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Abstract

Personalized diffusion models have gained popularity for adapting pre-trained
text-to-image models to generate images of specific topics with minimal training
data. However, these models are vulnerable to minor adversarial perturbations,
leading to degraded performance on corrupted datasets. Such vulnerabilities are
further exploited to craft protective perturbations on sensitive images like portraits
that prevent unauthorized generation. In response, diffusion-based purification
methods have been proposed to remove these perturbations and retain generation
performance. However, existing works lack detailed analysis of the fundamental
shortcut learning vulnerability of personalized diffusion models and also turn to
over-purifying the images, which causes information loss. In this paper, we take a
closer look at the fine-tuning process of personalized diffusion models through the
lens of shortcut learning. And we propose a hypothesis explaining the manipulation
mechanisms of existing perturbation methods, demonstrating that perturbed images
significantly deviate from their original prompts in the CLIP-based latent space.
This misalignment during fine-tuning causes models to associate noisy patterns
with identifiers, resulting in performance degradation. Based on these insights,
we introduce a systematic approach to maintain training performance through
purification. Our method first purifies the images to realign them with their original
semantic meanings in latent space. Then, we introduce contrastive learning with
negative tokens to decouple the learning of clean identities from noisy patterns,
which shows a strong potential capacity against adaptive perturbation. Our study
uncovers shortcut learning vulnerabilities in personalized diffusion models and
provides a firm evaluation framework for future protective perturbation research.
Code is available at https://github.com/liuyixin-louis/DiffShortcut.

1 Introduction

The rapid advancements in text-to-image diffusion models, such as DALL-E 2 [1], Stable Diffu-
sion [2], and MidJourney [3], have revolutionized the field of image generation. These models can
generate highly realistic and diverse images based on textual descriptions, enabling a wide range of
applications in creative industries, entertainment, and beyond. However, the ability to fine-tune these
models for personalized generation using a small set of reference images has raised concerns about
their potential misuse, such as generating misleading or harmful content targeting individuals [4, 5]
or threatening the livelihood of artists by mimicking unique artistic styles without compensation [6].

To address these issues, several data-poisoning-based methods have been proposed to protect user
images from unauthorized personalized synthesis. These methods aim to proactively make images
resistant to AI-based manipulation by crafting adversarial perturbations [5, 7], applying subtle style-
transfer cloaks [6], or crafting misleading perturbation that causes model’s overfitting [4, 8]. The
model trained on perturbed data will generate images poor in quality, and thus, the unauthorized
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Figure 1: We observe that protective perturbation for personalized diffusion models creates a latent
mismatch in the image-prompt pair. Fine-tuning on such perturbed data tricks the models, learning
the wrong concept mapping. Thus, model generations suffer from high degradation in quality.

fine-training fails. Despite the protection effectiveness, different from the adversarial perturbation
crafted for fixed off-the-shelf diffusion models, where the protection against unauthorized editing [7]
can be well explained by the adversarial vulnerability of neural networks [9], and also the sharpness
of the latent space of VAE [10, 11]. The underlying mechanism for why protective perturbation
disturbs the fine-tuning of the diffusion model has not been explored yet.

Furthermore, purification studies are also purposed to further break those protections. As demon-
strated in [4], most of the protection methods lack resilience against minor data transformations
like Gaussian smoothing or JPEG compression. However, this simple rule-based purification causes
severe data quality degradation. As demonstrated in [12, 13], diffusion-reconstructed-based purifi-
cation shows a strong capacity to denoise the images and yield high-quality output by leveraging
the distribution modeling ability of diffusion models. Based on the observation that clean images
have better consistency upon LDMs-based reconstruction, IMPRESS [12] proposes optimization on
the images to ensure reconstruction consistency with visual LPIPS similarity constraints. Despite
effectiveness, such purification requires a tremendous of time due to the iterative nature of the propose
optimization. On the other line, DiffPure [14] proposes to leverage off-the-shelf pixel-space diffusion
models to conduct an SDEdit process that converts the perturbed images into a certain noisy state with
a diffusion forward process and then denoises in the reverse process. GrIDPure [15] further divides
the images into smaller grids and employs small-step DiffPure that yields better visual consistency.
However, these SDEdit-based purification approaches still yield unfaithful content that causes great
change in identity due to the generative nature of the diffusion model leveraged. How to design an
effective, efficient, and faithful purification approach is still an open question.

Given the above two major limitations of existing works, in this paper, we first take a closer look at
the reason behind this protection, where we found the latent of the perturbed images by these methods
are largely shifted from its original concept. Going deeper, we discover that the diffusion models
fine-tuned on these perturbed images turn to link the rarely-appeared concept token with the injected
noisy perturbation instead of learning the clean identity shown in images. Based on these findings,
we showcase the shortcut-learning vulnerability of personalized diffusion upon fine-tuning on poison.

Motivated by this empirical understanding, we present a systematic purification and training approach
to empower robust personalized diffusion models upon perturbed data. Our approach conducts
comprehensive purification from three perspectives, including input image-text pair purification,
contrastive learning with the negative token, and quality-enhanced sampling. Compared to existing
purification methods that are only limited to image denoising, the advantages, and benefits of our
framework are three folds: i) efficiency and faithfulness: we conduct image purification by using
off-the-shelf super-resolution and image restoration models that convert low-quality, noisy images
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into high-quality, purified ones; ii) robustness and once-for-all: we demonstrate that contrastive
learning with negative token shows strong ability in defending against adaptive attack crafted with
knowledge on the purification models; iii) systematic: not limiting to image denoising, we conduct a
systematic investigation on other potential approaches that a model trainer can leverage in training
and sampling, to better facilitate the evaluate the comprehensive evaluation on the effectiveness and
resistance of future protection methods. Our main contributions are summarized as follows:

• We empirically explain the underlying mechanism of the success of recent protective perturbations
for safeguarding against unauthorized personalize diffusion model fine-tuning, where we find that
the perturbed images no longer match the prompt pair in latent space, and thus it misleads the
models on learning the wrong concept.

• Based on this understanding, we propose a systematic defensive framework that empowers robust
personalized diffusion models from input image-text pair, model training, and the sampling process.
Specifically, on the input denoising, we leverage off-the-shelf image restoration models to realign
the image with its semantic meaning in the prompt; on model training, we propose contrastive
learning with the negative token that leverages the clean class-prior dataset to decouple the learning
of false relationship further; on the sampling, we design simple quality-enhanced approach with
negative prompting. As a result, our method is more effective, efficient, and faithful.

