# IMPROVED LAST-ITERATE CONVERGENCE PROPERTIES FOR THE FLBR DYNAMICS

**Anonymous authors**Paper under double-blind review

## **ABSTRACT**

The recent years have seen a surge of interest in algorithms with last-iterate convergence for 2-player games, motivated in part by applications in machine learning. Driven by this, we revisit a variant of Multiplicative Weights Update (MWU), defined recently by Fasoulakis et al. (2022), and denoted as Forward Looking Best Response MWU (FLBR-MWU). These dynamics are based on the approach of extra gradient methods, with the tweak of using a different learning rate in the intermediate step. So far, it has been proved that this algorithm attains asymptotic convergence but no explicit rate has been known. We answer the open question from Fasoulakis et al. by establishing a geometric convergence rate for the duality gap. In particular, we first show such a rate, of the form  $O(c^t)$ , till we reach an approximate Nash equilibrium, where c < 1 is independent of the game parameters. We then prove that from that point onwards, the duality gap keeps getting decreased with a geometric rate, albeit with a dependence on the maximum eigenvalue of the Jacobian matrix. Finally, we complement our theoretical analysis with an experimental comparison to OGDA, which ranks among the best last-iterate methods for solving 0-sum games. Although in practice it does not generally outperform OGDA, it is often comparable, with a similar average performance.

#### 1 Introduction

Our work focuses on learning algorithms with convergence guarantees in 2-player bilinear zero-sum games. This is by now an extensively studied domain, spanning already a few decades of research progress. Given a game described by its payoff matrix, what we are after here is algorithms that eventually reach a Nash equilibrium, where no player has an incentive to deviate. Some of the earlier and standard results in this area concern convergence *on average*. I.e., it has long been known that by using no-regret algorithms, the empirical average of the players' strategies over time converges to a Nash equilibrium in zero-sum games and to more relaxed equilibrium notions (coarse correlated equilibria) for general games (Freund & Schapire, 1999).

In the recent years, the attention of the relevant community has gradually shifted from convergence on average to the more robust notion of *last-iterate convergence*, a property most desirable from an application point of view. This means that the strategy profile  $(x^t, y^t)$ , reached at iteration t of an iterative algorithm, converges to the actual equilibrium as  $t \to \infty$ . Unfortunately, many of the initially developed methods do not satisfy this property. No-regret algorithms, like the Multiplicative Weights Update (MWU) method, are known to converge only in an average sense. In fact, it was shown in Bailey & Piliouras (2018); Mertikopoulos et al. (2018) that several MWU variants do not satisfy last-iterate convergence.

Motivated by these considerations, there has been a series of works within the last decade studying last iterate convergence. The majority of these works has focused on the fundamental class of zero-sum games. Zero-sum games have played an important role in the development of game theory and optimization, and more recently, there has also been a renewed interest, given their relevance in formulating GANs in deep learning (Goodfellow et al., 2014). The positive results that have been obtained for zero-sum games is that improved variants of Gradient Descent such as the Optimistic Gradient Descent/Ascent method (OGDA), or the Extra Gradient method (EG) attain last iterate convergence. Several other methods have also been obtained and compared to each other w.r.t.

convergence rate. Overall, one can say that we have by now a much better understanding for the learning dynamics that converge in zero-sum games.

Despite the positive progress however, there are still several important questions that remain unanswered. First of all, it is often difficult to have tight results in analyzing such learning algorithms. And furthermore, even for bilinear, zero-sum games, the best attainable rate of convergence is not yet fully understood. The currently best rate that is applicable to all such games is  $O(1/\sqrt{t})$  in terms of the duality gap (Cai et al., 2022; Gorbunov et al., 2022), where the hidden terms in the  $O(\cdot)$  notation depend on the game dimension but not on the payoff matrix. In fact this also holds for the more general class of convex-concave min-max optimization problems. It is conceivable though that better rates could be achieved for bilinear games. The work of (Wei et al., 2021) establishes a geometric convergence rate of  $O(c^t)$  (c < 1) for the OMWU method, discussed further in the sequel, albeit with game-dependent parameters within the  $O(\cdot)$  term. It remains an open problem whether we can have a geometric convergence rate where the dependence is only on the game dimension.

## 1.1 OUR CONTRIBUTIONS

We focus on bilinear zero-sum games and we revisit a promising variant of MWU that was defined recently in Fasoulakis et al. (2022), denoted as Forward Looking Best-Response Multiplicative updates (FLBR-MWU). The dynamics are based on the approach of extra gradient methods, with the tweak of using a different and more aggressive learning rate in the intermediate step. Our main contributions can be summarized as follows:

- So far it was only known that the FLBR algorithm attains asymptotic last-iterate convergence, but without any explicit rate. We answer the open question from Fasoulakis et al. (2022) by establishing concrete rates of convergence. Using the duality gap as our metric, we first show a geometric rate, of the form  $O(c^t)$ , till we reach an approximate Nash equilibrium, for an appropriate level of approximation. More precisely, the parameter c here c here c here c is independent of the entries in the payoff matrix, and dependent on the dimension.
- For games with a unique Nash equilibrium, we further prove that once we reach an approximate equilibrium, the duality gap keeps getting decreased with a geometric rate, till the exact equilibrium solution, albeit with the caveat that there is a dependence on the Jacobian matrix evaluated at the equilibrium. As mentioned earlier, an analogous result also holds for the OMWU method (Wei et al., 2021), but for the KL divergence, and with a different dependence on the game parameters. We view as advantages of our analysis that it yields a simpler and more intuitive proof compared to Wei et al. (2021), and it also establishes the fast (non game-dependent) convergence to an approximate equilibrium before going towards the exact solution. Furthermore, our proof highlights connections to a neighboring field, as it utilizes ideas from the analysis of the Arimoto-Blahut algorithm (for computing the Shannon's capacity of a discrete memoryless channel).
- We then investigate further properties of FLBR. We prove that it is not a no-regret algorithm, which was not known before. At the same time, we explore aspects of *forgetfulness*, as introduced recently in Cai et al. (2024). We show that in contrast to OMWU, FLBR seems to exhibit forgetfulness, which serves as an indication for fast performance.
- Finally, we perform an experimental comparison of FLBR against OGDA, which is among the best known methods for solving zero-sum games, and against OMWU. We mostly focus on the comparison against OGDA since OMWU is not as competitive in practice (observed also in other recent works). The results reveal that FLBR is generally competitive against OGDA. While it does not outperform OGDA, it has a similar performance on average.

Overall, we believe our work provides a more complete treatment on the power and limitations of the FLBR method for bilinear games.

#### 1.2 RELATED WORK

There is by now a vast literature on solving zero-sum games. Given the connection with linear programming, a variety of algorithms focus on optimization and LP-based methods for zero-sum games. Theoretically, the best guarantees for solving the corresponding linear program can be found in Cohen et al. (2021) and van den Brand et al. (2021). Regarding other methods, Hoda et al. (2010) use Nesterov's first order smoothing techniques to achieve an  $\varepsilon$ -equilibrium in  $O(1/\varepsilon)$  iterations,

with added benefits of simplicity and rather low computational cost per iteration. Following up on that work, Gilpin et al. (2012) propose an iterated version of Nesterov's smoothing technique, which runs within  $O(\frac{||A||}{\delta(A)} \cdot \ln(1/\varepsilon))$  iterations. This is a significant improvement, with the caveat that the complexity depends on a condition measure  $\delta(A)$ , with A being the payoff matrix.

In addition to the above, there has been great interest in designing faster learning algorithms for zero-sum games. Although this direction started already several decades ago, e.g. with the fictitious play algorithm (Brown, 1951; Robinson, 1951), it has received significant attention more recently given the relevance to formulating GANs in deep learning (Goodfellow et al., 2014) and also other applications in machine learning. Some of the earlier and standard results in this area concern convergence *on average*. That is, it has been known that by using no-regret algorithms, such as the Multiplicative Weights Update (MWU) methods (Arora et al., 2012) the empirical average of the players' strategies over time converges to a Nash equilibrium in zero-sum games. Similarly, one could also utilize the so-called Gradient Descent/Ascent (GDA) algorithms. Several other algorithms for zero-sum games are built within the framework of regret minimization both in theory (Carmon et al., 2019; 2024) and in applications (Farina et al., 2021).

