
Published as a conference paper at ICLR 2023

IMAGES AS WEIGHT MATRICES: SEQUENTIAL IMAGE
GENERATION THROUGH SYNAPTIC LEARNING RULES

Kazuki Irie1 Jürgen Schmidhuber1,2
1The Swiss AI Lab, IDSIA, USI & SUPSI, Lugano, Switzerland
2AI Initiative, KAUST, Thuwal, Saudi Arabia
{kazuki, juergen}@idsia.ch

ABSTRACT

Work on fast weight programmers has demonstrated the effectiveness of key/value
outer product-based learning rules for sequentially generating a weight matrix
(WM) of a neural net (NN) by another NN or itself. However, the weight generation
steps are typically not visually interpretable by humans, because the contents stored
in the WM of an NN are not. Here we apply the same principle to generate natural
images. The resulting fast weight painters (FPAs) learn to execute sequences of
delta learning rules to sequentially generate images as sums of outer products of self-
invented keys and values, one rank at a time, as if each image was a WM of an NN.
We train our FPAs in the generative adversarial networks framework, and evaluate
on various image datasets. We show how these generic learning rules can generate
images with respectable visual quality without any explicit inductive bias for
images. While the performance largely lags behind the one of specialised state-of-
the-art image generators, our approach allows for visualising how synaptic learning
rules iteratively produce complex connection patterns, yielding human-interpretable
meaningful images. Finally, we also show that an additional convolutional U-Net
(now popular in diffusion models) at the output of an FPA can learn one-step
“denoising” of FPA-generated images to enhance their quality. Our code is public.1

1 INTRODUCTION

A Fast Weight Programmer (Schmidhuber, 1991a; 1992) is a neural network (NN) that can learn
to continually generate and rapidly modify the weight matrix (i.e., the program) of another NN in
response to a stream of observations to solve the task at hand (reviewed in Sec. 2.1). At the heart
of the weight generation process lies an expressive yet scalable parameterisation of update rules
(or learning rules, or programming instructions) that iteratively modify the weight matrix to obtain
any arbitrary weight patterns/programs suitable for solving the given task. Several recent works
(Schlag et al., 2021a; Irie et al., 2021; 2022c;b) have demonstrated outer products with the delta
rule (Widrow & Hoff, 1960; Schlag et al., 2021b) as an effective mechanism for weight generation.
In particular, this has been shown to outperform the purely additive Hebbian update rule (Hebb,
1949) used in the Linear Transformers (Katharopoulos et al., 2020; Choromanski et al., 2021) in
various settings including language modelling (Schlag et al., 2021a), time series prediction (Irie et al.,
2022b), and reinforcement learning for playing video games (Irie et al., 2021). However, despite its
intuitive equations—treating the fast weight matrix as a key/value associative memory—, the effective
“actions” of these learning rules on the “contents” stored in the weight matrix still remain opaque,
because in general the values stored in a weight matrix are not easily interpretable by humans.

Now what if we let a fast weight programmer generate a “weight matrix” that corresponds to some
human-interpretable data? While outer product-based pattern generation may have a good inductive
bias for generating a weight matrix of a linear layer2, it can also be seen as a generic mechanism for
iteratively generating any high dimensional data. So let us apply the same principle to generate and

1https://github.com/IDSIA/fpainter
2In a linear layer, the weight matrix is multiplied with an input vector to produce an output vector. Conse-

quently, assuming that the output vector is used to compute some scalar loss function, the gradient of the loss
w.r.t. weights is expressed as an outer product (between the input and the gradient of the loss w.r.t. the output).

1

https://github.com/IDSIA/fpainter


Published as a conference paper at ICLR 2023

incrementally refine natural images. We treat a colour image as three weight matrices representing
synaptic connection weights of a fictive NN, and generate them iteratively through sequences of delta
learning rules whose key/value patterns and learning rates are produced by an actual NN that we train.
The resulting Fast Weight Painters (FPAs) learn to sequentially generate images, as sums of outer
products, one rank at a time, through sequential applications of delta learning rules. Intuitively, the
delta rule allows a painter to look into the currently generated image in a computationally efficient
way, and to apply a change to the image at each painting step. We empirically observe that the
delta rules largely improve the quality of the generated images compared to the purely additive outer
product rules.

We train our FPAs in the framework of Generative Adversarial Networks (GAN; Goodfellow et al.
(2014); Niemitalo (2010); Schmidhuber (1990); reviewed in Sec. 2.2). We evaluate our model on six
standard image generation datasets (CelebA, LSUN-Church, Metfaces, AFHQ-Cat/Dog/Wild; all
at the resolution of 64x64), and report both qualitative image quality as well as the commonly used
Fréchet Inception Distance (FID) evaluation metric (Heusel et al., 2017). Performance is compared
to the one of the state-of-the-art StyleGAN2 (Karras et al., 2020b;a) and the speed-optimised “light-
weight” GAN (LightGAN; Liu et al. (2021)).

While the performance still largely lags behind the one of StyleGAN2, we show that our generic
models can generate images of respectable visual quality without any explicit inductive bias for
image processing (e.g., no convolution is used in the generator). This confirms and illustrates that
generic learning rules can effectively produce complex weight patterns that, in our case, yield natural
images in various domains. Importantly, we can visualise each step of such weight generation in
the human-interpretable image domain. This is a unique feature of our work since learning rules
are typically not visually meaningful to humans in the standard weight generation scenario—see the
example shown in Figure 1 (weight generation for few-shot image classification).

Clearly, our goal is not to achieve the best possible image generator (for that, much better convo-
lutional architectures exist). Instead, we use natural images to visually illustrate the behaviour of
an NN that learns to execute sequences of learning rules. Nevertheless, it is also interesting to see
how a convolutional NN can further improve the quality of FPA-generated images. For this purpose,
we conduct an additional study where we add to the FPA’s output, a now popular convolutional
U-Net (Ronneberger et al., 2015; Salimans et al., 2017) used as the standard architecture (Ho et al.,
2020; Song et al., 2021; Dhariwal & Nichol, 2021) for denoising diffusion models (Sohl-Dickstein
et al., 2015). The image-to-image transforming U-Net learns (in this case) one-step “denoising” of
FPA-generated images and effectively improves their quality.