• We empirically demonstrate the effectiveness and faithfulness of our framework on the facial
dataset VGGFace2 and painting dataset WikiArt. Moreover, we demonstrate the robustness of our
defending framework under adaptive attack when other variants fail.

2 Related Works

Latent Diffusion Models and Customized Adaption. Generative Models (GMs) aim to synthesize
samples from a data distribution given a set of training examples. Diffusion Probabilistic Models [16]
are now the dominant GMs with various applications such as text-to-image synthesis [17], image
editing [18–20], and image inpainting [21]. To improve the training efficiency, Latent Diffusion
Models (LDMs) [2] are proposed to conduct a more efficient diffusion process in a low-dimensional
latent space with a pair of pre-trained image encoder and decoder (e.g., VAE [10]). Despite the
general capability, model users often wish to synthesize specific concepts from their own personal
lives. To meet that, customized text-to-image generation [22–25] is proposed to learn the concepts
using a small set of reference images. Among them, DreamBooth [23] is one of the mainstream
approaches that involve full fine-tuning of parameters, yielding more superior generation performance
compared to those only fine-tune partial parameter [26] or a pseudo-word vector [27]. Besides, it
uses a rarely-used token to link the concept and incorporate prior-preserving loss with class-oriented
images, enabling a high-quality and diverse generation of subjects.

Data Poisoning as Protection against Unauthorized Data Usage with LDMs. Recent text-to-
image LDMs have raised concerns about their potential misuse in generating misleading or harmful
content targeting individuals [4, 5] and threatening the livelihood of professional artists by style
mimicking [6]. To address these issues, several data-poisoning-based methods have been proposed to
protect user images from unauthorized personalized synthesis by injecting adversarial perturbations
through minimizing adversarial target loss in image encoder or UNet denoiser [6, 5], or denoising-loss
maximization [7, 4, 8] or in opposite direction, denoising-loss minimization [28], or cross-attention
loss maximization [29]. Despite its effectiveness, the underlying mechanism of protection against
diffusion model fine-tuning has not been well explored yet. To the best of our knowledge, [13] is
the only work that attempts to investigate this. However, [13] only shows some relevance of the
vulnerability to the text encoder. In this work, we take a closer look at this mechanism and provide a
more comprehensive explanation from a latent mismatch and shortcut learning perspective.

Data Purification that Further Breaks Protection. Despite promising protection performance,
studies [4, 8, 13] suggest that these perturbations are brittle and can be easily removed with minor
transformations. However, adaptive protection with EoT [30] indicates that protection can further
bypass these simple rule-based transformations. Another direction is to leverage diffusion models as
purifiers to perturb images back to their clean distributions. In the classification scenario, DiffPure
[14] is a mainstream approach for adversarial purification by applying SDEdit [31] on the poison
with an off-the-shelf diffusion model. For purification against protective perturbation, GrIDPure [32]
further adapts iterative DiffPure with small steps on multi-grid spitted image to perverse the original
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resolution and structure. However, due to their generative nature, these SDEdit-based purifications
have limitations in yielding unfaithful content, where the purified images fail to preserve the original
identity. Observing the perceptible inconsistency between the perturbed images and the diffusion-
reconstructed ones, IMPRESS [12] conducts the purification via minimizing the consistency loss with
constraints on the maximum LPIPS-based [33] similarity change on pixel space. While it manages to
preserve similarity, IMPRESS suffers from the inefficiency issue due to its iterative process and is
ineffective under stronger protections like [8].

3 Preliminary

Latent Diffusion Models (LDMs). Generative diffusion model [16] aims to model an unknown data
distribution by learning an iterative denoiser to map random variables from pre-defined Gaussian
distribution to those real data samples. Latent diffusion model [2] further conducts such a process in a
lower-dimensional latent space to improve training and inference efficiency. Furthermore, by training
on prompt-image pair, LDMs can take additional embedding as conditions to guide the denoising
process, enabling it to generate or edit images with guidance from a prompt (e.g., a text). In LDMs, an
image encoder E is first used to map the image x0 into a latent representation, i.e., z0 = E(x0). And
then LDMs craft noisy latent zt in forward phrase with qt(zt | z0) = N (zt;

√
ᾱt zt−1, (1− ᾱt)I),

where βt growing from 0 to 1 are pre-defined values, αt = 1 − βt, and ᾱt = Πt
s=1αs. Suppose

we have a textual prompt c, and a text encoder τθ that yield the embedding c = τθ(c), The goal
of the LDM is to train a conditional noise estimator network ϵθ, e.g., a UNet [34], by predicting
the Gaussian noise added in previous timestamp, to model the conditional distribution p(z0|c) by
gradually recovering z0 from zT with additional textual information c. Suppose ϵθ(zt, t, c) is the
Gaussian noise estimated in the t-th step and ϵ is the grouth-truth Gaussian noise sampled for zt−1.
On each image-text pair (x0, c), the denoising network ϵθ is trained based on the following loss:

Ldenoise(x0, c; θ) := Ez0∼E(x0),ϵ,t

[
∥ϵ− ϵθ(z0, t, c)∥22

]
. (1)

During the inference phrase, we first sample zT ∼ N (0, I) and then conduct multi-steps denoising to
obtain a latent z̃0 with potential prompt conditioning c, and then we can obtain generated image with
an image decoder D, i.e., x̃0 = D(z̃0).
Personalized LDMs via Dreambooth Fine-tuning. DreamBooth [23] is a fine-tuning-based method
aimed at updating LDMs for generating images of specific concepts. The main idea of Dreambooth is
to introduce a new identifier to link the subject concepts and use a class-specific prior-preserving loss
to mitigate overfitting and language-drifting issues. Specifically, it fine-tunes a pre-trained LDM on
two additional text-image sets, including an instance dataset Dx0 =

{(
xi
0, c

ID
)}

i
and a class dataset

Dx̄0
=

{(
x̄i
0, c

)}
i
, where the subject image is x0, and the class image is x̄0. For the prompt design,

the class-specific prompt C is set as “a photo of a [class noun]" and the instance prompt C ID is set
as “a photo of sks [class noun]", where sks specifies the subject and “[class noun]" is the category
of object (e.g., “person"). Formally, DreamBooth first generates prior class data using the original
checkpoint and then optimizes a weighted sum of instance denoising loss and prior-preservation loss,

Ldb(x0, c
ID, x̄0, c;θ) = Ldenoise

(
x0, c

ID
)
+ λLdenoise (x̄0, c) , (2)

where λ controls for the relative importance of this term. With approximately ∼ 1000 training steps
and ∼ 4 subject images, it can generate vivid personalized subject images with Stable Diffusion [35].

