiment Details 21
F.1 Datasets . 21
F.2 Graph construction . 22
F.3 Training . 22
F.4 Handling Faults at Test Time . 23

G Additional Experiments 23
G.1 Partywise Dropout (PD) and Communication wise Dropout (CD) rates 24
G.2 Evaluation for a temporal fault model . 25
G.3 Results with Cifar100 and Tiny ImageNet . 26
G.4 Ablation Studies . 26
G.5 Exploration of Test Fault Rates and Patterns 31
G.6 Extension of Communication and Performance Analysis 31
G.7 Best, Worst and Select Any Metrics . 32
G.8 Evaluation for different number of devices/clients 32

A ILLUSTRATION OF METHODS AND FAULTS

A.1 ILLUSTRATION OF MAGS PROPOSED TECHNIQUES

In Figure 3 we provide a visual representation of the techniques used in MAGS. Furthermore, we
provide a representation of VFL in Figure 3 and show how each of the techniques build upon the
VFL setup.

A.2 DEVICE AND COMMUNICATION FAULT VISUALIZATION

We show in Figure 4 the visual representation of communication and device fault under the MVFL
method. Although, we present the scenario for only one method, by extension the visualization is
similar for VFL, DMVFL and the gossip variants.

A.3 PARTY-WISE DROPOUT AND COMMUNICATION-WISE DROPOUT MVFL

In Section 3 of the main paper, we presented the Party-wise and communication-wise Dropout method
for MVFL. In Figure 5 we represent CD-MVFL and PD-MVFL for a group of 3 devices.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D1 D2

D1

y1

x1 x2

L1

L2

L3

(a) VFL

D1 D2

D1 D2

y1 y2

x2x1

(b) MVFL

y2y1

D1 D2

D1 D2

x2x1

D1 D2

Y1,L Y2,L

Y1,L + Y2,L Y1,L + Y2,L

(c) MVFL-G

y2y1

D1 D2

D1 D2

x2x1

D1 D2

Y1,L Y2,L

Y1,L + Y2,L Y1,L + Y2,L

D1 Latent Rep
D2 Latent Rep
Feature omission

(Training)

(d) CD-MVFL-G

Figure 3: VFL and the proposed enhancements are illustrated for a network of two fully connected
devices, D1 and D2. (a)VFL setup with D1 acting as a client as well as an aggregator. The input to
the devices at the first layer L1 are x1 and x2 and output are the latent representations. The input
to the server on the second layer L2 is the concatenated latent representation and the output is the
prediction y1 (b) MVFL arrangement has both the devices acting as data aggregators aside from
being clients. (c) MVFL-G is an extension of MVFL wherein the output log probabilities (Yi,L) from
each device are averaged before being used for final prediction. (d) CD-MVFL-G is a variant of
MVFL-G where during the training phase, representation from D2 to D1 is not communicated by
design. CD-MVFL-G is the method that we propose for DN-VFL

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

(a) MVFL

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

X

(b) MVFL-Communication
Fault

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

D1 Latent Rep.
D2 Latent Rep.
D3 Latent Rep.
Zero imputation.
SN: No Com. fault

X SN: Com. fault

X

(c) MVFL-Device Fault

Figure 4: Illustration of communication and device faults for a 3 device network for the MVFL
method. (a) Fully connected MVFL setup. The check mark indicates that there is no fault in the
final communication between device and special node (SN) as defined in Section 3 of the main paper
(b) Representation with communication faults. In this example communication from D1 to D2 and
D2 to D3 is faulted. To account for the missing values, we do zero imputation. X indicates that the
communication between D3 and SN is faulted. Hence, the output at SN will be a class selected with
uniform probability among all the classes (c) In device faults, the faulted device do not communicate
with any other devices and missing values are accounted for by zero imputation. In this example, D2
is assumed to be faulted, hence the information from D2 is not passed to D1 or D3 and it does not
produce an output. The output at SN for D2 will be a class selected with uniform probability among
all the classes

B PROOFS

B.1 PROOF OF PROPOSITION 1

Before we prove the proposition, we will prove the following lemma about the conditional probability
of a client being selected given a known active set size.

Lemma 4 (Conditional Client Selection Probability). The conditional probability of selecting each
data aggregator k ∈ K ∪ {∅} (aggregators plus the possible fake aggregator k = ∅) given a current

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

(a) MVFL

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

(b) PD-MVFL

D1

D1

y1

D2

D2

y2

x2x1

D3

D3

y3

x3

D1 Latent Rep.
D2 Latent Rep.
D3 Latent Rep.
Zero imputation.

(c) CD-MVFL

Figure 5: Illustration of Party wise and Communication wise dropout for a 3 device network for the
MVFL method. (a) Fully connected MVFL setup. (b) For Party wise Dropout (PD), during training
if D3 is dropped then none of the devices gets representations from D3 and the missing values are
imputed by zeros. (c) In communication wise Dropout (CD) certain representations are omitted
during training. In this example representations from from D2 to D1 and D1 to D3 are omitted by
design during the training.

active set size |A| is as follows:

p(S = k
∣∣ |A|) =

1
K , if |A| > 0 and k ∈ {1, . . . ,K}
1, if |A| = 0 and k = ∅
0, otherwise

. (2)

Proof of Lemma 4. Let S denote the final selected index. Let Ak denote whether k is in the active
set (assuming device or communication fault models). First, we derive the probability of selection for
a specific active set size b. We notice that p(S = ∅

∣∣ |A| = 0) = 1 (i.e., the fake client is selected if
there are no active real clients) and p(S = ∅

∣∣ |A| > 0) = 0 (i.e., the fake client is never selected if
there is at least one active client. Similarly, p(S = k

∣∣ |A| = 0) = 0,∀c because there are no active
clients. The last remaining case is when |A| > 0 and b ̸= ∅, i.e., p(S = b

∣∣ |A| > 0),∀b ̸= ∅, which
we derive as 1

K below:

p(S = k
∣∣ |A| = b) (3)

=

1∑
a=0

p(S = k,Ak = a
∣∣ |A| = b) (4)

=

1∑
a=0

p(Ak = a
∣∣ |A| = b)p(S = k

∣∣Ak = a, |A| = b) (5)

