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ABSTRACT

We investigate the challenge of applying Large Language Models (LLMs) to long
texts. We propose a theoretical framework that distinguishes the failure modes
of long context tasks into three categories: cross-chunk dependence (task noise),
confusion that grows with context size (model noise), and the imperfect integration
of partial results (aggregator noise). Under this view, we analyze when it is
effective to use multi-agent chunking, i.e., dividing a length sequence into smaller
chunks and aggregating the processed results of each chunk. Our experiments
on tasks such as retrieval, question answering, and summarization confirm both
the theoretical analysis and the conditions that favor multi-agent chunking. By
exploring superlinear model noise growth with input length, we also explain why,
for large inputs, a weaker model configured with chunk-based processing can
surpass a more advanced model like GPT4o applied in a single shot. Overall, we
present a principled understanding framework and our results highlight a direct
pathway to handling long contexts in LLMs with carefully managed chunking and
aggregator strategies.

1 INTRODUCTION

Large Language Models (LLMs) have drawn significant interest from both industry and academia,
thanks to their ability to handle tasks ranging from open-ended question answering to complex
reasoning. As these models grow in capacity, there is an increasing demand to apply them to extended
texts that may span hundreds of thousands of tokens. In principle, self-attention architectures are
powerful, but their reliance on quadratic operations in sequence length can make long-context tasks
computationally expensive Tay et al. (2022). Moreover, even if a model technically can process long
contexts, studies have reported the quality decline of output once the input surpasses a certain length
(Hsieh et al., 2024). This limitation has been attributed to phenomena such as the “lost in the middle”
effect, where the model forgets or mishandles portions of the input.

Existing research has explored ways to ease these difficulties. One type of approach has focused
on modifying the transformer architecture to reduce memory footprint and compute, often by, for
example, shaping the attention pattern through blockwise or window-based strategies (Qiu et al.,
2020; Beltagy et al., 2020), low-rank approximations (Wang et al., 2020) or routing-based approaches
(Kitaev et al., 2020), seeking to prolong the feasible context length without harming accuracy too
severely. Although these technical improvements often extend the maximum input size, they do not
guarantee stable performance when that size becomes very large.

A more functional approach divides a large input into chunks, processes each chunk with one or
more worker models, and then aggregates the outputs. Retrieval-augmented pipelines are a popular
example of this idea (Lewis et al., 2020; Fan et al., 2024; Wang et al., 2024b), but they often rely
on ad hoc rules for aggregating results. Their effectiveness hinges on how well global dependencies
are preserved. If the aggregation step is weak, cross-chunk reasoning can be lost, which leads to
suboptimal outcomes. While these chunk-based methods can lower confusion at the worker level, the
completeness of the final result is not guaranteed.

In this paper, we propose a divide and conquer framework Qian et al. (2024b); Zhang et al. (2024c);
Zhou et al. (2024) that offers a more systematic view at these issues. we analyze these challenges
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by establishing a theoretical framework that tracks three main sources of error in long-context tasks.
First, task noise arises from cross-chunk dependencies that cannot be handled by processing each
segment alone. Second, model noise arises from degraded performance with increasing input length.
Third, aggregator noise emerges when partial results are combined incorrectly, even if each chunk
was handled well. We show how the balance of these factors determines when chunk-based division
is advantageous, and how the design of the aggregator stage plays an important role. In particular,
when a task demands only mild cross-chunk reasoning, chunking can reduce model confusion with
little downside. However, when cross-chunk synergy is large, only a more advanced aggregator can
preserve important global connections.

We also show that model noise can worsen at a rate that outstrips the benefit of seeing the entire input
at once. Beyond a certain length threshold, splitting the text can yield better performance, even if the
individual worker models are weaker than a single large model. We attribute this to a superlinear
increase in model error growth with input length. Our experiments on retrieval, QA, summarization,
and other tasks confirm that this superlinear effect surfaces in practice, and demonstrate how a planner
can arrange prompts to keep aggregator noise manageable. Across these long context tasks, weak
models handling chunks often outperform a single-shot strong model (e.g. GPT4o).

Our contributions are as follows:

• We present a theoretical framework for modeling error terms in long-context processing. This
framework helps to explain when multi-agent chunking is advantageous and when it is not.

• We provide empirical evidence of superlinear performance degradation when input length is
large. We then demonstrate that splitting into smaller pieces can help mitigate these effects,
except in the case where cross-chunk synergy is very high.

• We show that carefully designed prompts for both worker agents and the aggregator can stably
improve final performance. This allows smaller models to surpass more advanced models on
certain tasks when the input length is large.

These findings broaden our understanding of how to tackle large inputs with LLMs. By breaking
down the main sources of error, our framework clarifies why chunking can help, how it can fail, and
how a planner can structure prompts so that partial outputs lead to correct final answers. Through both
theoretical arguments and experiments, we reveal practical guidelines for handling lengthy contexts
and show that well-planned division of labor can be a strong alternative to single-shot processing
with a massive context window.

2 RELATED WORKS

2.1 LONG CONTEXT LLM

Developing long context LLMs has seen increasing popularity in applications such as long document
understanding. Due to the attention mechanism, transformer architecture is associated with quadratic
computational and memory complexity against sequence length(Tay et al., 2022), thus expensive to
train and serve in practice. To mitigate this, researchers have explored various efficient transformer
architectures, such as block wise attention(Qiu et al., 2020), window attention(Beltagy et al., 2020),
routing attention(Kitaev et al., 2020), etc. (Dao et al., 2022) proposed flash attention and (Liu et al.,
2023) designed ring attention, both contributed to efficient training of long context LLMs. The recent
progress on transformer alternatives also show promises of overcoming the computational complexity
of attention mechanisms, including Mamba(Gu & Dao, 2024) and Hyena(Poli et al., 2023). Also,
given existing LLMs trained on short context, many research works have been presented on length
extrapolation based on positional encoding(Chen et al., 2023; Peng et al., 2024; Jin et al., 2024),
and retrieval-augmented generation(Lewis et al., 2020; Wang et al., 2024b), where additional design
complexity is be added on positional encoding adaptation and retriever. Besides, a complementary
line of work aligns LLMs for long contexts via preference/reward optimization, including LOGO
(Tang et al., 2024), LongReward (Zhang et al., 2024a), and LongPO (Chen et al., 2025).

2.2 MULTI-AGENTS

Recent research has explored the potential of multi-agent systems utilizing large language models
(LLMs) for complex task-solving. In the realm of task decomposition and planning, Qian et al.
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(2023) proposed a framework where multiple LLM-based agents collaboratively break down tasks
into subtasks and develop execution plans. Similarly, Haji et al. (2024) introduced a hierarchical
mechanism where tree of thoughts reasoners are combined with thought verifiers. Zhao et al. (2024b)
breaks down and process long texts using multiple agents, enabling efficient handling of 128K token
contexts through task decomposition.

Beyond task breakdown and planning, recent work focused on communication mechanisms within
multiple agents. Several studies (Guo et al., 2024) have investigated various approaches to enable
effective information exchange between agents. Common communication paradigms such as debate
is commonly used (Du et al., 2024; Chan et al., 2024; Liang et al., 2023). Alternatively, Qian et al.
(2024a) adapts a cooperative paradigm where agents work together towards a common goal. Many
multi-agent works use a layered structure. Wang et al. (2024a) developed a multi-layered framework
that separates LLMs into proposers and aggregators. Liang et al. (2023) encourages more divergent
thinking though layered debate among debtors. However, a centralized sharing structure has also
been explored by Hong et al. (2023).

2.3 DIVIDE AND CONQUER

Divide-and-conquer is a classic computational strategy that has recently been integrated with LLM-
based multi-agent systems to handle long-context processing. Recent works such as LC-Boost Qian
et al. (2024b), Chain-of-Agents (CoA) Zhang et al. (2024c), LongAgent Zhao et al. (2024a), and
LLM×MapReduce Zhou et al. (2024) , adopt this paradigm by splitting long inputs into smaller
chunks processed by worker agents and then merging their outputs through a manager agent. These
methods improve efficiency and enable long-text reasoning without requiring large context models.

However, existing approaches lack a formal theoretical framework to analyze the interaction between
task complexity, model noise, and aggregation errors, making it difficult to optimize chunking
strategies. They also struggle with understanding how cross-chunk dependencies impact performance,
often leading to loss of contextual coherence when aggregating local outputs. This work addresses
these gaps by providing a rigorous modeling framework for analyzing noise propagation in Divide-
and-conquer architectures, offering a systematic approach to optimizing multi-agent collaboration for
long-context tasks.

