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ABSTRACT

Large Language Models are rapidly being adapted for high-stakes professional do-
mains, yet the industrial sector, with its demand for deep expertise and precision,
presents unique and formidable challenges. Standard fine-tuning approaches are
often insufficient. In this work, we identify a critical paradox in domain-specific
SFT: enriching training data with detailed explanations or Chains-of-Thought can
counter-intuitively degrade a model’s factual accuracy, revealing a fundamental
conflict between learning to be correct and learning to be verbose. To resolve
this, we propose a novel two-stage fine-tuning framework that first anchors the
model’s core knowledge using direct question-answer pairs, and only then cul-
tivates its advanced reasoning and explanatory abilities. To rigorously evaluate
our method and establish a much-needed standard for the field, we introduce the
Industry-QA Benchmark, a comprehensive dataset of over 10,000 questions span-
ning numerous industrial disciplines, which we will release to the community. We
supplement this with a curated industrial subset from SuperGPQA to ensure robust
and generalizable evaluation. Our resulting model, IndustryGPT, demonstrates
state-of-the-art performance, significantly outperforming strong proprietary and
open-source models on our benchmarks. Crucially, it achieves this specialized
expertise without any degradation of its general capabilities. This work presents
not only a superior model for the industrial domain but also a principled training
methodology that resolves a key challenge in developing specialized AI.

1 INTRODUCTION

The ascent of Large Language Models (LLMs) like GPT-4 (OpenAI, 2023), Gemini (Team et al.,
2023), and powerful open-source alternatives (Touvron et al., 2023; Bai et al., 2023) has redefined
the boundaries of artificial intelligence. Built upon the Transformer architecture (Vaswani et al.,
2017), these models exhibit a remarkable fluency in understanding, generating, and reasoning with
natural language. This success has ignited a wave of interest in deploying them in high-stakes, spe-
cialized domains, particularly the industrial sector, where precision, reliability, and deep expertise
are not just valued, but essential (Gao et al., 2024).

However, the journey from a general-purpose LLM to a trusted industrial expert is fraught with chal-
lenges. The most apparent hurdle is the knowledge gap; models trained on general web text simply
lack the specialized vocabulary and nuanced understanding of industrial processes (Li et al., 2024).
Yet, our investigation reveals a deeper, more counter-intuitive challenge that lies at the heart of the
domain adaptation process itself. When attempting to fine-tune these models on expert-level data, we
uncovered a significant paradox: training on rich data containing detailed explanations (‘Question,
Answer+Explanation‘) can actively harm the model’s ability to select the correct answer, perform-
ing worse than models trained on simple question-answer pairs. This suggests a debilitating conflict
between two competing learning objectives: the discriminative goal of being factually accurate and
the generative goal of being fluently explanatory.

To resolve this fine-tuning paradox, we developed a two-stage SFT framework, which forms the
technical core of our work. As illustrated in Figure 2, this method decouples the competing tasks
by first anchoring the model’s factual accuracy before cultivating its ability to reason and explain.
Yet, proving the efficacy of such a nuanced approach is impossible without a dedicated evaluation
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Stage 1：
Knowledge Infusion

Stage 2：
Reasoning Cultivation 

A high-pressure steam turbine blade 
made of a nickel-based superalloy 
(e.g., Inconel 718) has failed 
prematurely. Metallurgical analysis 
reveals intergranular cracking near 
the blade root. What is the most 
likely failure mechanism, and what 
factors could have contributed to it? 

General LLMnal 
Knowledge Infusion

The most likely failure mechanism is 
stress-assisted grain boundary 
oxidation (SAGBO) or creep-fatigue 
interaction.
• Contributing factors include: ……
• High Operating Temperature: ……
• Centrifugal Stress: ……
• Grain Boundary Weakening: ……
• Material Degradation: Over time, the 

strengtheningprecipitates (e.g., γ ′
     and γ ′′ phases in Inconel 718) can 
coarsen at high temperatures, reducing 
the alloy's creep resistance.

    The turbine blade probably 
broke because it got too hot or 
was under too much stress. 
    The cracks between the 
grains suggest it was a fatigue 
failure from spinning around so 
much. To fix this, you should 
use a stronger material or run 
the turbine at a lower speed.