Coming closer to our work, within the last decade, there has also been a great interest in algorithms attaining the more robust notion of *last-iterate convergence*. This means that the strategy profile  $(x^t, y^t)$ , reached at iteration t, converges to the actual equilibrium as  $t \to \infty$ . Negative results in Bailey & Piliouras (2018) and Mertikopoulos et al. (2018) exhibit that several no-regret algorithms such as many MWU as well as GDA variants, do not satisfy last-iterate convergence. Instead they may diverge or enter a limit cycle. Motivated by this, there has been a series of works on obtaining algorithms with provable last iterate convergence. The positive results that have been obtained for zero-sum games is that improved versions of Gradient Descent such as the Extra Gradient method (Korpelevich, 1976) or the Optimistic Gradient method (Popov, 1980) attain last iterate convergence. In particular, Daskalakis et al. (2018) and Liang & Stokes (2019) show that the optimistic variant of GDA (referred to as OGDA) converges for zero-sum games. Analogously, OMWU (the optimistic version of MWU) also attains last iterate convergence, shown in Daskalakis & Panageas (2019) and further analyzed in Wei et al. (2021). Further approaches with convergence guarantees have also been proposed, such as primal-dual hybrid gradient methods (Lu & Yang, 2023). For the case of constrained bilinear zero-sum games, the best convergence rate for the duality gap achieved so far is by (Cai et al., 2022; Gorbunov et al., 2022), which is  $O(1/\sqrt{t})$ . We note that better rates are achievable for the case of unconstrained bilinear zero-sum games, as e.g., in Mokhtari et al. (2020), but this is an easier problem from what we focus on here. We also note that for the metric of KL divergence, Wei et al. (2021) provide a geometric rate, which is dependent on game parameters.

The method we analyze here is inspired by the general approach of extra gradient methods, but with the tweak of using different learning rates in the intermediate and final step of each iteration. The idea of using different rates in these two steps of each iteration has also been successful in other recent works as well. It has been used in Azizian et al. (2020) for a model that concerns the unconstrained bilinear case. Again for the unconstrained case (but even beyond convex-concave functions), the work of Diakonikolas et al. (2021) showed how the use of different learning rates achieved convergence guarantees for their method (referred to as EG+). These ideas have also been applied successfully in the stochastic setting, under noisy gradient feedback, (Hsieh et al., 2020).

Finally, several of these methods have also been studied beyond bilinear games, including among others (Golowich et al., 2020) and also (Diakonikolas et al., 2021) where positive results are shown for a class of non-convex and non-concave problems. There are also negative results however as e.g., established in Daskalakis et al. (2021). Going beyond min-max problems, the work of Patris & Panageas (2024) obtains last-iterate convergence rates in rank-1 games. Results for richer classes of games are provided in Anagnostides et al. (2022), including potential and constant-sum polymatrix games. The landscape however is overall less clear.

## 2 Preliminaries

We consider 2-player,  $n \times n$ , zero-sum games (R, -R). Without loss of generality, we consider that  $R \in (0, 1]^{n \times n}$  is the payoff matrix of the row player, and -R is the payoff matrix of the

column player. A (mixed) strategy is a probability distribution  $x = (x_1, \dots, x_n)^{\top}$  over the standard simplex, where the vector  $e_i^{\top}$ , with 1 in the index i and zero elsewhere, corresponds to the pure strategy i. The support of a mixed strategy x is the set of the pure strategies to which x assigns positive mass, i.e.  $supp(x) = \{i : x_i > 0\}$ .

A strategy profile is a tuple (x, y) where x (resp. y) is the strategy of the row (resp. column) player. Given a profile (x, y), the expected payoff of the row (resp. column) player is  $x^{\top}Ry$  (resp  $-x^{\top}Ry$ ).

**Definition 1** ( $\varepsilon$ -Nash equilibrium ( $\varepsilon$ -NE)). A strategy profile (x,y) is an  $\varepsilon$ -Nash equilibrium of the game (R,-R), with  $R \in [0,1]^{n \times n}$ , for  $\varepsilon \in [0,1]$ , if and only if, for any  $i,j \in [n]$ ,

$$x^{\top}Ry + \varepsilon \ge e_i^{\top}Ry$$
, and  $x^{\top}Ry - \varepsilon \le x^{\top}Re_j$ .

By setting  $\varepsilon = 0$  we have an exact NE. Next we will define our progress measure.

**Definition 2.** For zero-sum games, the duality gap function V is defined as

$$V(x,y) = \max_{i} e_i^{\top} Ry - \min_{j} x^{\top} Re_j.$$

The duality gap is a central notion in game theory as it captures the combined loss of the players for not employing best responses and hence for deviating from a NE, as seen in the fact below.

**Fact 1.** A strategy profile  $(x^*, y^*)$  is a Nash equilibrium of a zero-sum game, if and only if it is a (global) minimum of the function V(x, y). Furthermore, if  $V(x, y) \le \varepsilon$ , then (x, y) is an  $\varepsilon$ -NE.

Before proceeding with the dynamics, we state a simple lemma that relates the  $L_1$  norm with the duality gap function and defer its proof in Appendix A.

**Lemma 1.** For any x, y it holds that  $\max_i e_i^\top Ry \le ||y-y^*||_1 + v$  and  $\min_j x^\top Re_j \le ||x-x^*||_1 + v$ , where v is the value of the zero-sum game.

## 2.1 FLBR-MWU DYNAMICS

Here we restate the Forward Looking Best-Response Dynamics as introduced in Fasoulakis et al. (2022). These dynamics followed an extra gradient approach to find a Nash Equilibrium. Specifically, in each iteration there exists an intermediate step which is used as a prediction for the update step. The difference with other extra gradient-like approaches is that different learning rates are used in the intermediate and the final step, which appear crucial to the effectiveness of this approach.

Given an initial strategy profile  $(x^0, y^0)$ , the two steps of the dynamics can be described as follows:

$$\text{Step 1 (Intermediate): } \hat{x}_i^t = x_i^{t-1} \cdot \frac{e^{\xi \cdot e_i^\top R y^{t-1}}}{\sum\limits_j x_j^{t-1} \cdot e^{\xi \cdot e_j^\top R y^{t-1}}}, \text{ and } \hat{y}_j^t = y_j^{t-1} \cdot \frac{e^{-\xi \cdot e_j^\top R^\top x^{t-1}}}{\sum\limits_i y_i^{t-1} \cdot e^{-\xi \cdot e_i^\top R^\top x^{t-1}}},$$

$$\text{Step 2 (Update):} \qquad x_i^t = x_i^{t-1} \cdot \frac{e^{\eta \cdot e_i^\top R \hat{y}^t}}{\sum\limits_j x_j^{t-1} \cdot e^{\eta \cdot e_j^\top R \hat{y}^t}}, \quad \text{and } y_j^t = y_j^{t-1} \cdot \frac{e^{-\eta \cdot e_j^\top R^\top \hat{x}^t}}{\sum\limits_i y_i^{t-1} \cdot e^{-\eta \cdot e_i^\top R^\top \hat{x}^t}},$$

When  $\xi=\eta$  in the above steps, this is referred to as Mirror-Prox in Nemirovski (2004). Contrary to the conventional wisdom of using rather small learning rates to ensure contraction, our approach is to have a large value for  $\xi$  (aggressive rate for the intermediate exploration step) together with a small (conservative) learning rate  $\eta \in (0,1)$  for the update step. Finally, we state an important property that we will use at various points in the sequel.

**Lemma 2** (Fasoulakis et al. (2022)). For any t > 0, it holds that as  $\xi \to \infty$  then  $\hat{x}^t$  (resp.  $\hat{y}^t$ ) converges to a best response strategy against  $y^{t-1}$  (resp. against  $x^{t-1}$ ).

**Assumption 1.** We will start the dynamics from the fully uniform distribution, i.e.,  $x^0 = y^0 = (1/n, ..., 1/n)$ . Furthermore, we will use a fixed  $\eta$ , independent of t in all iterations.

<sup>&</sup>lt;sup>1</sup>Any game can be transformed to a game with entries in the interval (0, 1] with the same Nash equilibria.

## 3 Convergence analysis

In this section, we use the duality gap as a metric to study the rate of convergence for FLBR-MWU. This provides an answer to the question left open by Fasoulakis et al. (2022). Our analysis consists of two parts. First, we obtain a geometric rate of convergence till an appropriate approximate equilibrium is reached, where the degree of approximation is dependent on  $\eta$ . Then, we show that if  $\eta$  is sufficiently small, so as to guarantee that we are close to the exact solution, we can maintain a geometric rate all the way to the equilibrium, at the cost of introducing a dependency on the game parameters.

#### 3.1 Convergence to an approximate equilibrium

Let  $(x^*, y^*)$  be an arbitrary exact Nash equilibrium and let  $(x^t, y^t)$  be the strategy profile produced by the dynamics at the end of time step t. We stress that for the convergence to an approximate equilibrium, we do not need to assume uniqueness.