3 THEORETICAL MODELING FRAMEWORK

3.1 PROBLEM STATEMENT AND SETTING

We consider a long input x of length T tokens, denoted x ∈ X , where X is the input space. The
input x can be split into n contiguous chunks: x = (x1, x2, . . . , xn), with

∑n
i=1 ∥xi∥ = T.

A task asks for a mapping function f : X → Y where Y is the answer space. The target task function
y = f∗(x) is the correct or desired output for the entire input, for example returning the correct
answer to a user query or extracting complex reasoning from a text of length T .

Single-shot long context agent inference. We feed the entire x (length T ) into one agent that
has context length equal to or longer than T . It computes fsingle(x) = f∗(x) + ϕmodel(x),
where ϕmodel(x) : X → Y is a small-phi noise term capturing model errors (for example attention
constraints or distribution mismatch). We denote ϕmodel(x) = ϕ(∥x∥), with ϕ(·) non-decreasing. In
practice, performance can degrade with T even if T is within the nominal context window.

Divide and conquer agents (D&C). We split x into n subproblems (x1, . . . , xn). Each subproblem
is handled by a worker agent model fi(·): fi(xi) = f∗

i (xi) + ϕmodel(xi). For each chunk xi, the
worker agent noise is ϕmodel(xi). If ∥xi∥ = T

n and ϕ(·) grows faster than linearly (shown later), then
single-shot usage over T can be significantly noisier than chunk usage over T

n . Next, an aggregator
(manager agent) h(·) merges these sub-results:

fD&C(x;n) = h
(
f1(x1), . . . , fn(xn)

)
=

n∏
i=1

fi(xi) + ϕagg(x1, . . . , xn).

3
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If the aggregator h is not fully capable of reconstructing global interactions, an additional noise
ϕagg(x1, . . . , xn) appears in the final output.

3.2 TASK NOISE, MODEL NOISE, AND AGGREGATOR NOISE

We posit that many tasks can be partially factorized across chunks plus a noise term. Let

g(x1, . . . , xn) =

n∏
i=1

g∗(xi)︸ ︷︷ ︸
factorized component

+ ϕtask(x1, . . . , xn)︸ ︷︷ ︸
cross-chunk dependency

or synergy

,

where g∗(xi) is the local contribution from chunk xi, and ϕtask(·) measures how much g departs
from being a product of local chunk functions. If ϕtask ≈ 0, the task is nearly chunk-independent.
Otherwise, large ϕtask indicates significant cross-chunk synergy.

When ∥ϕtask∥ ≤ ϵ, a well-aligned aggregator h can keep ϕagg(x1, . . . , xn) on the order of ϵ.
Conversely, if ϕtask is large and the aggregator does not reprocess the entire x, then ϕagg(x1, . . . , xn)
may scale with ∥ϕtask∥.

Putting it all together. Summarizing the contributions of each term in D&C:

fD&C(x;n) =

n∏
i=1

(
f∗
i (xi) + ϕmodel(xi)

)
+ ϕagg(x1, . . . , xn)

=

n∏
i=1

f∗
i (xi) + ϕagg(x1, . . . , xn) +

[ n∏
i=1

(
f∗
i (xi) + ϕmodel(xi)

)
−

n∏
i=1

f∗
i (xi)

]
For simplicity, we then define Φmodel :=

[∏n
i=1

(
f∗
i (xi) + ϕmodel(xi)

)
−
∏n

i=1 f
∗
i (xi)

]
,Φagg :=

ϕagg(x1, . . . , xn),Φtask := −ϕtask(x1, . . . , xn). Φmodel arises from model noise (and is a polyno-
mial in the terms ϕmodel(xi)). Φagg arises from aggregator limitations. Φtask is the negative of the
task factorization mismatch.

Hence, we have fD&C(x;n) =
∏n

i=1 f
∗
i (xi) + Φmodel + Φagg. We can compare it to the target

g(x) =
∏n

i=1 g
∗(xi) + ϕtask(x1, . . . , xn). Then the approximation error is

fD&C(x;n)− g(x) =
[ n∏
i=1

f∗
i (xi)−

n∏
i=1

g∗(xi)
]

︸ ︷︷ ︸
∆∗(x)

+
(
Φmodel + Φagg + Φtask

)
.

(1)

∆∗(x) is the difference between the product of ideal worker outputs and the product of true chunk-
level targets. If each f∗

i (xi) matches g∗(xi) well, the main discrepancy is Φmodel +Φagg +Φtask.
By improving worker models (to shrink ϕmodel) and using better aggregation (to reduce ϕagg), D&C
can lower overall error. However, a large ϕtask still requires effective cross-chunk merging.

3.3 WHY WEAKER MODELS CAN OUTPERFORM STRONGER ONES

We first make precise the statement that ϕmodel(x) grows faster than linearly in the input length,
eliminating linear or sublinear growth cases:
Condition 3.1 (Superlinear model noise). Denote ϕmodel(x) the model noise for an input of length
L = ∥x∥. For sufficiently large L, there exist constants c > 0 and α > 1 such that ϕmodel(x) ≥ cLα.

Justification by elimination. Please refer to Appendix B for details.
Proposition 3.2 (When D&C agents win). Consider an input x of length T . Suppose that the
single-shot noise ϕmodel(T ) grows superlinearly, and that ∆∗(x), the aggregator noise Φagg, and the
cross-chunk mismatch Φtask all remain bounded when the input is divided into n chunks of length at
most L0. Then, for sufficiently large T , one can choose n ≈ T/L0 to ensure: |fD&C(x;n)− g(x)| <
ϕmodel(T ).

Proof. Please refer to Appendix C for details.
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3.4 THREE REGIMES OF NOISES

In many practical pipelines, Φagg can be kept modest through careful prompt design by a planner
agent. Thus, the major interplay often arises between Φmodel (how confused the model is on each
chunk) and Φtask (how strongly the chunks depend on each other). We characterize three regimes.

• Case 1: Both Φmodel and Φtask are negligible. Here, each chunk is easy for the model, and the
task factorization mismatch is minor. Splitting into chunks or using a single shot yields similar
performance. Even if there is a slight aggregator noise Φagg, it stays negligible compared to the
small Φmodel and Φtask.

• Case 2: Φtask dominates. The input’s synergy is extensive, yet each individual chunk is
straightforward. A naive aggregator might fail to merge the global context effectively, causing
Φagg to blow up unless prompted carefully. In this regime, single-shot usage could still do well
if the model can handle long context, but D&C requires a robust aggregator for small Φagg.

• Case 3: Φmodel dominates. The task is nearly chunk-independent, but each chunk is intrinsically
confusing to the model when taken in a single large context. Splitting the input reduces the per-
chunk confusion, lowering Φmodel significantly. Even if Φagg grows somewhat, it is outweighed
by the model noise improvement. This is precisely the domain where Prop 3.2 shows that D&C
can outperform a single-shot approach.

These three cases illustrate that neither Φtask nor Φmodel alone determines whether multi-agent
chunking or single-shot usage is more suitable. Their relative magnitudes, together with ∆∗(x) and
the aggregator’s effectiveness (Φagg), ultimately decide which approach is advantageous.

4 A SIMPLE IMPLEMENTATION OF THE FRAMEWORK

We develop a minimal three-part system as illustrated in Figure 1: a planner to manage how the
original query is segmented and how prompts are arranged, multiple worker agents that each handle
a different sub-chunk, and a single manager agent that merges all sub-results. Below we briefly
introduce the worker and manager roles, followed by a more detailed description of the planner.

Figure 1: A simple implementation of the divide and conquer framework. The Math task example
(right panel) illustrates the planner’s critical role by translating instructions of returning 2nd smallest
number into returning the two smallest numbers per chunk.

Worker agent: We split the input sequence into chunks of approximately equal length, and each
worker agent is assigned a single chunk. Each worker focuses solely on its segment, without managing
cross-segment dependencies. Although we use identical models for the workers, one can easily
extend the architecture to mix different worker models as needed.

Manager agent: After the worker agents produce partial outputs, the manager agent merges them
into one final result. In our baseline, this manager agent is the same model type as the workers, but
one may employ a more specialized manager for tasks requiring deeper global reasoning.