IndustryGPT 

A high-pressure steam turbine blade 
made of a nickel-based superalloy 
(e.g., Inconel 718) has failed 
prematurely. Metallurgical analysis 
reveals intergranular cracking near the 
blade root. What is the most likely 
failure mechanism, and what factors 
could have contributed to it? 

Figure 1: Advancing Industrial Intelligence with IndustryGPT. Our novel two-stage Supervised
Fine-Tuning (SFT) framework transforms generic Large Language Models into IndustryGPT, a spe-
cialized powerhouse for industrial applications. The framework first infuses industrial knowledge
(Stage 1) and then cultivates Reasoning capabilities (Stage 2) using Chain-of-Thought data. As
exemplified, while a General LLM struggles with a complex turbine blade failure analysis, Indus-
tryGPT provides precise, expert-level diagnoses and actionable insights. This specialized model
achieves State-of-the-Art performance on our newly constructed Industry-QA Benchmark while
meticulously preserving general abilities.

framework, which highlights another critical void: the evaluation gap. While fields like medicine
(Jin et al., 2021) and law (Guha et al., 2023) have established benchmarks, the industrial domain
lacks a comprehensive tool to rigorously measure the very capabilities we seek to build.

To holistically address these interconnected challenges of paradoxical training dynamics and inade-
quate evaluation, we introduce IndustryGPT. This paper details our systematic approach, with the
following primary contributions:

• A Two-Stage SFT Framework: We propose a principled fine-tuning strategy that resolves the
conflict between accuracy and explanation. The first stage, Knowledge Infusion, anchors the
model’s factual correctness, while the second, Reasoning Cultivation, builds upon this founda-
tion to develop deep explanatory and problem-solving skills.

• A Large-Scale Industrial Benchmark: To enable robust evaluation, we construct and release
the Industry-QA Benchmark, a comprehensive testbed of over 10,000 questions designed to
assess both core knowledge and complex reasoning in diverse industrial disciplines.

• State-of-the-Art Performance: Through extensive experiments, we demonstrate that Indus-
tryGPT significantly outperforms strong open-source and proprietary models, validating the su-
periority of our approach.

• Preservation of General Capabilities: We show that this deep domain specialization is
achieved without catastrophic forgetting, as IndustryGPT maintains its core general reasoning
abilities when evaluated on the challenging MMLU-Pro benchmark (Zhang et al., 2024).
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2 RELATED WORK

2.1 FROM GENERALIST MODELS TO DOMAIN SPECIALISTS

The current era of AI is largely defined by powerful foundation models like GPT-4 (OpenAI, 2023),
Llama (Touvron et al., 2023), and Qwen (Bai et al., 2023), which have demonstrated remarkable
versatility. While these general-purpose models serve as potent starting points, unlocking their true
potential in specialized fields requires targeted adaptation. The research community has explored
several techniques to bridge this gap. Early efforts focused on continued pre-training on domain-
specific corpora, successfully creating experts like BioBERT (Lee et al., 2020) for medicine and
FinBERT (Araci, 2019) for finance by enriching their core vocabulary and conceptual understanding.

More commonly, models are adapted via supervised fine-tuning (SFT), where they learn from
curated sets of expert examples (Ouyang et al., 2022). To move beyond simple fact-retrieval and
instill deeper problem-solving skills, many have turned to Chain-of-Thought (CoT) fine-tuning,
training models to emulate the step-by-step reasoning processes of human experts (Wei et al., 2022;
Ho et al., 2022). Our work builds directly on these principles but is motivated by a critical limitation
we observed: naively mixing factual and reasoning-based data in a single SFT stage can lead to
suboptimal performance. Our two-stage framework addresses this by systematically separating these
concerns, first grounding the model in factual knowledge before cultivating its complex reasoning
abilities.

2.2 THE NEED FOR SPECIALIZED EVALUATION

A specialized model is only as good as the benchmark used to validate it. As LLMs have been
adapted for professional domains, a suite of robust evaluation tools has emerged. Fields like
medicine now have rigorous tests such as MedQA (Jin et al., 2021) and PubMedQA (Jin et al.,
2019), while the legal profession has LegalBench (Guha et al., 2023), and finance has benchmarks
like FinQA (Chen et al., 2021). These tools are crucial for driving progress and ensuring reliability.