Protective Perturbation against Personalized LDMs. Recent studies [4] suggest that minor
adversarial perturbation to clean images can disturb the learning of customized diffusion and also
prevent image editing with an off-the-shelf diffusion model by greatly degrading the quality of the
generated image. Existing protective perturbation can be classified into two categories: perturbation
crafted with fixed diffusion models and perturbation crafted with noise-model alternative updating.
In this paper, we focus on the second category since they are more effective in the fine-tuning setting.
The general framework of these protective perturbation methods is to craft noise that maximizes an
adversarial loss Ladv that is typically designed as the denoising loss Ldenoise and also alternatively
update the noise generator surrogates θ′ can be a single model [4] or an ensemble of models [8]).
Furthermore, the surrogates might only update part of their components [29]. Formally, at the j-th
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alternative step, the noise surrogate θ′
j and perturbation δ(j) are updated via solving,

θ′
j ← argmin

θ′
j−1

∑
x

Ldb

(
x+ δ(j−1), cID, x̄, c;θ′

j−1

)
; δ(j) ← argmax

∥δ(j−1)∥∞≤r

Ladv

(
x+ δ(j−1), c;θ′

j

)
.

(3)
To solve this, standard Gradient Descent is performed on the model parameter while the images are
updated via Project Gradient Descent (PGD) [36] to satisfy the ℓ∞-ball perturbation budget constrain,

θi ← θi−1 − β∇θi−1Ldb; xk+1 ← ΠB∞(x0,δ)

[
xk + ηsign∇xkLadv

(
xk

)]
, (4)

where ΠB∞(x0,r)(·) is a projection operator on the ℓ∞ ball that ensures xk ∈ Bp(x
0, r) ={

x′ : ∥x′ − x0∥∞ ≤ r
}

, η denotes the PGD step size and the total PGD step is K.

4 Methodology

4.1 Adversarial Perturbation Causes Latent-space Image-Prompt Mismatch

We first derive the formulation of learning personalized diffusion models on perturbed data. For
the case of data poisoning, the instance data is perturbed by some adversarial noise δ, and the
personalized diffusion models optimize the following loss,

Ladv
db (x0, c

ID, x̄0, c;θ) = Ldenoise

(
x0 + δ, cID

)
+ λLdenoise (x̄0, c) . (5)
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Figure 2: Zero-shot classification
with CLIP-based classifier.

Based on the adversarial loss in Eq. 5, with annotation of
cID = c⊕ ID where ID denotes the embedding of the unique
identifier, we build the causal dependency graph in Fig 3 to rep-
resent the variable relationship during the learning of the person-
alized diffusion model to capture the concept of instance. From
this graph, we found that there are two false correlations (colored
in red) derived from the prior prompt condition c̄ and instance
condition ID to the noise δ. These two paths hinder the person-
alized diffusion from capturing the true relationship between the
instance condition cID with its semantic identity behind x0 and
can cause the model to overfit to simpler relationship ID → δ.
We empirically demonstrate this point in Figure 1 via conduct-
ing sampling from models trained on perturbed images using
[4] with ID as prompting condition, where we found the model
falsely links the ID with the noisy pattern. Furthermore, using
CLIP [37] as a zero-shot classifier with labels of “noise” and “per-
son” (shown in Figure 2), we identify that the perturbed images
largely diverge from their original semantic textual concept and also its paired textual prompt cID in
terms of CLIP embedding space. We hypothesize that learning on such perturbed images will create
contradiction and force the models to dump that chaotic perturbation pattern into the rarely-appeared
identifier token ID instead of learning clean identity behind x0.

4.2 Systematic Defending with Input Purification, Decouple Learning, and Guided Sampling

Figure 3: Variables de-
pendency graph when
learning personalized
diffusion models.

Motivated by our empirical observation, we propose two directions to en-
hance the robustness when learning personalized diffusion on a potentially
corrupted dataset: i) weakening those spurious paths toward noisy predic-
tion; ii) enhancing those toward prior data x̄0 and true instance data x0. For
the first direction, we leverage the off-the-shelf super-resolution and image
restoration models to improve the data quality and remove the noise δ. For
the second part, we introduce a novel noise-aware contrastive learning with
negative tokens to make the model focus on those concept-related features
and avoid being trapped in the local minimum of learning perturbation. Fur-
thermore, during the sampling, we guide to generate high-quality images
with simple negative prompting. We present our overall framework in Figure
4 and Alg. 1 and describe each of the proposed modules in detail as follows.
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Figure 4: The framework of our method. Our method includes three steps, including input denoising,
decoupling training with negative tokens, and sampling with negative prompting. Firstly, we leverage
off-the-shelf image restoration models for purification. Secondly, we link the instance prompt and
prior prompt with negative tokens in a contrastive way to guide the model in learning the correct
mapping. Lastly, we insert a noise-free negative prompt to further boost the quality.

Image Purification as Image Restoration. The first intuitive and effective
approach is to directly conduct denoising on the input image and seek to remove the adversarial
perturbation. To achieve that, we view the perturbed images as degraded images in the image
restoration domain and first leverage off-the-shelf image restoration models to convert low-quality,
noisy images into high-quality, purified ones. Specifically, we use a face-oriented model named
CodeFormer [38], which is trained on facial data to restore the images based on the latent code
discretization. Besides, we leverage an additional diffusion-based super-resolution model to further
enhance the purification on non-face region. Compared to the previous SoTA optimization-based
purification method [12] and diffusion-based purification methods [13], this simple yet effective
strategy yields faithful purified images with better efficiency since it only requires a single inference.

Contrastive Decouple Learning with Noise Tokens. Furthermore, in the prompt design, we add an
additional tag related to the noise pattern, such as “with XX noisy pattern” aiming to decouple the
learning of the concept and the unwanted noise structure. We also leverage the prior dataset that is
prone to have a cleaner quality to help the model differentiate the noise pattern by adding a suffix,

“without XX noisy pattern” into their textual prompt. During the sampling process, we also added this
suffix in prompt input to guide the model in dropping those unwanted noisy patterns.

Noise-free Sampling Process. By using classifier-free guidance (CFG) [39], with a negative prompt
cneg =‘noisy, abstract, pattern, low quality’, we further seek to guide the model generates high-quality
images related to the learned concept. Specifically, given timestamp t, we perform sampling using the
linear combination of the good-quality and bad-quality conditional noise estimates with wneg = 7.5:

ϵ̃θ (zt, c) = (1 + wneg)ϵθ
(
zt, c

ID)− wnegϵθ (zt, τθ(cneg)) (6)

5 Experiments

In this section, we first perform evaluations on the effectiveness, efficiency and faithfulness of the
proposed purification techniques. Then, we investigate the resilience of our framework under adaptive
perturbation against the purification models. Lastly, we perform systematic ablation studies and
analysis to provide an in-depth exploration of each module in our framework.