5
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Planner: The planner orchestrates how the input is divided, what instructions each worker agent
receives, and how the manager agent is prompted to unify the partial outputs. Rather than having a
human specify how to break down the input, we direct the planner to do so by following steps: (1)
Job Assignment. The planner decides how many chunks to create and which segments each worker
agent will process. (2) Prompt Preparation. Based on the task details, the planner modifies the
worker prompts so that each worker’s output can be correctly integrated downstream. It also sets up
the manager prompt to combine partial results properly. (3) Iterative Refinement. The planner can
run a brief evaluation step using some validation data to identify mispredicted cases. It then revises
the prompt structure or chunking strategy to reduce errors. If repeated excessively on the same data,
there is a risk of overfitting, so the planner typically does only a few refinements.

Fast chunk-size estimation via sparse sampling Selecting an appropriate chunk size is critical
when model noise dominates. Motivated by our theoretical framework, we adopt a minimal-budget
procedure to pick an approximately optimal chunk size without an exhaustive grid search.

Inputs. Candidate chunk sizes C, a small per-configuration sample budget m, a development set D
of tasks, and a task-specific metric M.

Procedure. For each c ∈ C, draw m random documents Sc ⊂ D (without replacement). Run
the D&C pipeline with chunk size c on Sc and record ŝ(c) = 1

m

∑
x∈Sc

M(D&C(x; c)). Select
c⋆ = argmaxc∈C ŝ(c). Deploy the D&C pipeline on the full set using c⋆.

Complexity and rationale. This reduces the search cost from O(|D| · |C|) evaluations to O(m · |C|)
with m ≪ |D|. When Φmodel dominates and ϕ(L) grows superlinearly and is near-monotone in L
(Sec. 3.3), the D&C error versus chunk size typically exhibits a clear near-convex optimal region; a
few random samples per configuration suffice to localize this optimum.

5 EXPERIMENTS

5.1 SETTINGS

We present experiments to assess how the three primary noise components—model noise, task noise,
and aggregator noise—affect system performance under different context lengths and across multiple
tasks. Section 3.4 indicates that ϕmodel grows more than linearly with input length, and that synergy
across subproblems (Φtask) can impose strong requirements on any mechanism for merging partial
outputs. Our experiments test the ideas on six tasks with different data scales and use several agents.

Tasks We experiment on six diverse tasks including: Key-Value Retrieval, Math Find Number,
Summarization, Dialogue Character Inference, and Open Question QA with and without choices.
There tasks are based on InfiniteBench Zhang et al. (2024b) and LongBench-V2 Bai et al. (2024) but
we have modified the generation and prepared different lengths of these tasks. These tasks include:
Key-Value Retrieval (KV), Math Find Number (Math), Summarization (Sum) , Open Question
QA (QA-IB and QA-LB), Dialogue Character Inference (Char). Detailed task descriptions are
provided in Appendix D.

LLM Agents We have experimented with diverse agents choices from commercial Ope-
nAI models and open sourced models from Meta and Alibaba. gpt-4o-2024-08-06
(gpt4o) 128K model from OpenAI. gpt-4o-mini-2024-07-18 (gpt4omini) 128K
model from OpenAI. Llama-3.1-70B-Instruct (llama70b) 128K 70B LLM model,
Llama-3.2-3B-Instruct (llama3b) 128K 3B LLM model from Meta Grattafiori (2024).
Qwen2.5-72B-Instruct (qwen72b) 32K LLM model from Alibaba QWen Yang et al. (2024).

In the experiments where divide and conquer agents are implemented, the manager and worker
agents are homogeneous and the planner agent is QWen72b. The temperature is set to 0 to minimize
stochasticity during decoding. In the following sections, we discuss respectively model noise, task
noise and aggregator noise. The robustness of these observations and the practical applicability
of our framework are further underscored by comprehensive supplementary analyses (detailed in
Appendices F-O), which include utility of the framework, explorations of chunking variants,
comparisons with RAG, evaluations across diverse model architectures, and etc.
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5.2 MODEL NOISE

We estimate the single-agent model noise for input x as ϕmodel(x) ≈ D
(
fsingle(x), f

∗(x)
)
, where

fsingle(x) is the output of a single model given the entire input, and D(·, ·) is a distance metric such
as cross-entropy or |1− accuracy|. By evaluating this for different input lengths T = ∥x∥, we see
how the model’s performance declines as context grows. In Figures 2b (Math) and 2a (KV), each
agent processes the entire input directly (up to 128K tokens). We measure accuracy at each length;
the detailed numerical scores supporting these figures are provided in Appendix F.

(a) Single agent model noise w.r.t in-
put length: KV Task

(b) Single agent model noise w.r.t in-
put length: Math Task

For KV retrieval (Fig-
ure 2a), most agents show
a downward trend in
accuracy as input length
increases, consistent with
Condition 3.1, which posits
that noise grows more than
linearly. Once the length
exceeds tens of thousands
of tokens, performance
rapidly decays. Similar
observations are seen for
Math (Figure 2b), where the loss of accuracy at longer contexts is stark for gpt4omini and llama70b.
Interestingly, llama3b is already too weak at shorter lengths, so its performance saturates at
near-random levels. These results reinforce our theoretical statement that ϕmodel(x) can become the
dominant error term for long x. For tasks that do not require intense synergy across the entire input,
splitting the input into shorter segments (i.e., reducing L per worker) should mitigate this growth, an
idea formalized in Prop 3.2.

5.3 TASK NOISE

Next, we examine how multi-agent performance depends on Φtask and Φmodel. We use the approxi-
mate measures:

Φmodel ≈ D
[
fD&C(x; optimal-n), fD&C(x; bad-n)

]
,

Φtask ≈
∫ n

2

D
[
fD&C(x; ⌊i⌋), fsingle(x)

]
di.

Here, Φmodel is captured by the gap between choosing an effective chunk size versus a poor one,
while Φtask is reflected by how the system output diverges from the single-agent baseline as we
increase the number of chunks from 2 to n.

Figure 3 illustrates the performance of five agents on the 128K version of each task, varying the
chunk size from 1K to 64K tokens. The comprehensive performance metrics for all tasks and models
underpinning this figure are available in Appendix G. We observe three patterns that match the
three regimes described in Section 3.4: (1) Low task noise (KV). When cross-chunk synergy is
minimal, splitting yields similar results regardless of n. This matches the “low task noise, low model
noise” regime, where Φtask is nearly zero and ϕmodel remains small, so aggregator choices have little
impact. (2) Dominating model noise (Math, QA, Sum). In these tasks, large input length makes
single-shot usage prone to confusion, so ϕmodel becomes significant. However, Φtask is moderate
enough that a basic aggregator can handle partial results effectively. Splitting into smaller chunks
thus reduces per-chunk confusion and outperforms a single-shot approach. This behavior aligns with
Prop 3.2, showing that superlinear growth of ϕmodel can be contained with divide-and-conquer. (3)
Dominating task noise (Char). In this scenario, cross-chunk interactions are so extensive that partial
outputs cannot capture the global context unless the aggregator reintroduces nearly the entire input.
If the aggregator does not do so, performance remains low. This corresponds to the “dominating task
noise” regime, where Φtask is large enough to overshadow the benefits of splitting.

We also explored whether introducing a small token overlap between chunks could mitigate task
noise effects. However, as detailed in Appendix I, a 1K token overlap yielded mixed and generally
marginal benefits for the Llama-70B model on 128K tasks, suggesting it does not fundamentally alter
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(a) KV (b) Math (c) QA-IB

(d) QA-LB (e) Sum (f) Char

Figure 3: Joint effect of task noise Φtask and model noise Φmodel. According to the discussion in
Sec 3.4, (a) has negligible Φmodel and Φtask;(b)-(e) has dominating model noises Φmodel; (f) has
dominating task noise Φtask.

these noise trade-offs for the scenarios tested. Furthermore, to assess the generalizability of our noise
framework, we evaluated additional diverse models across various tasks, as detailed in Appendix L.
These results confirm that while effective context length (e.g., per Ruler benchmark) influences
performance, the observed noise patterns and the utility of our decomposition are consistent, with
task complexity significantly interacting with these factors across different architectures.

Overall, these empirical data show that the relative magnitudes of ϕmodel and Φtask determine
whether chunking helps or hurts. Moderate-synergy tasks benefit most from a chunk-based approach,
validating our theoretical insights in Section 3.4. Apart from the high-synergy character-inference
problem, divide-and-conquer methods achieve performance on par with or exceeding the strongest
single-shot model, reinforcing the idea that chunking is advantageous when model noise dominates
and task noise remains modest.