Figure 1: An illustration of the hardly human-interpretable standard weight generation process
through sequences of delta rules in an FWP (DeltaNet) trained for 5-way 5-shot image classification
on Mini-ImageNet (Vinyals et al., 2016; Ravi & Larochelle, 2017). The model is trained with the
public code of Irie et al. (2022c) and achieves a test accuracy of 62.5%. The input to the model
(shown at the bottom) is a sequence of images with their label (except for the last one to be predicted)
processed from left to right, one image/label pair per step. The model has four layers with 16 heads
each and a hidden layer size of 256. Each head generates a 16x16-dimensional fast weight matrix.
Here we visualise weight generation of two heads: head ‘16’ in layer 1 and head ‘12’ in layer 4 as
examples. In each case, the top row shows the rank-one update term (last term in Eq. 2), and the
bottom row shows their cumulative sum, i.e., the fast weight matrix Wt of Eq. 2, generated at the
corresponding step.

2



Published as a conference paper at ICLR 2023

2 BACKGROUND

Here we review the two background concepts that are essential to describe our approach in Sec. 3:
Fast Weight Programmers (Sec. 2.1) and Generative Adversarial Networks (Sec. 2.2).

2.1 FAST WEIGHT PROGRAMMERS (FWPS)

A Fast Weight Programmer (FWP; Schmidhuber (1991a; 1992)) is a general-purpose auto-regressive
sequence-processing NN originally proposed as an alternative to the standard recurrent NN (RNN).
The system consists of two networks: the slow net, or the programmer3 that learns (typically by
gradient descent) to generate and rapidly modify a weight matrix (i.e., the program) of another net,
the fast net, based on the input available at each time step. The context-sensitive fast weight matrix
serves as short-term memory of this sequence processor. This concept has seen a recent revival due
to its formal connection (Katharopoulos et al., 2020; Schlag et al., 2021a) to Transformers (Vaswani
et al., 2017). In fact, Transformers with linearised attention (Katharopoulos et al., 2020) have a dual
form (Aizerman et al., 1964; Irie et al., 2022a) that is an FWP with an outer product-based weight
generation mechanism (Schmidhuber, 1991a; 1992). Let t, dkey, din, and dout denote positive integers.
A notable example of such a model is the DeltaNet (Schlag et al., 2021a) that, at each time step
t, transforms an input xt ∈ Rdin into an output yt ∈ Rdout while updating the fast weight matrix
Wt−1 ∈ Rdout×dkey (starting from W0 = 0) as follows:

[qt,kt,vt, βt] = Wslowxt (1)
Wt = Wt−1 + σ(βt)(vt −Wt−1ϕ(kt))⊗ ϕ(kt) (2)
yt = Wtϕ(qt) (3)

where the slow net (Eq. 1; with a learnable weight matrix Wslow ∈ R(2∗dkey+dout+1)×din ) generates
query qt ∈ Rdkey , key kt ∈ Rdkey , value vt ∈ Rdout vectors as well as a scalar βt ∈ R (to which we
apply the sigmoid function σ). ϕ denotes an element-wise activation function whose output elements
are positive and sum up to one (we use softmax) that is crucial for stability (Schlag et al., 2021a).
Eq. 2 corresponds to the rank-one update of the fast weight matrix, from Wt−1 to Wt, through the
delta learning rule (Widrow & Hoff, 1960) where the slow net-generated patterns, vt, ϕ(kt), and
σ(βt), play the role of target, input, and learning rate of the learning rule respectively. We note that
if we replace this Eq. 2 with a purely additive Hebbian learning rule and set the learning rate to 1,
i.e., Wt = Wt−1 + vt ⊗ ϕ(kt), we fall back to the standard Linear Transformer (Katharopoulos
et al., 2020). In fact, some previous works consider other learning rules in the context of linear
Transformers/FWP, e.g., a gated update rule (Peng et al., 2021) and the Oja learning rule (Oja, 1982;
Irie et al., 2022b). Our main focus is on the delta rule above, but we’ll also support this choice with
an ablation study comparing it to the purely additive rule.

An example evolution of the fast weight matrix following delta rules of Eq. 2 is shown in Figure 1.
As stated above, the visualisation itself does not provide useful information. The core idea of this
work is to apply Eq. 2 to image generation, and conduct similar visualisation.

2.2 GENERATIVE ADVERSARIAL NETWORKS

The framework of Generative Adversarial Networks (GANs; Goodfellow et al. (2014); Niemitalo
(2010)) trains two neural networks G (as in generator) and D (as in discriminator), given some
dataset R, by making them compete against each other. The GAN framework itself is a special
instantiation (Schmidhuber, 2020) of the more general min-max game concept of Adversarial Artificial
Curiosity (Schmidhuber, 1990; 1991b), and has applications across various modalities, e.g., to speech
(Binkowski et al., 2020) and with limited success also to text (de Masson d’Autume et al., 2019),
but here we focus on the standard image generation setting (Goodfellow et al., 2014). In what
follows, let c, h, w, and d denote positive integers. Given an input vector z ∈ Rd whose elements are
randomly sampled from the zero-mean unit-variance Gaussian distribution N (0, 1), G generates an
image-like data G(z) ∈ Rc×h×w with a height of h, a width of w, and c channels (typically c = 3;
a non-transparent colour image). D takes an image-like input X ∈ Rc×h×w and outputs a scalar

3Sometimes we refer to the slow net as the “fast weight programmer” by generally referring to it as an NN
whose output is a weight matrix, e.g., see the first sentence of the introduction. However, without the forward
computation of the fast net, the slow net alone is not a general purpose sequence processing system.

3



Published as a conference paper at ICLR 2023

D(X) ∈ R between 0 and 1. The input X is either a sample from the real image dataset R or it is
a “fake” sample generated by G. The training objective of D is to correctly classify these inputs as
real (label ‘1’) or fake (label ‘0’), while G is trained to fool D, i.e., the error of D is the gain of G.4
The two networks are trained simultaneously with alternating parameter updates. The goal of this
process is to obtain a G capable of generating “fake” images indistinguishable from the real ones. In
practice, there are several ways of specifying the exact form of the objective function. We refer to the
corresponding description (Sec. 3.3) and the experimental section for further details.

