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ABSTRACT

We present a systematic study of domain generalization (DG) for tiny neural net-
works. This problem is critical to on-device machine learning applications but
has been overlooked in the literature, where research has been focused on large
models only. Tiny neural networks have much fewer parameters and lower com-
plexity, and thus should not be trained the same way as their large counterparts
for DG applications. We find that knowledge distillation is a strong candidate
for solving the problem: it outperforms state-of-the-art DG methods that were
developed using large models with a large margin. Moreover, we observe that
the teacher-student performance gap on test data with domain shift is bigger than
that on in-distribution data. To improve DG for tiny neural networks without in-
creasing the deployment cost, we propose a simple idea called out-of-distribution
knowledge distillation (OKD), which aims to teach the student how the teacher
handles (synthetic) out-of-distribution data and is proved to be a promising frame-
work for tackling the problem. We also contribute a scalable method for creating
DG datasets, called DOmain Shift in COntext (DOSCO), which can be applied to
broad data at scale without much human effort. Code and models will be released.

1 INTRODUCTION

Domain generalization (DG), also known as out-of-distribution (OOD) generalization, is a problem
concerned with whether or not a model learned from source data can perform well on unseen target
data with domain shift (Blanchard et al., 2011; Muandet et al., 2013). In the last decade, DG has been
extensively studied in the literature (Zhou et al., 2022a), especially for neural networks that have
become the mainstream approach in machine learning and pattern recognition. However, existing
research mainly focuses on large models with colossal parameter sizes and heavy computations.

This paper presents a systematic study on approaches to improve DG for tiny neural networks. Tiny
neural networks are critical to on-device machine learning applications (Cai et al., 2022), which have
received increasing attention due to the rapid increase in low-cost mobile devices, such as mobile
phones and IoT devices. Running neural networks on mobile devices is challenging because it has
strict requirements for model size (storage) and latency. For example, IoT devices with microcon-
troller units (MCUs) typically have an SRAM smaller than 512KB, which is too small to fit most
neural networks (Lin et al., 2021). See Table 1 for a comparison of model specifications between
neural networks of different sizes.

DG is essential for tiny neural networks because mobile devices are often used in an unanticipated
environment, suggesting that the model must have the ability to overcome domain shift of any kind.
However, making tiny neural networks domain-generalizable is non-trivial since they have much
fewer parameters than large neural networks, and hence smaller capacity. Table 1 shows that the
performance declines significantly for tiny models—especially on OOD data—which prompts the
need to study DG for them.

Since tiny neural networks differ from large neural networks, they should not be trained the same
way as the latter for DG applications. We observe that for tiny neural networks, state-of-the-art DG
methods only bring limited improvements, like one or two percent increases in accuracy, over the
Empirical Risk Minimization (ERM) model—known to be a strong baseline method (Gulrajani &
Lopez-Paz, 2020). See the results of RSC (Huang et al., 2020), MixStyle (Zhou et al., 2021) and
EFDMix (Zhang et al., 2022b) in Figure 1a.
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Table 1: Large vs tiny neural networks. Due to capacity mismatch, the three tiny neural networks
perform much worse, both in- and out-of-distribution, than the large counterpart, ResNet50.

Model Params Size MACs ID Acc OOD Acc

ResNet50 25.56M 97.70MB 4133.74M 77.4% 60.2%
MobileNetV3-Small 1.50M 5.79MB 61.44M 64.0% 42.9%
MobileNetV2-Tiny 0.75M 2.91MB 65.20M 63.6% 42.0%
MCUNet 0.74M 2.87MB 145.13M 66.8% 46.4%

ID means in-distribution. OOD means out-of-distribution. Acc means accuracy (average performance on the
DOSCO-2k benchmark). The Params, Size and MACs columns are measured on the 1,000-class ImageNet.

A straightforward solution is to use knowledge distillation (KD) (Bucilua et al., 2006; Hinton et al.,
2015), which is an established technique for compressing large models by using their output as
a supervision signal to train tiny models. We indeed find that KD boosts the DG performance
more significantly than the DG methods, as shown in Figure 1a. Nevertheless, the teacher-student
performance gap on OOD test data is still huge, which is about 12%, and such a gap exists for a
wide range of KD-based methods, as evidenced in Figure 1b. Interestingly, we observe that the gap
on OOD data is much bigger than that on in-distribution data (see Figure 1b and 1c). The results
suggest that the capacity mismatch issue makes it harder to transfer generalizable knowledge from
the teacher to the student.