5.4 AGGREGATOR NOISE

We examine Φagg, which measures how well the partial results are merged. We estimate by

Φagg ≈
∫ n

2

D
[
foptimal-agg
D&C (x; ⌊i⌋), fbad-agg

D&C (x; ⌊i⌋)
]
di,

Here, we compare a stronger aggregator prompt (planner-based) to a weaker one (manual). Figure 4
contrasts two approaches on the Math and QA-LB tasks for large T : (1) a manual aggregator
prompt, which simply asks each worker to solve its subproblem in isolation, and (2) a planner-based
aggregator prompt, which enforces a structured approach to partial outputs. This yields a visible
performance gap (shaded area in Figure 4), showing that aggregator noise can be substantially
reduced via more coordinated prompts. The same effect is seen in QA-LB, where the aggregator
must reconcile partial answers from each worker. These empirical results consolidate Section 3.4
and the aggregator noise assumption (A): a robust aggregator prompt can keep Φagg modest, while
naive prompts inflate the final error. The planner effectively refines aggregator instructions to align
worker outputs with the manager’s requirements, illustrating how a minimal overhead aggregator can
preserve the theoretical advantages of chunking large inputs.

8
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(a) Math (b) Math (c) QA-LB (d) QA-LB

Figure 4: Aggregator noise across different tasks and models.

5.5 FAST ESTIMATION OF THE OPTIMAL CHUNK SIZE

We evaluate the cheap-sampling estimator from Sec. 4 on tasks where model noise dominates: QA-IB
and Summarization. For each candidate chunk size, we evaluate D&C on only m ∈ {3, 5, 10}
randomly selected documents from the 128K-token setting and pick the best-performing chunk size
to deploy. Tables 1compares this low-budget selection against the exhaustive grid search over all
documents and all chunk sizes. We observe that even with three to five samples per configuration,
the selected chunk sizes are near-optimal and often exactly match the exhaustive-search optimum,
delivering the same final scores while avoiding a full grid search. This trend aligns with our
framework: superlinear and near-monotone model noise in L drives a clear optimal region in chunk
size; a handful of samples per configuration is enough to trace the coarse error contour and locate the
optimum, yielding significant computational savings without sacrificing peak performance.

Table 1: Predictive Utility: Optimal Chunk Size Estimation on QA-IB and Summarization (Score
(Optimal Chunk Size Found)). Total task length 128K tokens.

Model 3-sample 5-sample 10-sample Optimal after Exhaustive Search
QA-IB
gpt4omini 0.38 (64K) 0.42 (32K) 0.42 (32K) 0.42 (32K)
llama70b 0.55 (2K) 0.63 (16K) 0.63 (16K) 0.63 (16K)
qwen72b 0.40 (2K) 0.48 (16K) 0.48 (8K) 0.48 (8K & 16K)

Sum
gpt4omini 0.15 (16K) 0.14 (8K) 0.14 (8K) 0.15 (4K & 16K)
llama70b 0.23 (32K) 0.24 (16K) 0.28 (8K) 0.28 (8K)
qwen72b 0.23 (8K) 0.29 (4K) 0.29 (4K) 0.29 (4K)

6 CONCLUSION

We presented a theoretical and empirical investigation of divide-and-conquer methods for large
context tasks. Our framework separates the final error into task noise (cross-chunk synergy), model
noise (per-chunk confusion), and aggregator noise (integration flaws). We showed that chunking can
outperform single-shot usage in many tasks where superlinear noise growth appears with context
length. However, if cross-chunk synergy is too large or the aggregator prompt is ineffective, chunk-
based approaches may fail.

Our experiments illustrate several key behaviors central to our noise decomposition framework,
including the sweet-spot trade-off between synergy (task noise) and chunk size (model noise), and the
conditions under which weaker models leveraging D&C can outperform stronger single-shot models
afflicted by superlinear model noise at large context lengths. We also showed that aggregator noise
can be reduced by careful prompt engineering, which can be partially automated using a planner.

In future work, it would be interesting to explore more powerful aggregator models or retrieval-based
approaches that reconstruct the relevant cross-chunk information. We hope this framework clarifies
the interplay between context length, synergy, and multi-agent design, and provides a path toward
improved performance on truly long documents.
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A USAGE OF LLMS

Large Language Models (LLMs) were minimally employed during manuscript preparation, specifi-
cally to enhance the clarity and fluency of the writing. The role of LLMs was strictly limited to minor
linguistic refinement, and the authors retain full responsibility for the content and accuracy of the
work.

B JUSTIFICATION OF CONDITION 3.1

Justification by elimination. We consider different growth rates explicitly:

Sublinear growth. If ϕmodel(x) were sublinear, then the average noise per token would decrease
as input length increases, which contradicts empirical observations showing performance degradation
with larger contexts.

Linear growth (O(L)). Suppose ϕmodel(x) ≈ cL. Then, dividing the input of length T into n
chunks (each of length T/n) would yield total model noise:

Φmodel = n · cT
n

= cT,

which exactly matches the single-shot model noise. Under strictly linear model noise, chunking
would provide no direct benefit in terms of model noise alone.
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However, consider the empirical evidence from a key-value (KV) retrieval task: this scenario has
negligible task noise (Φtask ≈ 0) and negligible aggregation noise (Φagg ≈ 0), as retrieval operations
are completely independent across chunks. Despite this, we empirically observe a clear and substantial
improvement from chunked inference.

Such empirical evidence clearly indicates that linear noise growth cannot fully explain observed
performance gains. Therefore, the condition of linear model noise must be incorrect, and the model
noise must instead be strictly superlinear, consistent with polynomial growth (O(Lα), α > 1).

Intermediate growth (O(L logL)). Suppose ϕmodel(x) ≈ cL logL. Dividing the input of length
L into n chunks of length L/n yields total noise:

n · cL
n
log

L

n
= cL(logL− logn).

To examine how small the incremental gain is, consider doubling the number of chunks from n/2 to
n:

cL(logL− log(n/2))− cL(logL− logn) = cL(logn− log(n/2)) = cL log 2.

Thus, each time we double the chunk number, we gain only a constant additive improvement
(cL log 2), which is independent of n. Crucially, this incremental improvement does not increase
with larger n, but remains constant.

Empirically, however, we observe significant and increasing performance improvements as we
continue to subdivide the context into smaller chunks (as shown in the KV retrieval scenario with
negligible task and aggregation noises). Such empirical behavior clearly contradicts the prediction of
O(L logL) complexity, which would provide diminishing returns (constant incremental improvement)
upon increasing the chunk number.

Therefore, intermediate complexity growth of the form O(L logL) cannot adequately explain ob-
served empirical benefits, indicating that the true complexity must be strictly faster (e.g., polynomial
superlinear growth).

Polynomial superlinear growth (O(Lα), α > 1). Under polynomial superlinear growth, dividing
input into n chunks yields total noise:

n · c
(
L

n

)α

= cn1−αLα.

Since α > 1, the factor n1−α decreases significantly with increasing n, aligning closely with
empirical observations of substantial improvements.

Exponential growth (O(exp(L))). Exponential complexity would quickly make inference infea-
sible for even moderate lengths, clearly inconsistent with the practical performance of real-world
language models.

Other intermediate or exotic complexities. While other theoretical complexities (e.g.,
O(L logk L), O(LlogL), O(exp(

√
L))) exist, they either (1) fail to match empirical performance

characteristics (like offering insufficient improvement), or (2) represent unrealistic scenarios never
observed empirically in LLM inference tasks.

Thus, by explicit elimination, empirical evidence strongly supports polynomial superlinear complexity
ϕmodel(x) ≥ cLα with α > 1.

C PROOF OF PROP 3.2

Proof. Step 1. Bounding Φmodel via superlinear local noise reduction. Recall the definition of the
aggregate model noise:

Φmodel =

n∏
i=1

(
f∗
i (xi) + ϕmodel(xi)

)
−

n∏
i=1

f∗
i (xi).
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This term captures the noise introduced by the worker models ϕmodel(xi). By Condition 3.1, we
assume the local model noise ϕmodel(L) grows superlinearly with chunk length L, specifically
|ϕmodel(L)| ≥ cLα for constants c > 0, α > 1, and sufficiently large L.

When we partition the input x of length T into n chunks xi, each of length approximately T/n, the
magnitude of the local noise |ϕmodel(xi)| is significantly reduced compared to the single-shot noise
|ϕmodel(T )| ≥ cTα. While the exact form of Φmodel involves combinations of these local noise
terms (potentially multiplied by ideal output terms f∗

j ), the dominant factor driving the change in
the magnitude |Φmodel| is this substantial, superlinear reduction in the individual |ϕmodel(xi)| terms
achieved through chunking.