= p(Ak = 1
∣∣ |A| = b)p(S = k

∣∣Ak = 1, |A| = b) + p(Ak = 0
∣∣ |A| = b)p(S = k

∣∣Ak = 0, |A| = b)
(6)

= p(Ak = 1
∣∣ |A| = b)p(S = k

∣∣Ak = 1, |A| = b) + p(Ak = 0
∣∣ |A| = b) · 0 (7)

= p(Ak = 1
∣∣ |A| = b)p(S = k

∣∣Ak = 1, |A| = b) (8)

=

(
b

K

)(
1

b

)
(9)

=
1

K
. (10)

where equation 4 is by marginalization of joint distribution, equation 7 is by noticing that if the device
is not active, then it will not be selected, and equation 9 is by the uniform distribution for Select
Active h and by noticing that

p(Ak = 1
∣∣ |A| = b) =

Num. subsets of size b with c in them
Num. subsets of size b

=

(
K−1
b−1

)(
K
b

) =
K

b
(11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where the numerator can be thought of as finding all possible subsets of size b− 1 from K − 1 clients
(where client c has been removed) and then adding client c to get a subset of size b.

Putting this altogether we arrive at the following result for the probability of selection given various
sizes of the active set:

p(S = k
∣∣ |A|) =

1
K , if |A| > 0, c ∈ {1, . . . ,K}
1, if |A = 0, c = ∅
0, otherwise

(12)

Given this lemma, we now give the proof of the proposition.

Proof of Proposition 1. Let S ∈ {∅, 1, 2, . . . ,K} denote a random variable that is the index of the
final client prediction selected based on h, where ∅ denotes a fake client that represents the case
where a non-active client is selected (which could happen in Select Any Client h or if no clients
are active for Select Active Client h). The output of this fake client is equivalent to the marginal
probability of Y since the external client would know nothing about the input and would be as good
as random guessing. Furthermore, let ΨS denote the S-th client’s prediction. Given this notation, we
can expand the risk in terms of S instead of h:
Rh(θ;G(t)) (13)
= Ex,y,G(t),h[ℓh(Ψ(x; θ,G(t)), y)] (14)

= ES [Ex,y,G(t)|S [ℓ(ΨS(x; θ,G(t)), y)]] (15)

= Pr(S ̸= ∅)Ex,y,G(t)|S ̸=∅[ℓ(ΨS(x; θ,G(t)), y)] + Pr(S = ∅)Ex,y,G(t)|S=∅[ℓ(ΨS(x; θ,G(t)), y)]
(16)

= Pr(S ̸= ∅)Ex,y,G(t)|S ̸=∅[ℓ(ΨS(x; θ,G(t)), y)] + Pr(S = ∅)R(θ;Gempty) (17)

= (1− rK)Ex,y,G(t)|S ̸=∅[ℓ(ΨS(x; θ,G(t)), y)] + rKR(θ;Gempty) (18)

(19)
where the last term is by noticing that the probability of the fake one being chosen is equivalent to
|A| = 0 and thus all devices fail which would have a probability of rK . We now decompose the
second term in terms of clean risk:

Ex,y,G(t)|S ̸=∅[ℓ(ΨS(x; θ,G(t)), y)] (20)

= ES|S ̸=∅[Ex,y,G(t)|S [ℓ(ΨS(x; θ,G(t)), y)]] (21)

= ES|∥A∥>0[Ex,y,G(t)|S [ℓ(ΨS(x; θ,G(t)), y)]] (22)

=
∑
k

p(S = k|∥A∥ > 0)Ex,y,G(t)|S [ℓ(ΨS(x; θ,G(t)), y)] (23)

=
∑
k

1

K
Ex,y,G(t)|S [ℓ(ΨS(x; θ,G(t)), y)] (24)

=
∑
k

1

K
Rhk

(θ;G(t)) (25)

≥
∑
k

1

K
Rhk

(θ;Gclean) (26)

=
∑
k

1

K
Rhk

(θ;Gclean) (27)

= Rh(θ;Gclean) , (28)
where equation 24 is by Lemma 4, the inequality is due to our assumption that risk on a faulty graph
is less than the risk on a clean graph, and the last line is by definition of the clean risk where h is
hactive. Combining the results, we have the final result:

Rh(θ;G(t)) = (1− rK)Rh(θ;Gclean) + rKR(θ;Gempty) . (29)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.2 PROOF OF PROPOSITION 2

Proof. We first note that using a geometric average of probabilities (implemented using log prob-
abilities for stability) satisfies the conditions in the Generalised Ambiguity Decomposition Wood
et al. (2023, Proposition 3) for the ensemble combiner. (Similarly, if the problem was regression,
we could use the squared loss with an arithmetic mean ensemble combiner for gossip.) As a re-
minder, let Ψk denote the models that output probabilities of each class and let the ensemble model
be denoted as Ψens where Ψens

k (x; θ,G(t)) ≜ Z−1 exp(
∑K

k′=1 Ψk′(x; θ,G(t))),∀k ∈ K, where
Z is the normalizing constant to ensure the final output is a probability vector. Furthermore, let
Ψh(x; θ,G(t)) ≜ h(Ψ(x; θ,G(t)),G(T)), i.e., it is merely the postprocessing of the original Ψ
function with h. This allows us to interchange the h between the loss function and a modified Ψ,
i.e., ℓh(Ψ(x; θ,G(t)), y) = ℓ(Ψh(x; θ,G(t)), y). Similarly, with a slight abuse of notation, if Ψ is on
both sides of the loss function, we will apply h to both inputs before passing to the loss function, i.e.,
ℓh(Ψ1(x; θ,G(t)),Ψ2(x; θ,G(t))) = ℓ(Ψh,1(x; θ,G(t)),Ψh,2(x; θ,G(t))). Given this, assuming
that h = hactive, we can decompose the risk as follows:
Rens

h (θ;G(t)) (30)
= Ex,y,G(t),h[ℓh(Ψ

ens(x; θ,G(t)), y)] (31)

= Ex,y,G(t),h[ℓ(Ψ
ens
h (x; θ,G(t)), y)] (32)

= Ex,y,G(t),h[
1
K

∑K
k=1 ℓ(Ψh,k(x; θ,G(t)), y)− 1

K

∑K
k=1 ℓ(Ψh,k(x; θ,G(t)),Ψens

h (x; θ,G(t)))]
(33)