Over the past decade, many papers have improved various aspects of GANs including the architecture
(e.g., Karras et al. (2019; 2021)), loss function (e.g., Lim & Ye (2017)), data augmentation strategies
(e.g., Zhao et al. (2020); Karras et al. (2020a), and even the evaluation metric (e.g., Heusel et al.
(2017)) to achieve higher quality images at higher resolutions. In this work, our baselines are the
state-of-the-art StyleGAN2 (Karras et al., 2020b;a) and a speed-optimised “light-weight” GAN
(LightGAN; Liu et al. (2021)).

3 FAST WEIGHT “PAINTERS” (FPAS)

A Fast Weight Painter (FPA) is a generative model of images based on the weight generation process
of outer product-based Fast Weight Programmers (FWP; Sec. 2.1; Eq. 2). Conceptually, such a
model can be trained as a generator in the GAN framework (Sec. 2.2) or as a decoder in a Variational
Auto-Encoder (VAE; Kingma & Welling (2014)). Here, we train it in the former setting that offers
a rich set of accessible baselines. In the orginal FWPs, the slow net or the programmer’s goal is to
generate useful programs/weights for the fast net to solve a given problem. In the proposed FPAs
under the GAN framework, the “slow net” or the painter’s objective is to generate images that
maximise the “fast net”/discriminator/critic’s prediction error.

Here we describe the main architecture of our FPA (Sec. 3.1), its extension through the U-Net
(Sec. 3.2), and other GAN specifications (Sec. 3.3).

3.1 MAIN ARCHITECTURE

Like a typical generator in the GAN framework, an FPA is an NN that transforms a randomly-sampled
latent noise vector into an image. Its general idea is to use a sequence processing NN to decode the
input vector for a fixed number of steps, where in each step, we generate a key/value vector pair and
a learning rate that are used in a synaptic learning rule to generate a rank-one update to the currently
generated image (starting from 0). The final image thus corresponds to the sum of these update terms.
The number of decoding (or painting) steps is a hyper-parameter of the model or the training setup.

In what follows, let T , c, dkey, dvalue, dlatent, din, dhidden, denote positive integers. Here we first provide
an abstract overview of the building blocks of the FPA, followed by specific descriptions of each
block. Given a random input vector z ∈ Rdlatent , and a number of painting steps T , an FPA generates
an image W ∈ Rc×dvalue×dkey with c channels, a height of dvalue, and a width of dkey, through the
following sequence of operations:

(x1, ...,xT ) = InputGenerator(z) (4)
(h1, ...,hT ) = SequenceProcessor(x1, ...,xT ) (5)

Wt = UpdateNet(Wt−1,ht) for t ∈ {1, ..., T} (6)
W = WT (7)

where for t ∈ {1, ..., T}, xt ∈ Rdin , ht ∈ Rdhidden , and Wt ∈ Rc×dvalue×dkey with W0 = 0.

InputGenerator, SequenceProcessor, and UpdateNet denote the abstract blocks of operations
described as follows:

Input Generator. As its name indicates, the role of InputGenerator is to transform the latent
vector z ∈ Rdlatent to a sequence of input vectors (x1, ...,xT ) with xt ∈ Rdin for t ∈ {1, ..., T}, for
the subsequent sequence processing NN, SequenceProcessor. In practice, we consider two variants.

4Despite the “adversarial” nature of this description, when G is trained by gradient descent, it is nothing but
the gradient feedback of D through D(G(z)) that continually improves G. In this view, D is “collaborative”.

4



Published as a conference paper at ICLR 2023

Input
Generator

Latent
Vector

Sequence
Processor

KeyValue
Learning

rate

Current
Image

Rank-1
Update

Image
Update Net

New
Image

Delta
Rule

Figure 2: An illustration of the Fast Weight Painter architecture. The example is taken from the last
painting step of our best FPA trained on the AFHQ-Wild dataset.

In the first variant (v1), the input generator does not do anything: it feeds the same latent vector to
SequenceProcessor at every step, i.e., xt = z for all t with din = dlatent. In the second variant (v2),
InputGenerator is an NN that maps from an input vector of dimension dlatent to an output vector
of size T ∗ din. The latter is split into T vectors xt (t ∈ {1, ..., T}) of size din each. An obvious
advantage of the first approach is that it scales independently of T , and it may also be rolled out for
an arbitrary number of steps. In most datasets, however, we found the second variant to perform
better, yielding more stable GAN training.

Sequence Processor. SequenceProcessor further processes the input vector sequence produced by
InputGenerator. In our preliminary experiments, we found that auto-regressive processing and in
particular RNNs are a good choice for this component (e.g., we did not manage to train any models
successfully when the standard Transformer was used instead). We use a multi-layer long short-term
memory (LSTM; Hochreiter & Schmidhuber (1997)) RNN in all of our models. We also allocate a
separate NN that maps the latent vector z to the initial hidden states of each RNN layer (omitted for
clarity in Figure 2).

Image Update Network. The actual painting finally emerges in the image update network,
UpdateNet. The role of UpdateNet is to apply modifications to the current image Wt−1 (starting
from W0 = 0) and obtain a new image Wt, through an application of the delta learning rule. At each
time step t, the input ht ∈ Rdhidden is projected to key kt ∈ Rc∗dkey , value vt ∈ Rc∗dvalue , and learning
rate βt ∈ Rc vectors by using a learnable weight matrix Wslow ∈ Rc∗(dkey+dvalue+1)×dhidden

[kt,vt, βt] = Wslowht (8)

Similarly to multi-head attention in Transformers (Vaswani et al., 2017), the generated vectors are
split into c sub-vectors, one for each channel, i.e., for each painting step t ∈ {1, ..., T}, we have
[k1

t , ...,k
c
t ] = kt for keys, [v1

t , ...,v
c
t ] = vt for values, and [β1

t , ..., β
c
t ] = βt for learning rates, where

ki
t ∈ Rdkey , vi

t ∈ Rdvalue , and βi
t ∈ R for i ∈ {1, ..., c} denoting the channel index.