We can characterize the scaling of |Φmodel| by considering an upper bound proportional to the
sum of the bounds on these dominant local noise contributions. Specifically, when local noises
ϕmodel(xi) are small, the first-order terms in the expansion of Φmodel involve a sum over terms
linear in each ϕmodel(xi) (e.g.,

∑
i(ϕmodel(xi)

∏
j ̸=i f

∗
j (xj)) if

∏
is multiplication). The overall

magnitude |Φmodel| can thus be bounded by a term related to the sum of the local noise bounds:

|Φmodel| ≤ B ·
n∑

i=1

|ϕmodel(xi)| ≤ B · n · sup
i

|ϕmodel(xi)|

where B accounts for the influence of the f∗
j terms and higher-order noise interactions (assumed

reasonably bounded). Applying the local superlinear bound |ϕmodel(L)| ≤ c′Lα (using c′ for an
upper bound constant potentially different from c):

|Φmodel| ≤ B · n · c′
(
T

n

)α

= (Bc′) · n1−αTα.

Let Cbound = Bc′. Since α > 1, we have 1− α < 0. Therefore, increasing the number of chunks
n decreases the factor n1−α, ensuring that this upper bound on |Φmodel| grows slower than Tα.
Specifically, for sufficiently large T , we can choose n such that:

|Φmodel| ≤ Cbound n
1−αTα < cTα ≤ |ϕmodel(T )|.

Thus, the total model noise introduced by the D&C approach, |Φmodel|, can be made strictly smaller
than the noise magnitude of the single-shot approach, |ϕmodel(T )|, by appropriately choosing the
number of chunks n.

Step 2. Bounded mismatch ∆∗(x) (Assumption A2). We explicitly assume there exists a constant
∆0 such that:

|∆∗(x)| =

∣∣∣∣∣
n∏

i=1

f∗
i (xi)−

n∏
i=1

g∗(xi)

∣∣∣∣∣ ≤ ∆0,

independent of the input length T and chunking strategy. Thus, ∆∗(x) does not scale with input size.

Step 3. Bounded aggregator noise Φagg (Assumption A3). We explicitly assume there exist
constants Magg > 0 and nagg > 0 such that:

|Φagg| ≤ Magg, for n ≤ nagg.

This ensures aggregation noise remains bounded for a controlled number of chunks.

Step 4. Bounded cross-chunk mismatch Φtask (Assumption A4). We explicitly assume there exist
constants Mtask > 0 and ntask > 0 such that:

|Φtask| = |ϕtask(x1, . . . , xn)| ≤ Mtask, for n ≤ ntask.

This ensures task noise does not grow significantly when using sufficiently few chunks.

Step 5. Combining all terms. By combining Steps 1–4, the total error of the D&C approach is:

|fD&C(x;n)− g(x)| ≤ |∆∗(x)|+ |Φmodel|+ |Φagg|+ |Φtask|
≤ ∆0 + |Φmodel|+Magg +Mtask.
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Using the bound derived in Step 1, for n chosen appropriately (e.g., n ≈ T/L0, subject to n ≤
min(nagg, ntask)):

|fD&C(x;n)− g(x)| ≤ ∆0 + (Cbound n
1−αTα) +Magg +Mtask.

Since α > 1, the term Cbound n
1−αTα grows slower than Tα. The terms ∆0,Magg,Mtask are

constants. The single-shot noise magnitude |ϕmodel(T )| grows at least as fast as cTα. Therefore, for
sufficiently large T , the sum of the bounded terms and the slower-growing model noise term will be
less than the rapidly growing single-shot noise:

∆0 + (Cbound n
1−αTα) +Magg +Mtask < cTα ≤ |ϕmodel(T )|.

Thus,
|fD&C(x;n)− g(x)| < |ϕmodel(T )|,

demonstrating that the divide-and-conquer inference error can be made smaller than the single-shot
model noise magnitude for sufficiently large T .

D TASKS DESCRIPTION

We experiment on six diverse tasks including: Key-Value Retrieval, Math Find Number, Summa-
rization, Dialogue Character Inference, and Open Question QA with and without choices. There
tasks are based on InfiniteBench Zhang et al. (2024b) and LongBench-V2 Bai et al. (2024) but we
have modified the generation and prepared different lengths of these tasks. These tasks include:
Key-Value Retrieval (KV) We randomly generated Key-Value pairs. For a given key, the task is
to retrieve the value associated. This task only evaluates the capability of retrieval. The evaluation
metric is accuracy. We prepare synthetic KV task to have lengths ranging from 1K to 128K. Math
Find Number (Math) We randomly generated a long list of integers following Gaussian distribution
and the task is to find the Kth largest or smallest number in this list. Each query is slightly different
in K. This task evaluates the memory and mathematical reasoning. The evaluation metric is accuracy.
We prepare synthetic Math task to have lengths ranging from 1K to 128K. Summarization (Sum)
We provide English texts and the task is to summarize them. The ground truth summarization comes
from the InfiniteBench. This task evaluates the langauge summarization. The evaluation metric is
ROUGE score. Open Question QA (QA-IB and QA-LB) We provide English text and some open
questions for question answering. These questions are very diverse and the task requires LLM to
do multi-hop reasoning to answers. The task QA-IB comes from InfiniteBench and doesn’t come
with choices and the task QA-LB comes from LongBench-V2 and is provided with four choices. The
evaluation metrics are respectively F1 score and accuracy. Dialogue Character Inference (Char)
We provide English dialogue scripts between many characters. One of the characters is masked and
the task is to infer the name of the masked person. This task evaluates the capacity of language
reasoning and will require LLM to focus on the interaction of people discussions to understand the
relation. The evaluation metric is accuracy. This task comes from InfiniteBench.

E SAMPLE PROMPTS FOR PLANNER, MANAGER AND WORKER AGENTS

The planner provides an automated way to transform a raw prompt into structured instructions for
both worker and manager agents. It parses the original task prompt, identifies key requirements, and
then generates appropriate prompts for the workers and the manager. This reduces manual overhead
in designing separate prompts, since the planner consistently creates focused directives for each
agent.

Planner Prompts

Here is a prompt that I use for one LLM agent. Now since my input is too long, I divide it
into multiple chunks and feed one chunk to one worker agent. Suppose now that you are the
manager agent to synergize the responses of multiple worker agents in order to complete the
prompt task. Write the prompt for each worker agent and the prompt for manager agent to
synthesize the answer.

{RAW TASK PROMPT}
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E.1 EXAMPLE: SUMMERIZATION

To further illustrate the planner, we use summerization task as another example. We first show the
manual (default) prompts for worker and manager agents as below.

Raw prompt from benchmark

Read the book paragraphs below and summarize.
Book: {context}

Worker agent prompt (manual)

Read the book paragraphs below and summarize.
Book: {text_chunk}

Manager agent prompt (manual)

There is a list of candidates. Each candidate has been given one sequential part of a book and
summarize their own parts. You have been provided with their responses. Summarize their
summaries into one.
Responses from candidates: {response_from_workers}

Now we use the designed planner to automatically prepare the appropriate prompts for workers and
manager. We feed the raw prompt from benchmark to the planner.

Worker agent prompt (planner)

You are part of a team tasked with summarizing a portion of a book. Below is an excerpt
from the book assigned to you. Please provide a concise summary of this specific section,
highlighting key points and themes.
Excerpt: {book_chunk}
Please ensure your summary is clear and focuses on the main ideas presented in the excerpt.

Manager agent prompt (planner)

You are the manager agent responsible for synthesizing the summaries provided by multiple
worker agents. Each worker agent has been given a different section of the book to summarize.
Your task is to combine these individual summaries into a coherent and comprehensive
summary of the entire book section provided to the worker agents.
Responses from Worker Agents: {response_from_workers}
Please integrate these summaries, ensuring that the overall summary captures the main points,
themes, and any important details necessary for understanding the book’s content as a whole.

E.2 EXAMPLE: QA

Raw prompt from benchmark

{context}
How do users most likely plan to dress for a master’s graduation?
A. Wear a tuxedo or robe.
B. Dress business casual.
C. Wear business attire.
D. Wear whatever clothes they feel comfortable in.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Worker agent prompt (planner)

{context}
You are a worker agent. You will receive a portion of data related to how users plan to dress
for a master’s graduation. Your task is to analyze the provided information and offer insights
based on your assigned chunk. Focus on one of the possible dress options and any relevant
context or rationale behind the choice. The options include:
A. Wear a tuxedo or robe,
B. Dress business casual,
C. Wear business attire,
D. Wear whatever clothes they feel comfortable in.
Please focus only on any details in your data relevant to one specific option and clearly
summarize its findings and rationale. Provide examples if necessary.