5.1 Experimental Setup

Datasets and Metrics. Our experiments are mainly performed on the VGGFace2 [40] face dataset
following [4, 8]. Four identities are selected from each dataset, and we randomly pick eight images
from each individual and split those images into two subsets for image protection and reference.
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Table 1: Results of different purification methods under different protective perturbations. The best
performances are in bold, and second runners are shaded in gray. ∗ denotes significant improvement
that passes the Wilcoxon signed-rank significance test with p ≤ 0.01.

Methods FSMG ASPL EASPL MetaCloak AdvDM PhotoGuard Glaze
IMS ↑ Q ↑ IMS Q IMS Q IMS Q IMS Q IMS Q IMS Q

Clean 0.27 ± 0.10 0.21 ± 0.11 0.27 ± 0.10 0.21 ± 0.10 0.27 ± 0.10 0.21 ± 0.10 0.27 ± 0.10 0.21 ± 0.12 0.27 ± 0.10 0.21 ± 0.11 0.27 ± 0.10 0.21 ± 0.11 0.27 ± 0.10 0.21 ± 0.11

Perturbed -0.02 ± 0.09 -0.61 ± 0.07 -0.04 ± 0.08 -0.62 ± 0.12 -0.04 ± 0.08 -0.60 ± 0.12 0.10 ± 0.10 -0.60 ± 0.08 0.01 ± 0.09 -0.29 ± 0.09 0.17 ± 0.09 -0.13 ± 0.08 0.25 ± 0.10 -0.19 ± 0.10

Gaussian F. 0.14 ± 0.10 -0.32 ± 0.08 0.15 ± 0.10 -0.34 ± 0.06 0.14 ± 0.10 -0.33 ± 0.07 0.15 ± 0.09 -0.44 ± 0.04 0.15 ± 0.09 -0.35 ± 0.07 0.14 ± 0.10 -0.28 ± 0.08 0.12 ± 0.09 -0.24 ± 0.07

JPEG 0.11 ± 0.10 -0.46 ± 0.10 0.14 ± 0.11 -0.43 ± 0.07 0.13 ± 0.11 -0.43 ± 0.07 0.06 ± 0.11 -0.47 ± 0.12 0.01 ± 0.11 -0.01 ± 0.11 0.12 ± 0.11 0.15 ± 0.11 0.16 ± 0.10 0.24 ± 0.14

TVM 0.03 ± 0.08 -0.45 ± 0.06 0.05 ± 0.09 -0.47 ± 0.07 0.09 ± 0.09 -0.47 ± 0.06 0.06 ± 0.09 -0.50 ± 0.04 0.07 ± 0.09 -0.47 ± 0.06 0.04 ± 0.09 -0.50 ± 0.06 -0.09 ± 0.08 -0.48 ± 0.06

PixelDiffPure -0.04 ± 0.08 -0.37 ± 0.05 0.01 ± 0.08 -0.42 ± 0.06 -0.05 ± 0.09 -0.49 ± 0.05 -0.04 ± 0.08 -0.44 ± 0.06 0.00 ± 0.09 -0.42 ± 0.06 0.04 ± 0.09 -0.44 ± 0.04 -0.09 ± 0.08 -0.57 ± 0.05

L.DiffPure-∅ 0.06 ± 0.09 -0.45 ± 0.08 -0.03 ± 0.09 -0.50 ± 0.06 0.07 ± 0.10 -0.42 ± 0.08 -0.07 ± 0.08 -0.28 ± 0.08 -0.13 ± 0.08 -0.18 ± 0.11 0.04 ± 0.08 -0.28 ± 0.08 -0.09 ± 0.08 -0.21 ± 0.08

L.DiffPure 0.02 ± 0.08 -0.36 ± 0.09 -0.02 ± 0.09 -0.52 ± 0.06 0.02 ± 0.09 -0.41 ± 0.09 -0.05 ± 0.08 -0.26 ± 0.06 -0.09 ± 0.08 -0.18 ± 0.10 -0.02 ± 0.08 -0.26 ± 0.06 -0.13 ± 0.08 -0.22 ± 0.08

DDSPure 0.17 ± 0.11 -0.23 ± 0.07 0.20 ± 0.10 -0.28 ± 0.06 0.23 ± 0.09 -0.26 ± 0.06 0.16 ± 0.10 -0.48 ± 0.07 0.13 ± 0.10 -0.30 ± 0.07 0.17 ± 0.10 -0.25 ± 0.06 0.13 ± 0.10 -0.25 ± 0.07

GrIDPure 0.17 ± 0.10 -0.11 ± 0.07 0.18 ± 0.10 -0.09 ± 0.07 0.20 ± 0.10 -0.16 ± 0.07 0.12 ± 0.09 -0.17 ± 0.07 0.02 ± 0.09 -0.07 ± 0.08 0.13 ± 0.10 -0.10 ± 0.08 0.28 ± 0.10 -0.08 ± 0.08

IMPRESS 0.12 ± 0.10 -0.55 ± 0.07 0.11 ± 0.10 -0.54 ± 0.09 0.08 ± 0.10 -0.56 ± 0.04 0.11 ± 0.10 -0.60 ± 0.09 0.06 ± 0.10 -0.35 ± 0.09 0.11 ± 0.10 -0.10 ± 0.08 0.28 ± 0.10 -0.45 ± 0.07

Ours 0.27∗ ± 0.08 0.45∗ ± 0.06 0.27∗ ± 0.08 0.34∗ ± 0.04 0.28∗ ± 0.09 0.35∗ ± 0.06 0.29∗ ± 0.07 0.37∗ ± 0.08 0.16∗ ± 0.08 0.49∗ ± 0.06 0.19∗ ± 0.09 0.47∗ ± 0.06 0.23 ± 0.08 0.48∗ ± 0.07

Moreover, we also visually demonstrate the purification ability of our approach on the artwork
painting dataset, WikiArt [41], and the CelebA [42]. For the metric, we evaluate the generated images
in terms of their semantic-related quality and graphical aesthetic quality. For the semantic-related
score, we compute the cosine similarity between the embedding of generated images and reference
images, which we term the Identity Matching Similarity (IMS) score. We reported the weighted
averaged IMS score by employing two face embedding extractors, including antelopev2 model from
InsightFace library [43] following IP-adapter [44] and VGG-Net [45] from Deepface library [46]
following [4]. The IMS score is computed via a weighted sum: IMS= λIMSIP + (1− λ)IMSVGG,
where λ is set as 0.7. For the graphical quality Q, we report the average of two metrics: i) LIQE [47],
a SoTA general image quality assessment model (with re-normalization to [−1,+1]); ii) CLIP-IQAC
following [8], which is based on CLIP-IQA [48] with class label. See App. A.2 for details.