In our analysis, we will utilize the *Kullback-Leibler (KL)* divergence of a profile from  $(x^*, y^*)$ , defined as follows.

$$D_{KL}((x^*, y^*)||(x^t, y^t)) = \sum_{i=1}^n x_i^* \cdot \ln(x_i^*/x_i^t) + \sum_{i=1}^n y_j^* \cdot \ln(y_j^*/y_j^t).$$

Note that by the definition of the dynamics,  $x_i^t$  and  $y_j^t$  are always positive for any i, j and t, hence the ratios above are well-defined. For brevity, we write  $D_{KL}((x^*, y^*)||(x^t, y^t))$  as  $D^t$ . The main technical property for the analysis of reaching an approximate equilibrium is the following lemma.

**Lemma 3.** It holds that for any  $t \ge 1$ , and any  $\eta \le 1/2$ 

$$\eta \cdot ((\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t) \le D^{t-1} - D^t + 4\eta^2.$$

This lemma is crucial as it gives us a way to correlate the duality gap with the KL divergence. In particular, the left hand side of the formula is a proxy quantity for the duality gap, and converges to it should we choose a large enough  $\xi$ , as established in the following claim.

**Claim 1.** For any 
$$t \ge 1$$
, it holds that  $\lim_{\xi \to \infty} [(\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t] = V(x^{t-1}, y^{t-1}).$ 

From this we have the following:

**Corollary 1.** It holds that for any  $t \ge 1$ , for any  $\eta \le 1/2$ , and for large enough  $\xi$  that

$$V(x^{t-1}, y^{t-1}) \le \frac{D^{t-1} - D^t}{\eta} + 5\eta.$$

All missing proofs are presented in Appendix B. The next theorem is the main result of this section.

**Theorem 1.** Under Assumption 1, and for sufficiently small  $\eta$  and large  $\xi$ , the rate of convergence for the KL divergence till we reach a  $6\eta$ -Nash equilibrium is inverse exponential, in the form  $O(\ln n \cdot c^t)$ , where c < 1 is independent of t and dependent on n and  $\eta$ . Similarly, the convergence rate of the duality gap to reach a  $6\eta$ -NE is inverse exponential, in the form  $O\left(\frac{\ln n}{\eta} \cdot c^t\right)$ .

*Proof.* By following the proof of Theorem 2 in Fasoulakis et al. (2022) and substituting  $\max\{\varepsilon_1, \varepsilon_2\}$  with  $6\eta$  we obtain that while we have not reached a  $6\eta$ -NE it holds that

$$D^{t} \le D^{t-1} - 2\eta^{2} = D^{t-1} \left( 1 - \frac{2\eta^{2}}{D^{t-1}} \right).$$

Due to Assumption 1 and the fact that the KL divergence only decreases till we reach an approximate equilibrium (Fasoulakis et al. (2022)), we have that  $D^{t-1} \leq D^0 \leq 2 \ln(n)$ . Thus we conclude that

$$D^t \le D^{t-1} \left( 1 - \frac{\eta^2}{\ln(n)} \right).$$

For  $\eta \leq \sqrt{\ln(n)}$  we can unroll the above inequality for all time steps up to t to obtain

$$D^t \le D^{t-1} \left( 1 - \frac{\eta^2}{\ln(n)} \right)^t \le 2\ln(n) \left( 1 - \frac{\eta^2}{\ln(n)} \right)^t.$$

This means that the KL divergence at time t is bounded by  $2 \ln(n) \cdot c^t$ , where c < 1 is independent of t and dependent on  $\eta$  and n. Coming now to the duality gap, we conclude by Corollary 1 that

$$V(x^t, y^t) \le \frac{D_{KL}^t((x^*, y^*)||(x^t, y^t))}{\eta} + 5\eta \le \frac{2\ln(n)}{\eta} \left(1 - \frac{\eta^2}{\ln(n)}\right)^t + 5\eta. \tag{1}$$

Note also that since we have not yet reached a  $6\eta$ -NE, it holds that  $V(x^t, y^t) \ge 6\eta$ . Combining this with the above upper bound implies that for any time step t, till we reach an approximate equilibrium,

we have that  $\eta \leq \frac{2\ln(n)}{\eta} \left(1 - \frac{\eta^2}{\ln(n)}\right)^t$ . By plugging this in (1), we eventually get:

$$V(x^t, y^t) \le \frac{12\ln(n)}{\eta} \left(1 - \frac{\eta^2}{\ln(n)}\right)^t.$$

#### 3.2 Convergence to an exact equilibrium under uniqueness

We proceed here to analyze the convergence till the method reaches an exact equilibrium. The technique here is based on a spectral analysis. and for this, we will need to further assume that the game has a unique Nash equilibrium  $(x^*, y^*)$ . This is a rather common assumption in many related works, and we do not view this as a severe restriction, since the set of zero-sum games with non unique NE has Lebesgue measure equal to zero (Van Damme, 1991).

Let  $t_0$  be the time at which we reach the approximate equilibrium described in Section 3.1 and let  $(x^{t_0}, y^{t_0})$  be the corresponding strategy profile. By Theorem 1, it can be extracted that  $t_0 = O(\ln \ln(n)/\ln(\eta))$ . The first step in the remaining analysis is to establish that this approximate equilibrium can be close to the actual Nash equilibrium. This is ensured if  $\eta$  is sufficiently small.

**Corollary 2** (implied by Theorem 3 in Fasoulakis et al. (2022)). For any  $\delta > 0$ , and for any  $q \ge 1$ , there exists a sufficiently small  $\eta$ , such that  $||(x^*, y^*) - (x^{t_0}, y^{t_0})||_q \le \delta$ .

Using the above, the asymptotic last-iterate convergence of FLBR (but without a rate) was established in Fasoulakis et al. (2022) by proving that the maximum eigenvalue of the Jacobian matrix at  $(x^*, y^*)$  is strictly less than 1. In order to obtain a rate of convergence, we give a more refined analysis, based on a technique utilized in Nakagawa et al. (2021) (namely within the proof of their Theorem 5) for a fundamental problem in information theory.<sup>2</sup>

**Theorem 2.** Let (R, -R) be a zero-sum game with a unique NE  $(x^*, y^*)$ . For a sufficiently small  $\eta$  and large enough  $\xi$ , such that  $\eta \xi < 1$ , the rate of convergence of the duality gap to the NE is inverse exponential for the FLBR dynamics, in the form  $A/b^t$ , where A and b are determined by the norm of the Jacobian matrix evaluated at  $(x^*, y^*)$ .

*Proof.* First, we recall some basic facts established in Fasoulakis et al. (2022) that we use here, and for which uniqueness of equilibrium was needed. FLBR can be easily described as a discrete dynamical system,  $\varphi(x,y)=(\varphi_1(x,y),\varphi_2(x,y))$ , where  $\varphi(x^t,y^t)=(x^{t+1},y^{t+1})$ , and where  $\varphi_{1,i}(x,y)$  is the *i*-th coordinate of  $\varphi_1(x,y)$  and similarly for  $\varphi_{2,i}(x,y)$ , for any  $i\in [n]$ . The Jacobian of this system is a  $2n\times 2n$  matrix, determined by the partial derivatives of  $\varphi$ . Furthermore, when there exists a unique NE and  $\eta\xi<1$ , Fasoulakis et al. (2022) proved that there exists some  $q\geq 1$ , such that

$$\lambda_{\max} \le ||J(x^*, y^*)||_q < 1,$$

where  $\lambda_{\text{max}}$  is the maximum eigenvalue of the Jacobian matrix at the profile  $(x^*, y^*)$ .

For any  $t \geq 0$ , consider the strategy profile  $(x(p),y(p)) = (1-p)\cdot(x^*,y^*) + p\cdot(x^t,y^t)$ , with  $p\in(0,1)$ , as a convex combination of the equilibrium and the profile  $(x^t,y^t)$ . In our proof, we will eventually need to argue about the Jacobian matrix at such convex combinations.

**Lemma 4.** For 
$$t \ge t_0$$
:  $||(x^{t+1}, y^{t+1}) - (x^*, y^*)||_q \le ||(x^t, y^t) - (x^*, y^*)||_q \cdot ||J(x(p^t), y(p^t))||_q$ .

With the above lemma and the continuity of the norm, we can now prove by induction the following:

<sup>&</sup>lt;sup>2</sup>In particular, the problem tackled by Nakagawa et al. (2021) was the convergence analysis of the Arimoto-Blahut algorithm for computing the Shannon's capacity of a discrete memoryless channel.

**Lemma 5.** Given  $\varepsilon > 0$ , there exists a sufficiently small  $\delta > 0$ , such that if  $||(x^{t_0}, y^{t_0}) - (x^*, y^*)||_q \leq \delta$ , then for any  $t \geq t_0$ .  $||J(x(p^t), y(p^t))||_q < ||J(x^*, y^*)||_q + \varepsilon$ .