= Ex,y,G(t),h[
1
K

∑K
k=1 ℓh(Ψk(x; θ,G(t)), y)− 1

K

∑K
k=1 ℓh(Ψk(x; θ,G(t)),Ψens(x; θ,G(t)))]

(34)

= Rh(θ;G(t))− Ex,G(t),h[
1
K

∑K
k=1 ℓh(Ψk(x; θ,G(t)),Ψens(x; θ,G(t)))] (35)

≤ Rh(θ;G(t)) . (36)
where the first equals is by definition, the second is by pushing the h function into Ψ so that we
have the raw loss function ℓ, the third equals is by Wood et al. (2023, Proposition 3), the fourth is
by pulling the h function back out into the loss function with a slight abuse of notation where the
RHS term the h function is applied to both arguments before passing to the original loss function, the
fifth is by noticing that the non-ensemble risk is equal to the average risk of each aggregator-specific
model, and the last inequality is by noticing that hte loss function is always non-negative.

C HANDLING BACKWARD PASS FOR TRAINING WITH FAULTS

In the forward pass, faulted messages can be merely treated as dropout. We discuss handling of faults
in the backward pass in the next paragraphs.

In the backward pass, the gradients of the classifier head are computed locally on each client,
unaffected by faults. However, calculating the gradients for the feature encoders requires an additional
communication round to send gradients back to each client, as in standard VFL. Only the gradients
for non-faulted or non-dropped messages need to be sent, as dropped messages are treated as zeros in
the forward pass. Faulty gradient messages can similarly be imputed with zeros as in forward pass
dropout since a dropped forward message is functionally equivalent to a dropped gradient message
from the perspective of the feature encoder.

In practice, we assume that the gradient communication round will typically succeed, as we expect
the device network to be stable during normal operation. This assumption is reasonable for training,
given that the fault pattern is unlikely to change significantly over the short time required to process a
batch of data, provided there are no catastrophic events like extreme weather disruptions. Note that
the fault pattern may vary between batches, but it only needs to remain stable for two communication
rounds per batch.

D DEEP MVFL

In Section 3 of the main paper, we presented a few innovations that introduces redundancy in the
system. Extending the MVFL setup, we propose another variant, Deep MVFL (DMVFL), which

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D1 D2

D1

y1

x1 x2

L1

L2

L3

(a) VFL

D1 D2

D1 D2

y1 y2

x2x1

(b) MVFL

y1 y2

D1 D2

D1 D2

x2x1

D1 D2

(c) DMVFL

y2y1

D1 D2

D1 D2

x2x1

D1 D2

Y1,L Y2,L

Y1,L + Y2,L Y1,L + Y2,L

(d) MVFL-G
Figure 6: VFL as a baseline and the proposed innovations are illustrated for a network of two
fully connected devices, D1 and D2. (a)VFL setup with D1 acting as a client as well as the
aggregating server. The input to the devices at the first layer L1 are x1 and x2 and output are the
latent representations. The input to the server on the second layer L2 is the concatenated latent
representation and the output is the prediction y1 (b) MVFL arrangement has both the devices acting
as servers aside from being clients. (c) DMVFL has a similar arrangement as MVFL, expect that there
is an additional layer of processing, L3, that has the concatenated features from the previous layer
as an input and the output are the predictions. (d) MVFL-G is an extension of MVFL wherein the
output log probabilities (Yi,L) from each device are averaged before being used for final prediction.

stacks MVFL models on top of each other and necessitates multiple rounds of communication between
devices for each input. We believe that multiple communication rounds and deeper processing could
lead to more robustness on dynamic networks. Comparing Figure 6 (b) and (c), the setup is same
till L2 but in DMVFL, there is an additional round of communication in L3 following which the
predictions are made. In Figure 6 (c) we have illustrated DMVFL with just one additional round of
communication over MVFL and hence the depth of DMVFL is 1. Nonetheless, the depth in DMVFL
need not be restricted to 1 and is a hyperparameter. Furthermore, to guarantee a fair comparison
between DMVFL and MVFL, it was ensured that the number of parameters for both these setups be
the same.

In DMVFL the redundancy is over depth, However, based on our experiments we did not observe a
significant performance gain and hence did not present it in the main paper.

E FURTHER DISCUSSION AND LIMITATIONS

Designing for Extreme Fault Rates We argue that designing for extreme fault rates of 50% is a
valid approach even if 50% fault rates are not common in current edge networks. We provide at least
two main arguments below.

First, our problem setup is inspired by other robust methods that continue to operate in very poor
conditions even if these extreme conditions differs from the average case. For example, the fault-
tolerant distribute consensus algorithm Paxos (Lamport, 2001) is safe even with arbitrarily bad failures.
However, in practice, Paxos may be used even when the failure rate is very low. Similarly, internet
protocols were designed to operate even under arbitrary network faults (known as “survivability” in
early packet switching papers (Baran, 1964)) even though the average case has a small fault rate.
Thus, even if 50% fault rate is uncommon, it is important to design systems that will operate even
under the uncommon events.

Second, we expect that 50% fault rate is reasonable in three scenarios: harsh environmental conditions,
cheap and unreliable sensors, and rare disaster-like events. In harsh environments like deep-sea or
remote wilderness regions, a fault rate of 50% might be reasonable, especially over a long period of
time. Similarly, if one uses a large number of very cheap but unreliable sensors, the use case of 50%
fault rate could be quite reasonable. Finally, we expect that a 50% fault rate could be reasonable in
disaster scenarios such as floods or hurricanes where conditions are significantly worse than normal.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Privacy: In our work we did not focus on privacy since we assumed a trusted , though unreliable
network of devices. Privacy is a natural question in untrusted networks. Some work on VFL privacy
using homeomorphic encryption or blockcahin-based approach (Li et al. (2023); Tran et al. (2024))
could be extended to our framework as well. We want to say that our contribution is orthogonal and
complementary to advancements in VFL privacy.