Purification Baselines and Perturbation Methods. For purification baselines, we consider both
model-free and diffusion-based approaches. The model-free methods include ❶ Gaussian Filtering,
which reduces noise and detail using a Gaussian kernel; ❷ Total Variation Minimization (TVM),
which reconstructs images by minimizing the difference between original and reconstructed images
while enforcing smoothness; and ❸ JPEG Compression, which reduces image file size by transforming
images into a compressed format. The diffusion-based methods include ❹ (Pixel)DiffPure [14],
which leverages pre-trained pixel-space diffusion models to smooth adversarial noise with small-step
SDEdit process [31]; ❺ LatentDiffPure, which is developed in the paper similar as DiffPure but with
LDM as a purifier (two variants w/ and w/o prompting); ❻ DDSPure [49], which finds an optimal
timestamp for adversarial purification with SDEdit process; ❼ GrIDPure [15], which further conducts
iterative DiffPure with small steps with grid-based splitting to improve structure similarity; and ❽
IMPRESS [12], which purifies by optimizing latent consistency with visual similarity constraints. For
protective perturbation, we consider six of existing SoTA approaches, including perturbation crafted
with bi-level optimization, such as FSMG, ASPL, EASPL [4], MetaCloak [8], and perturbations
crafted with adversarial perturbation with fixed models, such as AdvDM [7], PhotoGuard [5], and
Glaze [6]. For each setting, we set the perturbation to be ASPL by default. We set the ℓ∞ radius to
11/255 with a six-step PGD step size of 1/255 by default following [4]. See App. A for more details.

5.2 Effectiveness, Efficiency, and Faithfulness

Effectiveness Comparison. We present the effectiveness of different purification across six per-
turbation methods in Table 1. From the table, we can see that compared to the clean case, training
on perturbing data causes serve model degradation from both identity similarity and image qual-
ity. Across all perturbations, ASPL causes the most severe degradation under the setting without
purification, while MetaCloak performs more robustly under rule-based purification. Compared to
rule-based purification, diffusion-based approaches achieve better performance in improving both
identity similarity and image quality in most settings. Among them, GrIDPure yields relatively better
purification performance since it considers the structure consistency, which suppresses the generative
nature during the purification. However, there are still gaps in the IMS score compared to the clean
case, and most of the Q scores after conducting GrIDPure purification are still negative. Compared to
these baselines, our method closes the gap by further improving the IMS and Q scores, which are
even higher than the clean training case for most of the settings. The reasons are two folds: first,
we use image-restoration-based approaches, which well perverse the structure; and furthermore, our
negative token learning and quality-enhanced sampling contribute to the quality improvement.
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Perturbed LatentDiffPure DDSPure GrIDPure IMPRESS Ours

Figure 5: Visualization of purified images that were originally protected by MetaCloak. Our method
shows high faithfulness and high quality, while others fail to effectively purify the perturbation.

Table 2: Faithfulness and time cost of
different diffusion-based purifications.

Methods LPIPS ↓ Time Cost↓(s)

IMPRESS 0.451 675
PixelDiffPure 0.495 102
DDSPure 0.384 122.5
GrIDPure 0.429 92.75
LatentDiffPure 0.453 63.75
LatentDiffPure-∅ 0.450 63.25

Ours 0.271 51

Efficiency and Faithfulness of Purification. We present
the evaluation of time cost and faithfulness compared to
all diffusion-based purification in Table 2. The time cost
is measured in seconds per sample with consideration of
model loading. Compared to other methods, our purifica-
tion has the lowest time cost and is 10× faster than the
previous SoTA, IMPRESS. The reason behind this is that
we leverage the super-resolution module, which empowers
the usage of skip-step sampling to boost the generation
time. Moreover, we test the purification faithfulness of
each method in terms of LPIPS loss [33], a common met-
ric measuring the visual perception distance of two images.
From Table 2, we can see that our method achieves the lowest LPIPS loss. To visually validate
this, we additionally present the purified images in Figure 5. From the figure, we can see that other
diffusion-based approaches have limitations in hallucinating the content, introducing severe artifacts,
or not having enough purification strength. In particular, we observed that LatentDiffPure causes a
great change in identity during the purification while GrIDPure brings some artifacts. In comparison,
our purification greatly improves faithfulness with off-the-shelf image restoration models that are
prone to have nearly the same structure input and output.

5.3 Resilience Against Adaptive Perturbations

Table 3: Different variants under Adaptive Attack (AA).

Method Neg. Token Before AA After AA
IMS Q Avg. IMS Q Avg. ∆

Ours-CodeSR x 0.18 0.41 0.29 -0.06 0.03 -0.01 ↓0.30
✓ 0.23 -0.03 0.10 -0.09 0.24 0.08 ↓0.02

Ours-Code x 0.14 0.42 0.28 -0.09 -0.17 -0.13 ↓0.41
✓ 0.05 0.11 0.08 -0.16 -0.47 -0.32 ↓0.40

Ours-SR x 0.07 -0.02 0.03 0.20 -0.39 -0.09 ↓0.12
✓ 0.07 -0.02 0.03 -0.03 0.08 0.02 ↓0.01

DNN-based purification is prone to
further adaptive attacks due to the non-
smoothness in terms of latent repre-
sentation space [11] and also the vul-
nerability by exploiting adversarial ex-
amples [9]. To validate whether our
framework can still work upon fur-
ther adversarial perturbation with new
knowledge of our pipeline, we addi-
tionally conduct experiments on eval-
uations of different variants of our approach before and after the adaptive perturbation crafted against
the image purification part. The adversarial perturbation is crafted following AdvDM [7] with
consideration of the CFG [39] sampling trajectory with a large perturbation budget of r = 16/255.
For the model variants, we consider the full variant with both modules turned on, and also the ablated
versions with one of them turned off. From Table 3, we can see that the full variant with Neg. Token
is the most effective and robust one under adaptive attack across other variants. Furthermore, we
notice that the variant with only SR is also robust to the adaptive attack since it yields the lowest
change in average score after the attack. However, only using SR is not enough, since when we
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Figure 6: Evaluation of generation performance of models across different stable diffusion versions.

remove the CodeFormer, the purification is sub-optimal. These results conclude that our method is
robust to further adaptive perturbation and potentially a once-for-all defense approach.

