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ABSTRACT

The recent years have seen a surge of interest in algorithms with last-iterate con-
vergence for 2-player games, motivated in part by applications in machine learn-
ing. Driven by this, we revisit a variant of Multiplicative Weights Update (MWU),
defined recently by Fasoulakis et al. (2022), and denoted as Forward Looking Best
Response MWU (FLBR-MWU). These dynamics are based on the approach of
extra-gradient methods, with the tweak of using a different learning rate in the
intermediate step. So far, it has been proved that this algorithm attains asymptotic
convergence but no explicit rate has been known. We answer the open question
from Fasoulakis et al. by establishing a geometric convergence rate for the du-
ality gap. In particular, we first show such a rate, of the form O(ct), until we
reach an approximate Nash equilibrium, where c < 1 is independent of the game
parameters. We then prove that from that point onwards, the duality gap keeps
getting decreased with a geometric rate, albeit with a dependence on the maxi-
mum eigenvalue of the Jacobian matrix. Finally, we complement our theoretical
analysis with an experimental comparison to OGDA, which ranks among the best
last-iterate methods for solving 0-sum games. Although in practice it does not
generally outperform OGDA, it is often comparable, with a similar average per-
formance.

1 INTRODUCTION

Our work focuses on learning algorithms with convergence guarantees in 2-player bilinear zero-sum
games. This is by now an extensively studied domain, spanning a few decades of research progress
already. Given a game described by its payoff matrix, what we are after here is algorithms that
eventually reach a Nash equilibrium, from which no player has an incentive to deviate. Some of
the earlier and standard results in this area concern convergence on average. I.e., it has long been
known that by using no-regret algorithms, the empirical average of the players’ strategies over time
converges to a Nash equilibrium in zero-sum games and to more relaxed equilibrium notions (coarse
correlated equilibria) for general games (Freund & Schapire, 1999).

In recent years, the attention of the relevant community has gradually shifted from convergence
on average to the more robust notion of last-iterate convergence, a property highly desirable from
an application perspective. This means that the strategy profile (xt, yt), reached at iteration t of
an iterative algorithm, converges to the actual equilibrium as t → ∞. Unfortunately, many of the
initially developed methods do not satisfy this property. No-regret algorithms, like the Multiplicative
Weights Update (MWU) method, are known to converge only in an average sense. In fact, it was
shown in Bailey & Piliouras (2018); Mertikopoulos et al. (2018) that several MWU variants do not
satisfy last-iterate convergence.

Motivated by these considerations, the last decade has seen a series of works studying last-iterate
convergence. The majority of these works have focused on the fundamental class of zero-sum games.
Zero-sum games have played an important role in the development of game theory and optimiza-
tion, and more recently, there has also been a renewed interest, given their relevance in formulating
GANs in deep learning (Goodfellow et al., 2014). The positive results that have been obtained for
zero-sum games show that improved variants of Gradient Descent such as the Optimistic Gradient
Descent/Ascent method (OGDA), or the Extra-Gradient method (EG) attain last iterate convergence.
Several other methods have also been obtained and compared to each other with respect to their con-
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vergence rate. Overall, one can say that we now have a much better understanding of the learning
dynamics that converge in zero-sum games.

Despite the positive progress, however, several important questions still remain unanswered. First,
it is often difficult to have tight bounds in analyzing such learning algorithms. Furthermore, even
for bilinear, zero-sum games, the best attainable rate of convergence is not yet fully understood.
The currently best rate that is applicable to all such games is O(1/

√
t) in terms of the duality gap

(Cai et al., 2022; Gorbunov et al., 2022), where the hidden terms in the O(·) notation depend on the
game dimension but not on the payoff matrix. In fact this also holds for the more general class of
convex-concave min-max optimization problems. It is conceivable though that better rates could be
achieved for bilinear games. The work of Wei et al. (2021) establishes a geometric convergence rate
of O(ct) (c < 1) for the OMWU method, discussed further in the sequel, albeit with game-dependent
parameters within the O(·) term. It remains an open problem whether a geometric convergence rate
can be achieved where the dependence is only on the game dimension.

1.1 OUR CONTRIBUTIONS

We focus on bilinear zero-sum games and revisit a promising variant of MWU, defined recently
in Fasoulakis et al. (2022) and denoted as Forward Looking Best-Response Multiplicative Updates
(FLBR-MWU). The dynamics are based on the approach of extra-gradient methods, with the tweak
of using a different and more aggressive learning rate in the intermediate step. Our main contribu-
tions can be summarized as follows:

• So far, it was only known that the FLBR algorithm attains asymptotic last-iterate convergence,
but without any explicit rate. We answer the open question from Fasoulakis et al. (2022) by
establishing concrete rates of convergence. Using the duality gap as our metric, we first show
a geometric rate, of the form O(ct), until we reach an approximate Nash equilibrium, for an
appropriate level of approximation. More precisely, the parameter c (c < 1) is independent of the
entries in the payoff matrix, and dependent only on the dimension.

• For games with a unique Nash equilibrium, we further prove that once we reach an approximate
equilibrium, the duality gap keeps getting decreased with a geometric rate, until the exact equilib-
rium solution, albeit with the caveat that there is a dependence on the Jacobian matrix evaluated
at the equilibrium. An analogous result also holds for the OMWU method (Wei et al., 2021),
as mentioned earlier, but for the KL divergence, and with a different dependence on the game
parameters. We view as advantages of our analysis that it yields a simpler and more intuitive
proof compared to Wei et al. (2021), and that it also establishes the fast (non game-dependent)
convergence to an approximate equilibrium before going towards the exact solution. Furthermore,
our proof highlights connections to a neighboring field, as it utilizes ideas from the analysis of
the Arimoto-Blahut algorithm (for computing the Shannon’s capacity of a discrete memoryless
channel).

• We then investigate further properties of FLBR. We prove that it is not a no-regret algorithm,
which was not known before. At the same time, we explore aspects of forgetfulness, as intro-
duced recently in Cai et al. (2024). We show that in contrast to OMWU, FLBR seems to exhibit
forgetfulness, which serves as an indication for fast performance.

• Finally, we perform an experimental comparison of FLBR against OGDA, which is among the
best known methods for solving zero-sum games, and against OMWU. We mostly focus on the
comparison against OGDA since OMWU is not as competitive in practice (observed also in other
recent works). The results reveal that FLBR is generally competitive with OGDA; while it does
not outperform OGDA, it exhibits a similar average performance.

Overall, we believe our work provides a more complete treatment on the power and limitations of
the FLBR method for bilinear games.