Simplified Comparison of VFL and MAGS in Terms of Latency, Throughput, and Power:
We first compare our MAGS method to standard VFL using simplified models of computation and
communication and discuss more practical considerations in the next section. Specifically, let C1, C2

and M denote the maximum time for each device to compute its features, compute a prediction given
messages, and exchange messages, respectively. For VFL, the latency would be C1 +M + C2. For
MAGS, the latency would be C1 +M + C2 +G ·M , where G is the number of gossip rounds. If
there is no gossip, then MAGS is equivalent to VFL latency. However, as shown in our results, gossip
increases the robustness by about 3%-4% compared to no gossiping. Thus, gossip produces a small
tradeoff between robustness and latency.

When analyzing throughput, we assume that each device can handle a batch size of B samples for
both encoding and prediction. The only difference for throughput between VFL vs MAGS is that
MAGS performs extra gossip rounds. We expect these gossip rounds to have negligible impact on
throughput as they are only exchanging logit values.

For power, we make the simplifying assumption that power is directly proportional to the number of
messages sent by each device. Thus, to analyze average power usage, we point to Table 2 that shows
the communication costs of various methods. Here again, we see a tradeoff between using full MVFL
or using k-MVFL with and without gossip. The best in terms of robustness is full MVFL with gossip
rounds but the power consumption would be high. In practice, our method provides different ways to
adjust the communication depending on the desired robustness versus power tradeoff. On the other
hand, standard VFL has no way of adjusting the communication cost other than simply randomly
dropping communications, which may significantly hinder the performance.

Systems-Level Aspects for Real-World Deployment: While our paper focuses on the ML
challenge of robustness and thus we use simplified assumptions common in the the VFL literature
(Li et al., 2023; Castiglia et al., 2023; Jin et al., 2021; Jiang et al., 2022). Nonetheless, practical
real-world deployment would likely require analyzing and optimizing for systems-level concerns.
While these systems-level aspects for deployment on real networked devices are out of scope for this
current ML-focused paper, we discuss some of these aspects for completeness.

• Device heterogeneity: Although we assume that all devices have similar capabilities and
can thus serve as aggregators, in practice, the devices may have high heterogeneity where
some have much higher capacity for computation and communication. A natural extension
of our work is to optimize the tradeoff between performance and latency or power as done
in Shao et al. (2024); Wang et al. (2022a). Additionally, with heterogeneous devices, more
careful design of different model sizes depending on each device’s memory capacity could
be explored as inLu et al. (2021); Ahmed et al. (2021).

• Bandwidth: The experiments in the main paper were simulated with unlimited bandwidth,
i.e., no communication bottlenecks. However, it is a salient practical consideration. It may
not be possible to perform an all-to-all broadcast over a real wireless network even if all
devices have links between them. Instead, devices may need to randomly choose a subset
of neighbors to send their messages to. Thankfully, however, MAGS is inherently robust
to message losses so devices could choose how often to communicate based on bandwidth
or power considerations. Additionally, for real-world deployment, it would be crucial to
use careful compression and coding techniques and bandwidth-aware communication to
develop variants of MAGS that can accommodate communication bottlenecks.

• Latency: While we assume a simplified view of latency in our paper, in practice, some
devices will complete their computations faster and there will be some straggler devices.
In practice, setting the appropriate cutoff waiting time for messages (i.e., treating delayed
messages as faulted) would allow the system to optimize the trade-off between performance
and other metrics like latency and power. Again, MAGS can naturally handle this because a
delayed message can simply be treated as a faulted message. Additionally, in the future, a
natural extension of our work is to develop asynchronous or semi-synchronous variants of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

MAGS like Chen et al. (2020); Li et al. (2020), which allow asynchronous updates in the
vanilla VFL setting.

Alternative Approach using Fault-Tolerant Consensus Algorithms Instead of direct replication
via MVFL, one alternative fault-tolerant approach would be to first run a fault-tolerant consensus
algorithm such as Paxos (Lamport, 2001) or Raft (Ongaro & Ousterhout, 2014) and then run standard
VFL inference with the elected leader. This could reduce the communication load during distributed
inference but would reduce the robustness or increase latency compared to MAGS. For example,
Paxos may fail or wait indefinitely for extreme fault rates near 50%.

Additionally, Paxos would increase the latency as consensus would need to be arrived before contin-
uing. On the other hand, MAGS would provide an answer (perhaps degraded but that is expected)
with the same latency no matter the percentage of faults even for more extreme faults beyond 50%.
Secondly, we point out that accuracy performance with MAGS actually benefits between 2-3%
because of the ensembling of multiple devices’ predictions. For example, on the grid graph in Figure
2c in the main paper, there is a 2-3% gap between PD-MVFL (which would roughly correspond to
PD+Paxos) compared to PD-MVFL-G4 (which has gossip and produces an ensembling effect).

While distributed algorithms such as Paxos and Raft (Lamport, 2001; Ongaro & Ousterhout, 2014) are
useful to generate consensus in a system that encounters fault, they do not enable representations that
are robust to faults, which is essential for achieving good performance. Thus, they cannot be naively
applied for addressing DN-VFL and more carefully constructed method like MAGS is required.

Distributed Inference Algorithm’s Resemblance to GNNs: The form of our distributed inference
algorithm in the main paper has a superficial resemblance of the computation of graph neural networks
(GNN) (Scarselli et al., 2008) but with important semantic and syntactic differences. Semantically,
unlike GNN applications whose goal is to predict global, node, or edge properties based on the graph
edges, our goal is to do prediction well given any arbitrary edge structure. Indeed, the edges in
our dynamic network are assumed to be independent of the input and task—rather they are simply
constraints based on the network context of the system. Syntactically, our inference algorithm differs
from mainstream convolutional GNNs because convolutional GNNs share the parameters across
clients (i.e., θ(t)c = θ(t)) whereas in our algorithm the parameters at each client are not shared
across clients (i.e., θ(t)c ̸= θ

(t)
c′). Additionally, most GNNs assume the aggregation function g is

permutation equivariant such as a sum, product or maximum function. However, we assume g could
be any aggregation function. Finally, this definition incorporates the last processing function h that
represents the final communication round to an external entity (Main Paper Section 3).

F EXPERIMENT DETAILS

F.1 DATASETS

For the experiments presented in this paper, following are the datasets that were used:

StarCraftMNIST(SCMNIST): Contains a total of 70,000 28x28 grayscale images in 10 classes.
The data set has 60,000 training and 10,000 testing images. For experiments, all the testing images
were used, 48,000 training images were used for training and 12,000 training images were used for
validation study.