5.4 Ablation Study

Contribution of Modules. We present full ablations on the three modules in our method in Table 4.
From the table, our method works best under the full setting. When turning off any of the modules,
the average performance degrades, with turning off Neg. Token suffers the most. Surprisingly,
when only enabling the SR module, the IMS score is relatively good but with bad quality. For the
settings that only enable one of the modules, we find that enabling Neg. Token also yields the best
performance. These indicate that Neg. Token is quite important when training on purified images.
Furthermore, for the settings that only allow two modules enabled, we found that the SR+Neg.Token
yields the best performance, with just some gap between the IMS scores. In conclusion, the re-
sults suggest that all the modules contribute to the learning performance gain in IMS and quality.

Table 4: Ablation study.

Settings Metrics
CodeF. SR Neg. Token IMS↑ Q↑ Avg. ↑

✓ ✓ ✓ 0.266 0.374 0.320
✓ ✓ 0.199 0.433 0.316

✓ ✓ 0.153 0.209 0.181
✓ 0.207 0.105 0.156

✓ ✓ 0.147 0.039 0.093
✓ 0.184 -0.042 0.071

✓ 0.234 -0.378 -0.072
0.096 -0.634 -0.269

Different Models and Radii. We additionally validate the
effectiveness of our method under different LDM versions.
From Figure 6, we can see that across different stable diffusion
versions, models trained on our purified data yield better per-
formance in terms of IMS, Q, and average scores under most of
the settings. And the major improvement is in the quality part.
We also demonstrate the effectiveness of our method across
different perturbation radii at App. B. These results conclude
the generalizability of our method across settings.

6 Conclusion, Limitations, and Future Works

In this paper, we dive into the underlying mechanism behind the effectiveness of existing error-
maximizing protective perturbation approaches against the unauthorized fine-tuning of personalized
diffusion models. Motivated by the latent mismatch observation, we propose to use super-resolution
and image restoration models for latent realignment. Furthermore, we propose contrastive learn-
ing with negative tokens based on the analysis from the shortcut learning perspective. Extensive
experiments demonstrate the effectiveness, efficiency, and faithfulness of our method.

Despite being mainly evaluated on the facial dataset, our framework is generally designed and can be
adapted for various image domains, like objects and artwork. This indicates that it might be used to
further invade those already “protected” data with previous perturbations, which might create some
negative societal impact but also promote the advancement of this domain. Furthermore, in Section
5.3, we find that CodeFormer might be more vulnerable under adaptive attacks, but it does better in
purification than the SR. Thus, there might still be room to improve in determining the optimal layer
combination of the SR and CodeFomrer modules to maximize the robustness-effectiveness trade-off.
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A Experiment Details

A.1 Hardware and Training Details

Hardware Details. All the experiments are conducted on an Ubuntu 20.04.6 LTS (focal) environment
with 503GB RAM, 10 GPUs (NVIDIA® RTX® A5000 24GB), and 64 CPU cores (Intel® Xeon®

Silver 4314 CPU @ 2.40GHz). Python 3.9.18 and Pytorch 1.13.1 are used for all the implementations.

Training and Inference Settings. The Stable Diffusion (SD) v2-1-base [50] is used as the model
backbone. For Dreambooth training, we conduct full fine-tuning, which includes both the text-
encoder and U-Net model with a constant learning rate of 5 × 10−7 and batch size of 2 for 1000
iterations in mixed-precision training mode. We use the 8-bit Adam optimizer [51] with β1 = 0.9 and
β2 = 0.999 under bfloat16-mixed precision and enable the xformers for memory-efficient training.
For calculating prior loss, we use 200 images generated from Stable Diffusion v2-1-base with the
class prompt “a photo of a [class norn]”. The weight for prior loss is set to 1. For the evaluation
phase, we set the inferring steps as 100 with prompts “a photo of sks person” and “a smiling photo of
sks person” during inference to generate 16 images per prompt. For all the settings, the Classifier-free
Guidance (CFG) is turned on by default with a guidance scale of 7.5.

A.2 Metrics

In this section, we describe the evaluation metrics used in our experiments in more detail. Follow-
ing [8], we use CLIP-IQAC, which calculates the CLIP score difference between “a good photo of
[class]” and “a bad photo of [class]”. For calculating IMS-VGGNet, we leverage the VGGNet in the
DeepFace library for face recognition and face embedding extraction [52]. For IMS-IP, we leverage
antelopev2 model from InsightFace library [43] following IP-adapter [44]. We report the weighted
average of them with a weighting factor on IMS-IP as 70% since we find it yields a more stable
evaluation with IMS-VGG as 30%. We compute all the mean scores over all generated images and
all instances. For the instance i and its j-th metric, its k-th observation value is defined as mi,j,k.
For the j-th metric, the mean value is obtained with

∑
i,kmi,j,k/(NiNk), where Ni is the instance

number for that particular dataset, and Nk is the image generation number.

B More Experimental Results

Different Radii. We present the evaluation of the models trained on perturbed data and purified data
under different perturbation radii in Table 8. As the results shown in the Table, we found that our
method consistently yields better models in terms of IMS and Q score. This demonstrates that our
method is insensitive to different perturbation radii.

Different Negative Tokens. To investigate the effect of using different negative tokens, we addition-
ally present results in Table 5 and Figure 7. As we can see, setting the right negative tokens is crucial
for the performance. In our four tested prompts, we found that “UNKNOWN artifact masked” yielded
the best performance in both IMS and Q scores. Future works can be conducted using automatic
negative prompt searching. Another direction is to study visualization of the learned pattern for each
negative prompt setting for a deeper understanding of personalized diffusion models.

Figure 7: Scores vs Prompt Index.
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Algorithm 1 Training clean LDM on adversarial perturbed data with systematic defending
(Summary of Sec 4.2)

Input: Corrupted training set X ′
0, LDM θ0, CodeFormer ϕ = {Eϕ,Dϕ, Tϕ, C}, SR model ψ, Prior

data X̄0, Negative Token V∗N , Instance prompt cID, Class prompt c, #Generation Ngen, Quality
negative prompt P̄Q, Personalized identifier V∗

Output: Personalized diffusion model with clean-level generation performances θT , and clean
personalized generation Xgen

1: // Step 1: Input Purification
2: CodeFormer: Low-quality latent Zl = Eϕ(X ′

0)⇒ Code prediction Z̃c = T (Zl, C;ϕ)⇒ High-
quality restoration X̃0 = Dϕ(Z̃c)

3: Super-resolution: Resize X̃0 to 1282⇒ Applying SR model ψ with quality-guided prompt and
obtain X̃purified

0 in 5122

4: // Step 2: Training Personalized LDM with Contrastive Decouple Learning
5: for i in 1, · · · , T training steps do
6: Sample an instance data xi from X̃purified

0 , and an class-prior data x̄0 from X̄0

7: Crafting decoupled instance prompt cIDdec = concat(cID,V∗N ) and class-prior prompt
cdec = concat(c, “without”,V∗N ).