1.2 RELATED WORK

There is a vast literature on solving zero-sum games. Given the connection with linear program-
ming, a variety of algorithms focus on optimization and LP-based methods for zero-sum games.
Theoretically, the best guarantees for solving the corresponding linear program can be found in Co-
hen et al. (2021) and van den Brand et al. (2021). Regarding other methods, Hoda et al. (2010) use
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Nesterov’s first order smoothing techniques to achieve an ε-equilibrium in O(1/ε) iterations, with
the added benefits of simplicity and rather low computational cost per iteration. Following up on
that work, Gilpin et al. (2012) propose an iterated version of Nesterov’s smoothing technique, which
runs within O( ||A||

δ(A) · ln(1/ε)) iterations. This is a significant improvement, with the caveat that the
complexity depends on a condition measure δ(A), with A being the payoff matrix.

In addition to the above, there has been great interest in designing faster learning algorithms for
zero-sum games. Although this direction started several decades ago, e.g. with the fictitious play
algorithm (Brown, 1951; Robinson, 1951), it has received significant attention more recently given
the relevance to formulating GANs in deep learning (Goodfellow et al., 2014) and also other applica-
tions in machine learning. Some of the earlier and standard results in this area concern convergence
on average. That is, it has been known that by using no-regret algorithms, such as the Multiplica-
tive Weights Update (MWU) methods (Arora et al., 2012), the empirical average of the players’
strategies over time converges to a Nash equilibrium in zero-sum games. Similarly, one could also
utilize Gradient Descent/Ascent (GDA) algorithms. Several other algorithms for zero-sum games
are built within the framework of regret minimization both in theory (Carmon et al., 2019; 2024)
and in applications (Farina et al., 2021).

Coming closer to our work, within the last decade, there has also been a great interest in algorithms
attaining the more robust notion of last-iterate convergence. This means that the strategy profile
(xt, yt), reached at iteration t, converges to the actual equilibrium as t → ∞. Negative results in
Bailey & Piliouras (2018) and Mertikopoulos et al. (2018) show that several no-regret algorithms,
such as many MWU as well as GDA variants, do not satisfy last-iterate convergence. Instead, they
may diverge or enter a limit cycle. Motivated by this, there has been a series of works on obtain-
ing algorithms with provable last iterate convergence. The positive results that have been obtained
for zero-sum games show that improved versions of Gradient Descent such as the Extra-Gradient
method (Korpelevich, 1976) or the Optimistic Gradient method (Popov, 1980) attain last-iterate
convergence. In particular, Daskalakis et al. (2018) and Liang & Stokes (2019) show that the opti-
mistic variant of GDA (referred to as OGDA) converges for zero-sum games. Analogously, OMWU
(the optimistic version of MWU) also attains last-iterate convergence, as shown in Daskalakis &
Panageas (2019) and further analyzed in Wei et al. (2021). Further approaches with convergence
guarantees have also been proposed, such as primal-dual hybrid gradient methods (Lu & Yang,
2023). For the case of constrained bilinear zero-sum games, the best convergence rate for the dual-
ity gap achieved so far is by (Cai et al., 2022; Gorbunov et al., 2022), which is O(1/

√
t). We note

that better rates are achievable for the case of unconstrained bilinear zero-sum games, as e.g., in
Mokhtari et al. (2020), but this is an easier problem than what we focus on here. We also note that
for the metric of KL divergence, Wei et al. (2021) provide a geometric rate, which is dependent on
game parameters.

The method we analyze here is inspired by the general approach of extra-gradient methods, but with
the tweak of using different learning rates in the intermediate and final step of each iteration. The
idea of using different rates in these two steps of each iteration has also been successful in other
recent works. It has been used in Azizian et al. (2020) for a model that concerns the unconstrained
bilinear case. Again for the unconstrained case (but even beyond convex-concave functions), the
work of Diakonikolas et al. (2021) showed how the use of different learning rates achieved con-
vergence guarantees for their method (referred to as EG+). These ideas have also been applied
successfully in the stochastic setting, under noisy gradient feedback, (Hsieh et al., 2020).

Several of these methods have also been studied beyond bilinear payoff functions or beyond zero-
sum games, including (Golowich et al., 2020) and also (Diakonikolas et al., 2021) where positive
results are shown for a class of non-convex and non-concave problems. There are also negative
results however as e.g., established in Daskalakis et al. (2021). Going beyond min-max problems,
the work of Patris & Panageas (2024) obtains last-iterate convergence rates in rank-1 games. Re-
sults for richer classes of games are provided in Anagnostides et al. (2022), including potential and
constant-sum polymatrix games. The landscape, however, is overall less clear.

Finally, further results have been obtained regarding the design of algorithms with convergence
guarantees for extensive form games. Although such games are not within the scope of our work,
the techniques could prove useful for our restricted class of normal-form zero-sum games. Some
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of the main ideas that have been exploited in this literature concern regularization, see e.g. Sokota
et al. (2023); Liu et al. (2023) and negative momentum Fang et al. (2025).

2 PRELIMINARIES

We consider 2-player n× n zero-sum games (R,−R). Without loss of generality, we consider that
R ∈ (0, 1]n×n is the payoff matrix of the row player, and −R is the payoff matrix of the column
player.1 A mixed strategy is a probability distribution x = (x1, . . . , xn)

⊤ over the standard simplex
∆n, where the vector ei, with 1 in the i-th index and zero elsewhere, corresponds to the pure strategy
i. The support of a mixed strategy x is the set of the pure strategies to which x assigns positive mass,
i.e. supp(x) = {i|xi > 0}.

A strategy profile is a tuple (x, y), where x (resp. y) is the strategy of the row (resp. column) player.
Given a profile (x, y), the expected payoff of the row (resp. column) player is x⊤Ry (resp −x⊤Ry).
Definition 1 (ε-Nash equilibrium (ε-NE)). A strategy profile (x, y) is an ε-Nash equilibrium of the
game (R,−R), with R ∈ [0, 1]n×n, for ε ∈ [0, 1], if and only if, for any i, j ∈ [n],

x⊤Ry + ε ≥ e⊤i Ry, and x⊤Ry − ε ≤ x⊤Rej .

By setting ε = 0 we have an exact NE. Next we will define our progress measure.
Definition 2 (Duality Gap). For zero-sum games, the duality gap function V is defined as

V (x, y) = max
i

e⊤i Ry −min
j

x⊤Rej .

The duality gap is a central notion in game theory as it captures the combined loss of the players for
not employing best responses and hence for deviating from a NE, as seen in the fact below.
Fact 1. A strategy profile (x∗, y∗) is a Nash equilibrium of a zero-sum game if and only if it is a
(global) minimum of the function V (x, y). Furthermore, if V (x, y) ≤ ε, then (x, y) is an ε-NE.