MNIST: Contains a total of 70,000 28x28 grayscale images in 10 classes. The data set has 60,000
training and 10,000 testing images. For experiments, all the testing images were used, 48,000 training
images were used for training and 12,000 training images were used for validation study.

CIFAR-10: Contains a total of 60,000 32x32 color images in 10 classes, with each class having 6000
images. The data set has 50,000 training and 10,000 testing images. For experiments, all the testing
images were used, 40,000 training images were used for training and 10,000 training images were
used for validation study.

CIFAR-100: Contains a total of 60,000 32x32 color images across 100 classes, with each class
having 600 images. The dataset is split into 50,000 training images and 10,000 testing images. For
experiments, all the testing images were used, while 40,000 training images were used for training
and 10,000 training images were reserved for validation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Tiny ImageNet: Tiny ImageNet consists of 200 classes, each containing 500 64x64 color images for
training, 50 images for validation, and 50 images for testing. The dataset includes a total of 100,000
training images, 10,000 validation images, and 10,000 test images. For experiments, all test images
were used, and a portion of the training set could be reserved for validation purposes.

F.2 GRAPH CONSTRUCTION

In the main paper as well as in the Appendix the terms client and devices are used interchangeably.
In Section 4 of the main paper, four different graphs were introduced: Complete,Ring, Random
Geometric and Grid. To elaborate how these graphs are constructed for a set of 16 clients, we take an
example of an image from each of the three datasets and split it up into 16 sections, as illustrated in
Figure 7.

For a Complete graph, all the devices are connected to the server. For instance, if D1 is selected as the
server, then all the other devices Di for i = 2, 3, . . . , 16 are connected to D1. To construct Grid graph,
we use compute a Distance parameter. For Grid graph, distance returns true if a selected device lies
horizontally or vertically adjacent to a server and only under this circumstance it is connected to the
server otherwise it is not. For example, in Figure 7, if D3 is selected as the server, then D2, D4 and
D7 are the only devices connected to D3. Another example will be, if D13 is selected as the server,
then D9 and D14 are the only ones connected to the server.

The Ring graph is connected by joining all the devices in a sequential order of increasing indices with
the last device connected to the first. In our example it will be constructed by joining, D1 with D2,
then D2 with D3 and so on and so forth with D16 connected back to D1. Finally, Random Geometric
Graph is constructed by connecting a device to all other devices that fall within a certain radius (r)
parameter. Hence a lower value of r denotes a device is connected to less devices compared to a
larger value of r.

Irrespective of the base graph, Grid or Complete, when training or testing faults are applied to the
selected base graph, during implementation it is assumed that the graph with incorporated faults stays
constant for one entire batch and then the graph is reevaluated for the next batch. In our experiments,
the batch-size is taken to be 64.

Furthermore, in Figure 8 we highlight a few examples, to illustrate with MNIST images, why in
some cases it is easy to distinguish between images based on partial information and while in other
situations, it is not. Thus, device connectivity plays a crucial role in enabling classification tasks.

D1 D2 D3

D16D15

D9

D13

(a) MNIST

D1 D2 D3

D16D15

D9

D13

(b) StarCraftMNIST(SCMNIST)

D1 D2 D3

D16D15

D9

D13

(c) CIFAR-10

Figure 7: (a)MNIST, (b)SCMNIST, (c)CIFAR-10 Image split into 16 sections. Each section is
assigned to a device/client.Di denotes a device/client

F.3 TRAINING

For all of our experiments, we train the model for 100 epochs and we always report the result using
the model checkpoint with lowest validation loss. We use a batch size of 64 and Adam optimizer with
learning rate 0.001 and (β1, β2) = (0.9, 0.999). All experiments are repeated using seed 1,2,. . . ,16.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) 1 (b) 9 (c) 4 (d) 2

Figure 8: Based on limited information, some images are easy to distinguish from one another, others
are not. For instance, based on the information from just bottom half of the devices, it is hard to
distinguish between (a) and (b) while differentiating between images (c) and (d) is achievable just
based in the bottom half of devices.

For all experiments, we use concatenation as the message passing algorithm where missing values
were imputed using zeros (equivalent to dropout).

For 16 devices with all datasets, each device in VFL and MVFL has a model with the following struc-
ture: Linear(49,16),ReLU,Linear(16,4),ReLU,MP,Linear(64,64),ReLU,Linear(64,10)
where MP means message passing. For 4 devices with all datasets, each
device in VFL and MVFL has a model with the following structure:
Linear(196,64),ReLU,Linear(64,16),ReLU,MP,Linear(64,64),ReLU,Linear(64,10).
For 49 devices with all datasets, each device in VFL and MVFL has a model with the following struc-
ture: Linear(16,4),ReLU,Linear(4,2),ReLU,MP,Linear(98,98),ReLU,Linear(98,10).

For 16 devices with all datasets, each device in DMVFL has a model with the following structure:
Linear(49,16),ReLU,Linear(16,4),ReLU,MP,DeepLayer,Linear(64,10). For
4 devices with all datasets, each device in DMVFL has a model with the following structure:
Linear(196,64),ReLU,Linear(16,4),ReLU,MP,DeepLayer,Linear(64,10).
For 49 devices with all datasets, each device in DMVFL has a model with the following struc-
ture: Linear(16,4),ReLU,Linear(16,4),ReLU,MP,DeepLayer,Linear(98,10).
DeepLayer are composed of a sequence of MultiLinear(64,16) based on depth and
MultiLinear(x)=Mean(ReLU(Linear(64,16)(x)),...,ReLU(Linear(64,16)(x))).
Here we use multiple perceptrons at each layer to make sure the number of parameters between
MVFL and DMVFL. For example, for 16 devices and a depth of 2, we use 16/2 = 8 perceptrons at
each layer.

All experiments are performed on a NVIDIA RTX A5000 GPU.

F.4 HANDLING FAULTS AT TEST TIME

During inference, if a communication or device faults, we impute the missing values with zeros for
all methods. Future work could look into other missing value imputation methods that are more
effective for the given context.

