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Reference-based super-resolution (RefSR), significant success has been achieved in the field of super-resolution.
It reconstructs low-resolution (LR) inputs using high-resolution reference images, obtaining more high-
frequency details and alleviating the ill-posed problem of single-image super-resolution (SISR). Previous
research in the RefSR has mainly focused on finding correlations, transferring, and aggregating similar texture
information from LR reference (Ref) the LR. However, an essential detail of perceptual loss and adversarial loss
has been underestimated, impacting texture transfer and reconstruction negatively. In this paper, we propose
a feature reuse framework, FRFSR, which divides the model training into two steps. Firstly, the first model is
trained using reconstruction loss to enhance its texture transfer and aggregation abilities. Secondly, using all
losses for training, the feature output of the first model is reintroduced into the training process to supplement
texture, generating visually appealing images. The feature reuse framework is applicable to any RefSR model,
and experiments show that several RefSR methods exhibit improved performance when retrained with our
reuse framework. Considering that the textures in the reference are not entirely consistent with those in the
LR, this naturally leads to the problem of texture misuse. Therefore, we design a Dynamic Residual Block
(DRB). The DRB utilizes the feature perception capability of decoupled dynamic filters to dynamically aggregate
texture information between LR input and Ref images, reducing instances of texture misuse. The source code
can be obtained from https://github.com/Yi-Yang355/FRFSR.

1. Introduction

image [1,2]. Reference-based super-resolution (RefSR) alleviates the
inherent problem of SISR to a certain extent by using an additional

Single Image Super-Resolution (SISR) involves generating a
high-resolution image with high-frequency information from a low-
resolution (LR) input. The practical significance of SISR in various
contexts such as medical imaging and surveillance is notable. Based
on the optimization criteria, the approaches of SISR can be divided
into two categories. One approach optimizes pixel-level errors such as
mean squared error (MSE) and mean absolute error (MAE), potentially
resulting in images that are too smooth, and the other approach
involves visual perception-based errors such as perceptual loss and
adversarial loss. The latter results in images with better visual effects
and greater alignment to human visual perception but may produce
artifacts and unrealistic textures. These approaches face the inherent
problem of SISR the ill-posed nature of the problem because different
high-resolution images can be degraded to the same low-resolution
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high-resolution reference (Ref) image to transfer relevant textures and
achieve super-resolution. Methods of obtaining relevant Ref images
are varied and include web search and video frames. RefSR has two
primary limitations that compromise its performance. The first one
is accurately finding the correspondence between the LR and Ref.
Some existing methods address this through spatial alignment, such as
CrossNet [3], which utilizes optical flow estimation to align LR and
Ref, and SSEN [4], which employs deformable convolutions to learn
adaptive LR and Ref alignment. Other methods, such as SRNTT [5],
TTSR [6] adopt dense patch matching algorithms for patch matching
to find corresponding matches, whereas MASA [7] employs a coarse-
to-fine matching approach for reducing computational requirements.
However, obtaining accurate matching is challenging due to differences
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in resolution and texture distribution. C2-Matching [8] uses knowledge
distillation and contrastive learning to train a feature extractor, and a
combination of patch matching and deformable convolution to improve
the accuracy of correspondence matching. The second challenge is
effectively transferring texture features. TTSR proposes a cross-scale
feature integration module that conveys texture information using
multiple texture transformers in a stacked manner, whereas MASA uses
a spatial adaptive module to remap the aligned Ref feature distribution,
ensuring robustness to different color and brightness distributions.
Additionally, DATSR [9] replaces the traditional ResBlock with the
Swin-Transformer [10], resulting in considerable improvements in
model performance.

Although deformable convolution [11,12] is capable of learning
implicit alignment between feature maps LR and Ref, it still faces
challenges in aligning distant features. Furthermore, existing RefSR
methods effectively prioritize aggregating textures over reconstructing
their own textures. It is also important to note that during the feature
aggregation process, the ResBlock treats all pixel features equally,
resulting in the introduction of irrelevant textures from the Ref image.
Even with DATSR replacing ResBlock with Swin-Transformer, the win-
dow self-attention calculation will noticeably increase the parameters
and runtime.