Before proceeding with the dynamics, we state a simple lemma that relates the L1 norm with the
duality gap function, defering its proof in Appendix A.
Lemma 1. For any x, y it holds that maxi e

⊤
i Ry ≤ ||y−y∗||1+v and minj x

⊤Rej ≤ ||x−x∗||1+v,
where v is the value of the zero-sum game.

2.1 FLBR-MWU DYNAMICS

Here we restate the Forward Looking Best-Response Dynamics as introduced in Fasoulakis et al.
(2022). These dynamics follow an extra-gradient approach to find a Nash Equilibrium. Specifically,
each iteration involves an intermediate step that serves as a prediction for the update step. The
difference with other extra-gradient-like approaches is that different learning rates are used in the
intermediate and the final step, which appears crucial to the effectiveness of this approach.

Given an initial strategy profile (x0, y0), the two steps of the dynamics can be described as follows:

Step 1 (Intermediate): x̂t
i = xt−1

i · eξ·e
⊤
i Ryt−1∑

j

xt−1
j · eξ·e⊤j Ryt−1

, and ŷtj = yt−1
j · e−ξ·e⊤j R⊤xt−1∑

i

yt−1
i · e−ξ·e⊤i R⊤xt−1

,

Step 2 (Update): xt
i = xt−1

i · eη·e
⊤
i Rŷt∑

j

xt−1
j · eη·e⊤j Rŷt

, and ytj = yt−1
j · e−η·e⊤j R⊤x̂t∑

i

yt−1
i · e−η·e⊤i R⊤x̂t

,

When ξ = η in the above steps, this is referred to as Mirror-Prox in Nemirovski (2004). Contrary
to the conventional wisdom of using rather small learning rates to ensure contraction, our approach
utilizes a large value for ξ (aggressive rate for the intermediate exploration step) coupled with a small
(conservative) learning rate η ∈ (0, 1) for the update step. Finally, we state an important property
that we will use at various points in the sequel:

1Any game can be transformed to a game with entries in the interval (0, 1] with the same Nash equilibria.
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Lemma 2 (Fasoulakis et al. (2022)). For any t > 0, it holds that as ξ → ∞, x̂t (resp. ŷt) converges
to a best response strategy against yt−1 (resp. against xt−1).
Assumption 1. We will start the dynamics from the fully uniform distribution, i.e., x0 = y0 =
(1/n, . . . , 1/n). Furthermore, we will use a fixed η, independent of t in all iterations.

3 CONVERGENCE ANALYSIS

In this section, we use the duality gap as a metric to study the rate of convergence for FLBR-MWU.
This answers the question left open by Fasoulakis et al. (2022). Our analysis consists of two main
parts. First, we obtain a geometric rate of convergence until an appropriate approximate equilibrium
is reached, where the degree of approximation depends on η. Then, we show that if η is sufficiently
small, so as to guarantee that we are close to the exact solution, we can maintain a geometric rate to
the exact equilibrium, at the cost of introducing a dependency on the game parameters.

3.1 CONVERGENCE TO AN APPROXIMATE EQUILIBRIUM

Let (x∗, y∗) be an arbitrary exact Nash equilibrium, and let (xt, yt) be the strategy profile produced
by the dynamics at the end of time step t. We stress that for the convergence to an approximate
equilibrium, we do not need to assume uniqueness.

In our analysis, we utilize the Kullback-Leibler (KL) divergence of a profile from (x∗, y∗), defined
as follows.

DKL((x
∗, y∗)||(xt, yt)) =

∑n

i=1
x∗
i · ln(x∗

i /x
t
i) +

∑n

j=1
y∗j · ln(y∗j /ytj).

Note that by the definition of the dynamics, xt
i and ytj are always positive for any i, j and t; hence

the ratios above are well-defined. For brevity, we write DKL((x
∗, y∗)||(xt, yt)) as Dt. The main

technical property for the analysis of reaching an approximate equilibrium is the following lemma.
Lemma 3. It holds that for any t ≥ 1, and any η ≤ 1/2

η ·
[
(x̂t)⊤Ryt−1 − (xt−1)⊤Rŷt

]
≤ Dt−1 −Dt + 4η2.

This lemma is crucial as it provides a way to correlate the duality gap with the KL divergence. In
particular, the left hand side of the formula is a proxy quantity for the duality gap, and converges to
it should we choose a large enough ξ, as established in the following claim.
Claim 1. For any (x, y) ∈ ∆n ×∆n, it holds that limξ→∞[(x̂)⊤Ry − (x)⊤Rŷ] = V (x, y).

From this we have the following:
Corollary 1. For any t ≥ 1, for any η ≤ 1/2, and for sufficiently large ξ, it holds that

V (xt−1, yt−1) ≤ Dt−1 −Dt

η
+ 5η.

All missing proofs are presented in Appendix B. The next theorem is the main result of this section.
Theorem 1. Under Assumption 1, and for sufficiently small η and large ξ, the rate of convergence
for the KL divergence until we reach a 7η-Nash equilibrium is geometric, in the form O(lnn · ct),
where c < 1 is independent of t and dependent on n and η. Similarly, the convergence rate of the
duality gap to reach a 7η-NE is geometric, in the form O

(
lnn
η · ct

)
.

Proof. Since we have not yet reached a 7η-NE, it holds that V (xt, yt) ≥ 7η. Plugging this into
Corollary 1 gives us, after rearranging the terms:

Dt ≤ Dt−1 − 2η2 = Dt−1
(
1− 2η2

Dt−1

)
Due to Assumption 1 and the fact that the KL divergence only decreases until we reach an approxi-
mate equilibrium (Fasoulakis et al. (2022)), we have that Dt−1 ≤ D0 ≤ 2 ln(n). Thus, we deduce

Dt ≤ Dt−1
(
1− η2

ln(n)

)
.
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For η ≤
√
ln(n), we can unroll the above inequality for all time steps up to t to obtain

Dt ≤ Dt−1
(
1− η2

ln(n)

)t

≤ 2 ln(n)
(
1− η2

ln(n)

)t

.

This means that the KL divergence at time t is bounded by 2 ln(n) · ct, where c < 1 is independent
of t and dependent on η and n. Coming now to the duality gap, we conclude by Corollary 1 that

V (xt, yt) ≤ Dt
KL((x

∗, y∗)||(xt, yt))

η
+ 5η ≤ 2 ln(n)

η

(
1− η2

ln(n)

)t

+ 5η. (1)

This upper bound combined with V (xt, yt) ≥ 7η implies that for any time step t, until we reach

an approximate equilibrium, we have that η ≤ ln(n)
η

(
1 − η2

ln(n)

)t

. By plugging this back into
Equation (1), we eventually get:

V (xt, yt) ≤ 7 ln(n)

η

(
1− η2

ln(n)

)t

.