Finally, for each step t ∈ {1, ..., T} and for each channel index i ∈ {1, ..., c}, the corresponding
image channel W i

t ∈ Rdvalue×dkey is updated through the delta update rule (same as in Eq. 2):

W i
t = W i

t−1 + σ(βi
t)(v

i
t −W i

t−1ϕ(k
i
t))⊗ ϕ(ki

t) (9)

Here each channel of the image is effectively treated as a “weight matrix,” and “painting” is based
on synaptic learning rules. The output image is finally obtained from the final step t = T as W =
[W 1

T , ...,W
c
T ] ∈ Rc×dvalue×dkey (to which we apply tanh). We’ll visualise the iterative generation

process of Eq. 9 in the experimental section.

An overview of this architecture is depicted in Figure 2.

5



Published as a conference paper at ICLR 2023

3.2 OPTIONAL FINAL U-NET REFINEMENT STEP

Experimentally, we find the process described above alone can generate reasonably fine looking
images without any explicit inductive bias for images. However, the resulting evaluation scores
are worse than those of the baseline methods based on convolutional architectures. This motivates
us to further investigate how the quality of images generated by an FPA can be improved by an
additional convolutional component. For this purpose, we use the image-to-image transforming U-Net
architecture (Ronneberger et al., 2015; Salimans et al., 2017), the core architecture (Ho et al., 2020;
Song et al., 2021; Dhariwal & Nichol, 2021) of the now popular denoising diffusion models (Sohl-
Dickstein et al., 2015). We apply the U-Net to the output of the FPA, i.e., after Eq. 7, it transforms
the image W = WT ∈ Rc×dvalue×dkey into another image of the same size W ′ ∈ Rc×dvalue×dkey :

W ′ = UNet(WT ) (10)

From the U-Net’s perspective, the output of the FPA is a “noisy” image. Its operation can be viewed
as a one-step “denoising.” This process is depicted in Figure 3. In practice, we append this U-Net to
the output of a pre-trained FPA, and train the resulting model in the GAN framework, while only
updating parameters of the U-Net. We also discuss end-to-end training in Appendix C.1. However, in
the main setting, all our U-Net models are trained with a pre-trained frozen FPA. In the experimental
section, we’ll show that such a U-Net can effectively improve the quality of FPA-generated images.

U-NetFast Weight 
Painter 

Figure 3: An illustration of the extra U-Net-based refinement. The example is generated by our best
FPA/U-Net trained on the AFHQ-Wild dataset.

3.3 DISCRIMINATOR ARCHITECTURE AND OTHER SPECIFICATIONS

We adopt the training configurations and the discriminator architecture of the LightGAN (Liu et al.,
2021), i.e., we replace its generator by our FPA. In our preliminary study, we also tried the StyleGAN2
setting, however, we did not observe any obvious benefit. In the LightGAN framework, in addition to
the main objective function of the hinge loss (Lim & Ye, 2017; Tran et al., 2017), the discriminator
is regularised with an auxiliary image reconstruction loss at two different resolutions (for that two
“simple” image decoders are added to the discriminator). For details, we refer to Appendix B.3.

4 EXPERIMENTS

4.1 BENCHMARKING ON THE STANDARD DATASETS

We start with evaluating how well the proposed FPA performs as an image generator without explicit
inductive bias for images. For this, we train our model on six datasets: CelebA (Liu et al., 2015),
LSUN Church (Yu et al., 2015), Animal Faces HQ (AFHQ) Cat/Dog/Wild (Choi et al., 2020), and
MetFaces (Karras et al., 2020a), all at the resolution of 64x64. No data augmentation is used as we
want to keep the comparison as simple as possible. For details of the datasets, we refer to Appendix
B.1. As a first set of experiments, we set the number of generation steps for FPAs to T = 64
(we’ll vary this number in Sec. 4.3); such that the output images can be of full rank. We provide all
hyper-parameters in Appendix B.2 and discuss training/generation speed in Appendix C.2. Following
the standard practice, we compute the FID using 50 K sampled images and all real images (for
further discussion on the FID computation, we refer to Appendix B.4). Table 1 shows the FID scores.
We first observe that the state-of-the-art StyleGAN2 outperforms our FPA by a large margin. The
performance gap is the smallest in the case of the small dataset, MetFaces, while for larger datasets,
CelebA and LSUN-Church, the gap is large. At the same time, the reasonable FID values show
that the FPA is quite successful. Qualitatively, we observe that the FPA can produce images with a
respectable quality, even though we also observe that the StyleGAN2 tends to generate fine-looking

6



Published as a conference paper at ICLR 2023

Table 1: FID scores. The resolution is 64x64 for all datasets. No data augmentation is used. The
StyleGAN2 models are trained using the official public implementation.

AFHQ LSUN

Model CelebA MetFaces Cat Dog Wild Church

StyleGAN2 1.7 17.2 7.5 11.7 5.2 2.8
LightGAN 3.4 26.4 7.9 16.8 10.2 5.1

FPA 18.3 36.3 17.1 45.3 20.2 42.8
+ U-Net 3.7 24.5 6.8 19.9 9.4 5.2

images more consistently, and with a higher diversity. Figure 4 displays the curated output images
generated by various models. By looking at these examples, it is hard to guess that they are generated
as sums of outer products through sequences of synaptic learning rules. The visualisation confirms
the FPA’s respectable performance.

In Table 1, we also observe that the extra convolutional U-Net (Sec. 3.2) largely improves the quality
of the images generated by the FPA. Its performance is comparable to that of the LightGAN baseline
across all datasets. For further discussion of the UNet’s effect, we refer to Appendix C.1.

StyleGAN2

Fast Weight Painter

Fast Weight Painter + U-Net

Figure 4: Curated image samples generated by different models specified above the images. Four
images are shown for each dataset, from left to right: CelebA, MetFaces, AFHQ Cat, Dog, Wild, and
LSUN Church. All at the resolution of 64x64.