To address these three issues, we first do not make any modifica-
tions to the deformable convolution, but instead shuffle the reference
image, thereby indirectly increasing the distance between similar fea-
tures, increasing the training difficulty and improving performance;
secondly, inspired by TADE [13], we use single-image feature embed-
ding to assist the LR inputs to self-reconstruct their features while
mitigating the introduction of irrelevant textures. Finally, we introduce
a new feature aggregation module, namely Dynamic ResBlock (DRB).
Specifically, the DRB module adds a group of decoupled filters to
the residual block, which can aware texture information in both the
spatial and channel domains, and then adaptively aggregate relevant
textures, further reducing the introduction of irrelevant information
such as noise, wrong textures, etc. In addition, we employ residual
blocks with an Enhanced Spatial Attention (ESA) after the decoupled
filters to enhance the relevant texture information.

In addition to the aforementioned points, most previous works
overlook a crucial fact: the increase in perceptual loss and adversarial
loss adversely affects the texture transfer and reconstruction effects. To
fully utilize the texture transfer and reconstruction abilities of the re-
construction loss-trained model, we propose a feature reuse framework
FRFSR. In the training and testing process of RefSR, with three types
losses L, + L, + L 4q,, We will provide feature feedback to the feature
aggregation process from the RefSR; trained with only one loss L,,..
This maneuver effectively diminishes the impact of perceptual and
adversarial losses on texture transfer and reconstruction. In summary,
this paper’s primary contributions are:

1. We introduce a feature reuse framework that effectively miti-
gates the degradation of texture reconstruction from the applica-
tion of perceptual loss and adversarial loss. We apply this frame-
work to various RefSR methods, which have shown consistent
improvements in performance.

2. To enhance the reconstruction of LR’s self-texture and main-
tain texture relevance, we utilize a single-image feature embed-
ding module. Unlike the approach used by [13], we exclude
feature upsampling and final image reconstruction processes
in this module, and focus solely on embedding the LR’s own
reconstructed features into the aggregation process.

3. We designed a dynamic residual block and introduced it into the
texture adaptive module. This block applies decoupled dynamic
filters and enhanced spatial attention to selectively perceive and
transfer textures from the Ref image. This approach adaptively
reduces the likelihood of introducing incorrect textures.
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4. Our method achieved state-of-the-art (SOTA) performance in
multiple benchmarks, demonstrating significant improvements
in robustness to unrelated reference images and long-range fea-
ture alignment. Notably, even without the single image feature
embedding module, our method still achieved SOTA perfor-
mance in CUFEDS.

2. Related work
2.1. Single image super-resolution

Single image super-resolution (SISR) aims to input a single LR
image and reconstruct it to an image with high-frequency details.
Before the emergence of deep learning, traditional methods such as
various interpolation methods were usually used. With SRCNN [14]
first using deep learning methods to perform super-resolution, deep
learning-based super-resolution began to appear in large numbers.
Later, ResNet [15] appeared, which deepened the network layers.
EDSR [16], CARN [17] and other methods added residual structure
in super-resolution models, thus improving the performance of super-
resolution. After this, the attention mechanism merged, which can
make the network selectively focus on some features and appropriately
ignore unnecessary features. RCAN [18] was the first to apply the
attention mechanism to super-resolution. Additionally, the game theory
approach used by GAN [19] has enabled GAN-based super-resolution
models, such as SRGAN [20], ESRGAN [21], RankSRGAN [22], AM-
PRN [23], and Real-ESRGAN [24] to deliver enhanced perceptual
quality in produced images. Recently, SRGAT [25] used the graph
attention network to help LR recover additional textures from neighbor-
ing patches. TDPN [26] utilizes a texture and detail-preserving network
that preserves texture and detail while the features are reconstructed.
However, the SISR problem is ill-posed, with low-resolution (LR) and
super-resolution (SR) having a one-to-many relationship.