3.2 CONVERGENCE TO AN EXACT EQUILIBRIUM UNDER UNIQUENESS

We proceed here to analyze the convergence until the method reaches an exact equilibrium. The
technique here is based on a spectral analysis, and for this, we will need to further assume that
the game has a unique Nash equilibrium (x∗, y∗). This is a rather common assumption in many
related works, and we do not view this as a severe restriction, since the set of zero-sum games with
non-unique NE has Lebesgue measure equal to zero (Van Damme, 1991).

Let t0 be the time at which we reach the approximate equilibrium described in Section 3.1 and
let (xt0 , yt0) be the corresponding strategy profile. By Theorem 1, it can be extracted that t0 =
O(ln(ln(n))/ ln(η)). The first step in the remaining analysis is to establish that this approximate
equilibrium can be close to the actual Nash equilibrium. This is ensured if η is sufficiently small.
Corollary 2 (implied by Theorem 3 in Fasoulakis et al. (2022)). For any δ > 0, and for any q ≥ 1,
there exists a sufficiently small η, such that ||(x∗, y∗)− (xt0 , yt0)||q ≤ δ.

Using the above, the asymptotic last-iterate convergence of FLBR (but without a rate) was estab-
lished in Fasoulakis et al. (2022) by proving that the maximum eigenvalue of the Jacobian matrix
at (x∗, y∗) is strictly less than 1. In order to obtain a rate of convergence, we give a more refined
analysis, based on a technique utilized in Nakagawa et al. (2021) (namely within the proof of their
Theorem 5) for a fundamental problem in information theory.2

Theorem 2. Let (R,−R) be a zero-sum game with a unique NE (x∗, y∗). For a sufficiently small
η and large enough ξ, such that ηξ < 1, the rate of convergence of the duality gap to the NE is
geometric for the FLBR dynamics, in the form A/bt, where A and b are determined by the norm of
the Jacobian matrix evaluated at (x∗, y∗).

Proof. First, we recall some basic facts established in Fasoulakis et al. (2022) that we use here,
and for which uniqueness of equilibrium was needed. FLBR can be easily described as a discrete
dynamical system, φ(x, y) = (φ1(x, y), φ2(x, y)), such that φ(xt, yt) = (xt+1, yt+1), and where
φ1,i(x, y) is the i-th coordinate of φ1(x, y) and similarly for φ2,i(x, y), for any i ∈ [n]. The Jacobian
of this system is a 2n × 2n matrix, determined by the partial derivatives of ϕ. Furthermore, when
there exists a unique NE and ηξ < 1, Fasoulakis et al. (2022) proved that there exists some q ≥ 1,
such that

λmax ≤ ||J(x∗, y∗)||q < 1,

where λmax is the maximum eigenvalue of the Jacobian matrix at the profile (x∗, y∗).

For any t ≥ 0, consider the strategy profile (x(p), y(p)) = (1 − p) · (x∗, y∗) + p · (xt, yt), with
p ∈ (0, 1), as a convex combination of the equilibrium and the profile (xt, yt). In our proof, we will
eventually need to argue about the Jacobian matrix at such convex combinations.

2In particular, the problem tackled by Nakagawa et al. (2021) was the convergence analysis of the Arimoto-
Blahut algorithm for computing the Shannon’s capacity of a discrete memoryless channel.
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Lemma 4. For t ≥ t0: ||(xt+1, yt+1)− (x∗, y∗)||q ≤ ||(xt, yt)− (x∗, y∗)||q · ||J(x(pt), y(pt))||q .

With the above lemma and the continuity of the norm, we can now prove by induction the following:

Lemma 5. Given ε > 0, there exists a sufficiently small δ > 0, such that if ||(xt0 , yt0) −
(x∗, y∗)||q ≤ δ, then for any t ≥ t0. ||J(x(pt), y(pt))||q < ||J(x∗, y∗)||q + ε.

Fix now a small ε > 0 and let λ = ||J(x∗, y∗)||q + ε so that λ < 1. By Lemma 5 and applying
repeatedly Lemma 4, we have that, for any t ≥ t0,||(xt, yt) − (x∗, y∗)||q < λt−t0 · ||(xt0 , yt0) −
(x∗, y∗)||q. Therefore, given ε > 0, if we pick a sufficiently small η, we can ensure that there exists
a small δ > 0, such that Corollary 2 holds with this δ, i.e., ||(xt0 , yt0)− (x∗, y∗)||q < δ, and at the
same time Lemma 5 holds with the chosen ε (and again for this δ). By the equivalence of the norms,
all these yield that ||(xt, yt)− (x∗, y∗)||1 < K · δ ·λt−t0 , for some integer K > 0 independent of t,
and dependent on q. This directly bounds the L1 distances from the equilibrium strategies and, by
applying Lemma 1, we conclude that

V (xt, yt) ≤ 2K · δ · λt−t0 + v − v = O(K · δ · λt).

4 REGRET AND FORGETFULNESS

In this section, we focus on some previously unexplored aspects of the FLBR method.

4.1 REGRET ANALYSIS

First and most importantly, a fundamental question is whether FLBR is a no-regret algorithm, for
which we provide a negative answer. So far, in the literature of methods with last-iterate conver-
gence, there exist both no-regret algorithms (such as Optimistic MWU (Daskalakis & Panageas,
2019)) and algorithms with regret (such as Extra-Gradient). We note that the existence of regret by
itself is not necessarily a negative indication for an algorithm’s performance. For example, OMWU
is outperformed by algorithms that have regret, as discussed in Cai et al. (2024).
Theorem 3. FLBR is not a no-regret algorithm when ξ is sufficiently large.

We provide a proof outline here, and defer the proofs of the lemmas used below to Appendix C.
We first restate the FLBR dynamics, so that each iteration is replaced by two steps. We do this
so as to explicitly view FLBR within the framework of online learning algorithms with gradient
feedback. Hence, in each step, each player observes the payoff of her pure strategies3 and updates
the mixed strategy accordingly. This gives the following formulation for the row player (and anal-
ogously for the column player). For technical convenience, we assume the initial profile is indexed
as (x−1, y−1):

x2t
i = x2t−1

i · eξ·e
⊤
i Ry2t−1∑

j

x2t−1
j · eξ·e⊤j Ry2t−1

and x2t+1
i = x2t−1

i · eη·e
⊤
i Ry2t∑

j

x2t−1
j · eη·e⊤j Ry2t

, t ≥ 0. (2)

The example that we use for proving the theorem is the simple Matching Pennies game:

R =

[
+1 −1
−1 +1

]
.