4.2 VISUALISING THE ITERATIVE GENERATION PROCESS

How are images like those shown in Figure 4 generated iteratively as sums of outer products by the
FPA? Here we visualise this iterative generation process. Generally speaking, we found almost all
examples interesting to visualise. We show a first set of examples in Figure 5. As we noted above,
all FPAs in Table 1/Figure 4 use T = 64 painting steps. The first thing we observe is that for many
steps, the “key” is almost one-hot (which is encouraged by the softmax), i.e., the part of the image
is generated almost column-wise. For other parts, such as generation/refinement of the background
(e.g., steps 57-64 in AFHQ-Wild or steps 1-16 in MetFaces), rank-1 update covers a large region of
the image. Generally we can recognise the “intended action” of each learning rule step on the image
(e.g., adding the extra colour in the background in steps 59-64 in LSUN Church, or drawing a draft of
the animal face in steps 7-34 in AFHQ-Wild). We discuss many more examples in Appendix A.

7



Published as a conference paper at ICLR 2023

AFHQ-Wild

LSUN-Church

1 168 24 32

1 168 24 32

33 4840 56 64

33 4840 56 64

MetFaces

1 168 24 32

33 4840 6456

Figure 5: Example painting steps for the FPAs of Table 1. All images have the resolution of 64x64. In
each example, the generation steps are shown from left to right. The numbers below images indicate
the step. Each row has two mini-rows showing two sequences of images. The top mini-row shows the
rank-1 update generated at the corresponding step, while the bottom mini-row shows the cumulative
sum thereof, i.e., the currently generated image (Eq. 9). For visualisation, the image at each step is
normalised by the norm of the final image, and we apply tanh. We also note that the colour scaling
is specific to each plot (in consequence, we observe some cases like the one we see in step 31 of
LSUN-Church above where the effect of the rank-1 update is not visible once added to the image).

4.3 ABLATION STUDIES

Table 2: FID scores of FPAs for various numbers of paint-
ing steps. The resolution is 64x64 for all datasets. The
numbers for T = 64 are copied from Table 1.

AFHQ

Steps T MetFaces Cat Dog Wild

64 36.3 17.1 45.3 20.2

32 43.6 25.9 69.5 31.9
16 53.8 86.6 165.8 220.5

8 80.1 164.4 220.1 215.2

Varying Number of Painting Steps.
In all examples above, we train FPAs
with a number of painting steps T = 64
such that the 64x64 output can be of full
rank. Here we study FPAs with reduced
numbers of steps. The task should re-
main feasible, as natural images typically
keep looking good (at least to human
eyes, to some extent) under low-rank
approximations (Andrews & Patterson,
1976). We select the model configuration
that achieves the best FID with T = 64,
and train the same model with fewer
steps {8, 16, 32}. Table 2 shows the
FIDs. Globally, we find that fewer steps
tend to greatly hurt performance. An exception is MetFaces (and AFHQ-Cat to some extent) where the
degradation is much smaller. Figure 6 shows examples of 16-step generation of 64x64-resolution im-
ages for these two datasets, where we observe that FPAs find and exploit symmetries (for AFHQ-Cat)
and other regularities (for MetFaces) as shortcuts for low rank/complexity image generation.

Choice of Learning Rules. As mentioned in Sec. 2.1, the delta rule is not the only way of
parameterising the weight update (Eq. 9). However, we experimentally observe that both the purely
additive rule and the Oja rule underperform the delta rule. This is in line with previous works on

8



Published as a conference paper at ICLR 2023

FWPs (see introduction). The best FID we obtain on the CelebA using the purely additive rules is
above 80, much worse than 18.3 obtained by the delta rule (Table 1). With the Oja rule, we did not
manage to train any reasonable model on CelebA in our settings.

AFHQ-Cat MetFaces

1 168

1 168

1 168 1 168

1 168

1 168

Figure 6: Examples of 16-step generation of 64x64 images by the FPA.

5 DISCUSSION

Limitations. We have shown how the concept of FWPs can be applied to image generation,
to visualise sequences of NN-controlled learning rules that produce natural images. While this
contributes to the study of learning rules in general, we note that our visualisations are tailored to the
image generation task: mapping a random vector to a sequence of images, where only the final image
(their sum) is “evaluated.” In many FWP use cases, however, the generated WMs are queried/used at
every time step to solve some sequence processing task. What the learning rules actually do in such
scenarios remains opaque. Also, from the perspective of image generation methods, there are many
aspects that we do not investigate here. For example, we directly use the convolutional LightGAN
discriminator. However, since the FPA is non-convolutional, there may be alternative architectures
with better feedback/gradient properties for training FPAs. Also, our experiments are limited to
images with a resolution of 64x64. Increasing the resolution is typically not straightforward (Karras
et al., 2018) but outside the scope of this work.

Diffusion models. We use the GAN framework (Sec. 2.2) to train our FPA, and mention the alterna-
tive of using VAEs. At first glance, it also seems attractive to use rank-1 noise as an efficient alternative
to the expensive U-Net of diffusion models (Sohl-Dickstein et al., 2015). Unfortunately, unlike in the
standard Gaussian case (Feller, 1949), if the forward process is based on rank-1 noises (e.g., obtained
as outer products of two random Gaussian noise vectors), we have no guarantee that the reversal pro-
cess can be parameterised in the same way using an outer product. Nevertheless, generally speaking,
an exchange of ideas between the fields of image and NN weight generation/processing may stimulate
both research domains. An example is the use of discrete cosine transform (DCT) to parameterise a
WM of an NN (e.g., Koutnı́k et al. (2010a;b); van Steenkiste et al. (2016); Irie & Schmidhuber (2021)).

Other Perspectives. We saw that the same generic computational mechanism can be used for both
fast weight programming and image generation (painting). From a cognitive science perspective, it
may be interesting to compare painting and programming as sequential processes.