2.2. Reference-based image super-resolution

The biggest difference between RefSR and SISR is that the former
has an additional high-resolution Ref image. The RefSR can transfer
texture details from the Ref image to LR to help LR reconstruction, and
these texture details should be similar to the ground truth (GT). Cross-
Net [3] twists the reference image and LR to align them through the
flow estimation network. SSEN [4] uses deformable convolution [11,
12] to align LR and Ref images. RRSGAN [27] utilizes deformable
convolutions to align the Ref and LR features. It also employs a Cor-
relation Attention Module (RAM) to enhance the model’s robustness
in different scenarios. Both of these methods are implicit alignment,
and some work performs feature matching between LR and Ref to
achieve explicit alignment. SRNTT [5] enumerates patches to transfer
multi-scale reference features. CIMR-SR [28] employs a content inde-
pendent searching the local matched patterns. E2ENT [29] constructs
a match and swap module to obtain similar texture and high-frequency
information. TTSR [6] introduces the Transformer architecture to more
reasonably transfer reference features by combining soft and hard
attention. MASA [7] uses a matching method from coarse to fine to
reduce the computational complexity and a spatial adaptive module is
used to make the transferred texture closer to GT. However, due to the
resolution gap between the LR and Ref image, the matching perfor-
mance is affected. C2-Matching [8] introduces knowledge distillation
and contrastive learning methods, which greatly improve the match-
ing robustness between LR and Ref. WTRN [30] utilizes the benefits
of wavelet transformation to categorize features into high-frequency
and low-frequency sub-bands, which facilitates the transfer of texture
patterns with more effectiveness. TADE [13] uses a decoupling frame-
work, which divides RefSR into two parts: super-resolution and texture
migration, which alleviates the two problems of reference-underuse
and reference-misuse. However, it does not take into consideration
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the lack of detailed textures in the super-resolution image, which
results in inaccurate matching between SR and Ref. DATSR [9] uses
the Swin-Transformer [10] to replace the traditional ResBlock for
feature aggregation. ERVSR [31] introduces an attention-based fea-
ture align module and an aggregation upsampling module for video
super-resolution that attends LR features using the correlation be-
tween the reference and LR frames. Recently, RRSR [32] implemented
a reciprocal learning strategy, thereby strengthening the learning of
the model. [33,34] enhance the detail quality of input images by
transferring texture details from multiple reference images. Reviewing
the existing research findings, it can be seen that first, the existing
methods do not fully take into consideration the textural dissimilarities
between LR and Ref, so it is still inevitable that irrelevant textures
are introduced in the texture transfer process. Second, existing studies
have focused on improving the accuracy of matching and the ability
of texture transfer, but few studies have focused on the texture detail
reconstruction of LR itself. Third, no one has noticed that adding
perceptual loss and adversarial loss will lead to a decline in the texture
reconstruction effect. To address the aforementioned issues, we propose
a dynamic residual block (DRB) to perceive texture information, adap-
tively transfer and aggregate relevant textures and suppress irrelevant
textures and reconstruct their own features by embedding single-image
feature reconstruction LR features. In addition, we propose a feature
reuse framework to improve the texture reconstruction effect under
perceptual loss and adversarial loss supervision.

2.3. Dynamic weights

Unlike the weight sharing in conventional convolutions, dynamic
filters [35-39] have content-aware characteristics and are capable of
dynamically adjusting and predicting filter weights based on input
features. The dynamic weights approach has been successfully applied
in various works, such as super-resolution [40-42], image deblur-
ring [43], image denoising [44], adaptive modulation [45,46] and
style transfer [47], because of its powerful representation and content-
awareness capabilities. The work in [32], which introduces a set of
reference-aware filters for selecting reference features to identify the
most suitable texture, is strongly related to our study. However, the
generation of these filters is computationally expensive due to their
deep separable and spatially changing nature, leading to high time
consumption. Inspired by [38], we propose to decouple the spatial and
channel domains and use spatial and channel attention to dynamically
filter each pixel, extending this to texture-adaptive aggregation.

3. Methodology
3.1. Feature reuse reconstruction framework

Firstly, we discovered that RefSR struggles to reconstruct high-
frequency details from the LR image (I,p) itself. To address this
issue, we utilize an SISR method without upsampling called SIFE to
reconstruct fine texture features F,;,, from I, g. These reconstructed
features are then integrated into the reconstruction process of the
reference-based super-resolution. This approach not only supplements
the difficult to reconstruct texture details in RefSR but also helps to
limit the introduction of irrelevant textures to some extent.

Fype = SIFE(, ). e))

We chose the same SISR baseline used in [13] to ensure a more
equitable comparison. Nevertheless, we removed the last upsampling
stage which is present in SISR.