We use the initialization x−1 = (1 − δ, δ) and y−1 = (δ, 1 − δ), for some small δ ∈ (0, 1/2).
With this at hand, we can break down the proof of Theorem 3 into the lemmata that follow. For
simplicity, we will carry out the proof here assuming ξ → ∞. Under this, note that by Lemma 2, x0

is a best response to y−1, and hence we get that x0 = (0, 1). In fact, we can inductively extend this
argument.
Claim 2. For any t ≥ 0, it holds that x2t−1

1 > 1
2 and y2t−1

1 < 1
2 .

Pairing this with Lemma 2, we get that x2t = (0, 1) (as a best response to y2t−1, for any t) and
symmetrically y2t = (0, 1). Now we are in position to explicitly compute x2t−1

1 .

3Note that this is precisely the gradient information, since e.g. ∂(xt)⊤Ryt

∂xi
= e⊤i Ryt.
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Lemma 6. For sufficiently large ξ we get x2t+1
1 = (1− δ)[1− δ(1− e2η(t+1))]−1.

Clearly, we also have x2t+1
2 = 1− x2t+1

1 . Due to symmetry we obtain that y2t+1
2 = x2t+1

1 ; thus, we
have obtained a closed form for the dynamics. The proof is then completed by the next lemma.
Lemma 7. For sufficiently small δ and sufficiently large ξ, the regret of the algorithm for the row
player against the fixed strategy x = (0, 1), up until time T is Ω(T ).

4.2 FORGETFULNESS

In a very recent work, Cai et al. (2024) provided further insights on the performance of
OMWU and related dynamics, as compared to OGDA. Their work was motivated by Panageas
et al. (2023), where analogous intuitions were given for the fictitious play algorithm. In
a nutshell, Cai et al. (2024) attributed the cause of relatively slow convergence of OMWU
to a notion they term “forgetfulness”. Although they did not provide a formal defini-
tion, intuitively, a method that is not forgetful allows the produced strategies to get stuck
in almost the same profile over many iterations, which slows down convergence. It was
shown that this can occur under OMWU, whereas OGDA does not exhibit the same issues.

Figure 1: FLBR vs OGDA in game Aδ .

Therefore, the main conclusion of their work is that
forgetfulness seems to be a necessary condition for
faster performance. Here, we extend their exper-
iment, comparing OGDA and FLBR-MWU. The
hard game instance of Cai et al. (2024) for OMWU,
parameterized by δ ∈ (0, 1), is the following:

Aδ =

[ 1
2 + δ 1

2

0 1

]
The game has a unique equilibrium (x∗, y∗) where
x∗
1 = 1

1+δ and y∗1 = 1
2(1+δ) . In Figure 1, we

highlight the behavior of FLBR and OGDA, with
δ = 10−2. The upper subfigures show how the first
coordinate of xt and yt vary over time, starting from
the initialization (x0, y0) = (1/2, 1/2). In the lower
subfigures, we show the decrease in the duality gap over the iterations. Note that at the equilib-
rium, x∗

1 is close to 1, whereas y∗1 is close to 1/2, and thus close to y01 . What we observe is that
FLBR behaves similarly to OGDA in the sense that it forgets quickly, regarding the coordinate xt

1,
and therefore avoiding slowdowns. Furthermore, FLBR does not overshoot yt1. It increases yt1
marginally before reaching the actual equilibrium point, whereas OGDA overshoots. This fact justi-
fies the much faster convergence time of FLBR compared to OGDA, as seen in the lower subfigures.

Overall, even though this was only one example, it conveys the intuition that the intermediate step
at FLBR, using large ξ has a particular effect in the dynamics: it makes the algorithm forgetful, and
thus faster, albeit with the cost of adding regret, as shown in Section 4.1.

5 EXPERIMENTAL EVALUATION

Experimentally, the method already appeared promising in Fasoulakis et al. (2022). Here, we start
by comparing FLBR against OMWU and against OGDA, with the latter being one of the fastest and
most well studied last-iterate method for bilinear games (Daskalakis et al., 2018)

We performed three types of comparisons. First, we compare the three methods on random games,
and more specifically when the matrices are drawn from a standard Gaussian distribution. Second,
we revisit the game Aδ discussed in Section 4.2. In both experiments, we present one moderately
fine-tuned choice of the learning rate η. Given that OMWU performs quite poorly both in the
random games and in Aδ , we then perform further comparisons only between FLBR and OGDA,
complemented by more visualizations of different learning rates. Third, to obtain more meaningful
comparisons, we sought additional games that are simultaneously far from random and larger in size.
To that end, we used the generalized Rock-Paper-Scissors (RPS) game in higher dimensions. In all
our experiments, including the additional ones presented in Appendix D, we use a fixed ξ = 100 (as
a result of our tuning w.r.t. how to set ξ).
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Figure 2: Comparison in Gaussian games Figure 3: Further comparisons for game Aδ

Our main findings and conclusions are as follows:
• In Figure 2, we see the comparisons on 50×50 Gaussian random games. The methods are com-

parable up to a point, with OGDA demonstrating superior performance in both the number of
iterations and the time elapsed per game. Nevertheless, FLBR is still close enough and is bet-
ter than OMWU in time elapsed. The performance of OGDA is explained by Anagnostides &
Sandholm (2024), via last iterate analysis under the celebrated framework of smoothed analysis
(Spielman & Teng, 2004).

• In Figure 3, we see the comparisons for the game Aδ . Here the conclusion reverses: the methods
are comparable once again but now FLBR exhibits a clear advantage. OMWU is quite far away.

• In Figures 4 and 5, we see the comparisons for generalized RPS, for dimensions 11 and 101, and
for various values of η. Again, the methods are comparable, with a slight advantage for FLBR.

• Finally, apart from the number of iterations shown in the previous figures, we present some in-
dicative time comparisons between FLBR and OGDA in Tables 1 and 2. Again, the conclusion
remains the same, that OGDA performs better in random games, whereas FLBR performs better
in RPS, and generally in more structured games (as also verified in our additional experiments in
the Appendix).

Figure 4: Comparisons over various values of η Figure 5: RPS games of higher dimension

Overall, even though the theoretical analysis of FLBR comes with the caveat of game-dependent
parameters in its geometric convergence rate, the experiments reveal a competitive performance
against OGDA. One more conclusion that arises from the experiments (see Figures 4 and 5) is that
FLBR seems to exhibit better robustness to variations in η, unlike OGDA. We therefore conclude that
the combination of different learning rate parameters, η and ξ, in FLBR can be viewed as promising
direction for future work. As a step towards further explorations for the performance of FLBR, it
would be interesting to study if our results generalize beyond bilinear payoffs. We have conducted
some initial experimentation on this, presented in Section D.3.