Manager agent prompt (planner)

You are the Manager Agent. You will receive responses compiled from several Worker Agents,
each analyzing different portions of input data related to dressing for a master’s graduation.
Your task is to review and synthesize these individual analyses into a comprehensive overview.
Consider each worker agent’s insights on the various dress options:
A. Tuxedo or robe,
B. Business casual,
C. Business attire,
D. Comfortable clothes.
Highlight the most popular trends and any notable reasons supporting these choices. Pay
attention to diversity in preferences, cultural considerations, and any statistical or anecdotal
evidence provided by worker agents. Your final output should deliver a clear synthesis on how
users most likely plan to dress for this occasion, potentially indicating preferences, influences,
and recommendations.
Responses from candidates: {response_from_workers}

E.3 EXAMPLE: MATH

Raw prompt (Math)

{context} (long list of numbers)
What is the 2nd smallest number?

Worker agent prompt (planner)

You are a worker agent tasked with analyzing a portion of a list of numbers. From the chunk
of numbers provided below, identify and return the two smallest numbers in ascending order.
Here is your list:
{text_chunk}
Please output the two smallest numbers you find in your assigned list.

Manager agent prompt (planner)

You are the manager agent tasked with synthesizing results from multiple worker agents.
Each worker agent has provided the two smallest numbers from their respective chunks of
a larger list. Your task is to compile these results and determine the 2nd smallest number
from the combined outputs of all worker agents.
Responses from worker agents:
{response_from_workers}
Please analyze these results and provide the 2nd smallest number from the original list.
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F MODEL NOISE RESULTS

This section provides the detailed numerical data that form the basis for Figure 2 presented in
Section 5.2 of the main paper. Figure 2 illustrates the performance degradation of single-agent Large
Language Models (LLMs) as the input context length increases, a phenomenon we attribute to model
noise (ϕmodel(x)). Table 2 tabulates the specific accuracy scores for the evaluated models (gpt4o,
gpt4omini, llama3b, and llama70b) on the Key-Value Retrieval (KV) and Math Find Number (Math)
tasks, across a range of input lengths from 1K to 128K tokens. These raw scores directly support
the visualizations and analysis concerning the growth of model noise with increasing context size
discussed in the main text.

Table 2: Model noise results. Scores for both tasks are accuracy.

Task Task length gpt4o gpt4omini llama3b llama70b
KV 1K 1.00 1.00 1.00 1.00
KV 2K 1.00 1.00 0.98 1.00
KV 4K 1.00 1.00 0.95 1.00
KV 8K 1.00 1.00 0.88 1.00
KV 16K 1.00 1.00 0.66 1.00
KV 32K 1.00 0.99 0.24 1.00
KV 64K 1.00 0.86 0.01 0.91
KV 128K 1.00 0.60 0.01 0.15

Math 1K 0.67 0.71 0.23 0.63
Math 2K 0.68 0.65 0.19 0.65
Math 4K 0.71 0.64 0.19 0.66
Math 8K 0.69 0.61 0.10 0.55
Math 16K 0.62 0.54 0.06 0.55
Math 32K 0.63 0.51 0.06 0.52
Math 64K 0.54 0.37 0.04 0.39
Math 128K 0.33 0.11 0.00 0.09

G TASK NOISE RESULTS

This section contains the detailed numerical results corresponding to Figure 3 in Section 5.3 of the
main paper. Figure 3 illustrates the joint effect of task noise (Φtask) and model noise (Φmodel),
showcasing how performance varies for different LLM agents on 128K-token length tasks when
the effective model context length (i.e., chunk size in the D&C setting) is altered. Table 3 lists the
precise performance metrics (accuracy, F1 score, or ROUGE score, depending on the task) for the
models gpt4omini, llama70b, and qwen72b. These scores are provided for all six benchmark tasks
(KV, Math, QA-IB, QA-LB, Sum, Char) across various model context lengths ranging from 1K to
64K tokens (when processing a total input of 128K tokens). This data underpins the analysis of the
three noise regimes and the conditions under which D&C approaches are advantageous, as discussed
in the main text.

H FRAMEWORK UTILITY OF PREDICTIVE PARAMETER ESTIMATION

A important measure of a theoretical framework’s value lies in its empirical utility, extending beyond
explanatory power to offer practical benefits. This section discusses both the explanatory strengths
of our noise decomposition framework and its predictive utility in efficiently determining optimal
parameters for Divide and Conquer (D&C) strategies.

H.1 EXPLANATORY POWER

Our framework provides a principled understanding of why and when D&C methods succeed or fail
in the context of long-document processing by Large Language Models (LLMs). By decomposing

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 3: Task noise results. Scores for all tasks are accuracy except sum which is ROUGE and qaib
which is F1 score.

Model Context Char KV Math QA-IB QA-LB Sum
gpt4omini 1000 0.12 0.99 0.49 0.22 0.33 0.08
gpt4omini 2000 0.12 0.99 0.50 0.27 0.44 0.11
gpt4omini 4000 0.15 0.99 0.55 0.39 0.44 0.15
gpt4omini 8000 0.17 0.99 0.54 0.36 0.48 0.14
gpt4omini 16000 0.15 1.00 0.50 0.37 0.44 0.15
gpt4omini 32000 0.18 1.00 0.55 0.42 0.46 0.11
gpt4omini 64000 0.16 0.98 0.45 0.39 0.38 0.11

llama70b 1000 0.04 0.99 0.47 0.44 0.15 0.16
llama70b 2000 0.05 0.96 0.49 0.55 0.36 0.19
llama70b 4000 0.05 0.99 0.50 0.55 0.46 0.23
llama70b 8000 0.07 0.98 0.50 0.56 0.33 0.28
llama70b 16000 0.07 1.00 0.57 0.63 0.26 0.24
llama70b 32000 0.13 1.00 0.53 0.54 0.28 0.23
llama70b 64000 0.17 0.91 0.39 0.41 0.31 0.21

qwen72b 1000 0.08 0.98 0.33 0.32 0.31 0.08
qwen72b 2000 0.07 0.95 0.46 0.40 0.28 0.18
qwen72b 4000 0.07 0.97 0.41 0.44 0.41 0.29
qwen72b 8000 0.15 0.98 0.40 0.48 0.54 0.23
qwen72b 16000 0.15 1.00 0.36 0.48 0.46 0.18
qwen72b 32000 0.13 0.88 0.31 0.42 0.46 0.19

the overall error into distinct model noise (Φmodel), task noise (Φtask), and aggregator noise (Φagg),
the framework facilitates the disentanglement of various contributing factors to performance. This
structured understanding has been instrumental in deriving the key insights presented throughout this
paper, such as the conditions favoring chunking and the impact of superlinear model noise growth.

H.2 PREDICTIVE UTILITY FOR OPTIMAL CHUNK SIZE ESTIMATION

A practical challenge in deploying D&C methods is the selection of an optimal chunk size, which
often requires costly exhaustive grid searches over various configurations. We conducted new
experiments to evaluate whether our framework’s insights could guide a more efficient estimation
of this parameter, particularly in regimes dominated by model noise (Case 3 in Section 3.4), where
chunk size significantly impacts performance. In other regimes (Case 1 and Case 2), performance
tends to be less sensitive to chunk size variations, making this estimation less critical.

We focused on tasks where model noise is a dominant factor (QA-IB and Summarization, as identified
in Figure 3) and attempted to estimate the optimal chunk size by evaluating performance on a very
small number of randomly selected document samples (3, 5, or 10 samples) for each potential chunk
size configuration. The D&C performance achieved with the chunk size selected via this minimal
sampling approach was then compared to the optimal performance found through an exhaustive grid
search over all samples for all chunk sizes.