6 CONCLUSION

We apply the NN weight generation principles of Fast Weight Programmers (FWPs) to the task of
image generation. The resulting Fast Weight Painters (FPAs) effectively learn to generate weight
matrices looking like natural images, through the execution of sequences of NN-controlled learning
rules applied to self-invented learning patterns. This allows us to visualise the iterative FWP process
in six different image domains interpretable by humans. While this method is certainly not the
best approach for image generation, our results clearly demonstrate/illustrate/visualise how an NN
can learn to control sequences of synaptic weight learning rules in a goal-directed way to generate
complex and meaningful weight patterns.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank Róbert Csordás for helpful suggestions on Figure 2. This research was partially funded by
ERC Advanced grant no: 742870, project AlgoRNN, and by Swiss National Science Foundation grant
no: 200021 192356, project NEUSYM. We are thankful for hardware donations from NVIDIA and
IBM. The resources used for this work were partially provided by Swiss National Supercomputing
Centre (CSCS) project s1145 and s1154.

REFERENCES

Mark A. Aizerman, Emmanuil M. Braverman, and Lev I. Rozonoer. Theoretical foundations of
potential function method in pattern recognition. Automation and Remote Control, 25(6):917–936,
1964.

Harry C. Andrews and Claude L. Patterson. Singular value decompositions and digital image
processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(1):26–53, 1976.

Mikolaj Binkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman Casagrande,
Luis C. Cobo, and Karen Simonyan. High fidelity speech synthesis with adversarial networks. In
Int. Conf. on Learning Representations (ICLR), Virtual only, April 2020.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse image synthesis
for multiple domains. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 8185–8194, Virtual only, June 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Cyprien de Masson d’Autume, Shakir Mohamed, Mihaela Rosca, and Jack W. Rae. Training language
GANs from scratch. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp.
4302–4313, Vancouver, Canada, December 2019.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 8780–8794, Virtual only,
December 2021.

William Feller. On the theory of stochastic processes, with particular reference to applications. In
Proc. Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pp. 403–433,
1949.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 2672–2680, Montréal, Canada, December 2014.

Donald Olding Hebb. The organization of behavior; a neuropsycholocigal theory. A Wiley Book in
Clinical Psychology, 62:78, 1949.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Proc.
Advances in Neural Information Processing Systems (NIPS), pp. 6626–6637, Long Beach, CA,
USA, December 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), Virtual only, December 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kazuki Irie and Jürgen Schmidhuber. Training and generating neural networks in compressed weight
space. In ICLR Neural Compression Workshop, Virtual only, May 2021.

10



Published as a conference paper at ICLR 2023

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear transform-
ers with recurrent fast weight programmers. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), Virtual only, December 2021.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In Proc. Int. Conf.
on Machine Learning (ICML), Baltimore, MD, USA, July 2022a.

Kazuki Irie, Francesco Faccio, and Jürgen Schmidhuber. Neural differential equations for learning to
program neural nets through continuous learning rules. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), New Orleans, LA, USA, December 2022b.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In Proc. Int. Conf. on Machine Learning (ICML), pp.
9660–9677, Baltimore, MA, USA, July 2022c.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. In Int. Conf. on Learning Representations (ICLR),
Vancouver, Canada, April 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 4401–4410, Long Beach, CA, USA, June 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), Virtual only, December 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, June 2020b.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), pp. 852–863, Virtual only, December 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast autoregressive transformers with linear attention. In Proc. Int. Conf. on Machine
Learning (ICML), Virtual only, July 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Int. Conf. on Learning
Representations (ICLR), Banff, Canada, April 2014.

Jan Koutnı́k, Faustino Gomez, and Jürgen Schmidhuber. Evolving neural networks in compressed
weight space. In Proc. Conference on Genetic and Evolutionary Computation (GECCO), pp.
619–626, 2010a.

Jan Koutnı́k, Faustino Gomez, and Jürgen Schmidhuber. Searching for minimal neural networks
in fourier space. In Proc. Conf. on Artificial General Intelligence, Lugano, Switzerland, March
2010b.

Jae Hyun Lim and Jong Chul Ye. Geometric GAN. Preprint arXiv:1705.02894, 2017.

Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster and stabilized GAN
training for high-fidelity few-shot image synthesis. In Int. Conf. on Learning Representations
(ICLR), Virtual only, May 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp. 3730–3738, Santiago, Chile, December
2015.

Olli Niemitalo. A method for training artificial neural networks to generate missing data within a
variable context. https://web.archive.org/web/20120312111546/http://yehar.com:80/blog/?p=167,
Internet Archive, 2010.

11



Published as a conference paper at ICLR 2023

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in
GAN evaluation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
11410–11420, New Orleans, LA, USA, June 2022.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In Int. Conf. on Learning Representations (ICLR), Virtual only, 2021.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Int. Conf. on
Learning Representations (ICLR), Toulon, France, April 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Proc. Int. Conf. Medical Image Computing and Computer-Assisted
Intervention - MICCAI, pp. 234–241, Munich, Germany, October 2015.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: Improving the
pixelCNN with discretized logistic mixture likelihood and other modifications. In Int. Conf. on
Learning Representations (ICLR), Toulon, France, April 2017.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers are secretly fast weight
programmers. In Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In Int. Conf. on Learning Representations (ICLR), Virtual only, May
2021b.

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary environments.
Institut für Informatik, Technische Universität München. Technical Report FKI-126, 90, 1990.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets.
Technical Report FKI-147-91, Institut für Informatik, Technische Universität München, March
1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. Int. Conf. on simulation of adaptive behavior: From animals to animats, pp.
222–227, 1991b.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. Generative adversarial networks are special cases of artificial curiosity (1990)
and also closely related to predictability minimization (1991). Neural Networks, 127:58–66, 2020.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proc. Int. Conf. on Machine Learning (ICML),
pp. 2256–2265, Lille, France, July 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Int. Conf. on
Learning Representations (ICLR), Virtual only, May 2021.

Dustin Tran, Rajesh Ranganath, and David M. Blei. Hierarchical implicit models and likelihood-free
variational inference. In Proc. Advances in Neural Information Processing Systems (NIPS), pp.
5523–5533, Long Beach, CA, USA, December 2017.