G ADDITIONAL EXPERIMENTS

In this section we present some more results from different experiments that we conducted. Like the
results in the main paper, we present the Rand test metric over the active set. As we have multiple
replicates of an experiment, we take an expectation over the collected Rand metric and this has an
averaging effect. Thus, the y axis in the plots of the Appendix are labelled as Test Avg, which is
equivalent to Test Active Rand y axis label used in the main paper and these two ways to refer to the
metric are used interchangeably.

Furthermore, in our experiments we were initially using gossip both during inference and training.
However, we realised that gossip during inference alone is a better approach. Thus, the results in the
main paper are presented using gossip only during inference. On the other hand, the experiments

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

presented in the Appendix use gossip both during inference and training, unless explicitly stated
otherwise.

(a) VFL

(b) MVFL

(c) MVFL-G4

Figure 9: Test average accuracy with different dropout rates for MNIST with 16 devices. Across
different configurations,training with dropout makes the model robust against test time faults

G.1 PARTYWISE DROPOUT (PD) AND COMMUNICATION WISE DROPOUT (CD) RATES

In the main paper we presented results with assuming a Dropout rate of 30% for the PD and CD
variants. Here we present the effect of different dropout rates on the test time performance under
communication and device faulting regime. Figures 9, 10 and 11 show the results for three datasets,
MNIST, SCMNIST and CIFAR-10, respectively. Irrespective of communication or device fault
scenario, training VFL with an omission rate results in Party wise Dropout. Whereas, for MVFL
when studying communication fault having an omission rate results in CD-MVFL model while
studying device fault results in PD-MVFL model.

Across the different sets and models it is observed that using CD and PD variants results in improving
the performance during test time faults. Furthermore, on observing Figures 9, 10 and 11 (c), it
seems that gossiping has a profound impact on the model performance even if the omission rates are

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) VFL

(b) MVFL

(c) MVFL-G4

Figure 10: Test average accuracy with different dropout rates for SCMNIST with 16 devices. Across
different configurations,training with dropout makes the model robust against test time faults

100% , which means that each device is training it’s own local model independently. However, by
doing gossip during the testing time, devices are able to reach a consensus that gives the model a
performance boost, even during high Dropout rates.

G.2 EVALUATION FOR A TEMPORAL FAULT MODEL

In Figure 19 we show results with a temporal communication fault model on a complete connected
graph. CD- models are trained under a dropout rate of 30%. The temporal fault model uses Markov
process to simulate the transition of links or edges in the network between connected and faulty states
based on probabilistic rules defined by a transition matrix. The transition matrix is such that when
fault rate = 0, the probability of staying in non-faulted state is 1. However for other fault rates, the
transition matrix is: [[p, 1-p],[q , 1-q]], where r is the fault rate, q = (1-p)(1-r)/r, and p is fixed at 0.9.
p denotes the probability of staying in non-faulted state and q depicts the probability of going from
faulted to non-faulted state. Even on a temporally varying graph, MAGS outperforms other baselines.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) VFL

(b) MVFL

(c) MVFL-G4

Figure 11: Test average accuracy with different dropout rates for CIFAR10 with 16 devices. Across
different configurations,training with dropout makes the model robust against test time faults

G.3 RESULTS WITH CIFAR100 AND TINY IMAGENET

In Figure 20 we present results with Cifar100 and Tiny ImageNet for a complete graph with com-
munication faults. The trends observed in Figure 20(a) and (b) are similar to what was observed in
Figure 2 of the main paper. MVFL and its variants perform better than VFL. The overall performance
for Cifar100 and Tiny ImageNet is not comparable to the state of the art classification results as in our
experiments we are using only 2 linear layers for classification as in our other experiments to avoid
excessive computation. More advanced architectures would be needed to achieve strong classification
results. However, our goal is not to compare architectures but to compare the robustness of various
approaches. Thus, these results corroborate the findings and trends in our original paper.

G.4 ABLATION STUDIES

Choice of number of Aggregators: As an initial investigation, we studied the performance of
MVFL with different numbers of aggregators for the 16 device grid, complete communication and
random geometric graph with a 2.5 radius(r) setting with a 30% communication fault rate during

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) MNIST

(b) SCMNIST

(c) CIFAR-10

Figure 12: MVFL: Effect of different rounds of Gossip on average performance when evaluated with
test time faults for 16 devices

inference. The number of aggregators could be 1 (Standard VFL), 2, 4, 16 (Original MVFL). If the
number of aggregators is less than 16, then they were chosen at random with uniform probability.
From the Tables 4 to 6 presented below, we see that the major improvement over VFL is achieved
by just having 4 devices acting as aggregators. Thus, a major performance boost over VFL can be
achieved at a minimal increase in communication cost, and shows that it is not necessary to have all
the devices act as aggregators and incur large communication overhead. Following this result, one
can infer that gossip variants of setup with few number of data aggregators than MVFL will have a
significant less communication overhead than gossip variant of MVFL.

Effect of number of gossip rounds: For the gossip (G) variants of MVFL, we are interested
in studying the effect the number of gossip rounds has on average performance. In Figure 12 the
effect of three different gossip rounds on the average performance for three different datasets is
presented. From the plots we observe that irrespective of the method, Complete-communication
train fault benefits the most with incorporating gossip rounds. Despite Grid-communication being

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4
Fault Rate

 (a) : Complete device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

4-MVFL-G0
4-MVFL-G2
4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (b) : Complete communication

4-MVFL-G0
4-MVFL-G2
4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (c) : Grid device

4-MVFL-G0
4-MVFL-G2
4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (d) : Grid communication

4-MVFL-G0
4-MVFL-G2
4-MVFL-G4

(a) Without Dropout in Training

0.0 0.2 0.4
Fault Rate

 (a) : Complete device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

PD-4-MVFL-G0
PD-4-MVFL-G2
PD-4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (b) : Complete communication

CD-4-MVFL-G0
CD-4-MVFL-G2
CD-4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (c) : Grid device

PD-4-MVFL-G0
PD-4-MVFL-G2
PD-4-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (d) : Grid communication

CD-4-MVFL-G0
CD-4-MVFL-G2
CD-4-MVFL-G4

(b) With Dropout in Training

Figure 13: 4-MVFL: Effect of different rounds of Gossip on average performance when evaluated
with test time faults for 16 devices for SCMNIST

(a) Active Rand (b) Any Rand (c) Active Best (d) Active Worst

Figure 14: All metrics reported for MNIST with 16 devices and only test time faults

(a) Active Rand (b) Any Rand (c) Active Best (d) Active Worst

Figure 15: All metrics reported for SCMNIST with 16 devices and only test time faults

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Active Rand (b) Any Rand (c) Active Best (d) Active Worst

Figure 16: All metrics reported for CIFAR-10 with 16 devices and only test time faults

(a) 4 devices.