9
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Table 1: Comparison in Gaussian games

Time (sec) to accuracy

10−2 10−3 10−4 10−5

OGDA 0.005 0.026 0.155 1.72
FLBR 0.005 0.14 0.8 3.87

Table 2: Comparison in RPS

Time (sec) to accuracy

10−2 10−3 10−4 10−5

OGDA 4.73 14.45 24.28 34.00
FLBR 0.08 0.11 0.15 0.22
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A MISSING PROOFS FROM SECTION 2

Proof of Lemma 1. We have that for any i,

|e⊤i Ry − e⊤i Ry∗| =
∣∣∣∑

j

Rij · yj −
∑
j

Rij · y∗j
∣∣∣

=
∣∣∣∑

j

Rij · (yj − y∗j )
∣∣∣

≤
∑
j

|Rij · (yj − y∗j )|

=
∑
j

Rij · |(yj − y∗j )|

≤
∑
j

|(yj − y∗j )|

= ||y − y∗||1.

Thus, if b = argmaxi e
⊤
i Ry, then maxi e

⊤
i Ry = e⊤b Ry ≤ ||y − y∗||1 + e⊤b Ry∗ ≤ ||y − y∗||1 + v.

The second part of the lemma follows in a similar manner.

B MISSING PROOFS FROM SECTION 3

B.1 PROOF OF LEMMA 3

Proof. We first rewrite the KL terms, by using the definition of the dynamics.

DKL((x
∗, y∗)||(xt−1, yt−1))−DKL((x

∗, y∗)||(xt, yt))

=
∑n

i=1
x∗
i · ln(xt

i/x
t−1
i ) +

∑n

j=1
y∗j · ln(ytj/yt−1

j )

=

n∑
i=1

x∗
i · ln eη·e

⊤
i Rŷt

− ln
( n∑

k=1

xt−1
k · eη·e

⊤
k Rŷt

)
+

n∑
j=1

y∗j · ln e−η·e⊤j R⊤x̂t

− ln
( n∑

k=1

yt−1
k · e−η·e⊤k R⊤x̂t

)
= η · (x∗)TRŷt − η · (y∗)TR⊤x̂t − ln

( n∑
k=1

xt−1
k · eη·e

⊤
k Rŷt

)
− ln

( n∑
k=1

yt−1
k · e−η·e⊤k R⊤x̂t

)
.

We now use the Taylor expansion of the exponential function in the arguments of the last two loga-
rithms. For the first logarithmic term, this becomes:

ln
( n∑

k=1

xt−1
k · eη·e

⊤
k Rŷt

)
= ln

(
1 + η · (xt−1)⊤Rŷt +

n∑
k=1

xt−1
k

∑
ℓ≥2

(η · e⊤k Rŷt)ℓ

ℓ!

)
≤ ln

(
1 + η · (xt−1)⊤Rŷt + 2η2

)
.

For the above, we used the fact that
∑

ℓ≥2
(η·e⊤k Rŷt)ℓ

ℓ! ≤ η2

1−η ≤ 2η2, since η ≤ 1/2. By exploiting
now the inequality ln (x) ≤ x− 1, we finally obtain the bound

ln
( n∑

k=1

xt−1
k · eη·e

⊤
k Rŷt

)
≤ η · (xt−1)⊤Rŷt + 2η2.

By carrying out similar calculations for the second logarithmic term, we will also get that

ln
( n∑

k=1

yt−1
k · e−η·e⊤k R⊤x̂t

)
≤ −η · (x̂t)⊤Ryt−1 + 2η2.
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This gives us:

DKL((x
∗, y∗)||(xt−1, yt−1))−DKL((x

∗, y∗)||(xt, yt))

≥ η · (x∗)TRŷt − η · (y∗)TR⊤x̂t − η · (xt−1)⊤Rŷt + η · (x̂t)⊤Ryt−1 − 4η2.

By rearranging the terms, we obtain that

η ·
(
(x̂t)⊤Ryt−1 − (xt−1)⊤Rŷt

)
≤ DKL((x

∗, y∗)||(xt−1, yt−1))−DKL((x
∗, y∗)||(xt, yt)) + 4η2

− η · (x∗)⊤Rŷt + η · (x̂t)⊤Ry∗.

Note now that since (x∗, y∗) is a Nash equilibrium, and we are in a zero-sum game, then we know
that (x∗)⊤Rŷt ≥ v, where v is the value of the game. Similarly, (x̂t)⊤Ry∗ ≤ v. Hence these terms
cancel out in the above equation and the proof is complete.

B.2 PROOFS OF CLAIM 1 AND COROLLARY 1

Proof. Recalling Definition 2 we have that V (x, y) = maxi e
⊤
i Ry − minj(x)

⊤Rej . But by
Lemma 2, we have that x̂ converges to a best response against y, and similarly for ŷ, which com-
pletes the proof.

Proof. By Claim 1, we know that (x̂⊤Ry − x⊤Rŷ) → V (x, y) as ξ → ∞. From the definition of
the limit and the continuity of x̂, ŷ as functions of ξ we get that for every (x, y) ∈ ∆n×∆n and any
ε > 0 there exists a ξ0(x, y, ε) such that |(x̂t)⊤Ryt−1 − (xt−1)⊤Rŷt − V (xt−1, yt−1)| ≤ ϵ. By
setting ε = η and simplifying the ξ notation we deduce that there exists a ξ(x, y) such that

V (x, y) ≤ x̂⊤Ry − x⊤Rŷ + η, ∀ξ ≥ ξ0(x, y)

We select our constant ξ = max
x,y

ξ0(x, y) to enable us to argue for every pair of iterates (xt, yt) and

via Lemma 3 we get the desired inequality.

B.3 PROOF OF LEMMA 4

First we show the following claim that we use in the proof of our Lemma.

Claim 3.
dφ(x(p), y(p))

dp
= J(x(p), y(p)) ·

(
xt − x∗, yt − y∗

)
.

In the equation above, the term (xt − x∗, yt − y∗) is a vector of 2n coordinates, where for each
i ∈ [n] the i-th coordinate equals xt

i − x∗
i , and the (n+ i)-th coordinate equals yti − y∗i .