Fix now a small  $\varepsilon>0$  and let  $\lambda=||J(x^*,y^*)||_q+\varepsilon$  so that  $\lambda<1$ . By Lemma 5 and applying repeatedly Lemma 4, we have that, for any  $t\geq t_0, ||(x^t,y^t)-(x^*,y^*)||_q<\lambda^{t-t_0}\cdot||(x^{t_0},y^{t_0})-(x^*,y^*)||_q$ . Therefore, given  $\varepsilon>0$ , if we pick a sufficiently small  $\eta$ , we can ensure that there exists a small  $\delta>0$ , such that Corollary 2 holds with this  $\delta$ , i.e.,  $||(x^{t_0},y^{t_0})-(x^*,y^*)||_q<\delta$ , and at the same time Lemma 5 holds with the chosen  $\varepsilon$  (and again for this  $\delta$ ). By the equivalence of the norms, all these yield that  $||(x^t,y^t)-(x^*,y^*)||_1< K\cdot\delta\cdot\lambda^{t-t_0}$ , for some integer K>0 independent of t, and dependent on q. This directly bounds the  $L_1$  distances from the equilibrium strategies and by applying Lemma 1, we conclude that

$$V(x^t, y^t) \le 2K \cdot \delta \cdot \lambda^{t-t_0} + v - v = O(K \cdot \delta \cdot \lambda^t).$$

# 4 REGRET AND FORGETFULNESS

In this section, we focus on some previously unexplored aspects of the FLBR method.

#### 4.1 REGRET ANALYSIS

First and most importantly, a fundamental question is whether FLBR is a no-regret algorithm, for which we provide a negative answer. So far, in the literature of methods with last-iterate convergence, there exist both no-regret algorithms (such as Optimistic MWU (Daskalakis & Panageas, 2019)) and algorithms with regret (such as Extra Gradient). We note that the existence of regret by itself is not necessarily a negative indication for the performance of an algorithm. For example, OMWU is outperformed by algorithms that have regret, as discussed in Cai et al. (2024).

**Theorem 3.** FLBR is not a no-regret algorithm when  $\xi$  is sufficiently large.

We provide a proof outline here, and defer the proofs of the lemmas that we use below to Appendix C. We first restate the FLBR dynamics, so that each iteration is replaced by two steps. We do this so as to explicitly view FLBR within the framework of online learning algorithms with gradient feedback. Hence in each step, each player observes the payoff of her pure strategies<sup>3</sup> and updates the mixed strategy accordingly. This gives the following formulation for the row player (and analogously for the column player). For technical convenience, we assume the initial profile is indexed as  $(x^{-1}, y^{-1})$ :

$$x_i^{2t} = x_i^{2t-1} \cdot \frac{e^{\xi \cdot e_i^\top R y^{2t-1}}}{\sum_j x_j^{2t-1} \cdot e^{\xi \cdot e_j^\top R y^{2t-1}}} \text{ and } x_i^{2t+1} = x_i^{2t-1} \cdot \frac{e^{\eta \cdot e_i^\top R y^{2t}}}{\sum_j x_j^{2t-1} \cdot e^{\eta \cdot e_j^\top R y^{2t}}}, \quad t \ge 0. \tag{2}$$

The example that we use for proving the theorem is the simple Matching-Pennies game:

$$R = \begin{bmatrix} +1 & -1 \\ -1 & +1 \end{bmatrix}.$$

We use as the initialization  $x^{-1}=(1-\delta,\delta)$  and  $y^{-1}=(\delta,1-\delta)$ , for some small  $\delta\in(0,1/2)$ . With this at hand, we can break down the proof of Theorem 3 in the lemmata that follow. For simplicity, we will carry out the proof here assuming  $\xi\to\infty$ . Under this, note that by Lemma 2,  $x^0$  is a best response to  $y^{-1}$ , and hence we get that  $x^0=(0,1)$ . In fact we can inductively extend this argument.

**Claim 2.** For any 
$$t \ge 0$$
, it holds that  $x_1^{2t-1} > \frac{1}{2}$  and  $y_1^{2t-1} < \frac{1}{2}$ .

Pairing this with Lemma 2, we get that  $x^{2t}=(0,1)$ , as a best response to  $y^{2t-1}$ , for any t, and symmetrically  $y^{2t}=(0,1)$ . Now we are in position to explicitly compute  $x_1^{2t-1}$ .

**Lemma 6.** For sufficiently large 
$$\xi$$
 we get  $x_1^{2t+1} = (1-\delta)[1-\delta(1-e^{2\eta(t+1)})]^{-1}$ .

Clearly we also have  $x_2^{2t+1}=1-x_1^{2t+1}$ . Due to symmetry we obtain that  $y_2^{2t+1}=x_1^{2t+1}$  and thus, we have obtained a closed form for the dynamics. The proof is then completed by the next lemma.

**Lemma 7.** For sufficiently small  $\delta$  and sufficiently large  $\xi$ , the regret of the algorithm for the row player against the fixed strategy x = (0, 1), up until time T is  $\Omega(T)$ .

 $<sup>^3</sup>$ Note that this is precisely the gradient information, since e.g.  $\frac{\partial (x^t)^\top Ry^t}{\partial x_i} = e_i^\top Ry^t$ .

# 4.2 FORGETFULLNESS

In a very recent work, Cai et al. (2024) provided further insights on the performance of OMWU and related dynamics, as compared against OGDA. Their work was motivated by Panageas et al. (2023), where analogous intuitions were given for the fictitious play algorithm. In a nutshell, Cai et al. (2024) attributed the cause of relatively slow convergence of OMWU to a notion they term "forgetfullness". Although they did not provide a formal definition, intuitively, if a method is not forgetful, the produced strategies can get stuck to almost the same profile over many iterations, which slows down convergence. It was shown that this can occur under OMWU, whereas OGDA does not exhibit the same issues.

Therefore, the main conclusion of their work is that forgetfulness seems to be a necessary condition for faster performance. Here we extend their experiment, comparing OGDA and FLBR-MWU. The hard game instance of Cai et al. (2024) for OMWU, parameterized by  $\delta \in (0,1)$ , is the following:

$$A_{\delta} = \begin{bmatrix} \frac{1}{2} + \delta & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

The game has a unique equilibrium  $(x^*, y^*)$  where  $x_1^* = \frac{1}{1+\delta}$  and  $y_1^* = \frac{1}{2(1+\delta)}$ . In Figure 1, we highlight the behavior of FLBR and OGDA. In the upper subfigures, we show how the first coordinate of  $x^t$  and  $y^t$  vary over time, with the initialization  $(x^0, y^0) = (1/2, 1/2)$ . In the lower subfigures, we

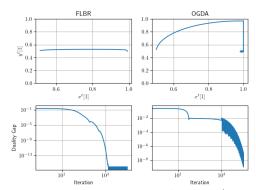


Figure 1: FLBR vs OGDA in game  $A_{\delta}$ .

show the decrease in the duality gap over the iterations. Note that at the equilibrium,  $x_1^*$  is close to 1, whereas  $y_1^*$  is close to 1/2, and thus close to  $y_1^0$ . What we observe is that FLBR does behave similarly to OGDA in the sense that it forgets fast, regarding the coordinate  $x_1^t$ , and therefore avoiding slowdowns. But furthermore, FLBR does not overshoot  $y_1^t$ . It increases it marginally before reaching the actual equilibrium point, whereas OGDA overshoots before reaching the equilibrium. This fact justifies the much faster convergence time of FLBR against OGDA, seen in the lower subfigures.

Overall, even though this was only one example, it conveys the intuition that the intermediate step at FLBR, using large  $\xi$  has a particular effect in the dynamics: it makes the algorithm forgetful, and thus faster, albeit with the cost of adding regret, as shown in Section 4.1.

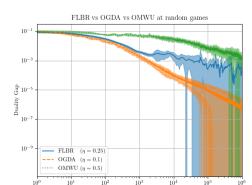
## 5 EXPERIMENTAL EVALUATION

Experimentally, the method had seemed to be promising already in Fasoulakis et al. (2022). Here we start by comparing FLBR against OMWU and against OGDA, with the latter being one the fastest and most well studied last-iterate method for bilinear games (Daskalakis et al., 2018)

We have performed 3 types of comparisons. Firstly, we compare the three methods on random games, and more specifically when the matrices are populated from a standard Gaussian distribution. Then we revisit the game  $A_{\delta}$  discussed in Section 4.2. In both experiments we present one moderately finetuned choice of the learning rate  $\eta$ . Given than OMWU performs quite poorly both in the random games and in  $A_{\delta}$ , we then perform further comparisons only between FLBR and OGDA, complemented with more visualizations of different learning rates. For our third experiment, and in order to get more meaningful comparisons, we have sought additional games that are simultaneously far from random and larger in size. To that end, we used the generalized Rock Paper Scissors (RPS) game of higher dimensions. In all our experiments, including the additional ones presented in Appendix D, we use  $\xi=100$  (as a result of our tuning w.r.t. how to set  $\xi$ ).