(b) 16 devices.

(c) 49 devices.

Figure 17: Test average accuracy for different test time fault rates for StarCraftMNIST with 4,16
and 49 devices. Observing the plots it can be concluded that VFL does not do well under different
faulting conditions and MVFL or its gossip variant has the best performance.

a communication type of fault, gossiping does not improve the average performance. We believe
this happens as a grid graph is quite sparse and training faults makes it more sparse. As a result,
increasing gossip rounds does not lead to efficient passing of feature information from one client
to another due to the sparseness, this is not the case in a complete graph. Furthermore, for reasons

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4
Fault Rate

 (a) : Complete device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
PD-VFL
PD-4-MVFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (b) : Complete communication

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
CD-VFL
CD-4-MVFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (c) : Grid device

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
PD-VFL
PD-4-MVFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (d) : Grid communication

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
CD-VFL
CD-4-MVFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

Figure 18: Test accuracy with and without communication (CD-) and party-wise (PD-) Drop out
method for StarCraftMNIST with 16 devices. Here we include models trained under an dropout rate
of 30% (marked by ’PD-’ or ’CD-’). All results are averaged over 16 runs and error bar represents
standard deviation. Across different configurations, MVFL-G4 trained with feature omissions has the
highest average performance, while vanilla VFL performance is not robust as fault rate increases. As
our experiments are repeated multiple times, what we report is the expectation (Avg) over the random
active client selection.

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

0.0

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
CD-VFL
MVFL
MVFL-G4
CD-MVFL
CD-MVFL-G4
CD-4-MVFL-G2

Figure 19: Test accuracy with and without communication (CD-) dropout method for StarCraftMNIST
with 16 devices. Here we include models trained under an dropout rate of 30% (marked by ’CD-’).
All results are averaged over 16 runs, and the error bar represents standard deviation. Across different
configurations, MVFL-G4 trained with feature omissions has the highest average performance, while
vanilla VFL performance is not robust as fault rate increases. As our experiments are repeated
multiple times, what we report is the expectation (Avg) over the random active client selection.

mentioned in Section 4 of the main paper and Appendix G.5 of the Appendix, from Figure 12 we
observe that adding any gossip rounds with device faults does not help in improving the performance.
However, given the benefit 4 rounds of Gossip provides for Complete-Communication graph, we
decided to use 4 Gossip rounds with MVFL.

We also investigated the effect of different number of Gossip rounds when using K-MVFL, in
particular when the value of K is 4. Figure 13 (a) shows the the performance for different scenarios
where dropout is not used during training and Figure 13 (b) shows for the condition such that dropout
rate of 0.3% is used during training. It is observed that high number of Gossip rounds 4 is not having
any significant benefit to performance and Gossip rounds of 0 and 2 are comparable in performance.
Thus, including Gossip when the K=4 is not as beneficial as it was observed for the MVFL case.
We conjecture that this likely happening because we are using gossip during training as well as
during inference. We believe that using gossip only during inference and not during training will help

Table 4: Complete Communication Graph with 30% communication fault rate

Number of aggregators 1(VFL) 2 4 16
Active Rand (Avg) 0.449 0.547 0.59 0.6

Comm. 10.6 21 42 168.5

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 A
ct

iv
e

Ra
nd

VFL
CD-VFL
MVFL
MVFL-G4
CD-MVFL
CD-MVFL-G4
CD-4-MVFL-G4

(a) CIFAR-100

0.0 0.1 0.2 0.3 0.4 0.5
Fault Rate

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Te
st

 A
ct

iv
e

Ra
nd

(b) TinyImageNet
Figure 20: Accuracy for complete-communication test fault rates on CIFAR-100(a) and TinyIma-
geNet(b) with 16 devices. The statistics are computed in the same manner as reported for Figure 2 in
the main paper.

Table 5: Random Geometric Graph r=2.5 with 30% communication fault rate

Number of aggregators 1(VFL) 2 4 16
Active Rand (Avg) 0.42 0.52 0.58 0.59

Comm. 7.4 13.9 29 114.9

improve the performance with more gossip rounds. This, for this paper, when using 4-MVFL, we use
2 rounds of Gossip.

G.5 EXPLORATION OF TEST FAULT RATES AND PATTERNS

In Figure 21 we present a more comprehensive representation of performance of different settings of
MAGS. Figure 2 is a subset of Figure 21.

A note regarding gossiping is that mainly helps MVFL in the case of communication fault. We believe
this is because in the device fault case, irrespective of number of gossip rounds, the representations
from faulted device cannot be obtained. On the other hand, multiple gossip rounds in communication
fault scenario has the effect of balancing out the lost representation at a client via neighboring
connections. Switching to the grid baseline network, a major observation here is the degradation
in the performance of both MVFL and MVFL-G4. We conjecture that in this case, clients can only
directly communicate with neighboring clients, thus it’s harder to get information from clients far
away and extra communication leads to less benefit while the smaller network size and receiving more
faulted representation become a bottleneck. Similarly, we notice that MVFL outperforms MVFL-G4
when fault rate is very high, as there is a much higher chance that the network is disconnected in
comparison to complete baseline network. In short, we conclude that when trained with no faults,
MVFL is overall the best model while gossiping helps except with high fault rates under the grid
baseline network.

G.6 EXTENSION OF COMMUNICATION AND PERFORMANCE ANALYSIS

In Table 7 we present the extension (performance metric is presented with Standard Deviation
information) of Table 2, which is shown in the main paper. Here the results are presented such that
gossip is used during inference only.