In stark contrast, the industrial domain has lacked a modern, comprehensive benchmark. While
broad evaluations like MMLU (Hendrycks et al., 2021) contain engineering-related questions, they
only scratch the surface of the practical, multi-step problems faced in manufacturing, diagnostics,
and process control. This evaluation gap makes it difficult to meaningfully assess a model’s readi-
ness for real-world industrial deployment. The construction of our Industry-QA Benchmark is
therefore a foundational contribution, designed specifically to fill this critical void and provide a
dedicated testbed for the advanced capabilities required in industrial applications.

3 METHODOLOGY

This section details our approach to developing IndustryGPT. We begin by introducing the base
models, then narrate the discovery process that led to our core contribution: a novel two-stage
supervised fine-tuning framework. We conclude with a theoretical analysis that explains why this
staged approach is superior for instilling both deep domain knowledge and sophisticated reasoning
capabilities.

3.1 BASE MODELS

The foundation of IndustryGPT rests upon the Qwen series of large language models (Bai et al.,
2023), renowned for their strong performance and architectural efficiency. We selected Qwen mod-
els for their competitive baseline capabilities, efficient Group Query Attention (GQA) architecture
(Ainslie et al., 2023), and support for long context windows, a crucial feature for industrial appli-
cations. To investigate the effects of scale, we developed IndustryGPT variants based on two sizes:
Qwen3-8B and Qwen3-32B. The 8B model offers an efficient balance of capability and accessibil-
ity, while the 32B model allows us to explore the upper limits of performance on complex industrial
tasks.
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3.2 A TWO-STAGE FRAMEWORK FOR KNOWLEDGE AND REASONING

Our initial explorations into adapting these models involved standard supervised fine-tuning (SFT)
on our collected industrial datasets. We experimented with two data formats: simple, direct ‘Ques-
tion, Answer‘ pairs, and richer ‘Question, Answer+CoT‘ pairs that included a detailed reasoning
chain. This led to the counter-intuitive finding shown in Table 1: while training on ‘Answer+CoT‘
improved performance over the base model, it was significantly less effective than training on ‘An-
swer Only‘. The model, when forced to learn reasoning and answering simultaneously, seemingly
compromised its factual accuracy.

Table 1: Initial SFT experiments on the Industry-QA benchmark (Accuracy %) using an 8B model.
The results reveal that adding CoT explanations in a single stage harms answer accuracy.

Model Configuration Accuracy (%)
Base Model (Qwen3-8B-Instruct) 80.2
SFT on Answer with CoT 84.9
SFT on Answer Only 89.0

Motivated by this observation, we hypothesized that the tasks of knowledge acquisition and reason-
ing cultivation are in conflict during a naive, single-stage SFT process. We therefore designed a
two-stage SFT framework to decouple these competing objectives, as illustrated in Figure 2.

Stage 1: Knowledge Infusion. The first stage is designed to anchor the model’s factual accuracy.
We fine-tune the base model on a large corpus of over 200,000 industrial ‘Q, A‘ pairs, mixed with a
smaller portion of general-purpose conversation data (Taori et al., 2023) to maintain versatility. The
goal is singular: create an intermediate model that has mastered the core knowledge of the industrial
domain.

Stage 2: Reasoning Cultivation. Building on this knowledgeable foundation, the second stage
focuses exclusively on teaching the model *how* to solve problems. We use a high-quality dataset of
approximately 40,000 ‘Q, A+CoT‘ examples. Since the model from Stage 1 is already proficient at
identifying the correct answer ‘A‘, the optimization pressure in this stage naturally shifts to learning
the conditional task of generating the reasoning ‘E‘ given ‘Q‘ and ‘A‘.

Reasoning 
Cutivation 

Reasoning 

Chain of Thought 

Knowledge 
Infusion 

Figure 2: Overview of the Two-Stage SFT Framework. Motivated by the observation that simulta-
neously training on answers and CoT is suboptimal, our framework first anchors factual knowledge
(Stage 1) before cultivating complex reasoning (Stage 2), leading to a more capable and accurate
final model.
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3.3 THEORETICAL JUSTIFICATION

The superiority of our two-stage approach, as empirically validated in our ablation studies, can be
explained through the lens of optimization theory and curriculum learning. A naive, single-stage
fine-tuning process on mixed data creates a complex optimization problem fraught with compet-
ing objectives, whereas our framework decouples these challenges into a more stable and effective
learning sequence.