Sjoerd van Steenkiste, Jan Koutnı́k, Kurt Driessens, and Jürgen Schmidhuber. A wavelet-based en-
coding for neuroevolution. In Proc. Genetic and Evolutionary Computation Conference (GECCO),
pp. 517–524, Denver, CO, USA, July 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural Information
Processing Systems (NIPS), pp. 5998–6008, Long Beach, CA, USA, December 2017.

12



Published as a conference paper at ICLR 2023

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching
networks for one shot learning. In Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 3630–3638, Barcelona, Spain, December 2016.

Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. In Proc. IRE WESCON Convention
Record, pp. 96–104, Los Angeles, CA, USA, August 1960.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. LSUN:
Construction of a large-scale image dataset using deep learning with humans in the loop. Preprint
arXiv:1506.03365, 2015.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for data-
efficient GAN training. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
Virtual only, December 2020.

13



Published as a conference paper at ICLR 2023

A MORE VISUALISATION EXAMPLES

As a continuation of Sec. 4.2, we provide further visualisations to illustrate the image generation
process of FPAs.

Figure 7 shows some interesting effects we observe on CelebA. In Example 1 (top), from step 1 to
16, the image is column-wise generated from the left. Then from step 18, the generation of the right
part of the face starts from the right. Around step 40 and 46, we see that the separately generated left
and right parts of the face do not fit each other. But then the FPA fixes this in three steps from step 46
to 48 that “harmonise” the image. Example 2 (bottom) shows another similar example.

Figure 8 illustrates another typical behaviour we observe on both CelebA and AFHQ-Dog. In the
CelebA example, we can see that the face is already generated around step 48. The rest of the steps are
used to add extra hair. Similarly in the AFHQ-Dog example, step-48 image is already a fine-looking
dog. An extra body is painted (rather unsuccessfully) from the right in the remaining steps.

33 4840 56 64
CelebA, example2

1 168 24 32

33 4840 56 64

CelebA, example 1

1 168 24 32

Figure 7: Example painting steps of the FPAs of Table 1 trained on CelebA at the resolution of 64x64.
For details about the visualisation process, we refer to the caption of Figure 5.

1 168 24 32

33 4840 56 64

33 4840 56 64

CelebA

AFHQ-Dog

1 168 24 32

Figure 8: Example painting steps of the FPAs of Table 1 trained on CelebA and AFHQ-Dog at the
resolution of 64x64. For details about the visualisation process, we refer to the caption of Figure 5 (
in particular, in step 25 of CelebA we observe an effect that is similar to step 31 of LSUN Church in
Figure 5).

14



Published as a conference paper at ICLR 2023

B EXPERIMENTAL DETAILS

B.1 DATASETS

We use six standard benchmark datasets for image generation: CelebA (Liu et al., 2015), LSUN
Church (Yu et al., 2015), Animal Faces HQ (AFHQ) Cat/Dog/Wild (Choi et al., 2020), and MetFaces
(Karras et al., 2020a). The number of images are 203 K for CelebA, 126 K for LSUN Church, 5 K
for each subsets of AFHQ, and 1336 for the smallest MetFaces. For further information about the
datasets, we refer to the original papers.

B.2 HYPER-PARAMETERS

We conduct FPA tuning in terms of both hyper-parameters and model variations. Regarding the latter,
we use three specifications: InputGenerator version v1 vs. v2 (see their descriptions in Sec. 3.1),
input generator with or without tanh, and with or without a linear layer that maps the latent vector
to the RNN initial states (otherwise the initial states are zeros). We also train models with/without
applying tanh to the generated image at the FPA output. Using the notations introduced in Sec. 3.1,
the hyper-parameter search is conducted across the following ranges: dlatent ∈ {128, 256, 512},
dhidden ∈ {1024, 2048, 4096}, and the number of RNN layers L ∈ {1, 2}. When InputGenerator
is v2, we have din ∈ {8, 16, 32} and furthermore, we add an extra linear layer between the input
generator and the RNN with a dimension d′in ∈ {128, 256, 512}. The batch size and learning rate are
fixed to 20 and 2e−4 respectively. We compute the FID score every 5 K training steps to monitor the
performance. We take the hyper-parameters achieving the best FID as the best configuration. Table 3
summarises the corresponding results. For MetFaces, a more parameter-efficient v2 variant (with
20 M parameters) achieves a FID of 40.5 that is close to 36.3 (Table 1) achieved by the best model.
However, as the parameter count does not matter for our study, we strictly take the best model.

Table 3: Hyper-parameters of FPAs used for different datasets.

AFHQ LSUN

Hyper-Parameter CelebA MetFaces Cat Dog Wild Church

InputGenerator v2 v1 v2 v2 v2 v2
Input Gen. tanh No - No No No Yes
Latent to RNN init No Yes Yes No No Yes

dlatent 128 512 256 256 512 512
din 8 - 8 8 8 16
d′in 128 - 128 128 128 256
dhidden 1024 4096 1024 1024 1024 1024
L 2 2 1 2 1 2

Gen. Param. Count (M) 14 220 6 14 6 17

Total Param Count (M) 26 232 18 26 19 29

B.3 GAN DETAILS & IMPLEMENTATION

As stated in Sec. 3.3, our GAN setting is based on that of the LightGAN by Liu et al. (2021).
For architectural details of the discriminator, we refer to the original paper. To be more specific,
our code is based on the unofficial public LightGAN implementation https://github.com/
lucidrains/lightweight-gan. which is slightly different from the official implementation.
In particular, the auxiliary reconstruction losses for the discriminator require 8x8 and 16x16 resolution
images. In the original implementation, these are obtained directly from the intermediate layers of
the generator, while in this unofficial implementation, they are obtained by scaling down the final
output image of the generator by interpolation. The latter is the only compatible approach for FPAs
since an FPA does not produce such intermediate images with small resolutions unlike the standard
convolution based generators. For any further details, we refer to our public code. For the StyleGAN2

15

https://github.com/lucidrains/lightweight-gan
https://github.com/lucidrains/lightweight-gan


Published as a conference paper at ICLR 2023

baseline, we use the official implementation of StyleGAN3 (Karras et al., 2021) that also supports
StyleGAN2: https://github.com/NVlabs/stylegan3.