Table 6: Grid Graph with 30% communication fault rate

Number of aggregators 1(VFL) 2 4 16
Active Rand (Avg) 0.386 0.449 0.492 0.491

Comm. 2 3.99 7.98 33.5

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4
Fault Rate

 (a) : Complete device

0.2

0.4

0.6

0.8

Te
st

 A
ct

iv
e

Ra
nd

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
PD-VFL
PD-4-MVFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (b) : Complete communication

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
CD-VFL
CD-4-MVFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (c) : Grid device

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
PD-VFL
PD-4-MVFL
PD-MVFL
PD-4-MVFL-G2
PD-MVFL-G4

0.0 0.2 0.4
Fault Rate

 (d) : Grid communication

VFL
4-MVFL
MVFL
4-MVFL-G2
MVFL-G4
CD-VFL
CD-4-MVFL
CD-MVFL
CD-4-MVFL-G2
CD-MVFL-G4

Figure 21: Test accuracy with and without communication (CD-) and party-wise (PD-) Dropout
method for StarCraftMNIST with 16 devices. Here we include models trained under an dropout rate
of 30% (marked by ’PD-’ or ’CD-’). All results are averaged over 16 runs and error bar represents
standard deviation. Across different configurations, MVFL-G4 trained with feature omissions has the
highest average performance, while vanilla VFL performance is not robust as fault rate increases. As
our experiments are repeated multiple times, what we report is the expectation (Avg) over the random
active client selection.

Table 7: Active Rand (Avg) performance +/- 1 Std Dev at test time with 30 % communication fault
rate. Compared to VFL, MVFL performs better but it comes at higher communication cost. Thus
we propose 4-MVFL as a low communication cost alternative to MVFL. We want to highlight that
4-MVFL with poorly connected graph is still better than VFL with well connected graph, such as
4-MVFL with RGG (r=1) versus VFL with Complete.

Complete RGG
r=2.5

RGG
r=2

RGG
r=1.5

RGG
r=1 Ring

Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm. Avg # Comm.
VFL 0.430± 0.021 10.6 0.406± 0.032 7.4 0.407± 0.048 5.2 0.375± 0.043 3.5 0.386± 0.038 2.0 0.385± 0.036 1.4
MVFL 0.594±0.033 168.5 0.581±0.018 114.9 0.558±0.030 80.8 0.528±0.024 58.7 0.503±0.025 33.5 0.507±0.013 22.7
4-MVFL 0.591±0.033 42 0.572±0.024 29 0.555±0.037 20.4 0.517±0.027 14.8 0.488±0.026 7.98 0.485±0.026 5.6
MVFL-G4 0.732±0.017 836.2 0.728±0.032 572.1 0.721±0.026 407.2 0.689±0.038 293.9 0.62±0.029 168.2 0.558±0.023 113.4
4-MVFL-G2 0.687±0.027 126 0.661±0.044 87 0.623±0.052 61.2 0.566±0.041 44.8 0.491±0.034 23.94 0.484±0.046 16.8

G.7 BEST, WORST AND SELECT ANY METRICS

In Figures 14 to 16 we present not only the Rand Active but also Rand Universal, Active Best and
Active Worst metrics when evaluation are carried out for 16 Devices/Clients under only test faults. In
the main paper, Table 3 is a subset of the comprehensive data presented here.

In addition, we also share Table 8 here, which aggregates information for an additional, 30% inference
fault rate. While the table in the main paper shows data for only 50% fault rate.

G.8 EVALUATION FOR DIFFERENT NUMBER OF DEVICES/CLIENTS

In Figure 17 we present average performance as a function of test time faults for three different
number of devices. For all the different cases, it is observed that MVFL or its gossip variant performs
the best. On observing the Complete-Communication plots for Figure 17, it can be seen that MVFL
with gossiping has a more significant impact when the number of devices are 49 or 16 compared to
when the number of devices are 4.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 8: Best models for 30% complete-communication test fault rate within 1 standard deviation are
bolded. More detailed results with standard deviation are shown in the Appendix.

MNIST SCMNIST CIFAR10

Active Any Active Any Active Any

Worst Rand Best Rand Worst Rand Best Rand Worst Rand Best Rand

Fault Rate = 0.3

VFL nan 0.507 nan nan nan 0.430 nan nan nan 0.267 nan nan
PD-VFL nan 0.684 nan nan nan 0.572 nan nan nan 0.355 nan nan
4-MVFL-G2 0.632 0.693 0.751 0.526 0.572 0.624 0.675 0.482 0.238 0.293 0.356 0.232
MVFL 0.106 0.705 0.995 0.524 0.075 0.592 0.951 0.444 0.013 0.342 0.843 0.269
MVFL-G4 0.897 0.897 0.899 0.657 0.715 0.716 0.717 0.533 0.348 0.350 0.352 0.275
CD-4-MVFL-G2 0.944 0.951 0.969 0.714 0.745 0.765 0.784 0.589 0.438 0.472 0.528 0.372
CD-MVFL-G4 0.972 0.973 0.972 0.709 0.780 0.780 0.781 0.575 0.514 0.515 0.516 0.389

33

	Introduction
	Related works

	Problem Formulation
	Dynamic Network VFL Context
	DN-VFL Problem Formulation via Dynamic Risk

	Multiple Aggregation with Gossip Rounds and Simulated Faults (MAGS)
	Decentralized Training of MAGS with Real and Simulated Faults via Dropout
	Multiple Aggregators in Decentralized VFL (MVFL)
	Gossip Layers to Ensemble Aggregator Predictions

	Experiments
	Conclusion and Discussion
	Appendix
	 Appendix
	Illustration of Methods and Faults
	Illustration of MAGS Proposed Techniques
	Device and Communication Fault Visualization
	Party-wise Dropout and Communication-wise Dropout MVFL

	Proofs
	Proof of prop:k-MVFL
	Proof of prop:gossipEnsembling

	Handling Backward Pass for Training with Faults
	Deep MVFL
	Further Discussion and Limitations
	Experiment Details
	Datasets
	Graph construction
	Training
	Handling Faults at Test Time

	Additional Experiments
	Partywise Dropout (PD) and Communication wise Dropout (CD) rates
	Evaluation for a temporal fault model
	Results with Cifar100 and Tiny ImageNet
	Ablation Studies
	Exploration of Test Fault Rates and Patterns
	Extension of Communication and Performance Analysis
	Best, Worst and Select Any Metrics
	Evaluation for different number of devices/clients