3.3.1 THE CHALLENGE OF SINGLE-STAGE MIXED-DATA SFT

In a single-stage approach, the model is trained on data containing full explanations, ‘Q, A+E‘.
For a given sample, the model’s objective is to minimize the negative log-likelihood of the entire
target sequence (A,E). Using the chain rule of probability, this composite loss can be formally
decomposed:

Ltotal(Q,A,E; θ) = − logP (A,E|Q; θ)

= − logP (A|Q; θ)︸ ︷︷ ︸
Lans

− logP (E|Q,A; θ)︸ ︷︷ ︸
Lexp

(1)

Here, the total loss Ltotal is effectively a sum of the loss for the answer, Lans, and the loss for the
explanation, Lexp. This formulation creates two primary challenges:

1. Competing Objectives and Gradient Conflict. The single objective masks two fundamen-
tally different sub-tasks: a focused, discriminative task of minimizing Lans by selecting the correct
answer, and a broad, generative task of minimizing Lexp by composing a fluent explanation. The
optimization landscapes for these tasks differ significantly. The gradients for each sub-task, ∇θLans

and ∇θLexp, can point in conflicting directions, leading to destructive interference where progress
on one task comes at the expense of the other. This conflict results in an unstable optimization path,
making it difficult to converge to a solution that excels at both accuracy and explanation.

2. Loss Scale Imbalance and Attention Dilution. The explanation ‘E‘ is typically much longer
than the answer ‘A‘. Consequently, the magnitude of the loss signal from the numerous tokens in
Lexp often dwarfs that of the few (often single) tokens in Lans. The optimization process becomes
dominated by the goal of generating plausible-sounding text for the explanation, while the critical
objective of ensuring the answer’s factual correctness is diluted. This is exacerbated by the Trans-
former’s attention mechanism; a longer target sequence can diffuse attention, potentially weakening
the model’s focus on the key information required to determine the correct answer.

3.3.2 THE ADVANTAGE OF THE TWO-STAGE FRAMEWORK

Our two-stage framework mitigates these issues by reformulating the problem, aligning with the
core principles of Curriculum Learning (Bengio et al., 2009), which posits that learning is more
effective when concepts are presented in a simple-to-complex order.

Stage 1: Anchoring Factual Accuracy. The first stage isolates the ”easy” task. The model opti-
mizes a single, focused objective: finding the parameters θ1 that are highly specialized for answer
accuracy.

θ1 = argmin
θ

E(Q,A)∼Dans
[− logP (A|Q; θ)] (2)

This focused training allows the model to converge to a favorable region in the parameter space
where the core discriminative task is reliably solved. It effectively ”anchors” the model’s knowledge.

Stage 2: Conditional Reasoning Cultivation. The second stage begins with the well-initialized
parameters θ1 and tackles the ”harder” task. The objective is to find the final parameters θ2:

θ2 = argmin
θ

E(Q,A,E)∼Dfull
[− logP (A,E|Q; θ)], where optimization starts from θ1 (3)

Because the model, initialized with θ1, already predicts P (A|Q) with high confidence, the loss com-
ponent Lans and its corresponding gradient magnitude ||∇θLans|| are small from the outset. The
optimization pressure therefore naturally shifts to the conditional task of learning the explanation
given the question and the (already known) correct answer, i.e., learning P (E|Q,A). The gradient
conflict is effectively neutralized, transforming the problem from learning a complex joint distribu-
tion into a simpler, sequential one. This ensures that both factual accuracy and explanatory reasoning
are fully and robustly developed.
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4 BENCHMARKS AND EXPERIMENTAL SETUP

This section introduces the evaluation framework for our study. We first detail the construction and
composition of our primary contribution, the Industry-QA Benchmark, and then outline the full
suite of benchmarks, baseline models, and the evaluation protocol used in our experiments.