8: Optimize the LDM θi with standard DreamBooth loss Ldb ▷ Following Eq. 2
9: Ldb(xi, c

ID
dec, x̄0, cdec; θi) = Ldenoise

(
xi, c

ID
dec

)
+ λLdenoise (x̄0, cdec) ,

10: Update LDM weight θi with ∇θiLdb using AdamW optimizer on UNet Denoiser and Text
Encoder

11: end for
12: // Step 3: Noise-free Sampling Process during Inference
13: for j in 1, · · · , Ngen do ▷ Following Eq. 6 with Classifier-free Guidance
14: Sampling Xj

gen with personalized identifier V∗, and negative prompt of concat(V∗N , P̄Q)
with personalized LDM θT

15: end for
16: return θT , Xgen
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Figure 8: Evaluation of trained models on perturbed and purified images across perturbation radii.
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Table 5: Evaluation on our method with different negative tokens.
IMS Q Overall Score #Prompt Index Negative Tokens
0.305 0.655 0.480 0 UNKNOWN degraded quality
0.367 0.682 0.525 1 UNKNOWN artifact masked
0.148 0.550 0.349 2 UNKNOWN noise corruption
-0.134 0.426 0.146 3 BHI noise corruption

Figure 9: More visualization of perturbed and purified images.

C Implementation of Baselines

C.1 Purification Methods

We implement two classes of purification approaches; the first ones are model-free and operate
with certain image processing algorithms, such as Gaussian Filtering, total variation minimization
(TVM), and JPEG compression. Despite the simplicity, researchers found that these approaches can
achieve non-trivial defense performance against adversarial attacks [7], availability attacks [8, 4],
and more general data poisoning attacks [53]. Another line of approach is based on powerful
diffusion probabilistic models, which have a strong ability to model real-world data distribution
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and also show potential in being leveraged for zero-shot purifiers [54, 13, 49, 12]. We include a
wide range of SoTA diffusion-based purification approaches that are designed for the protective
perturbation specifically, including GrIDPure [15], IMPRESS [12], or those are proposed for more
general adversarial perturbation [14, 49], including DiffPure [14] (with pixel-space diffusion models
or latent-space diffusion models), DDS-based purification (DDSPure) [49].

1. Gaussian Filtering. Gaussian Filtering is a well-known image-processing technique used to
reduce image noise and detail by applying a Gaussian kernel. The high-frequent part in adversarial
perturbation can be smoothed after filtering. We set the kernel size as 5 following [4].

2. Total Variation Minimization (TVM) [55] The main idea of TVM is to conduct image re-
construction based on the observation that the benign images should have low total variation. We
implemented the TVM defense in the following steps: we first resized the instance image to 64x64
pixels, applied a random dropout mask with a 2% pixel dropout rate, and solved a TVM optimization
problem. The optimization aims to reconstruct the image by minimizing the difference between
the original and reconstructed images while enforcing smoothness through the total variation term:
minZ ||(1−X)⊙ (Z−x)||2+λTV TV2(Z). After optimization, the reconstructed image is reshaped
back to 64x64 and then upsampled to 512x512 through two SR steps with a middle resizing process.

3. JPEG Compression. It involves transforming an image into a format that uses less storage space
and reduces the image file’s size. We set the JPEG quality to 75 following [8].

4. DiffPure [14]. Diffusion Purification (DiffPure) first diffuses the adversarial example with a
small amount of noise given a pre-defined timestep t following a forward diffusion process, where
the adversarial noise is smoothed and then recovers the clean image through the reverse generative
process. Depending on the type of diffusion model used, this simple yet effective approach can be
adapted into two versions: PDM-based DiffPure and LDM-based DiffPure. In our implementation, we
term the PDM-based DiffPure as PixelDiffPure for short and leverage 256x256_diffusion_uncond
pre-trained on ImageNet released in the guided-diffusion following common practice. For the
LDM-based DiffPure, we term it as LatentDiffPure since the diffusion process is conducted in latent
space and leverage Stable Diffusion v1-4 [50] for its superior performance. Since the SD model
has the ability to input additional text prompts during the purification process, we investigate two
variants with and without the usage of purified text prompting. For LatentDiffPure-∅, we set the
text to null, while for LatentDiffPure, we set it as “a photo of [class_name], high quality,
highres”.

5. DDSPure [49]. Similar to DiffPure [14], the main idea behind Diffusion Denoised Smoothing
(DDS) is to find an optimal timestamp that can maximally remove the adversarial perturbation via
the SDEdit process [31]. Given smoothing noise level δ, the optimal timestamp t∗ is computed
via, t∗ = 1−ᾱt

ᾱt
= σ2. Following common practice, we leverage the pre-trained diffusion model on

ImageNet released in the guided-diffusion. Specifically, the 256x256_diffusion_uncond is
used as a denoiser. To resolve the size mismatch, we resize the images to fit the model input and
resize the image size back after purification. And we clip t∗ when it falls outside the sampling step
range of [0, 1000].

4. GrIDPure [15]. GrIDPure notices that for purification in defending protective perturbation,
conducting iterative DiffPure with small steps can outperform one-shot DiffPure with larger steps.
Furthermore, it suppresses the generative nature during diffusion purification by additionally splitting
the image into multiple small grids that are separately processed with a final merging process. This
allows the model to focus more on purifying those perturbed textures and curves in the image without
mistakenly affecting the overall structure, thus preserving the faithfulness of purification.
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Algorithm 2 GrIDPure

Input: Input image x0, number of iterations N , time-stamp t, grid size g, stride s, merging weight γ
Output: Purified image xN

1: for i = 0 to N − 1 do
2: Split xi into grids of size g × g with stride s
3: for each grid xi,j do
4: Apply DiffPure with time-stamp t to obtain x̃i,j

5: end for
6: Merge all x̃i,j to obtain x̃i, averaging pixel values in overlapping regions
7: xi+1 = (1− γ) · x̃i + γ · xi

8: end for
9: return xN

Given an input image size of 512× 512, we implement the GrIDPure algorithm as follows with the
hyper-parameter recommended in the original paper. We first obtain multiple grids using a sliding
window approach. The window size is 256× 256, and the stride is 128. For each 256× 256 grid, we
apply DiffPure with a time-stamp of t = 10. After all the grids are denoised, they are merged back
into a single image. In the overlapping regions, the pixel values are averaged. Given γ as 0.1, the
purified image is then obtained via a moving average with the original image,

xi+1 = (1− γ) · x̃i + γ · xi. (7)

These steps constitute one iteration, and the algorithm is repeated for a total of 10 iterations.