Previous work has shown that feature reuse [15,48-51] prevents
the vanishing gradient issue in deep networks to enhance network
learning and parameter efficiency by inputting previous layers’ features
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into subsequent layers. Various computer vision tasks, such as super-
resolution [52], image compression [53], and image restoration [54],
utilize the characteristic of feature reuse to enhance the efficiency and
effectiveness of their models. Prior studies have shown that SR images
which are produced using only reconstruction loss are much more
detailed in texture compared to those generated by models that use
perceptual and adversarial losses. To address this issue, we propose
to utilize a pre-trained model Ref SR, that generates SR feature maps
with fine textures through reconstruction loss only, and integrate them
into the second model trained with three types losses to supplement
texture reconstruction and accelerate convergence of the second model
RefSR,, as shown in Fig. 1. Therefore, we extend feature reuse to the
training process of the second models. In summary, first, we input the
LR image Iz, Ref image Ip,, and the features F;,, extracted by a
pre-trained SIFE network into the network to obtain the reconstructed
high-resolution features F.°c, which is then convolved to generate the

SR’
output image I In this process, we only train the RefSR model with
reconstruction loss, consistent with previous Ref.SR; methods.

Fgz = RefSR, (ILRsIRef’Fsife)’ 2
I, = Conv(Fgp). 3

At this stage, we have obtained a super-resolution network that
exhibits impressive texture transfer and reconstruction capabilities.
However, to produce high-quality perceptual images, supervision using
perceptual and adversarial losses is typically required. Finally, to fur-
ther enhance RefSR,’s texture transfer and reconstruction capabilities,
we generate F¢ with refined texture details using Ref SR, and then
incorporate this feature map back into the training of the Re f SR,. Note
that in this process, the Re /SR, and SIFE are only responsible for infer-
ence and does not participate in weight updating. The aforementioned
process can be represented as follows:

I¢% = Conv(RefSRy(I g Iposs F556o Fyiro))- 4

Utilizing this framework, we have built Ref SR, with efficient texture
transfer and reconstruction performance, RefSR, with efficient per-
ceptual reconstruction performance. Through feature reuse, the FRFSR
model was collaboratively constructed, achieving a significant improve-
ment in both qualitative and quantitative experiments with reference
super-resolution. In the ablation study, we apply this framework to
MASA [7] and C?-Matching [8], demonstrating a significant improve-
ment in their performance.

3.2. Correlation-based texture warp

For the RefSR task, a large part of the work is focused on accurately
finding the matching correspondence between the LR image and the
Ref image. This is crucial for subsequent texture transfer. We use
the correlation based texture warp, also known as the CTW block,
for matching correspondence, as shown in Fig. 2. Then, we use a
parameter-sharing texture encoder to extract the texture features of
LR and Ref images and generate FZEI’(‘T e REHLrRWLgp, Flffexf €
RE*HrerWrer  We keep the texture encoder consistent with [8] because
its training method of knowledge distillation and contrastive learning
alleviates the problem of inaccurate matching between LR and the ref-
erence image due to different resolutions, and enhances the robustness
of matching. Then, the texture features FFE‘T and F;:f are respectively
unfolded into / (Hp,; X Wg,,) patches to obtain {0,.0,.0;,....0,},
{Kl, K. K;, ..., K,}. The cosine similarity between Q,, and each patch
K, is calculated using the inner product formula to form the similarity
matrix M,,, € R'.

Fien, Fioxy = unfold (Fi Fisa, ) ®)

ptex T ptex _ Qm KVI
My =5, (Ficay 'F;eef>_<M’m>’ 6)
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TAM  Teature Alignment Module

DRB  Dynamic ResBlock Module

Bicubic

Fig. 1. The architecture of our FRFSR. We first utilized SIFE to reconstruct the features of the I, , obtaining Fj;,, which was then embedded into two RefSR models. We eliminated
the upsampling and image reconstruction process in SIFE. Next, RefSR; was trained solely using the reconstruction loss (-rec) and then all loss was utilized in training RefSR,.
We feed back Fg, which RefSR, reconstructed, during the process into the feature aggregation process to guide RefSR, in retaining more texture features.
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Fig. 2. The architecture of the correlation-based texture warp (CTW).

where FE’;T and F]’eee"f respectively represent the patch features of Fiel)ch
and F'°*. after being split into patches. 22 and <o respectivel
Ref 8 P P Toall 7 Tk, FePectively

represent the normalized features of the mth patch in F£e£1 and the nth

tex T
LRT

the most

patch in ﬁl’fe"f, and (-, -) represents the inner product operation. F

denotes the transposs: of Fﬁr For a given patch Q,, in Fﬁ‘T,
similar patch K, in F;{;‘f can be found and recorded as P . The index
matrix P = {P! P2 ... Pl 1 € Ris formed by recording the

indices of these most similar patches.