4.1 THE INDUSTRY-QA BENCHMARK

To address the critical evaluation gap for LLMs in the industrial domain, we constructed the
Industry-QA Benchmark. Motivated by the lack of practical, reasoning-focused tests in existing
benchmarks like MMLU (Hendrycks et al., 2021), we sourced over 10,000 questions from author-
itative materials, including professional engineering textbooks, industry certification exams, and
technical manuals. This ensures that our benchmark reflects the real-world challenges faced by
industrial professionals.

The final benchmark consists of 10,571 questions spanning 12 core industrial disciplines. As shown
in Figure 3, it has a diverse subject distribution, with strong representation from core fields like Me-
chanical and Electrical Engineering. The questions are formatted as True/False, Single-Choice, and
Multiple-Choice to facilitate robust, standardized evaluation. A detailed breakdown of the question
format distribution is provided in Table 2.

Table 2: Key statistics and question format distribution of the Industry-QA Benchmark.

Statistic Value
Total Number of Questions 10,571
Number of Core Disciplines 12
Question Format Distribution
True/False Questions 4,323 (40.9%)
Single-Choice Questions 4,357 (41.2%)
Multiple-Choice Questions 1,891 (17.9%)

Figure 3: The composition of the Industry-QA benchmark. Left: Distribution of questions across
12 major industrial disciplines. Right: Breakdown of question formats.

4.2 EXPERIMENTAL PROTOCOL

Evaluation Suite. Our evaluation is designed to be comprehensive, assessing three key aspects:

• Primary Domain Evaluation on our bilingual Industry-QA benchmark and its challenging
Industry-QA-Hard subset.

• Generalization Assessment on a curated industrial subset of the SuperGPQA benchmark (Liu
et al., 2024).
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• General Capability Preservation using the MMLU benchmark (Hendrycks et al., 2021).

Baseline Models. We compare IndustryGPT against a strong suite of models, including its base
models (Qwen3-Instruct), leading open-source models (Llama-3, DeepSeek), and state-of-the-art
proprietary models (GPT-4o, Claude 3.5 Sonnet).

Evaluation Settings. All models are evaluated in a zero-shot setting using a standardized instruction
prompt. The primary metric is Accuracy. The fine-tuning process was conducted on NVIDIA A100
80GB GPUs using the PyTorch framework with DeepSpeed and FlashAttention-2 optimizations.

5 RESULTS AND ANALYSIS

We now present the results of our comprehensive experiments. The overall performance landscape is
summarized in Figure 4, which provides a high-level comparison of IndustryGPT against baselines
across all key benchmarks. We analyze these findings in detail below, covering domain-specific
performance, the validation of our methodology through ablation studies, and the preservation of
general capabilities.

Figure 4: Overview of model performance across our four key evaluation benchmarks. IndustryGPT
(muted red) consistently establishes a new state-of-the-art in the industrial domain benchmarks
(SuperGPQA-Industry, Industry-QA-zh, and Industry-QA-zh-HARD) while remaining highly com-
petitive with its base model on the general MMLU benchmark.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1 DOMINANT PERFORMANCE ON INDUSTRIAL BENCHMARKS

Our primary results demonstrate that IndustryGPT achieves a new state-of-the-art in the industrial
domain. As shown in Table 3, on our main benchmark, IndustryGPT-32B reaches an impressive
92.54% accuracy in Chinese, significantly outperforming all other models.

This superior capability is even more pronounced on the Industry-QA-Hard subset (Table 4), which
focuses on complex reasoning problems. Here, IndustryGPT-8B scores 81.9%, a massive leap of
over 29 points compared to its base model. This highlights the profound impact of our second-stage
reasoning cultivation on solving truly difficult challenges. To confirm these findings on external
data, we evaluated our models on the SuperGPQA industrial subset. The results in Table 5 show
a similar trend, with our models consistently outperforming their counterparts, validating that our
framework imparts robust and generalizable expertise.

Table 3: Performance on the Industry-QA Benchmark in English and Chinese (Accuracy %).

Model Size Model Industry-QA (en) Industry-QA (zh)
8B

GPT-4o-mini 58.32 62.80
Qwen3-8B-Instruct 58.90 80.22
IndustryGPT-8B 65.61 90.83

32B
IndustryGPT-32B 68.25 92.54

Proprietary
GPT-4o 62.91 67.00
Deepseek-R1 - 77.50

Table 4: Performance on the Industry-QA-Hard (zh) subset (Accuracy %).