Our main findings and conclusions are as follows:

• In Figure 2, we see the comparisons on  $50 \times 50$  Gaussian random games. The methods are comparable up to a point, with OGDA being better both in the number of iterations needed and the time elapsed per game. Nevertheless, FLBR is still close enough and is better than OMWU in time elapsed. The performance of OGDA is explained by Anagnostides & Sandholm (2024), via last iterate analysis under the celebrated framework of *smoothed analysis* (Spielman & Teng, 2004).



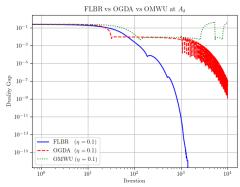
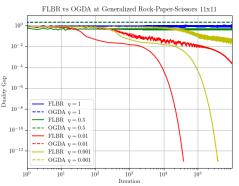


Figure 2: Comparison in Gaussian games

Figure 3: Further comparisons for game  $A_{\delta}$ 

- In Figure 3, we see the comparisons for the game  $A_{\delta}$ . Here the conclusion reverses: the methods are comparable once again but now FLBR comes on top. And OMWU is quite far away.
- In Figures 4 and 5, we see the comparisons for generalized RPS, for dimensions 11 and 101, and for various values of  $\eta$ . Again the methods are comparable with a slight advantage for FLBR.
- Finally, apart from the number of iterations shown in the previous figures, we present some indicative time comparisons between FLBR and OGDA in Tables 1 and 2. Again the conclusion remains the same, that OGDA is better in random games and FLBR becomes better in RPS, and generally in more structured games (as also verified in our additional experiments in the Appendix).



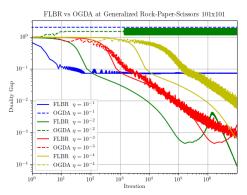


Figure 4: Comparisons over various values of  $\eta$ 

Figure 5: RPS games of higher dimension

Overall, even though the theoretical analysis of FLBR comes with the caveat of game-dependent parameters in its geometric convergence rate, the experiments reveal a competitive performance against OGDA. One more conclusion that arises from the experiments (see Figures 4 and 5) is that FLBR seems to exhibit better robustness when varying  $\eta$ , unlike OGDA. We therefore conclude that the combination of different learning rate parameters,  $\eta$  and  $\xi$ , in FLBR can be viewed as a promising direction that could motivate further future works. As a step towards further explorations for the performance of FLBR, it would be interesting to study if our results generalize beyond bilinear payoffs to classes of convex-concave functions. We have conducted some initial experimentation on this, presented in Section D.3.

Table 1: Comparison in Gaussian games

|              | Tir            | Time (sec) to accuracy |              |              |  |  |
|--------------|----------------|------------------------|--------------|--------------|--|--|
|              | $10^{-2}$      | $10^{-3}$              | $10^{-4}$    | $10^{-5}$    |  |  |
| OGDA<br>FLBR | 0.005<br>0.005 | 0.0-0                  | 0.155<br>0.8 | 1.72<br>3.87 |  |  |

Table 2: Comparison in RPS

|              | Time (sec) to accuracy |               |               |           |  |
|--------------|------------------------|---------------|---------------|-----------|--|
|              | $10^{-2}$              | $10^{-3}$     | $10^{-4}$     | $10^{-5}$ |  |
| OGDA<br>FLBR | 4.73<br>0.08           | 14.45<br>0.11 | 24.28<br>0.15 | 34.00     |  |

## REFERENCES

- Ioannis Anagnostides and Tuomas Sandholm. Convergence of  $\log(1/\epsilon)$  for gradient-based algorithms in zero-sum games without the condition number: A smoothed analysis. In *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024*, 2024.
- Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-iterate convergence beyond zero-sum games. In *International Conference on Machine Learning*, pp. 536–581. PMLR, 2022.
- Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications. *Theory Comput.*, 8(1):121–164, 2012.
- Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. Accelerating smooth games by manipulating spectral shapes. In *The 23rd International Conference on Artificial Intelligence and Statistics*, AISTATS 2020, volume 108, pp. 1705–1715. PMLR, 2020.
- James P. Bailey and Georgios Piliouras. Multiplicative weights update in zero-sum games. In *Proceedings of the Conference on Economics and Computation (EC'18)*, pp. 321–338, 2018.
- George W Brown. Iterative solution of games by fictitious play. *Act. Anal. Prod Allocation*, 13(1): 374, 1951.
- Yang Cai, Argyris Oikonomou, and Weiqiang Zheng. Finite-time last-iterate convergence for learning in multi-player games. In *Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS'22)*, 2022.
- Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and Weiqiang Zheng. Fast last-iterate convergence of learning in games requires forgetful algorithms. In Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, 2024.
- Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance reduction for matrix games. In *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems*, pp. 11377–11388, 2019.
- Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. A whole new ball game: A primal accelerated method for matrix games and minimizing the maximum of smooth functions. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA'24, pp. 3685– 3723. SIAM, 2024.
- Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time. *J. ACM*, 68(1):3:1–3:39, 2021.
- Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and constrained min-max optimization. In *Proceedings of the ITCS'19*, 2019.
- Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with optimism. In *Proceedings of the International Conference on Learning Representations (ICLR'18)*, 2018.
- Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-max optimization. In *53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC '21)*, pp. 1466–1478. ACM, 2021.
- Jelena Diakonikolas, Constantinos Daskalakis, and Michael I. Jordan. Efficient methods for structured nonconvex-nonconcave min-max optimization. In Arindam Banerjee and Kenji Fukumizu (eds.), *The 24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event*, volume 130 of *Proceedings of Machine Learning Research*, pp. 2746–2754. PMLR, 2021.
- Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive black-well approachability: Connecting regret matching and mirror descent. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI*, pp. 5363–5371. AAAI Press, 2021.

- Michail Fasoulakis, Evangelos Markakis, Yannis Pantazis, and Constantinos Varsos. Forward looking best-response multiplicative weights update methods for bilinear zero-sum games. In *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS*'22), pp. 11096–11117, 2022.
  - Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. *Games and Economic Behavior*, 29(1-2):79–103, 1999.
  - Andrew Gilpin, Javier Pena, and Tuomas Sandholm. First-order algorithm with convergence for-equilibrium in two-person zero-sum games. *Mathematical programming*, 133(1):279–298, 2012.
  - Noah Golowich, Sarath Pattathil, and Constantinos Daskalakis. Tight last-iterate convergence rates for no-regret learning in multi-player games. In *Advances in Neural Information Processing Systems*, 33: Annual Conference on Neural Information Processing Systems, 2020.
  - Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In *Proceedings of Annual Conference on Neural Information Processing Systems (NIPS '14)*, pp. 2672–2680, 2014.
  - Eduard Gorbunov, Adrien B. Taylor, and Gauthier Gidel. Last-iterate convergence of optimistic gradient method for monotone variational inequalities. In *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems*, 2022.
  - Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. Smoothing techniques for computing Nash equilibria of sequential games. *Mathematics of Operations Research*, 35(2):494–512, 2010.
  - Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, 2020.
  - Galina Korpelevich. The extragradient method for finding saddle points and other problems. *Mate-con*, 12:747–756, 1976.
  - Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks. In *Proceedings of The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS'19*, pp. 907–915, 2019.
  - Haihao Lu and Jinwen Yang. On the infimal sub-differential size of primal-dual hybrid gradient method and beyond. *CoRR*, abs/2206.12061, 2023.
  - Panayotis Mertikopoulos, Christos H. Papadimitriou, and Georgios Piliouras. Cycles in adversarial regularized learning. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018*, pp. 2703–2717. SIAM, 2018.
  - Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach. In *International Conference on Artificial Intelligence and Statistics*, pp. 1497–1507. PMLR, 2020.
  - Kenji Nakagawa, Yoshinori Takei, Shin-ichiro Hara, and Kohei Watabe. Analysis of the convergence speed of the Arimoto-Blahut algorithm by the second-order recurrence formula. *IEEE Transactions on Information Theory*, 67(10):6810–6831, 2021.
  - Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. *SIAM Journal on Optimization*, 15(1):229–251, 2004.
  - Ioannis Panageas, Nikolas Patris, Stratis Skoulakis, and Volkan Cevher. Exponential lower bounds for fictitious play in potential games. In *Advances in Neural Information Processing Systems 36:*Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, 2023.