pmn =

max ~ @

argmax M,, ,,
n

where M,, , represents the confidence score of patch K|, corresponding
to patch Q,, which is most similar to it. All P form the index matrix
P. To use optical flow to initially warp the reference features, we need
to convert the index matrix P into flow information. The process is
shown below:

(gng) =G(WLR’HLR)’ (8

F = [P mod WLRT; LPy WLRJ] - [gx’gy] : ©)

where [;] represents the concatenation of two vectors, G(-) represents
the grid function, which generates a grid with a width of W;; and
a height of H;, x and y denote the coordinate values along the
height and width of the grid, The symbols represent the mathematical
operations of module and floor division, respectively, and 7 represents
the flow information.

Finally, we select three different scales of feature maps Fg,, ex-
tracted by the pre-trained VGG19 [55]. The reason for choosing VGG19
is that it has a strong feature extraction ability and does not require
training of additional feature extraction modules. Furthermore, by
utilizing flow information at various scales, we distort three reference
features Fy, . at respective scales using optical flow, obtaining three
features The detailed procedure is as follows:

(Gh;’Gh;) =G (W, H,).

WL = split ([Gh;,Gh;] -7).

(10)

an
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(a) Texture Alignment Module
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(b) Dynamic ResBlock Module

Fig. 3. The structure of the feature alignment module (FAM) and Dynamic ResBlock Module (DRB).

2% N 2xh)
G, = = -1 -1], 12)
max(VVr—l,l) max(H,—l,l)
Frop = W(Frops G, ) as)

where, H, and W, represent the height and width of the rth scale Fp, -
respectively, split(-) represents the separation of two vectors according
to the concatenated channels and W(-,-) represents the optical flow
warping function.

3.3. Texture-adaptive aggregation module

Using an effective texture transfer based on a corresponding match-
ing relationship is another important goal of the RefSR task. To more
effectively transfer and aggregate the textures in reference images, we
propose a multi-scale dynamic texture transfer module, as shown in
the gray background in Fig. 1. In our module, we utilize the multi-
scale characteristics to progressively aggregate texture features from
multi-scale reference images and learn to generate richer textures.
Unlike the direct texture transfer methods used in [5,6], we use specific
deformable convolutions [11,12] for texture alignment between F;p
and Fy, . for RefSR tasks, and finally use several Dynamic ResBlock
modules to complete texture transfer and aggregation.

3.3.1. Texture alignment module

The image texture offset is typically calculated as the data distribu-
tion difference between the source-domain block and the target-domain
block. However, due to the lack of positional constraints during the
distortion process, the characteristic textures of F . and F Re; MAY
differ from those of F . to obtain the offset required for deformable
convolution, we concatenate F g, F, o and F; ; Ref to obtain the offset
AP,.

To more accurately transfer the texture features in the multi-
scale reference feature Fy, ;> We use specific deformable convolu-
tion designed for RefSR to achieve multiple domain-specific mappings
Fir— Fg, = F;ze = accurately mapping to the corresponding domain
for texture alignment. As shown in the flowchart in Fig. 3(a), To
achieve accurate alignment, the texture features of F;, are mapped
to Fp, f3F1ree = The required offset for the mapping F; z — f}rze f;Fl’ee ;
is obtained by aligning the feature distributions of Fy, o F Re ; using
deformable convolutions. We concatenate Fjp, Fy, = and F Re = to
obtain the stable offset AP,. This is because using the optically distorted
reference feature to guide deformable convolution [56] training can

make the training process more stable.

AP; = cOnu<COnu<[FLR;F§ef; F;W])), a4

where Conv (-) represents the convolution layer. After this, for each
patch P;y in LR, we used the previously obtained index matrix P to
find the corresponding most similar patch Pg,, in Fy, .. We use AP
to represent the spatial difference between P, p and Py, , that is, AP =
Py g—Pg,, which is the pre-offset output by CTW. Finally, the improved
deformable convolution is used to aggregate P, and its surrounding

textures. The specific process is shown below:

G K
Fl =Y Y o, x; (Pr+ AP+ P+ APF) - dnt, as)
g=1k=1
where G represents the number of groups, K denotes the total number
of sampling patches, and k enumerates the sampling patch. o, denotes
the shared patch irrelevant projection weight of each group, and Am’;
denotes the normalized modulation scalar of kth the sampling patch in
the gth group, x, represents the sliced input feature map. AP;c is the
offset corresponding to the grid sampling patch P, in the g-th group.
By using deformable convolutions to guide the learning of offsets, it
becomes possible to calculate the offsets more accurately and achieve
texture alignment between Pp g and Ppg,,, the surrounding textures of
the most similar patches in each corresponding reference feature can
be aggregated, fully utilizing the contextual information in each patch,
thus providing a guarantee for subsequent texture transfer.