We believe a student failed to match the teacher’s OOD performance because the student was never
taught how to handle OOD data—the conventional KD loss is computed on in-distribution data only.
To mitigate the problem, we propose out-of-distribution knowledge distillation (OKD), a simple idea
that extends KD by adding another distillation loss computed on OOD data. Since collecting OOD
data for downstream datasets is challenging (and expensive), we resort to using image transforma-
tions to synthesize OOD data. Through a thorough investigation over a wide spectrum of image
transformation methods, we identify the best match, i.e., combining CutMix (Yun et al., 2019) and
Mixup (Zhang et al., 2017): the former twists local statistics while the latter perturbs global statis-
tics, and together they make the synthetic images diverge from the support of the training data
distribution but not completely disjoint. Despite the simplicity, OKD significantly improves upon
KD without increasing the deployment cost (see Figure 1 for an overview of the main findings of
this paper).

Furthermore, we contribute a new suite of DG datasets, constituting the DOmain Shift in COntext
(DOSCO) benchmark. In particular, we observe that common visual domain shift is closely related
to contextual shift, and can be automatically detected using a neural network trained on the Places
dataset (Zhou et al., 2017). As suggested in the literature (Zhou et al., 2014), Places neural networks
can extract meaningful patterns associated with the composition of scenes, and hence visual con-
text. Unlike existing datasets that contain limited categories and types of domain shift, DOSCO is
more diverse in both dimensions: it covers broader categories—e.g., generic objects, fine-grained
categories like aircrafts and animals, and human actions—and a broader spectrum of domain shift
in terms of image style, background, viewpoint and object pose. Therefore, DOSCO offers a more
comprehensive toolkit to evaluate DG performance. More importantly, such an approach of synthe-
sizing domain shift can be applied to broad data (any vision dataset) at scale without much human
effort.

2 APPROACH

Tiny neural networks are much harder than large neural networks to train for DG applications due to
their small capacity. To mitigate the problem, we propose out-of-distribution knowledge distillation
(OKD). This simple idea significantly improves DG for tiny models while adding no extra parameter
to the model, keeping the deployment cost unchanged. Below we briefly review KD and then give
the technical details of OKD.
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(b) The teacher-student gap on out-
of-distribution (OOD) data.
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(c) The teacher-student gap on in-
distribution (ID) data.

Figure 1: Overview of the results of some DG and KD-based methods obtained using tiny neural
networks (i.e., MobileNetV3-Small) on the proposed DOSCO-2k benchmark. Our approach, out-
of-distribution knowledge distillation (OKD), shows significant gains over the other methods in
terms of both ID and OOD performance. The blue dashed lines in (b) and (c) denote the average
performance of the KD-based methods.

2.1 BACKGROUND ON KNOWLEDGE DISTILLATION

The main idea of KD (Bucilua et al., 2006; Hinton et al., 2015) is to use one or multiple (ensemble)
big models, called teacher, to guide the learning of a small model, called student—the latter is
more suitable for model deployment on resource-constrained devices, such as mobile phones or IoT
devices. From the technical perspective, KD adds an auxiliary loss function (typically a distance
measure) that encourages the student’s output to mimic the teacher’s output, along with a task-
related loss, such as the cross-entropy for classification.

Formally, let x denote an input (i.e., an image in our case) and y the label, the overall loss function
for KD can be written as

LKD = λH(y, fS(x)) + (1− λ)DKL(fS(x), fT (x)), (1)

where the first term is the cross-entropy loss, and the second term is the KL divergence between the
output of the student fS and teacher fT . λ is a balancing weight, which is often set to 0.1 in the KD
literature (Tian et al., 2020).

The prediction probability p for the input x is computed as

pi =
exp(zi/π)∑
j exp(zj/π)

, (2)

where z denotes logits, and π is a temperature parameter that softens the probability. The common
practice is to set π = 1 for the first term in Eq. 1 and π = 4 for the second term.

2.2 OUT-OF-DISTRIBUTION KNOWLEDGE DISTILLATION

The idea of OKD is simple: to teach the student how the teacher handles OOD data. This is vital for
distilling generalizable knowledge from the teacher to the student but is missing in the conventional
KD formulation.