Model Accuracy (%)
Qwen2.5-7B-Instruct 52.8
IndustryGPT-8B 81.9

Table 5: Performance on the SuperGPQA industrial subset (Accuracy %).

Model Size Model SuperGPQA Acc (%)
8B

Qwen3-8B-Instruct 37.52
IndustryGPT-8B 50.86

32B
Qwen3-32B-Instruct 47.62
IndustryGPT-32B 57.71

Large
DeepSeek-R1 63.24

5.2 ABLATION STUDY: VALIDATING THE TWO-STAGE FRAMEWORK

To dissect the contribution of each component of our methodology, we conducted an ablation study,
with the results presented in Table 8. The study reveals two key insights: 1) The Necessity of
Stage 2, as the full framework significantly outperforms the ”Stage 1 Only” model, confirming that
the reasoning cultivation step is crucial. 2) The Superiority of the Decoupled Approach, as our
two-stage model also surpasses a ”Single-Stage” model trained on mixed data. This empirically
validates our hypothesis that a systematic, decoupled approach is more effective than a naive data-
mixing strategy.

5.3 GENERAL CAPABILITY PRESERVATION

A critical test for any specialized model is whether it avoids catastrophic forgetting. As shown
in Table 7, the MMLU performance of our IndustryGPT models is statistically indistinguishable
from their base Qwen3-Instruct counterparts. This result holds across both standard and Chain-
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Table 6: Ablation study of our framework on the Industry-QA-zh benchmark (Accuracy %) using
the 8B model.

Model Configuration Accuracy (%)
Base Model (Qwen3-8B-Instruct) 80.2
Stage 1 Only (Knowledge Infusion) 89.0
Single-Stage (Mixed Data) 88.2
Full Two-Stage Framework 90.4

of-Thought evaluation settings, confirming that our framework successfully instills deep domain
expertise without sacrificing the model’s essential general reasoning abilities.

Table 7: General capability evaluation on the MMLU benchmark (5-shot accuracy %).

Model Standard Eval (%) CoT Eval (%)
Qwen3-32B-Instruct 70.59 70.64
IndustryGPT-32B 70.55 70.60
Qwen3-8B-Instruct 62.20 62.03
IndustryGPT-8B 63.11 63.08

Table 8: Ablation study of our fine-tuning framework on the Industry-QA benchmark (Accuracy %)
using the 8B model.

Model Configuration Accuracy (%)
Base Model (Qwen3-8B-Instruct) 80.2
Stage 1 Only (Knowledge Infusion) 89.0
CoT Only 84.9
Single-Stage (Mixed Data) 88.2
Full Two-Stage Framework (IndustryGPT-8B) 90.4

6 CONCLUSION AND FUTURE WORK

In this work, we confronted the nuanced challenges of adapting Large Language Models for the in-
dustrial sector. Our investigation revealed that naive fine-tuning, even with rich, explanatory data, is
not a panacea and can create a detrimental trade-off between factual accuracy and reasoning gener-
ation. The two-stage SFT framework we proposed and validated offers a principled solution to this
problem. By first building a solid foundation of domain knowledge before cultivating complex rea-
soning, our approach enables IndustryGPT to achieve a remarkable level of expertise. Our empirical
results confirm this, showing that IndustryGPT sets a new state-of-the-art on industrial benchmarks,
generalizing effectively to unseen academic questions while fully preserving its core reasoning abil-
ities. This demonstrates that with the right methodology, deep specialization and broad intelligence
need not be mutually exclusive.

Beyond the model itself, our contribution to the community is twofold. First, we are releasing the
Industry-QA Benchmark, a large-scale and meticulously curated resource with over 10,000 ques-
tions, which we hope will foster further innovation in this domain. Second, by combining this
with a standardized industrial subset of SuperGPQA, we have helped establish a more robust and
comprehensive evaluation standard for what constitutes a true ”industry expert” model. We believe
these resources will be invaluable for future research and development, accelerating the creation of
reliable and transparent AI for critical applications.