3.3.2. Dynamic ResBlock module

To effectively aggregate the features of F g, F,,, and Fy;,. We
propose DRM for self-adapting transfer and aggregating related texture
features. Furthermore, to address the challenge of RefSR difficulty in re-
constructing high-frequency information from LR alone, we incorporate
the output feature Fy;, of SIFE during aggregation. This feature repre-
sents the reconstructed features of LR itself, as shown in the flowchart
in Fig. 3(b). Specifically, we concatenate the aligned texture feature F,,,
with Fyp and F;,, and input them into a convolution layer. Then, we
use the dynamic residual block to transfer and aggregate the related
textures in the reference feature to obtain the output F,,. It is worth
noting that we only embed Fj;,, in the DRB module corresponding to
the smallest scale, that is, only the feature mapping of the smallest scale
is used. The other DRB modules at other scales only aggregate F; p and

F,,, features.

e = DRB<Canv<[Fm;FLR; FWB]>> +Fyp. a6)

To train the second model, we reused the feature map Free created
by the first model. As a result, we added this feature map to the feature
aggregation process to enhance the texture features. Eq. (16) can be
expressed in the following form:

Fa”;; = DRB<C0nv([F,EX;FLR; Fiifes F;gf;])) + Fyp. an

The DRB module consists of two decoupled dynamic filters and a
ResBlock with an ESA (Enhanced Spatial Attention) [57]. In the DRB
module, we do not utilize standard convolutions or dynamic filters.
The main reason is that standard convolutions lack content aware-
ness and have high computational complexity. Dynamic filters address
content adaptation but significantly increase computational complex-
ity. To overcome these limitations, we introduces lightweight decou-
pled dynamic filter that enhances content-aware perception through
lightweight spatial and channel attention branches. Moreover, The
parameter count of the dynamic decoupled filters is consistent with that
of traditional convolution. The decoupled dynamic filter are shown in
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Fig. 4. The structure of dynamic filter module (DFM). ‘FC’ denotes the fully connected
layer and ‘GAP’ denotes the global average pooling. ‘FN’ denotes filter normalization.

Fig. 4, inspired by the significant advancements brought by attention
mechanisms, by decoupling the dynamic filters into channel filters and
spatial filters, we can effectively perceive the related texture content
between Fpg, F,, and Fj;,, while addressing the issue of computa-
tional intensity. The spatial dynamic filter and channel dynamic filter

can be represented by the following equations:

HY = 3 3 fog )X F ey + b as)
j ¢

H = 3 % feplio )X Fjoy +b. 19
< 7

where H*/(-) denotes to the spatial dynamic filter, H¢/(-) denotes the
channel dynamic filter at cth channel, b, is the bias vector, ¢ represents
the number of channels. the bias vector » remains unchanged at the
channel. Then the routing weight and the final aggregated features can
be generated:

F. =W, x F,, (1)

tex

where, H ff and Hff represent the values obtained from the spatial
and channel filter branches, respectively, after normalization is applied,
while W, = (W, W,,...,W,) denotes the routing weights. y5/, y/,
p*/, and p¢/ are similar to BN [58] and specify the learnable mean and
standard deviation of the two branches. ‘©’ and ‘«’ are used to denote
element-wise multiplication and the filter application, respectively.

After the decoupled dynamic filtering, we have effectively perceived
the relevant texture content between Fyg, F,,, and Fy; ;. However, as
shown in the feature visualization in Fig. 13, although the dynamic
filter can effectively perceive and aggregate relevant reference textures,
it also leads to texture misuse. Therefore, we embedded ESA into
the residual block, as shown in Fig. 5, to enhance the related tex-
ture features of F; z, aggregate reference features with high relevance
while suppressing interference features with low relevance. We also
conducted experiments to demonstrate its effectiveness, and the feature
visualization of the ESA module in Fig. 14 shows that ESA can sharpen
features and weaken the introduction of irrelevant textures. It is worth
noting that this attention module is lightweight and only adds a small
number of parameters.