Formulation Let A(·) denotes a data augmentation function, called OOD data generator, which
aims to make the input deviate from the support of the data distribution. The formulation of OKD is
as follows:

LOKD = λH(y, fS(x)) + (1− λ)(DKL(fS(x), fT (x)) +DKL(fS(A(x)), fT (A(x)))). (3)

Compared with KD in Eq. 1, OKD adds a third term in Eq. 3 for distilling the teacher’s knowledge
about OOD data, which only adds negligible overhead during training while leaving the inference
unchanged because the model architecture remains the same. See Figure 2 for an illustration of the
OKD framework.
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Figure 2: The main idea of out-of-distribution knowledge distillation (OKD) is to teach the student
how the teacher handles out-of-distribution data, which is synthesized using image transformations.

OOD Data Generator Collecting extra OOD data for downstream datasets is impractical, so we
use image transformations to synthesize OOD data. Specifically, we select a list of candidate trans-
formations, as visualized in Figure 4a, and conduct a thorough investigation to identify the best one
to be the OOD data generator A(·) in Eq. 3. It is worth noting that A(x) does not necessarily have
to maintain the semantics of x, e.g., we can use CutMix or Mixup that may produce images not be-
longing to any existing class. The reason why this works is that the teacher’s prediction (i.e., the soft
probability distribution) on the OOD A(x) also offers valuable insight for the student to learn. In
the future, it would be interesting to explore more sophisticated formulations for the augmentation
function, such as making it fully learnable.

3 DOMAIN SHIFT IN CONTEXT: THE DOSCO BENCHMARK

Motivation Building DG datasets from scratch is non-trivial: one needs to first define domain
labels—which are often difficult to describe using natural language—and then use them to collect
data from particular sources. As a result, existing datasets are limited in diversity for both categories
and types of domain shift—most are based on image style changes, such as PACS (Li et al., 2017),
OfficeHome (Venkateswara et al., 2017) and DomainNet (Peng et al., 2019).

Main Idea In computer vision, domain shift is often associated with visually perceptible changes
in, for example, image style, background, viewpoint, contrast, object pose, and camera setups, to
name a few. All these types of domain shifts can essentially be summarized as a shift in visual con-
text. Based on this idea, we design a simple pipeline, called DOmain Shift in COntext (DOSCO), to
automatically identify contextual information in images and thus create DG testbeds in an efficient
way. Specifically, the DOSCO approach first trains a neural network on the Places dataset (Zhou
et al., 2017) to extract contextual information in images, i.e., the composition of scenes that en-
capsulates all relevant image attributes mentioned above. Then, images are clustered using features
extracted by the neural network to synthesize domain labels.

Implementation Details We follow He et al. (2022) to fine-tune a ViT-Large model (Dosovitskiy
et al., 2020) on Places365 (Zhou et al., 2017), which was pre-trained on ImageNet (Deng et al., 2009)
using the masked autoencoders approach (He et al., 2022). The model is dubbed PlacesViT hereafter.
The DOSCO approach is then applied to seven image datasets widely used in transfer learning (Zhai
et al., 2019; Zhou et al., 2022b) and covering a diverse set of visual recognition problems: (1)
FGVCAircraft (Maji et al., 2013), (2) StanfordCars (Krause et al., 2013), (3) Caltech101 (Fei-Fei
et al., 2004), (4) Omni-Instrumentality (Zhang et al., 2022c), (5) Omni-Mammal (Zhang et al.,
2022c), (6) OxfordPets (Parkhi et al., 2012), and (7) UCF101 (Soomro et al., 2012). For each
dataset, the images within each class are clustered using K-means (K=10) based on the PlacesViT
features. For each class, a random 50/50 split on the domain labels is then performed to produce a
training set and a test set. A held-out validation set is randomly sampled from within the training set
using a 2 : 8 ratio. Each dataset has three random splits so average results over them will be used
for comparison. Example images can be found in Appendix A.1.
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Figure 3: Comparison of performance on in-distribution (ID) and out-of-distribution (OOD) data on
the DOSCO-2k benchmark. The results are obtained by an ERM model based on MobileNetV3-
Small.