6. IMPRESS [12] The key idea of IMPRESS is to conduct purification that ensures latent consistency
with visual similarity constraints: (1) the purified image should be visually similar to the perturbed
image, and (2) the purified image should be consistent upon a LDM-based reconstruction. To
quantify the similarity condition, IMPRESS uses the LPIPS metric [33], which measures the human-
perceived image distortion between the purified image xpur and the perturbed image xptb. The loss is
defined as max(LPIPS(xpur,xptb)−∆L, 0), where ∆L is the perceptual perturbation budget. For the
consistency condition, IMPRESS simplifies the loss by removing the diffusion process and defines it
as ||xpur−D(E(xpur))||22, where E andD are the image encoder and decoder in the LDM, respectively.
The final optimization problem combines the two losses:

min
xpur
||xpur −D(E(xpur))||22 + α ·max(LPIPS(xpur,xptb)−∆L, 0), (8)

where α is a hyperparameter to balance the two losses, which is set as 0.1. The optimization is solved
with PGD [56] with Adam optimizer with lr of 0.001, and the total iteration is set as 3000.

C.2 Protective Perturbation Methods

We test a wide range of protective perturbation approaches, including those that craft noise against
fixed LDMs by exploiting the out-of-distribution adversarial vulnerability of DNNs [7, 57, 28, 5, 6],
and those that jointly and alternatively learn the noise generator and perturbation [4, 8, 29], which
show better protection capacity for the LDM fine-tuning settings [22, 23].

Fully-trained Surrogate Model Guidance (FSMG). Following [58, 58, 59], FSMG employs a
surrogate DreamBooth model with original parameters θclean fully finetuned on a small subset
of clean samples XA ⊂ X . We implement the subset with the same identity to maximize the
protection capability. Using θclean as guidance, we find the optimal noise for each target image:
δ∗(i) = argmaxδ(i) Lcond(θclean, x

(i) + δ(i)), where Lcond is the conditional denoising loss. This
encourages any DreamBooth model finetuned on the perturbed samples to deviate from θclean and
generate low-quality images.

Alternating Surrogate and Perturbation Learning (ASPL). Since FSMG fails to effectively solve
the underlying bi-level optimization, inspired by [60], ASPL further alternates the training of the
surrogate DreamBooth model with perturbation learning. The surrogate model ϵθ is initialized with
pre-trained weights. In each iteration, a clone ϵ′θ′ is finetuned on clean reference data to simulate
the learning trajectory on potential leaked clean data. This model is then used to expedite learning
adversarial noises δ(i) with denoising-error-maximization in the current loop. Finally, ASPL updates
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the actual surrogate model ϵθ on the updated adversarial samples with gradient descent and proceeds
to the next iteration. This procedure allows the surrogate model to mimic better the models trained by
malicious DreamBooth users, as it is only trained on perturbed data.

Ensemble-based ASPL (EASPL). Since the model trainer’s pre-trained text-to-image generator is
often unknown, an improved approach is to use an ensemble [61, 62] of surrogate models finetuned
from different pre-trained generators, which can lead to better transferability. We implement this
approach with three surrogates. Besides, we follow the practice of a single model at a time in an
interleaving manner to produce optimal perturbed data due to GPU memory constraints.

MetaCloak. Despite the effectiveness of perturbation crafted from noise-surrogate joint learning,
studies find that these approaches lack robustness against simple data transformations such as minor
Gaussian filtering. To address this issue, MetaCloak [8] solves the underlying bi-level poisoning
problem using a meta-learning framework with an additional transformation sampling process to
craft transferable and robust perturbations. Incorporating an additional transformation process and a
denoising-error maximization loss brings severe performance degradation in generation.

PhotoGuard. PhotoGuard [5] mainly focuses on the setting of malicious editing where the diffusion
models are fixed. It introduces two target-adversarial-perturbation-based (TAP-based) approaches:
encoder attack and diffusion attack. The encoder attack adds a perturbation δenc to an image x such
that the image encoder E produces a closer latent representation for x+ δenc and a target image xtarget.
The diffusion attack crafts a perturbation δdiff such that the LDM-reconstructed images based on the
input are closer to some xtarget. The diffusion attack considers the whole LDM model with prompts,
achieving better empirical performance but being less efficient compared to the encoder attack.

GLAZE. GLAZE [6] mainly focuses on artwork protection and aims to add perturbations to an
artist’s artworks such that LDMs cannot learn the correct style from the perturbed artworks. Similar
to the TAP-based encoder attack in PhotoGuard, it first chooses a target style T sufficiently different
from the style of the original image x. Then, it transfers x to the target style using a pre-trained
style transfer model Ω. Given the style-transferred image Ω(x, T ), GLAZE crafts the perturbation
δGLAZE by minimizing the distance between the encodings of Ω(x, T ) and x+ δ while regularizing
the perceptual distortion using LPIPS. This encourages LDMs to generate samples with the target
style instead of the original style when learning from the perturbed images.

AdvDM. Different from the above targeting attack, AdvDM [7] is proposed to optimize the adversarial
perturbation in an untargeted and denoising-error-maximizing way. In detail, instead of learning a
perturbation over one single reserve process, AdvDM learns the Monte-Carlo estimation of adversarial
perturbation by sampling across all timestamps to maximize the denoising loss at each step.

19


	Introduction
	Related Works
	Preliminary
	Methodology
	 Adversarial Perturbation Causes Latent-space Image-Prompt Mismatch 
	 Systematic Defending with Input Purification, Decouple Learning, and Guided Sampling 

	Experiments
	Experimental Setup
	Effectiveness, Efficiency, and Faithfulness
	Resilience Against Adaptive Perturbations 
	Ablation Study 

	Conclusion, Limitations, and Future Works
	Experiment Details
	Hardware and Training Details
	Metrics

	More Experimental Results
	Implementation of Baselines
	Purification Methods
	Protective Perturbation Methods