The results for the QA-IB and Summarization (Sum) tasks are presented in Table 4 and Table 5,
respectively. These results demonstrate that even with minimal sampling (as few as 3-5 samples per
configuration), it is possible to identify chunk sizes that yield near-optimal D&C performance. This
suggests a pathway to significant computational savings when setting up D&C pipelines for new
tasks or models, by avoiding exhaustive searches. For example, in the QA-IB task with ‘llama70b‘,
using just 5 samples per chunk size configuration allowed us to identify a 16K chunk size yielding a
score of 0.63, identical to the optimal score and chunk size found via exhaustive search. Similarly,
for ‘qwen72b‘ on the Summarization task, 5 samples were sufficient to find the optimal 4K chunk
size and achieve the optimal score of 0.29.
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Table 4: Predictive Utility on QA-IB: Optimal Chunk Size Estimation (Score (Optimal Chunk Size
Found)). Total task length 128K tokens.

Model 3-sample 5-sample 10-sample Optimal after Exhaustive Search
gpt4omini 0.38 (64K) 0.42 (32K) 0.42 (32K) 0.42 (32K)
llama70b 0.55 (2K) 0.63 (16K) 0.63 (16K) 0.63 (16K)
qwen72b 0.40 (2K) 0.48 (16K) 0.48 (8K) 0.48 (8K & 16K)

Table 5: Predictive Utility on Summarization (Sum): Optimal Chunk Size Estimation (Score (Optimal
Chunk Size Found)). Total task length 128K tokens.

Model 3-sample 5-sample 10-sample Optimal after Exhaustive Search
gpt4omini 0.15 (16K) 0.14 (8K) 0.14 (8K) 0.15 (4K & 16K)
llama70b 0.23 (32K) 0.24 (16K) 0.28 (8K) 0.28 (8K)
qwen72b 0.23 (8K) 0.29 (4K) 0.29 (4K) 0.29 (4K)

RATIONALE FOR EFFICIENT ESTIMATION

The feasibility of accurately estimating optimal chunk sizes from sparse samples can be understood
through our framework’s characterization of model noise. We posit that model noise (ϕmodel(x))
exhibits superlinear growth with context length L = ||x||. It is reasonable to infer that this underlying
noise function ϕ(L) is, in practice, often (or can be approximated as) monotonic with respect to
L over relevant ranges. Consequently, within the D&C paradigm, reducing the per-worker chunk
size is expected to lead to a predictably monotonic (or near-monotonic) decrease in the dominant
accumulated model noise component, Φmodel.

When Φmodel dominates (and task noise Φtask is relatively small and aggregator noise Φagg is
managed), the overall D&C system error as a function of chunk size is likely to exhibit a discernible
optimal region (e.g., a convex-like shape or a region where decreasing model noise is balanced
by slowly increasing task/aggregator noise) rather than fluctuating randomly and unpredictably.
Therefore, a small number of samples across different chunk sizes can provide sufficient information
to sketch the rough contour of this error curve, allowing for the identification of the approximate
location of this optimal trade-off point without exhaustive evaluation.

I THE IMPACT OF OVERLAP IN CHUNKING STRATEGIES

In our main analysis, we primarily considered non-overlapping chunks. To further explore variations
in chunking methodologies, we investigated the impact of introducing a modest overlap between
adjacent chunks. This strategy is sometimes employed with the aim of mitigating potential information
loss at chunk boundaries, which could otherwise contribute to task noise (Φtask). We conducted
experiments using the Llama-70B model on several 128K-token long-context tasks, comparing
non-overlapping chunks with chunks having a 1K token overlap (base chunk sizes were 4K and 16K
tokens before overlap).

The results are presented in Table 6. The inclusion of a 1K token overlap led to mixed and generally

Table 6: Impact of 1K Token Overlap on Llama-70B Performance (128K Tasks)

Llama-70B Strategy KV QA-IB Sum Char
16K chunks, no overlap 1.00 0.63 0.24 0.07
16K chunks, 1K overlap 1.00 0.54 0.25 0.07
4K chunks, no overlap 0.99 0.55 0.23 0.05
4K chunks, 1K overlap 1.00 0.53 0.19 0.05

marginal changes in performance. While slight improvements were noted in some specific instances,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

other cases showed minor degradations or no discernible effect. This suggests that while a small over-
lap might offer a limited benefit for certain local cross-chunk dependencies, it does not consistently
or substantially alter the overall performance trade-offs identified by our framework for these tasks.
Moreover, extensive overlap could introduce processing redundancies or even conflicting information
for the aggregator, potentially increasing aggregator noise (Φagg). For the configurations tested, the
benefits of this overlap strategy did not appear to consistently outweigh the increased complexity or
computational cost.

J COMPARATIVE ANALYSIS WITH RETRIEVAL-AUGMENTED GENERATION
(RAG)

Retrieval-Augmented Generation (RAG) represents a prominent alternative for addressing long-
context tasks by first retrieving presumptively relevant segments of the input, which are then processed
by the LLM. To situate our Divide and Conquer (D&C) framework in relation to this approach, we
performed a comparative analysis. We applied RAG to the single-shot baseline models for the
128K-token versions of our benchmark tasks, employing both BM25 (sparse retrieval) and ‘all-mpnet-
base-v2‘ embeddings (dense retrieval). Based on the task query, the RAG pipeline retrieved document
sections that were then provided as context to the LLM.

The performance of RAG is detailed in Table 7. For several tasks, RAG was notably less effective than

Table 7: Comparison of D&C (Implicit via "noRAG" baseline) and RAG Strategies

Model Method KV QA-IB QA-LB Sum Char

gpt4omini
noRAG (Baseline) 0.60 0.23 0.31 0.13 0.19
RAG (BM25) 0.79 0.13 0.23 0.12 0.11
RAG (mpnet) 0.73 0.19 0.27 0.13 0.13

llama70b
noRAG (Baseline) 0.15 0.56 0.23 0.19 0.18
RAG (BM25) 0.81 0.14 0.23 0.15 0.10
RAG (mpnet) 0.77 0.38 0.26 0.15 0.14

both our D&C methodology and the original single-shot baseline. Tasks such as summarization or
character inference, which often require a global understanding or synthesis of diffuse information not
easily targeted by a simple query, proved challenging for the retrieval step. Inaccurate or incomplete
retrieval frequently provided the LLM with a partial or skewed view of the overall context, leading to
degraded performance. These findings highlight the sensitivity of RAG to retrieval quality and its
applicability to tasks where key information is sparse or not easily queryable. Our D&C approach, by
processing the entirety of the text through structured decomposition, can offer greater robustness for
such scenarios.

K RELATION TO ARCHITECTURAL CONTEXT EXTENSION METHODS

Alongside algorithmic approaches like D&C, significant research efforts focus on extending the
native context window capabilities of LLM architectures, often through modifications to positional
encodings (e.g., RoPE scaling) or continued training on longer sequences. It is noteworthy that one
of our primary baseline models, QWen2.5-72B-Instruct, already incorporates such advanced context
extension techniques and has undergone training with them.

To further understand the landscape, particularly regarding training-free extension methods, we
examined the behavior of Llama-2 (a model with a nominal 4K token context window) when its
context was extended to 32K tokens via RoPE scaling, without additional fine-tuning. The results
are shown in Table 8. The data indicate a decline in performance as the input length significantly
surpassed the model’s original training parameters. This aligns with broader observations in the
field (e.g., the LongRoPE study) suggesting that while training-free scaling offers some benefit,
achieving robust performance at substantially extended context lengths typically requires further
training or architectural adaptation. The D&C framework presented in this paper is complementary,
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Table 8: Performance of Llama-2 with RoPE Scaled Context Extension (Training-Free)

Model Tested CTX KV QA-IB Char
Llama2-4K 4K 0.47 0.23 0.00

Llama2-32K (Scaled)
8K 0.42 0.19 0.00
16K 0.23 0.17 0.03
32K 0.12 0.13 0.00

providing a strategy to handle extensive sequences that can be applied irrespective of a model’s
inherent maximum context length.

L CONNECTION TO EFFECTIVE CONTEXT LENGTH RULER BENCHMARKS

The efficacy of any long-context strategy is intrinsically linked to the underlying LLM’s capabilities.
Benchmarks like Ruler aim to quantify the "effective context length" of models, often focusing on
retrieval-based tasks. To assess the generalizability of our noise decomposition framework across
a spectrum of models and task types beyond simple retrieval, we conducted additional evaluations.
We selected three models with differing architectural characteristics and reported long-context
capabilities: Mistral-7B-Instruct-v0.2, Qwen1.5-72B-Chat, and GPT-4-Turbo.