The DOSCO Benchmark For brevity, we call the seven datasets P-Air, P-Cars, P-Ctech, P-Ins,
P-Mam, P-Pets, and P-UCF, respectively. “P” means these datasets are created using a Places neural
network. The results shown in Figure 3 illustrate that the synthesized train-test domain gaps signif-
icantly challenge the generalization performance of neural networks. Following Zhai et al. (2019),
we focus on transfer learning and thus create a 2k version of the datasets where the training and
validation data for each dataset consists of 2,000 images in total (1,600 for training and 400 for
validation).1 All experiments conducted in this paper use DOSCO-2k. Note that domain labels are
unavailable during training, which simulates a challenging yet realistic scenario.

4 EXPERIMENTS

Model Architectures We use MobileNetV3-Small (Howard et al., 2019) as the primary tiny
model throughout the paper, unless otherwise specified. ResNet50 (He et al., 2016) is used as the
teacher model for KD-based methods. We also evaluate using two other tiny models: MobileNetV2-
Tiny (Lin et al., 2020) and MCUNet (Lin et al., 2020), both specifically designed for MCUs. The
specifications of these models can be found in Table 1. All models (both teacher and student) are
pre-trained on ImageNet—since we focus on downstream transfer learning performance.

Training Details The batch size is set to 32. SGD with momentum is used as the optimizer. The
learning rate starts from 0.01 and decays with the cosine annealing strategy. The maximum epoch
is set to 100. Generic data augmentation methods are used, including random crop and flip. As
mentioned before, the balancing weight λ in Eq. 3 is fixed to 0.1, which has been used in most KD
methods (Wang & Yoon, 2021).

Baseline Methods Since DOSCO-2k does not provide training domain labels, we choose top-
performing DG methods that do not need such labels for training to compare, including (1) ERM,
(2) RSC (Huang et al., 2020), (3) MixStyle (Zhou et al., 2021), and (4) EFDMix (Zhang et al.,
2022b). We also compare with the classic logit-based KD method (Hinton et al., 2015).2

Model Selection Model selection is a critical step when evaluating DG algorithms (Gulrajani &
Lopez-Paz, 2020). We assume the model can only see source data during training, and use the
source-domain validation data for model selection. Specifically, the model with the best validation
performance achieved within the 100 training epochs is deployed on the test data.3

1We suggest that only the validation data should be used for parameter tuning for future work.
2Most other KD-based methods achieve similar performance with KD on DOSCO-2k (see Figure 1), so

they are excluded from the main tables for comparison.
3To better track the progress on our benchmark, we suggest future work should conduct hyper-parameter

tuning using the same model selection method, i.e., choosing parameters that give the best in-distribution
validation performance.
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(b) Results of the candidates on DOSCO-2k.

Figure 4: Investigating the best OOD data generator for OKD.

4.1 CHOOSING OOD DATA GENERATOR

A thorough experiment is conducted to identify the best OOD data generator for OKD. Specifically,
we compare some commonly-used image transformation methods, as listed in Figure 4a. These
methods meet our requirements on the OOD data generator as they can make images deviate from
the support of the data distribution but not completely disjoint—we show later that using completely
disjoint data does not help. The results, specifically the absolute improvements over KD, are shown
in Figure 4b. Most image transformation methods can bring some improvements except the two
noise-based methods, i.e., Gaussian noise and adversarial gradient. Adversarial gradient is worse
than Gaussian noise, suggesting that the teacher’s “knowledge” about samples close to the decision
boundary is not helpful—even the teacher itself would be confused by these examples. CutMix and
Mixup give the best performance and the combination of them further improves the performance.4
Compared with jigsaw, which destroys the global structure, Mixup maintains the global structure
to some extent while CutMix only twists the local statistics (like simulating occlusion), which are
probably why CutMix and Mixup are best for synthesizing “realistic” OOD examples.

4.2 MAIN RESULTS ON DOSCO-2K

The results on DOSCO-2k are reported in Table 2. The first block contains DG methods, which
were previously developed using large models only. In most cases, the two feature-based data aug-
mentation methods, i.e., MixStyle and EFDMix, achieve better performance than the regularization
method, RSC, which mutes most predictive subsets of neurons during training. Overall, our obser-
vations on the DG methods here echo those reported in a recent work that performed a fine-grained
analysis over various large models in DG (Wiles et al., 2022): (i) Not a single DG method can con-
sistently beat ERM, e.g., none of the DG methods outperforms ERM on P-Ins; (ii) Augmentation-
based methods are generally a better option to use. However, it is worth mentioning that when using
smaller models (see Section 4.4), the conclusions made here should be adjusted.