Nikolas Patris and Ioannis Panageas. Learning Nash equilibria in rank-1 games. In *Proceedings* of the Twelfth International Conference on Learning Representations (ICLR'24), To be appeared, 2024. Leonid Denisovich Popov. A modification of the Arrow-Hurwicz method for search of saddle points. Mathematical notes of the Academy of Sciences of the USSR, 28:845–848, 1980. Julia Robinson. An iterative method of solving a game. Annals of Mathematics, pp. 296–301, 1951. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. J. ACM, 51(3):385-463, 2004. doi: 10.1145/990308. 990310. Eric Van Damme. Stability and perfection of Nash equilibria, volume 339. Springer, 1991. Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Minimum cost flows, mdps, and  $l_1$  regression in nearly linear time for dense instances. In 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC '21), pp. 859–869. ACM, 2021. Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate convergence in constrained saddle-point optimization. In Proceedings of the 9th International Conference on Learning Representations ICLR '21, 2021. 

## A MISSING PROOFS FROM SECTION 2

*Proof of Lemma 1*. We have that for any i,

$$|e_i^{\top} R y - e_i^{\top} R y^*| = |\sum_j R_{ij} \cdot y_j - \sum_j R_{ij} \cdot y_j^*|$$

$$= |\sum_j R_{ij} \cdot (y_j - y_j^*)|$$

$$\leq \sum_j |R_{ij} \cdot (y_j - y_j^*)|$$

$$= \sum_j R_{ij} \cdot |(y_j - y_j^*)|$$

$$\leq \sum_j |(y_j - y_j^*)|$$

$$= ||y - y^*||_1.$$

Thus, if  $b = \arg\max_i e_i^\top Ry$ , then  $\max_i e_i^\top Ry = e_b^\top Ry \le ||y-y^*||_1 + e_b^\top Ry^* \le ||y-y^*||_1 + v$ . The second part of the lemma follows in a similar manner.

## B MISSING PROOFS FROM SECTION 3

#### B.1 PROOF OF LEMMA 3

*Proof.* We first rewrite the KL terms, by using the definition of the dynamics.

$$\begin{split} &D_{KL}((x^*, y^*)||(x^{t-1}, y^{t-1})) - D_{KL}((x^*, y^*)||(x^t, y^t)) \\ &= \sum_{i=1}^n x_i^* \cdot \ln(x_i^t/x_i^{t-1}) + \sum_{j=1}^n y_j^* \cdot \ln(y_j^t/y_j^{t-1}) \\ &= \sum_{i=1}^n x_i^* \cdot \ln e^{\eta \cdot e_i^\top R \hat{y}^t} - \ln\left(\sum_{k=1}^n x_k^{t-1} \cdot e^{\eta \cdot e_k^\top R \hat{y}^t}\right) \\ &+ \sum_{j=1}^n y_j^* \cdot \ln e^{-\eta \cdot e_j^\top R^\top \hat{x}^t} - \ln\left(\sum_{k=1}^n y_k^{t-1} \cdot e^{-\eta \cdot e_k^\top R^\top \hat{x}^t}\right) \\ &= \eta \cdot (x^*)^T R \hat{y}^t - \eta \cdot (y^*)^T R^\top \hat{x}^t - \ln\left(\sum_{k=1}^n x_k^{t-1} \cdot e^{\eta \cdot e_k^\top R \hat{y}^t}\right) - \ln\left(\sum_{k=1}^n y_k^{t-1} \cdot e^{-\eta \cdot e_k^\top R \hat{x}^t}\right). \end{split}$$

We now use the Taylor expansion of the exponential function in the arguments of the last two logarithms. For the first logarithmic term, this becomes:

$$\ln\left(\sum_{k=1}^{n} x_{k}^{t-1} \cdot e^{\eta \cdot e_{k}^{\top} R \hat{y}^{t}}\right) = \ln\left(1 + \eta \cdot (x^{t-1})^{\top} R \hat{y}^{t} + \sum_{k=1}^{n} x_{k}^{t-1} \sum_{\ell \geq 2} \frac{(\eta \cdot e_{k}^{\top} R \hat{y}^{t})^{\ell}}{\ell!}\right)$$

$$\leq \ln\left(1 + \eta \cdot (x^{t-1})^{\top} R \hat{y}^{t} + 2\eta^{2}\right).$$

For the above we used the fact that  $\sum_{\ell \geq 2} \frac{(\eta \cdot e_k^\top R \hat{y}^t)^\ell}{\ell!} \leq \frac{\eta^2}{1-\eta} \leq 2\eta^2$ , since  $\eta \leq 1/2$ . By exploiting now the inequality that  $\ln(x) \leq x-1$ , we finally obtain the bound

$$\ln \left( \sum_{k=1}^n x_k^{t-1} \cdot e^{\eta \cdot e_k^\top R \hat{y}^t} \right) \le \eta \cdot (x^{t-1})^\top R \hat{y}^t + 2\eta^2.$$

By carrying out similar calculations for the second logarithmic term, we will also get that

$$\ln \left( \sum_{k=1}^n y_k^{t-1} \cdot e^{-\eta \cdot e_k^\top R^\top \hat{x}^t} \right) \leq -\eta \cdot (\hat{x}^t)^\top R y^{t-1} + 2\eta^2.$$

This gives us:

$$D_{KL}((x^*, y^*)||(x^{t-1}, y^{t-1})) - D_{KL}((x^*, y^*)||(x^t, y^t))$$
  
 
$$\geq \eta \cdot (x^*)^T R \hat{y}^t - \eta \cdot (y^*)^T R^T \hat{x}^t - \eta \cdot (x^{t-1})^T R \hat{y}^t + \eta \cdot (\hat{x}^t)^T R y^{t-1} - 4\eta^2.$$

By rearranging the terms, we obtain that

$$\eta \cdot \left( (\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t \right) \le D_{KL}((x^*, y^*) || (x^{t-1}, y^{t-1})) - D_{KL}((x^*, y^*) || (x^t, y^t)) + 4\eta^2 - \eta \cdot (x^*)^\top R \hat{y}^t + \eta \cdot (\hat{x}^t)^\top R y^*.$$

Note now that since  $(x^*, y^*)$  is a Nash equilibrium, and we are in a 0-sum game, then we know that  $(x^*)^{\top}R\hat{y}^t \geq v$ , where v is the value of the game. Similarly,  $(\hat{x}^t)^{\top}Ry^* \leq v$ . Hence these terms cancel out in the above equation and the proof is complete.

## B.2 PROOFS OF CLAIM 1 AND COROLLARY 1

*Proof.* Recalling Definition 2 we have that  $V(x^{t-1}, y^{t-1}) = \max_i e_i^\top R y^{t-1} - \min_j (x^{t-1})^\top R e_j$ . But by Lemma 2, we have that  $\hat{x}^t$  converges to a best response against  $y^{t-1}$ , and similarly for  $\hat{y}^t$ , which completes the proof.

*Proof.* By Claim 1, we know that the quantity  $(\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t$  converges to  $V(x^{t-1}, y^{t-1})$  as  $\xi \to \infty$ . This means that for any  $\epsilon > 0$ , there exists  $\xi_0$  s.t. for every  $\xi \ge \xi_0$  we have  $|(\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t - V(x^{t-1}, y^{t-1})| \le \epsilon$ . If we use  $\epsilon = \eta$ , there exists a large enough  $\xi_0$ , such that for any  $\xi \ge \xi_0$ , it holds that

$$V(x^{t-1}, y^{t-1}) \le (\hat{x}^t)^\top R y^{t-1} - (x^{t-1})^\top R \hat{y}^t + \eta.$$

By using now Lemma 3, we get the desired inequality.

## B.3 Proof of Lemma 4

First we show the following claim that we use in the proof of our Lemma.

Claim 3. 
$$\frac{d\varphi(x(p),y(p))}{dp} = J(x(p),y(p)) \cdot \Big(x^t - x^*,y^t - y^*\Big).$$

In the equation above, the term  $(x^t - x^*, y^t - y^*)$  is a vector of 2n coordinates, where for each  $i \in [n]$  the i-th coordinate equals  $x_i^t - x_i^*$ , and the (n+i)-th coordinate equals  $y_i^t - y_i^*$ .