Proof. For the row player, we have that for any i,

dφ1,i(x(p), y(p))

dp
=

∑
k

dxk(p)

dp
· dφ1,i(x(p), y(p))

dxk(p)
+

∑
ℓ

dyℓ(p)

dp
· dφ1,i(x(p), y(p))

dyℓ(p)

=
∑
k

(
xt
k − x∗

k

)
· J(x(p), y(p))ik +

∑
ℓ

(
ytℓ − y∗ℓ

)
· J(x(p), y(p))i,n+ℓ

The above hold because dxk(p)
dp = xt

k − x∗
k and dyℓ(p)

dp = ytℓ − y∗ℓ . Analogous expressions hold for
φ2 as well, thus we conclude that

dφ(x(p), y(p))

dp
= J(x(p), y(p)) ·

(
xt − x∗, yt − y∗

)
.
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Proof. By the Mean Value Theorem (applied for our function f t = φ(x(p), y(p)) : R → R2n), for
each time t, there is a pt ∈ (0, 1) s.t.

||(xt+1, yt+1)− (x∗, y∗)||q =
∣∣∣∣∣∣(φ1(x

t, yt), φ2(x
t, yt)

)
−

(
φ1(x

∗, y∗), φ2(x
∗, y∗)

)∣∣∣∣∣∣
q

= ||f t(1)− f t(0)||q

≤
∣∣∣∣∣∣df t(p)

dp
|p=pt

∣∣∣∣∣∣
q
· (1− 0)

=
∣∣∣∣∣∣((xt, yt)− (x∗, y∗)

)
· J(x(pt), y(pt))

∣∣∣∣∣∣
q

≤ ||(xt, yt)− (x∗, y∗)||q · ||J(x(pt), y(pt))||q

where the second inequality holds by the properties of the q-norm.

B.4 PROOF OF LEMMA 5

Proof. For the basis of the induction, consider t = t0. Regarding the Jacobian, first note that

||(x(pt0), y(pt0))− (x∗, y∗)||q = ||(1− pt0)(x∗, y∗) + pt0(xt0 , yt0)− (x∗, y∗)||q
= ||pt0(xt0 , yt0)− pt0(x∗, y∗)||q
≤ ||(xt0 , yt0)− (x∗, y∗)||q

Furthermore, by the continuity of the norm, for the given ε, there exists δ > 0 s.t. if ||(x∗, y∗) −
(x(pt0), y(pt0))||q < δ, then

∣∣∣||J(x(pt0), y(pt0))||q − ||J(x∗, y∗)||q
∣∣∣ < ε. Therefore, if we use this

value of δ, we get that if ||(xt0 , yt0)− (x∗, y∗)||q ≤ δ, then ||(x(pt0), y(pt0))− (x∗, y∗)||q < δ (by
the previous analysis), and consequently ||J(x(pt0), y(pt0))||q < ||J(x∗, y∗)||q+ε. This establishes
the basis.

For the induction step, assume that the condition holds for some t ≥ t0. We will establish it for
t+ 1.

Since we have assumed that ε satisfies ||J(x∗, y∗)||q + ε < 1, the induction hypothesis yields that
||J(x(pt), y(pt))||q < 1. Using this and Lemma 4, we get that ||(xt+1, yt+1) − (x∗, y∗)||q <
||(xt, yt) − (x∗, y∗)||q . This also implies that if ||(xt0 , yt0) − (x∗, y∗)||q ≤ δ, this propagates
throughout all the iterations for the same δ, so that ||(xt+1, yt+1)− (x∗, y∗)||q < δ. And this in turn
yields

||(x(pt+1), y(pt+1))− (x∗, y∗)||q = ||(1− pt+1)(x∗, y∗) + pt+1(xt+1, yt+1)− (x∗, y∗)||q
= ||pt+1(xt+1, yt+1)− pt+1(x∗, y∗)||q
≤ ||(xt+1, yt+1)− (x∗, y∗)||q
< δ

To finish the proof, we use the same argument as in the induction basis. Namely, by the continuity
of the norm, for the given ε, and for the δ that was identified in the induction basis, we will have that∣∣∣||J(x(pt+1), y(pt+1))||q − ||J(x∗, y∗)||q

∣∣∣ < ε, and thus

||J(x(pt+1), y(pt+1))||q < ||J(x∗, y∗)||q + ε < 1.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C MISSING PROOFS FROM SECTION 4

C.1 PROOF OF LEMMA 6

Proof. Recall that

x2t+1
1 = x2t−1

1 · eη·e
⊤
1 Ry2t∑

j

x2t−1
j · eη·e⊤j Ry2t

= x2t−1
1 · e−η∑

j

x2t−1
j · eη·e⊤j Ry2t

x2t+1
2 = x2t−1

2 · eη·e
⊤
2 Ry2t∑

j

x2t−1
j · eη·e⊤j Ry2t

= x2t−1
2 · eη∑

j

x2t−1
j · eη·e⊤j Ry2t

For brevity, let x2t+1
1 = at and x2t+1

2 = bt we get that

at = at−1 · e−η

at−1e−η + βt−1eη

bt = bt−1 · eη

at−1e−η + βt−1eη

Note that at + bt = 1 so we get

at = at−1 · e−η

at−1e−η + (1− at−1)eη
=

at−1e−η

at−1(e−η − eη) + eη
=⇒

1

at
= 1− e2η + e2η

1

at−1
=⇒

1

at
− 1 = e2η

(
1

at−1
− 1

)
=⇒

1

at
− 1 = e2η(t+1)

(
1

a−1
− 1

)
Recall that a−1 = x−1

1 = 1− δ so we get that

1

at
= 1 + e2η(t+1) δ

1− δ
=⇒ x2t+1

1 =
1− δ

1− δ(1− e2η(t+1))

C.2 PROOF OF LEMMA 7

Proof. For a given T , we compute the total payoff of the row player for the first 2T iterations when
both players use FLBR. Since at the even steps of this process the strategy of both players is (0, 1),
we get:

2T∑
i=0

xi⊤Ryi = T · (0, 1)⊤R(0, 1) +

T∑
i=0

x2i+1⊤Ry2i+1

= T +

T∑
i=1

(at, 1− at)⊤R(1− at, at)

= T +

T∑
i=1

(at, 1− at)⊤(1− 2at,−1 + 2at)

= T +

T∑
i=1

at − 2(at)2 − 1 + 2at + at − 2(at)2

=

T∑
i=1

4at(1− at)
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where once again we set x2t+1
1 = at.