When it comes to the second block, which contains KD-based methods, the margins over the DG
methods and ERM are significant, demonstrating the potential of KD-based methods for solving
on-device DG. Compared with KD, OKD clearly shows more potential in tackling the problem, as
evidenced by the large margin. In sum, the results justify the effectiveness of the idea of teaching
the student how the teacher handles OOD data.

Nonetheless, there is still a 10% gap on average with the large model (i.e., KD’s teacher), which
means the problem of making tiny neural networks domain-generalizable is yet to be solved.

4CutMix+Mixup is implemented as αMixup(x) + (1 − α)CutMix(x) where α is sampled from a Beta
distribution. Unlike CutMix or Mixup, CutMix+Mixup may produce a mixture of three examples (see the
CutMix+Mixup example in Figure 4a).
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Table 2: Domain generalization results on DOSCO-2k using MobileNetV3-Small.

P-Air P-Cars P-Ctech P-Ins P-Mam P-Pets P-UCF Avg

ERM 21.3 18.2 78.6 38.5 34.4 67.0 42.2 42.9
RSC 23.0 20.8 79.0 38.0 34.9 68.4 42.9 43.9
MixStyle 24.6 22.2 80.9 37.5 32.3 67.3 43.7 44.1
EFDMix 27.3 23.4 80.4 37.0 32.3 67.3 42.8 44.4

KD 29.7 26.2 82.4 39.8 37.5 69.3 46.6 47.4
OKD 32.1 30.4 84.4 42.0 40.8 73.1 50.4 50.5
KD’s teacher 39.8 43.6 90.5 51.3 53.1 83.0 59.8 60.2

Bold denotes the best result in each column. OKD uses CutMix+Mixup as the OOD data generator.

Table 3: Domain generalization results on PACS and OfficeHome using MobileNetV3-Small.

PACS OfficeHome

A C P S Avg A C P R Avg

ERM 63.3 73.4 86.0 66.5 72.3 42.4 43.5 66.1 63.7 53.9
RSC 63.3 72.7 85.7 64.4 71.5 41.8 42.8 65.2 63.0 53.2
MixStyle 64.6 73.2 85.7 68.6 73.0 42.9 46.4 64.7 61.7 53.9
EFDMix 67.3 73.7 85.2 72.6 74.7 41.5 47.4 64.1 62.1 53.8

KD 64.4 73.8 82.9 73.2 73.6 43.6 46.7 67.9 66.6 56.2
OKD 70.3 76.4 87.0 73.6 76.8 49.1 48.5 71.5 70.1 59.8
KD’s teacher 77.4 79.9 92.9 78.1 82.1 57.7 53.3 73.9 74.7 64.9

Bold denotes the best result in each column. OKD uses CutMix+Mixup as the OOD data generator.

4.3 MAIN RESULTS ON PACS AND OFFICEHOME

Besides the new DOSCO-2k benchmark, we also conduct experiments on two commonly-used DG
datasets, i.e., PACS (Li et al., 2017) and OfficeHome (Venkateswara et al., 2017), using the leave-
one-domain-out evaluation protocol. The results are reported in Table 3, where the findings are
similar to those on DOSCO-2k.

4.4 ANALYSES

Table 4: Ablation study of OKD w/ Jigsaw.

k=4 k=16 k=64

Accuracy 48.3 46.9 40.5

k denotes the total number of patches to shuffle.

Image Transformation vs. External Data Sources
We have mentioned earlier that a key to making
OKD work is to not produce OOD samples that are
completely disjoint from the data distribution. To
validate this design choice, we conduct large-scale
experiments by training the OKD model in the fol-
lowing way: for each dataset on DOSCO-2k, we use
a different dataset as the OOD data source, and re-
peat such an experiment for all available OOD data
sources. Figure 5 shows the results, which confirm our assumption that the synthetic OOD samples
for OKD should fall within the vicinity distribution of the training samples (Zhang et al., 2017). We
further verify this assumption on the Jigsaw version of OKD by varying the number of patches to
shuffle (see Table 4): the more patches we shuffle, the farther away the synthetic data is from the
training data distribution (and hence worse performance).