B.4 FID COMPUTATION

While the Fréchet Inception Distance (FID; Heusel et al. (2017)) is a widely used metric for evaluating
machine-generated images, it is sensitive to many details (Parmar et al., 2022). We also observe
that it is crucial to use the same setting for all models consistently. We use the following procedure
for all datasets and models (including the StyleGAN2 baseline). We store both the generated
and resized real images in JPEG format, and use the pytorch-fid implementation of https:
//github.com/mseitzer/pytorch-fid to compute the FID. While the usage of PNG is
generally recommended by Parmar et al. (2022), since consistency is all we need for the purpose of
our study, and JPEG is more convenient for frequently monitoring FID scores during training (as
JPEG images are faster to store, and take less disk space), we opt for it here.

Nevertheless, in Table 4, we also report FID scores computed using the generated and resized real
images saved in PNG format. These are computed using the models from Table 1, i.e., the best model
checkpoint found based on JPEG-based FID scores during training. All numbers grow beyond those
in Table 1 including those of the baselines, but the general trend does not change. The FID scores
reported in all other tables are computed using the JPEG format.

Table 4: FID scores using images in PNG format. The resolution is 64x64 for all datasets. No data
augmentation is used.

AFHQ LSUN

Model CelebA MetFaces Cat Dog Wild Church

StyleGAN2 2.7 24.8 11.7 17.4 7.0 9.8
LightGAN 8.8 47.2 13.0 27.9 14.0 9.6

FPA 33.6 73.7 23.4 71.6 28.6 64.7
+ U-Net 6.9 43.1 9.8 30.5 12.6 8.5

C EXTRA RESULTS & DISCUSSION

C.1 DISCUSSION OF THE U-NET EXTENSION

Visualising the U-Net’s Effect. In Sec. 4.1, we report the U-Net’s quality improvements of FPA-
generated images in terms of the FID metric. Here we further look into its effect on the actual
images. Figure 9 displays some example images generated by FPA/U-Net models before and after
the U-Net application. We observe that in general, the U-Net is successful at improving the quality
of the FPA-generated images without completely ignoring the original images. However, we also
observe examples where this is not the case, i.e., the U-Net generates almost completely new images
as illustrated by the last row of MetFaces and AFHQ Dog examples.

End-to-End Training. As described in Sec. 3.2, we train the FPA/U-Net model using pre-trained
FPA parameters. We also tried end-to-end training from scratch, but observed that the U-Net starts
learning before the FPA can generate fine-looking images. As a result, the resulting U-Net ignores the
FPA output, hence the FPA does not receive any useful gradients for learning to generate meaningful
images, and the FPA remains a noise generator. We also tried to train it by providing both the FPA
and U-Net outputs to the discriminator (and by stopping the gradient flow from the U-Net to the FPA).
This alleviates the problem of the FPA remaining a noise generator, but is still not good enough to
make the U-Net properly act as a denoising/refinement component of the FPA.

Choice of the Pre-Trained FPA. In general, we take the best performing standalone FPA as the
pre-trained model to train a FPA/U-Net model (Sec. 3.2). In some cases, however, we find that the
best standalone FPA model does not yield the best FPA/U-Net model. This is the case for AFHQ-Cat

16

https://github.com/NVlabs/stylegan3
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid


Published as a conference paper at ICLR 2023

and Dog as illustrated in Table 5. The FPA/U-Net model based on the best pre-trained FPA with an
input generator of type v1 (Sec. 3.1) yields a slightly better FID than the one based on the best v2
variant, even though the trend is the opposite for the standalone FPA models. In Table 1 of the main
text, we report the overall best FIDs.

Our U-Net implementation is based on the diffusion model implementation of https://github.
com/lucidrains/denoising-diffusion-pytorch. We use three down/up-sampling
ResNet blocks with a total of 8 M parameters.

LSUN Church AFHQ Wild MetFaces AFHQ Dog

Figure 9: Example images generated by the FPA/U-Net before (left) and after (right) the U-Net.

Table 5: FID scores for the FPA/U-Net with various pre-trained FPA models. The resolution is
64x64 for all datasets. No data augmentation is used. v1/v2 indicates the type of the input generator
described in Sec. 3.1.

AFHQ-Cat AFHQ-Dog

Model v1 v2 v1 v2

FPA 30.8 17.1 49.3 45.3
+ U-Net 6.8 7.8 19.9 22.9

C.2 TRAINING AND GENERATION SPEED

While it is difficult to compare speed across different implementations, the generation speed of
StyleGAN2 and the FPA are similar: about 55 images are generated every second for a batch size of
one on a V100 GPU, while the LightGAN can generate 160 images per second in the same setting.
The training/convergence speed of the FPA is similar to or better than that of the LightGAN on the
relatively large datasets. For example, our FPA converges after about 150 K training steps on CelebA
(vs. 285 K steps for the LightGAN), and 70 K steps on LSUN Church (similarly to the LightGAN)
with a batch size of 20. The FPA/U-Net variant converges more slowly. For example on LSUN, it
continues improving until 380 K steps in the same setting. On the small datasets, e.g., on AFHQ-Cat,
the LightGAN converges faster (about 30 K steps) than the FPA (which continues improving until
about 280 K steps) in the same setting. Any training run can be completed within one to three days
on a single V100 GPU.

17

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

	Introduction
	Background
	Fast Weight Programmers (FWPs)
	Generative Adversarial Networks

	Fast Weight ``Painters'' (FPAs)
	Main Architecture
	Optional Final U-Net Refinement Step
	Discriminator Architecture and Other Specifications

	Experiments
	Benchmarking on the Standard Datasets
	Visualising the Iterative Generation Process
	Ablation Studies

	Discussion
	Conclusion
	More Visualisation Examples
	Experimental Details
	Datasets
	Hyper-Parameters
	GAN Details & Implementation
	FID computation

	Extra Results & Discussion
	Discussion of the U-Net extension
	Training and Generation Speed