Next, we compute the payoff of the fixed strategy x∗ = (0, 1) for the row player, against the column
player playing in each iteration the FLBR strategy yi as computed by the previous analysis. This is
equal to:

2T∑
i=0

xi⊤Ryi = T · (0, 1)⊤R(0, 1) +

T∑
i=0

(0, 1)⊤Ry2i+1

= T +

T∑
i=0

(0, 1)⊤(1− 2at,−1 + 2at)

=

T∑
i=0

2at

Hence, the regret for the row player when choosing her FLBR strategy against x∗ is

RegFLBR ≥
T∑

i=0

2at −
T∑

i=1

4at(1− at) =

T∑
i=0

2at(2at − 1)

To upper bound the expression we use that at = 1/2 hence we have that

1− δ(1− e2η(T+1))

1− δ
= 2

δe2η(T+1) = 1− δ

2η(T + 1) = ln
(1− δ

δ

)
Thus, up to time ⌈T+1

2 ⌉ we have that

at ≥ 1− δ

1− δ

(
1−

√
1−δ
δ

) =
1− δ

1− δ +
√
δ − δ2

For δ → 0 the expression tends to 1 so there is a sufficiently small δ such that at ≥ .95 for
t ≤ ⌈T+1

2 ⌉. Piecing everything together we get that

RegFLBR ≥
T∑

i=0

2at(2at − 1)

≥
⌈T+1

2 ⌉∑
i=0

2at(2at − 1)

RegFLBR ≥ 0.855 · T over 2T rounds,

which completes the proof.

D ADDITIONAL EXPERIMENTS

Our additional experiments follow a similar line of thought as the ones presented in the main paper.
Namely, we start with random Gaussian games, where OGDA has a slight advantage over FLBR and
then we present constructions of not so random games, with some inherent structure, which slow
down OGDA but not FLBR.

Initializations As stated in Assumption 1, for the theoretical part of the paper we always initialize
FLBR with the uniform distribution, i.e. xi = yi = 1/n. Here we deem useful to explore more
options. Specifically, we test the following starting points:

17
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• Uniform distribution.
• Almost pure strategy profile: x1 = y1 = 1− 1/n and xi = yi =

1
n(n−1)

• Random: we sample x, y from U(0, 1) and then rescale them

• Sequential: xi = yi =
2i

n(n+1)

Assumptions on η, ξ In the theoretical part of the paper, we did not need any major assumption for
η and ξ (apart from ξ being large enough) for reaching an approximate equilibrium. However, for the
convergence to the exact solution, we needed to use ηξ < 1, to prove Theorem 2. In our experiments,
we also tested combinations of values for these two parameters that violate this condition. What we
observe experimentally is that the method can perform well even without this constraint (recall e.g.,
that in the main paper, we also used ξ = 100 and values of η for which ηξ > 1), but certainly not
for any arbitrary combination.

D.1 RANDOM GAMES

In addition to the 1000×1000 Gaussian games presented in the main paper, we see in Figures 6 and 7
the comparisons between FLBR and OGDA for further Gaussian games of dimensions 50 and 500,
where each entry of the payoff matrix is filled by sampling from the Gaussian distribution. What
we observe is similar to the plots presented also in the main paper for Gaussian games, namely that
OGDA performs better (as expected by the existing smoothed analysis for OGDA) and that FLBR
is close but on average slower than OGDA.

Figure 6: Random Gaussian 50× 50 games with various initializations.

Figure 7: Random Gaussian 500× 500 games with various initializations.

D.2 STRUCTURED GAMES

We have already presented in the main paper our results on the Generalized Rock-Papers-Scissors
game, which is arguably among the most famous zero-sum game. Here we also present comparisons
using two more classes of more structured games.

First, we performed comparisons for games where the payoff matrix R is of low rank. Such games
differ from random games, where with high probability the matrix has full rank. We constructed
matrices, where the rank is approximately 5-10% of the dimension.

Interestingly, what we observe in Figures 8 and 9, is that FLBR is performing better than OGDA.
The figures depict the comparisons for 50× 50 games where the rank is 5 and for 500× 500 games

18
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with rank equal to 25. An additional observation is that FLBR seems more robust against the various
initializations that were used. For example OGDA, under the random and the uniform initialization
does not converge for some choices of η.

Figure 8: Games with low rank payoff matrix of size 50× 50 with various initializations.

Figure 9: Games with low rank payoff matrix of size 500× 500 with various initializations.

Moving on, we also tested a class of symmetric zero-sum games, which again is more structured
than random games. In order to construct such families, we used the following formula for filling
in the entries of the payoff matrix, where Pn

ij is the entry of P at (i, j) when P is n × n. Here
symmetry is enforced, given the dependence on i+ j.

Pn
ij =

1

n
(i+ j − 2) mod n (3)

We note that for this class, we did not use the uniform initialization as this is an equilibrium of the
game. What we observe in Figures 10 and 11, is that FLBR is having an advantage over OGDA for
smaller dimensions, while OGDA becomes just slightly better, for the sequential and the almost pure
initialization. The two methods have a very similar performance under the random initialization.
Again, we observe a better robustness of FLBR with respect to the various initializations and the
values of η. For example, we see that OGDA does not manage to converge for some of the choices
used for η.

Figure 10: Structured games defined by Equation (3), of size 50× 50 with various initializations.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 11: Structured games defined by Equation (3), of size 500× 500 with various initializations.

Overall, a general conclusion that can be extracted from our experiments is that the two methods are
of comparable performance, with OGDA doing better for randomly generated games, where FLBR
gains an advantage for more structured games.

D.3 EXPERIMENTATION BEYOND BILINEAR GAMES

Finally, in our last set of experiments, we also tried to investigate if our method is convergent when
we move away from bilinear games. To that end, we implemented the method as is for two well
studied settings: 1) convex-concave and 2) potential games.

For the first setting, we tested the method on the min-max objective f(x, y) = ||x − y||2 =∑
i∈[n](xi − yi)

2. The results are shown in Figure 12 for vectors of size 5. The equilibrium here is
that both players get a zero payoff, and as we see in Figure 12, FLBR does not manage to converge.
This is still far from conclusive, and it remains an interesting direction for future work to investi-
gate under what families of convex-concave functions we could have convergence of FLBR or if the
method needs adaptation to extend to more general domains.

Figure 12: FLBR in a convex-concave setting with the payoff function ||x− y||2.

Figure 13: FLBR vs OMWU in random coordination games.
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For potential games, we considered the simple scenario of a coordination game where both players
have the same payoff matrix. We present the averaged results for 10 games of size 500×500, drawn
from the standard gaussian in Figure 13. For reference, we compare against OMWU. Both methods
are executed with stepsize η = 0.1. We observe that FLBR-MWU does converge and it also has
comparable performance, and nearly identical after a certain point, with OMWU. An interesting
phenomenon that occurs is that after an initial phase of almost no change, it appears as if FLBR
will diverge. But then the behavior of the dynamics change, and we see an alternation between
sharp drops in the duality gap and almost constant phases. Understanding this behavior, as well as
studying the last iterate rate of FLBR in potential games, is an interesting topic of further research.
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