*Proof.* For the row player, we have that for any i,

$$\begin{split} \frac{d\varphi_{1,i}(x(p),y(p))}{dp} &= \sum_{k} \frac{dx_{k}(p)}{dp} \cdot \frac{d\varphi_{1,i}(x(p),y(p))}{dx_{k}(p)} + \sum_{\ell} \frac{dy_{\ell}(p)}{dp} \cdot \frac{d\varphi_{1,i}(x(p),y(p))}{dy_{\ell}(p)} \\ &= \sum_{k} \left( x_{k}^{t} - x_{k}^{*} \right) \cdot J(x(p),y(p))_{ik} + \sum_{\ell} \left( y_{\ell}^{t} - y_{\ell}^{*} \right) \cdot J(x(p),y(p))_{i,n+\ell} \end{split}$$

The above hold because  $\frac{dx_k(p)}{dp} = x_k^t - x_k^*$  and  $\frac{dy_\ell(p)}{dp} = y_\ell^t - y_\ell^*$ . Analogous expressions hold for  $\varphi_2$  as well, thus we conclude that

$$\frac{d\varphi(x(p),y(p))}{dp} = J(x(p),y(p)) \cdot \left(x^t - x^*, y^t - y^*\right).$$

*Proof.* By the Mean Value Theorem (applied for our function  $f^t = \varphi(x(p), y(p)) : \mathbb{R} \to \mathbb{R}^{2n}$ ), for each time t, there is a  $p^t \in (0,1)$  s.t.

$$\begin{aligned} ||(x^{t+1}, y^{t+1}) - (x^*, y^*)||_q &= ||\left(\varphi_1(x^t, y^t), \varphi_2(x^t, y^t)\right) - \left(\varphi_1(x^*, y^*), \varphi_2(x^*, y^*)\right)||_q \\ &= ||f^t(1) - f^t(0)||_q \\ &\leq ||\frac{df^t(p)}{dp}|_{p=p^t}||_q \cdot (1-0) \\ &= ||\left((x^t, y^t) - (x^*, y^*)\right) \cdot J(x(p^t), y(p^t))||_q \\ &\leq ||(x^t, y^t) - (x^*, y^*)||_q \cdot ||J(x(p^t), y(p^t))||_q \end{aligned}$$

where the second inequality holds by the properties of the q-norm.

#### B.4 PROOF OF LEMMA 5

 *Proof.* For the basis of the induction, consider  $t = t_0$ . Regarding the Jacobian, first note that

$$\begin{aligned} ||(x(p^{t_0}), y(p^{t_0})) - (x^*, y^*)||_q &= ||(1 - p^{t_0})(x^*, y^*) + p^{t_0}(x^{t_0}, y^{t_0}) - (x^*, y^*)||_q \\ &= ||p^{t_0}(x^{t_0}, y^{t_0}) - p^{t_0}(x^*, y^*)||_q \\ &\leq ||(x^{t_0}, y^{t_0}) - (x^*, y^*)||_q \end{aligned}$$

Furthermore, by the continuity of the norm, for the given  $\varepsilon$ , there exists  $\delta>0$  s.t. if  $||(x^*,y^*)-(x(p^{t_0}),y(p^{t_0}))||_q<\delta$ , then  $\Big|||J(x(p^{t_0}),y(p^{t_0}))||_q-||J(x^*,y^*)||_q\Big|<\varepsilon$ . Therefore, if we use this value of  $\delta$ , we get that if  $||(x^{t_0},y^{t_0})-(x^*,y^*)||_q\leq\delta$ , then  $||(x(p^{t_0}),y(p^{t_0}))-(x^*,y^*)||_q<\delta$  (by the previous analysis), and consequently  $||J(x(p^{t_0}),y(p^{t_0}))||_q<||J(x^*,y^*)||_q+\varepsilon$ . This establishes the basis.

For the induction step, assume that the condition holds for some  $t \geq t_0$ . We will establish it for t+1.

Since we have assumed that  $\varepsilon$  satisfies  $||J(x^*,y^*)||_q + \varepsilon < 1$ , the induction hypothesis yields that  $||J(x(p^t),y(p^t))||_q < 1$ . Using this and Lemma 4, we get that  $||(x^{t+1},y^{t+1})-(x^*,y^*)||_q < ||(x^t,y^t)-(x^*,y^*)||_q$ . This also implies that if  $||(x^{t_0},y^{t_0})-(x^*,y^*)||_q \leq \delta$ , this propagates throughout all the iterations for the same  $\delta$ , so that  $||(x^{t+1},y^{t+1})-(x^*,y^*)||_q < \delta$ . And this in turn yields

$$\begin{aligned} ||(x(p^{t+1}), y(p^{t+1})) - (x^*, y^*)||_q &= ||(1 - p^{t+1})(x^*, y^*) + p^{t+1}(x^{t+1}, y^{t+1}) - (x^*, y^*)||_q \\ &= ||p^{t+1}(x^{t+1}, y^{t+1}) - p^{t+1}(x^*, y^*)||_q \\ &\leq ||(x^{t+1}, y^{t+1}) - (x^*, y^*)||_q \\ &< \delta \end{aligned}$$

To finish the proof, we use the same argument as in the induction basis. Namely, by the continuity of the norm, for the given  $\varepsilon$ , and for the  $\delta$  that was identified in the induction basis, we will have that  $\left|||J(x(p^{t+1}),y(p^{t+1}))||_q-||J(x^*,y^*)||_q\right|<\varepsilon, \text{ and thus}$ 

$$||J(x(p^{t+1}), y(p^{t+1}))||_a < ||J(x^*, y^*)||_a + \varepsilon < 1.$$

# C MISSING PROOFS FROM SECTION 4

## C.1 PROOF OF LEMMA 6

Proof. Recall that

$$\begin{aligned} x_1^{2t+1} &= x_1^{2t-1} \cdot \frac{e^{\eta \cdot e_1^\top R y^{2t}}}{\sum\limits_j x_j^{2t-1} \cdot e^{\eta \cdot e_j^\top R y^{2t}}} = x_1^{2t-1} \cdot \frac{e^{-\eta}}{\sum\limits_j x_j^{2t-1} \cdot e^{\eta \cdot e_j^\top R y^{2t}}} \\ x_2^{2t+1} &= x_2^{2t-1} \cdot \frac{e^{\eta \cdot e_2^\top R y^{2t}}}{\sum\limits_j x_j^{2t-1} \cdot e^{\eta \cdot e_j^\top R y^{2t}}} = x_2^{2t-1} \cdot \frac{e^{\eta}}{\sum\limits_j x_j^{2t-1} \cdot e^{\eta \cdot e_j^\top R y^{2t}}} \end{aligned}$$

For brevity, let  $x_1^{2t+1} = a^t$  and  $x_2^{2t+1} = b^t$  we get that

$$a^{t} = a^{t-1} \cdot \frac{e^{-\eta}}{a^{t-1}e^{-\eta} + \beta^{t-1}e^{\eta}}$$
$$b^{t} = b^{t-1} \cdot \frac{e^{\eta}}{a^{t-1}e^{-\eta} + \beta^{t-1}e^{\eta}}$$

Note that  $a^t + b^t = 1$  so we get

$$a^{t} = a^{t-1} \cdot \frac{e^{-\eta}}{a^{t-1}e^{-\eta} + (1 - a^{t-1})e^{\eta}} = \frac{a^{t-1}e^{-\eta}}{a^{t-1}(e^{-\eta} - e^{\eta}) + e^{\eta}} \implies \frac{1}{a^{t}} = 1 - e^{2\eta} + e^{2\eta} \frac{1}{a^{t-1}} \implies \frac{1}{a^{t}} - 1 = e^{2\eta} \left(\frac{1}{a^{t-1}} - 1\right) \implies \frac{1}{a^{t}} - 1 = e^{2\eta(t+1)} \left(\frac{1}{a^{-1}} - 1\right)$$

Recall that  $a^{-1}=x_1^{-1}=1-\delta$  so we get that

$$\frac{1}{a^t} = 1 + e^{2\eta(t+1)} \frac{\delta}{1-\delta} \implies x_1^{2t+1} = \frac{1-\delta}{1-\delta(1-e^{2\eta(t+1)})}$$

## C.2 PROOF OF LEMMA 7

*Proof.* For a given T, we compute the total payoff of the row player for the first 2T iterations when both players use FLBR. Since at the even steps of this process, the strategy of both players is (0,1), we get:

$$\begin{split} \sum_{i=0}^{2T} x^{i}^{\top} R y^{i} &= T \cdot (0,1)^{\top} R (0,1) + \sum_{i=0}^{T} x^{2i+1}^{\top} R y^{2i+1} \\ &= T + \sum_{i=1}^{T} (a^{t}, 1 - a^{t})^{\top} R (1 - a^{t}, a^{t}) \\ &= T + \sum_{i=1}^{T} (a^{t}, 1 - a^{t})^{\top} (1 - 2a^{t}, -1 + 2a^{t}) \\ &= T + \sum_{i=1}^{T} a^{t} - 2(a^{t})^{2} - 1 + 2a^{t} + a^{t} - 2(a^{t})^{2} \\ &= \sum_{i=1}^{T} 4a^{t} (1 - a^{t}) \end{split}$$

where once again we set  $x_1^{2t+1} = a^t$ .