These models were evaluated on several of our benchmark tasks with varying input context lengths.
The performance patterns are summarized in Table 9. While a longer effective context is generally

Table 9: Performance of Diverse Models with Varying Context Lengths

Model Ruler CTX (Approx.) Tested CTX KV QA-LB Sum

Mistral-7B 16K
4K 0.03 0.230 0.090
8K 0.00 0.290 0.090

16K 0.11 0.170 0.090

Qwen1.5-72B-Chat 32K

4K 0.92 0.360 0.110
8K 0.97 0.260 0.130

16K 0.95 0.310 0.110
32K 0.93 0.270 0.150

GPT-4 (Turbo) 64K+

4K 1.00 0.431 0.088
8K 1.00 0.461 0.091

16K 1.00 0.435 0.092
32K 0.98 0.399 0.085
64K 0.87 0.384 0.081
128K 0.77 0.373 0.074

advantageous, the specific manifestation of model noise (Φmodel) and task noise (Φtask) remains
highly task-dependent. Complex reasoning or generation tasks can stress long-context capabilities
differently than retrieval tasks. These observations reinforce the utility of our noise decomposition
framework as an analytical tool. The framework helps explain performance variations by considering
the interplay of the task’s intrinsic decomposability, the model’s confusion threshold with increasing
context, and the aggregator’s ability to synthesize information, providing insights that extend beyond
a single metric of effective context length.

M FRAMEWORK IMPLEMENTATION IN MORE DETAILS

We present a simple implementation of the framework as in Figure 1. Our implementation consists of
three parts: a planner for automated query planning, numerous worker agents, and single manager
agent. For a long context task, we divide it into chunks of approximately equal length and feed each
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chunk to one worker agent. Thus, we need to design how worker agents process their chunks and
how manager agent could synthesize the appropriate answer from the interaction.

M.1 WORKER AGENT

In our framework, the long context sequence is divided into multiple segments, with each worker agent
independently responsible for processing one specific segment. This design isolates the processing of
individual segments, deliberately omitting any consideration of dependencies across segments. The
goal is to simplify each worker’s task by restricting its scope to a single context segment. While our
implementation employs homogeneous worker agents for simplicity, this setup can be extended to
accommodate heterogeneous agents with varying capacities in more complex scenarios.

M.2 MANAGER AGENT

The manager agent is tasked with aggregating the outputs generated by the worker agents. It analyzes
the responses received and synthesizes a unified, refined output. For simplicity in our current design,
we use the same model architecture for the manager agent as for the worker agents. However, this
design can be adapted to allow for specialized managerial processing in more advanced applications.

M.3 PLANNER

The planner plays a central role in the coordination of the system. While we have outlined the basic
structure of worker and manager agents, the specific responsibilities of each agent will vary depending
on the task and the data. Instead of manually assigning tasks to the agents, we introduce a planner that
autonomously determines the optimal distribution of jobs between the worker and manager agents.
The planner is given the original task description (e.g., "identify the second largest number in this
list") and is responsible for generating appropriate prompts for each agent, taking into account the
segmentation of the long sequence. Moreover, human-designed agent workflows typically involve a
trial-and-error approach: initial job prompts are tested on a small dataset, the failures are analyzed,
and the design is iteratively refined. We integrate this iterative process into the planner by having it
perform an initial zero-shot job assignment, followed by an evaluation on holdout validation data.
The planner receives feedback on mispredicted cases and revises the job prompts accordingly. While
this iterative process can be repeated to improve performance, there is a risk of overfitting if carried
out for too long. In our experiments, we iterate only once to avoid trivial problems.

N COMPUTATIONAL COST AND LATENCY OF D&C VS. SINGLE-PASS

Setup and notation. Let an input have length L tokens and be split into N equal chunks. Denote

• Tsingle(L): latency for a single, large model to process the full input,
• Tdc(L/N): latency for a smaller worker model to process one chunk,
• Tmanager(Lagg): latency for the manager/aggregator to process the short aggregation input of

length Lagg (concatenated worker outputs/prompts), where typically Lagg ≪ L.

We assume worker calls are issued in parallel up to the available concurrency of the deployment.

N.1 LATENCY

Single-pass wall-clock latency.
Latencysingle = Tsingle(L). (2)

D&C wall-clock latency with parallel workers.
LatencyD&C ≈ Tdc(L/N) + Tmanager(Lagg). (3)

When is D&C faster?

Tsingle(L) > Tdc(L/N) + Tmanager(Lagg) (4)
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This inequality is often satisfied in practice because (i) per-call latency grows with input length,
so shrinking from L to L/N reduces each worker’s processing time, and (ii) Lagg is short, so the
manager adds a small, near-constant overhead. Crucially, D&C does not require N sequential LLM
calls; with parallelization the critical path is one worker pass plus a single manager pass.

Practical caveats. The achievable speedup depends on available parallel capacity (API/cluster
concurrency), network overhead, and the manager prompt design. Excessive chunk overlap or verbose
worker outputs increase Lagg and can erode gains.

N.2 MONETARY COST

Let pbig
in/out be per-token prices for the single, flagship model; psmall

in/out for the smaller worker model; and
pmgr

in/out for the manager. Let |y| be the final output length, |yi| each worker’s output length, and Lagg
the manager’s input length.

Single-pass cost.
Costsingle ≈ pbig

in L + pbig
out |y|. (5)

D&C cost.

CostD&C ≈ psmall
in L + psmall

out

N∑
i=1

|yi| + pmgr
in Lagg + pmgr

out |y|. (6)

Token accounting and implication. With non-overlapping chunks, the dominant input mass remains
L in both pipelines. D&C adds only a small extra budget for Lagg and

∑
i |yi| (kept short by structured

worker outputs). Therefore, when psmall
in/out ≪ pbig

in/out (using compact/open models as workers and a
lightweight manager), D&C is typically cheaper while processing roughly the same number of
dominant input tokens.

Practical caveats. Chunk overlap, verbose worker outputs, retries, or using a large manager can
increase Lagg and

∑
i |yi|. These are controlled by (i) minimizing overlap, (ii) constraining worker

output schemas, and (iii) keeping the manager focused on short structured inputs.

N.3 SUMMARY OF THE TRADE-OFF

• Latency: With parallel workers, D&C reduces the critical path from processing L once to
processing a single chunk of size L/N plus a short aggregation step (Eq. 4).

• Cost: Because the dominant token mass L is similar in both methods, shifting those tokens
to cheaper worker models and paying only a small aggregation overhead typically lowers
total cost.

• Key condition: Short, structured worker outputs (small Lagg) and sufficient parallel capacity
make Tsingle(L) > Tdc(L/N) + Tmanager(Lagg) and CostD&C < Costsingle realistic for long
inputs.

These considerations complement the performance-centric analysis in the main paper: when model
noise grows with context length and cross-chunk synergy is moderate, D&C can simultaneously
improve quality, reduce wall-clock time, and lower cost relative to a single-pass large-model run.

O WHY STATIC EQUAL-LENGTH CHUNKING?

For clear analysis and diagnosis, we adopt a control-variable design: we set the chunk size equal to
the per-chunk context length and use equal-length, non-overlapping splits. This way, the performance
change as chunk size varies can be primarily attributed to the length effect (model noise), rather than
multiple moving parts at once.

Why not use adaptive segmentation in the main experiments? Adaptive policies (variable
lengths, semantic boundaries, routing) simultaneously change:
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• the length distribution across chunks (affecting how model noise scales with length),
• the boundary placement/routing relative to dependencies (affecting task noise),
• the structure of worker outputs (affecting aggregator noise).

When several factors vary together, the diagnostic curve (performance vs. chunk size) becomes hard
to interpret, and we can no longer cleanly read off the relationship between per-chunk length and
model confusion, nor the relative contribution of the three noise sources.

Benefits of equal-length splitting (control of variables) Equal-length, non-overlapping splits
concentrate the degree of freedom onto the per-chunk length ℓ, which:

• enables a direct estimation/visualization of how model noise depends on ℓ (the basis for our
read of Fig. 2/3),

• stabilizes comparisons between D&C and single-shot across different ℓ,
• makes the diagnosis of “model-noise dominated” vs. “task-noise dominated” regimes more

reliable.

Empirically, we also observed that small overlaps only yield marginal gains in our setting, suggesting
the conclusions are not artifacts of brittle boundaries.

The framework does not preclude adaptivity Our decomposition naturally accommodates adap-
tive segmentation; when diagnostics indicate high task noise (strong cross-chunk dependencies),
adaptive strategies can be useful in engineering practice. However, the focus of this paper is first
to identify the length-driven effect under controlled conditions. In other words, we do not reject
adaptivity; we fix chunk lengths to keep variables controlled so that the analysis remains interpretable
and reproducible.
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