Results of Other Tiny Architectures We further study DG for two other tiny neural networks,
i.e., MobileNetV2-Tiny and MCUNet, which are specifically designed for MCUs (Lin et al., 2020).
As shown in Table 1, these two architectures are half the size of MobileNetV3-Small, meaning
that their capacity is further shrunk down, and as a consequence, improving their DG performance
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Figure 6: Domain generalization results of (a) MobileNetV2-Tiny and (b) MCUNet.

would be much more challenging. We repeat the same experiments using these two architectures on
DOSCO-2k. The improvements of the DG and KD-based methods over ERM are shown in Figure 6.
Interestingly, the two feature-based data augmentation methods, which could beat ERM and RSC
when MobileNetV3-Small is used, are no longer competitive in this challenging setting. RSC, on the
other hand, is able to gain some improvements over ERM, but the improvements are only marginal
(less than 1%) and much smaller than those obtained with MobileNetV3-Small (cf. Figure 1a). Our
approach OKD still maintains its dominance and achieves non-trivial improvements over the strong
KD model for both architectures—this again strongly justifies the design of OKD and indicates its
potential.

5 RELATED WORK

We briefly review two areas closely related to our research, namely domain generalization (DG) and
knowledge distillation (KD). See Zhou et al. (2022a); Wang & Yoon (2021) for more comprehensive
surveys in these two areas.

Domain Generalization The majority of DG methods can be grouped into the following three
categories: (i) domain alignment, (ii) meta-learning, and (iii) data augmentation. Domain alignment
methods often employ a distance measure like Maximum Mean Discrepancy (Li et al., 2018b) or
adversarial learning (Zhang et al., 2022a) to reduce the feature distributions between two or multiple
source domains. Meta-learning methods, on the other hand, adopt the notion of learning-to-learn
and typically perform model learning using pseudo-source and pseudo-target data, which simulates
domain shift (Li et al., 2018a; Balaji et al., 2018; Dou et al., 2019; Shi et al., 2022). Data augmen-
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tation methods aim to diversify the training data, which is often achieved by learning a generative
model (Zhou et al., 2020b;a) or mixing data at the input (Xu et al., 2020b; Yao et al., 2022) or
feature-level (Zhou et al., 2021; Zhang et al., 2022b). More recent research has explored test-time
adaptation (Wang et al., 2020; Zhang et al., 2021; Iwasawa & Matsuo, 2021), which updates the
model on-the-fly using a test datapoint or minibatch, and multimodal learning, such as learning a
joint embedding space for image and language (Min et al., 2022).

Our research significantly differs from existing ones in that we focus on mobile DG applications,
and for the first time study DG for tiny neural networks. It is worth mentioning that existing DG
methods are mainly developed using large models, so it was unclear whether they can be applied to
tiny models, which have a much smaller capacity and hence are more difficult to train.

Knowledge Distillation KD is a popular technique used in model compression (Bucilua et al.,
2006) as well as other areas like semi-supervised learning (Chen et al., 2020). The most basic form
of KD is to minimize the KL divergence between the student and teacher’s outputs (Hinton et al.,
2015), as reviewed in Section 2.1. Several follow-ups extended KD by re-designing representa-
tions (to be transferred) based on, for example, hints (Romero et al., 2014), probabilistic distribu-
tions (Passalis & Tefas, 2018), attention maps (Zagoruyko & Komodakis, 2017), and mutual infor-
mation (Ahn et al., 2019). Some variants sought other useful knowledge sources like inter-instance
correlations (Tian et al., 2020; Park et al., 2019; Tung & Mori, 2019) or self-supervision (Xu et al.,
2020a).

More related to our work are data-free KD methods (Fang et al., 2021; Binici et al., 2022), which
typically use generative modeling to synthesize training data. Differently, our work addresses on-
device DG, a new problem that unifies DG and efficient model deployment. Our results unveil an
interesting find that has not been brought up in the KD literature: the teacher-student gap on out-of-
distribution data is larger than that on in-distribution data, which leads to concerns over mobile DG
applications and is thus worth further investigating.

6 CONCLUSION, LIMITATION AND FUTURE WORK

The paper presents a novel study on how to improve DG for tiny neural networks, which have been
overlooked by existing research. We show that current state-of-the-art DG methods do not work
consistently well for different tiny network architectures, e.g., MixStyle and EFDMix can improve
upon ERM when using MobileNetV3-Small, but their performance plunges below ERM’s when
it comes to two tinier architectures specifically designed for MCUs, i.e., MobileNetV2-Tiny and
MCUNet. Overall, the results suggest that tiny neural networks, which have small capacity and low
complexity, should be trained differently than their large counterparts. Our OKD framework, despite
having an extremely simple design that leverages well-known data augmentation methods and not
adding any additional parameter to the model, demonstrates great potential for solving on-device
DG. We believe our approach can serve as a strong baseline to build upon for future work.