Our findings open several promising avenues for future exploration. The principles of our two-
stage framework could be extended to an even wider array of industrial verticals, from aerospace
to biotechnology. A particularly exciting frontier is the integration of multimodal understanding,
enabling models to interpret engineering schematics, analyze diagnostic images of equipment, and
truly interact with the visual language of industry. Ultimately, we believe the core methodology of
decoupling knowledge and reasoning offers a powerful template for creating specialized AI in other
complex, high-stakes fields. As AI continues to integrate into these critical sectors, such principled,
domain-aware adaptation strategies will be paramount.
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STATEMENT ON THE USE OF LLMS IN MANUSCRIPT PREPARATION

We disclose that a large language model (LLM) was used as an assistant in the preparation of this
manuscript. The LLM’s role was limited to language polishing, including the reorganization of sen-
tences for clarity and assisting in the generation of LaTeX code for the tables. However, the human
authors maintained full intellectual control throughout the writing process. We hereby declare that
all experimental data, the analysis of results, and the conclusions drawn in this paper are the original
work of the authors, who have meticulously verified their authenticity and correctness. The LLM
served strictly as a writing and formatting aid.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Hyperparameters. Our models were fine-tuned using the AdamW optimizer. Key hyper-
parameters for both the 7B and 32B models are detailed in Table 9. We employed a linear learning
rate warmup for the first 10% of training steps, followed by a cosine decay schedule.

Table 9: Key hyperparameters used for the two-stage SFT process.

Hyperparameter IndustryGPT-8B IndustryGPT-32B
Max Sequence Length 2048 2048
Learning Rate 2e-5 1e-5
Batch Size 64 32
Number of Epochs (Stage 1) 2 2
Number of Epochs (Stage 2) 3 3
Optimizer AdamW AdamW
Weight Decay 0.01 0.01
Warmup Ratio 0.1 0.1

A.2 CASE STUDY

To provide a qualitative understanding of IndustryGPT’s capabilities, we present a case study on a
complex industrial problem. The prompt requires both factual knowledge (properties of fluids) and
multi-step diagnostic reasoning.
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Prompt: ”A centrifugal pump in a chemical processing line is experiencing cavitation. The input
pressure is 50 psi, the fluid is benzene at 80°C, and the pump is located 5 meters above the source
tank. Analyze the potential causes and suggest three corrective actions.”

Baseline Model (Llama-3-70B-Instruct) Response:

Cavitation is caused by low pressure in the pump. This can happen if there are
leaks in the suction line or if the pump is running too fast. You should check for
leaks, reduce the pump speed, or increase the input pressure.

IndustryGPT-32B Response:

This is a classic Net Positive Suction Head (NPSH) problem. Here is a step-by-
step analysis:

1. Problem Definition: Cavitation occurs when the local pressure within the
pump drops below the liquid’s vapor pressure, causing bubbles to form and
collapse violently.

2. Analysis of Benzene’s Properties: At 80°C, the vapor pressure of benzene
is approximately 101.3 kPa (14.7 psi). The available pressure at the pump
inlet (NPSHa) must exceed this value.

3. NPSH Calculation:
• The pressure from the source tank is 50 psi.
• There is a negative static head because the pump is 5 meters above the

tank, which is approximately -7.1 psi.
• Assuming minor friction losses (e.g., 2 psi), the total pressure at the

pump inlet is roughly 50 - 7.1 - 2 = 40.9 psi.
4. Conclusion: The available NPSH (40.9 psi) is well above the vapor pressure

of benzene (14.7 psi), so the initial parameters seem fine. Correction: Re-
reading the prompt, 50 psi is the input pressure to the line, not necessarily
the tank pressure. If 50 psi is the pressure far upstream, the static head loss
is critical. The primary cause is likely the large 5-meter static lift combined
with the high fluid temperature.

5. Corrective Actions:
(a) Lower the pump: Decrease the static head by moving the pump closer

to the source tank’s elevation. This is the most effective solution.
(b) Cool the benzene: Reduce the fluid temperature before it enters the

pump to lower its vapor pressure.
(c) Increase source pressure: If possible, increase the pressure in the source

tank to raise the NPSHa.

The baseline model provides a generic and superficial answer. In contrast, IndustryGPT correctly
identifies the core engineering concept (NPSH), performs a step-by-step analysis incorporating fluid
properties, identifies the most probable cause, and even self-corrects its interpretation of the prompt,
leading to precise and actionable recommendations.
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