Next, we compute the payoff of the fixed strategy  $x^* = (0,1)$  for the row player, against the column player playing in each iteration the FLBR strategy  $y^i$  as computed by the previous analysis. This is equal to:

$$\sum_{i=0}^{2T} x^{i} R y^{i} = T \cdot (0,1)^{\top} R (0,1) + \sum_{i=0}^{T} (0,1)^{\top} R y^{2i+1}$$
$$= T + \sum_{i=0}^{T} (0,1)^{\top} (1 - 2a^{t}, -1 + 2a^{t})$$
$$= \sum_{i=0}^{T} 2a^{t}$$

Hence, the regret for the row player when choosing her FLBR strategy against  $x^*$  is

$$\mathsf{Reg}_{\mathsf{FLBR}} \geq \sum_{i=0}^{T} 2a^t - \sum_{i=1}^{T} 4a^t (1-a^t) = \sum_{i=0}^{T} 2a^t (2a^t - 1)$$

To upper bound the expression we use that  $a^t = 1/2$  hence we have that

$$\frac{1 - \delta(1 - e^{2\eta(T+1)})}{1 - \delta} = 2$$
$$\delta e^{2\eta(T+1)} = 1 - \delta$$
$$2\eta(T+1) = \ln\left(\frac{1 - \delta}{\delta}\right)$$

Thus, up to time  $\lceil \frac{T+1}{2} \rceil$  we have that

$$a^t \ge \frac{1 - \delta}{1 - \delta \left(1 - \sqrt{\frac{1 - \delta}{\delta}}\right)} = \frac{1 - \delta}{1 - \delta + \sqrt{\delta - \delta^2}}$$

For  $\delta \to 0$  the expression tends to 1 so there is a sufficiently small  $\delta$  such that  $a^t \geq .95$  for  $t \leq \lceil \frac{T+1}{2} \rceil$ . Piecing everything together we get that

$$\begin{split} \operatorname{Reg}_{\operatorname{FLBR}} &\geq \sum_{i=0}^{T} 2a^t (2a^t - 1) \\ &\geq \sum_{i=0}^{\lceil \frac{T+1}{2} \rceil} 2a^t (2a^t - 1) \end{split}$$

 $\mathrm{Reg}_{\mathrm{FLBR}} \geq 0.855 \cdot T \quad \text{over } 2T \text{ rounds,}$ 

which completes the proof.

# D ADDITIONAL EXPERIMENTS

Our additional experiments follow a similar line of thought as the ones presented in the main paper. Namely, we start with random Gaussian games, where OGDA has a slight advantage over FLBR and then we present constructions of not so random games, with some inherent structure, which slow down OGDA but not FLBR.

**Initializations** As stated in Assumption 1, for the theoretical part of the paper we always initialize FLBR with the uniform distribution, i.e.  $x_i = y_i = 1/n$ . Here we deem useful to explore more options. Specifically, we test the following starting points:

• Uniform distribution.

• Almost pure strategy profile:  $x_1 = y_1 = 1 - 1/n$  and  $x_i = y_i = \frac{1}{n(n-1)}$ 

ullet Random: we sample x,y from U(0,1) and then rescale them

• Sequential:  $x_i = y_i = \frac{2i}{n(n+1)}$ 

**Assumptions on**  $\eta$ ,  $\xi$  In the theoretical part of the paper, we did not need any major assumption for  $\eta$  and  $\xi$  (apart from  $\xi$  being large enough) for reaching an approximate equilibrium. However, for the convergence to the exact solution, we needed to use  $\eta \xi < 1$ , to prove Theorem 2. In our experiments, we also tested combinations of values for these two parameters that violate this condition. What we observe experimentally is that the method can perform well even without this constraint (recall e.g., that in the main paper, we also used  $\xi = 100$  and values of  $\eta$  for which  $\eta \xi > 1$ ), but certainly not for any arbitrary combination.

#### D.1 RANDOM GAMES

In addition to the  $1000 \times 1000$  Gaussian games presented in the main paper, we see in Figures 6 and 7 the comparisons between FLBR and OGDA for further Gaussian games of dimensions 50 and 500, where each entry of the payoff matrix is filled by sampling from the Gaussian distribution. What we observe is similar to the plots presented also in the main paper for Gaussian games, namely that OGDA performs better (as expected by the existing smoothed analysis for OGDA) and that FLBR is close but on average slower than OGDA.

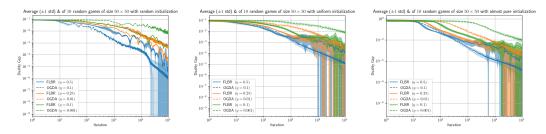


Figure 6: Random Gaussian  $50 \times 50$  games with various initializations.

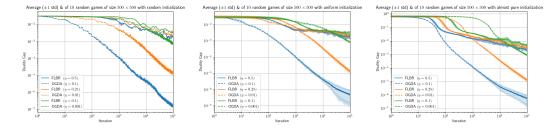


Figure 7: Random Gaussian  $500 \times 500$  games with various initializations.

#### D.2 STRUCTURED GAMES

We have already presented in the main paper our results on the Generalized Rock-Papers-Scissors game, which is arguably among the most famous zero-sum game. Here we also present comparisons using two more classes of more structured games.

First, we performed comparisons for games where the payoff matrix R is of low rank. Such games differ from random games, where with high probability the matrix has full rank. We constructed matrices, where the rank is approximately 5-10% of the dimension.

Interestingly, what we observe in Figures 8 and 9, is that FLBR is performing better than OGDA. The figures depict the comparisons for  $50 \times 50$  games where the rank is 5 and for  $500 \times 500$  games

 with rank equal to 25. An additional observation is that FLBR seems more robust against the various initializations that were used. For example OGDA, under the random and the uniform initialization does not converge for some choices of  $\eta$ .

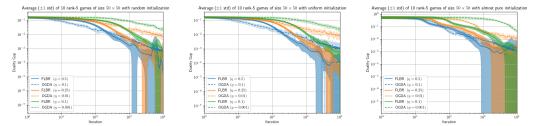


Figure 8: Games with low rank payoff matrix of size  $50 \times 50$  with various initializations.

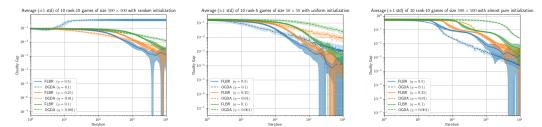


Figure 9: Games with low rank payoff matrix of size  $500 \times 500$  with various initializations.

Moving on, we also tested a class of symmetric zero-sum games, which again is more structured than random games. In order to construct such families, we used the following formula for filling in the entries of the payoff matrix, where  $P_{ij}^n$  is the entry of P at (i,j) when P is  $n \times n$ . Here symmetry is enforced, given the dependence on i+j.

$$P_{ij}^{n} = \frac{1}{n}(i+j-2) \bmod n$$
 (3)

We note that for this class, we did not use the uniform initialization as this is an equilibrium of the game. What we observe in Figures 10 and 11, is that FLBR is having an advantage over OGDA for smaller dimensions, while OGDA becomes just slightly better, for the sequential and the almost pure initialization. The two methods have a very similar performance under the random initialization. Again, we observe a better robustness of FLBR with respect to the various initializations and the values of  $\eta$ . For example, we see that OGDA does not manage to converge for some of the choices used for  $\eta$ .

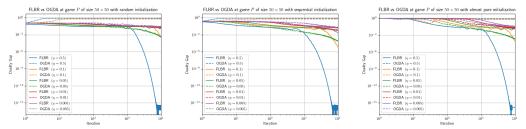


Figure 10: Structured games defined by Equation (3), of size  $50 \times 50$  with various initializations.

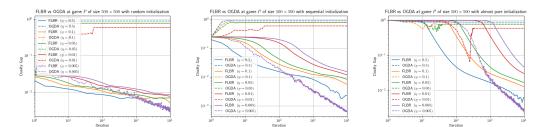


Figure 11: Structured games defined by Equation (3), of size  $500 \times 500$  with various initializations.

Overall, a general conclusion that can be extracted from our experiments is that the two methods are of comparable performance, with OGDA doing better for randomly generated games, where FLBR gains an advantage for more structured games.

#### D.3 EXPERIMENTATION BEYOND BILINEAR GAMES

Finally, in our last set of experiments, we also tried to investigate if our method is convergent when we move away from bilinear games. To that end, we implemented the method as is for the min-max objective  $f(x,y) = ||x-y||^2 = \sum_{i \in [n]} (x_i - y_i)^2$ . The results are shown in Figure 12 for vectors of size 5. The equilibrium here is that both players get a zero payoff, and as we see in Figure 12, FLBR does not manage to converge. This is still far from conclusive, and it remains an interesting direction for future work to investigate under what families of convex-concave functions we could have convergence of FLBR or if the method needs adaptation to extend to more general domains.

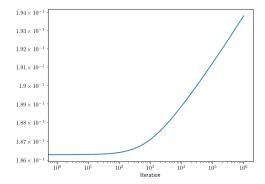


Figure 12: FLBR in a convex-concave setting with the payoff function  $||x-y||^2$ .