Although OKD’s improvements are significant, the performance gap with large models is still
huge—about 10% differences compared with ResNet50 on DOSCO-2k. Therefore, on-device DG is
yet to be solved and many interesting questions can be explored in the future: Can we design more
advanced OOD data generators or even make them fully learnable? Is it possible to combine KD
with DG methods while pursuing efficacy? Will state-of-the-art generative models such as GAN
or diffusion models help? How about making model learning fully on-device, i.e., allowing model
updates to be performed on tiny devices? Or can we try some parameter-efficient designs that can
offer a good trade-off between performance and efficiency? Just to name a few.

BROADER IMPACT

The scaling of neural networks-based AI models often brings significant improvements in perfor-
mance but meanwhile can cause huge costs, both economically and environmentally. Our research
can help alleviate the above issue by making tiny AI models more generalizable, and hence more
comparable to their large counterparts so tiny models can be adopted more often in practice—to
achieve Green AI. Furthermore, our research not only opens new challenges to the domain gener-
alization community but also provides new insight to the area of knowledge distillation, and more
broadly, model compression.
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A APPENDIX

A.1 EXAMPLE IMAGES OF THE DOSCO BENCHMARK

Here we show example images of each dataset from the DOSCO benchmark:

• Figure 7: P-Air
• Figure 8: P-Cars
• Figure 9: P-Ctech
• Figure 10: P-Ins
• Figure 11: P-Mam
• Figure 12: P-Pets
• Figure 13: P-UCF

It is clear that different groups of images contain distinct visual contexts associated with background,
object pose, image style, viewpoint, etc.
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(a) 707-320. (b) F-16A B. (c) Model B200.

(d) BAE 146-200. (e) Cessna 172. (f) Fokker 50.

Figure 7: Example images from P-Air. Each row contains images with the same domain label (some
domains have less than five images).
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(a) 1999 Plymouth Neon Coupe. (b) 2009 Bentley Arnage Sedan. (c) 2012 Acura TSX Sedan.

(d) 2012 Mitsubishi Lancer Sedan. (e) 2012 Nissan NV Passenger Van. (f) 2012 Volvo C30 Hatchback.

Figure 8: Example images from P-Cars. Each row contains images with the same domain label
(some domains have less than five images).
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(a) Bass. (b) Bonsai. (c) Brain.

(d) Lamp. (e) Lobster. (f) Okapi.

Figure 9: Example images from P-Ctech. Each row contains images with the same domain label
(some domains have less than five images).
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(a) Cigarette Butt. (b) Door Handle. (c) Japanese Plane.

(d) Marker Pen. (e) Ski Pole. (f) Tea Bowl.

Figure 10: Example images from P-Ins. Each row contains images with the same domain label
(some domains have less than five images).
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(a) Border Terrier. (b) European Hare. (c) Japanese Cat.

(d) Killer Whale. (e) Labradoodle. (f) Orangutan.

Figure 11: Example images from P-Mam. Each row contains images with the same domain label
(some domains have less than five images).
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(a) Abyssinian. (b) Beagle. (c) Chihuahua.

(d) Miniature Pinscher. (e) Pomeranian. (f) Scottish Terrier.

Figure 12: Example images from P-Pets. Each row contains images with the same domain label
(some domains have less than five images).
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(a) Baby Crawling. (b) Boxing Punching Bag. (c) Fencing.

(d) Floor Gymnastics. (e) Jump Rope. (f) Playing Cello.

Figure 13: Example images from P-UCF. Each row contains images with the same domain label
(some domains have less than five images).

20


	Introduction
	Approach
	Background on Knowledge Distillation
	Out-of-Distribution Knowledge Distillation

	Domain Shift in Context: The DOSCO Benchmark
	Experiments
	Choosing OOD Data Generator
	Main Results on DOSCO-2k
	Main Results on PACS and OfficeHome
	Analyses

	Related Work
	Conclusion, Limitation and Future Work
	Appendix
	Example Images of the DOSCO Benchmark