ESA has been proven to be efficient and effective in previous
work [57,59]. This is because it uses 1 x 1 convolution and 3 x 3 con-
volution with a stride of 2 to compress the channel size and spatial size
respectively, and further reduces the feature size using max pooling.
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This attention-based texture-adaptive aggregation method not only
transfers and fuses effective textures from reference images and reduces
interference from irrelevant textures, it also ensures that the features
Fy; s, reconstructed by the SISR method are well integrated into Fjg.
By aggregating F;,, features, it not only makes up for the defect
that reference-based super-resolution is difficult to reconstruct its own
texture, it also suppresses the generation of irrelevant textures to a large

extent.
3.4. Loss functions

Reconstruction loss. To ensure the model has an excellent texture trans-
fer ability and image reconstruction ability, we use the following
reconstruction loss to train the model.

£ = |Igr—Isrll; - (22)

where I represents the ground truth image, I, represents the super-
resolved image. ||-||; represents /; norm. Only using reconstruction loss
to train the model will cause the image to be too smooth.

Perceptual loss. By calculating perceptual loss [60] in the feature do-
main, the generated image can be more semantically similar to GT.
Perceptual loss is shown as follows:

Ma

1
) 1H¢i(]HR)—¢,.(ISR)”F, (23)
1
where ¢;(-) represents the ith intermediate layer of VGG19 [55]. |||l ¢
represents Frobenius norm, C and V represent the number of channels

and volume of feature maps respectively.

Adversarial loss. The generator G and discriminator D improve to-
gether in a game against each other, ensuring the model is able to
generate output images with pleasing visual effects. The adversarial loss
we choose is WGAN [61], which is shown as follows:

£ = —D (Igg) . 24)

During the training process, the loss of discriminator D is shown as
follows:

LP =D (Isg) - D (Igr) +’1<‘|ViD(f)|‘z - 1)

where V; represents the random convex combination of Iy, and Igp.
Finally, the total loss function is shown as follows:

LU = QL7+ M LPT 4 AL, (26)

2
, (25)

where 4, 1,, and 15 are respectively the weight coefficients for each
loss.

4. Experiments

This section commences by presenting the datasets essential to the
training and testing of the models. We utilized PSNR (Peak Signal to
Noise Ratio), SSIM (Structural Similarity), and LPIPS (Learned Percep-
tual Image Patch Similarity) as quantitative comparison metrics. PSNR
serves as a metric for evaluating image quality, while SSIM quantifies
the structural similarity between two images. Their formulas are shown
as (27) and (28) respectively. LPIPS is also commonly employed to
measure perceptual similarity between two images, making it more
aligned with human perception. Its formula is consistent with the
perceptual loss. Subsequently, we comparatively analyze several super-
resolution methods along various aspects for our approach. Ablation
studies are conducted on the SIFE and DRB components, along with the
feature reuse framework. Lastly, we evaluate the efficacy of our pro-
posed approach against other super-resolution methods in a practical
implementation.

2552
PSNR(Iyg,Igg) =10-log;g(—————) 27)
HR- 1SR 810 MSE(IypIsp)
(ZHIHR'MISR + cl)(zngRGISR +¢)
2 2
Iyr Isr

SSIM(Iyg,Isg) = (28)

+c)

(u + ”%SR + cl)(aiHR +o
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Fig. 5. The structure of Enhanced Spatial Attention (ESA).

Table 1

PSNR/SSIM are the evaluation metrics uesd to compare the other methods quantitatively. The model is trained using only reconstruction loss

(-rec). Text highlighted in bold indicates the most favorable outcome.

Method CUFED [5] SUNB8O0 [64] Urban100 [62] Manga [63] WR-SR [8]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
SRCNN [14] 25.33/0.745 28.26/0.781 24.41/0.738 27.12/0.850 27.27/0.767
EDSR [16] 25.93/0.777 28.52/0.792 25.51/0.783 28.93/0.891 28.07/0.793
ENet [65] 24.24/0.695 26.24/0.702 23.63/0.711 25.25/0.802 25.47/0.699
RCAN [18] 26.33/0.781 29.97/0.814 25.99/0.787 30.11/0.908 27.91/0.793
RRDB [21] 26.41/0.783 29.99/0.814 25.98/0.788 29.87/0.907 27.96/0.793
Cross-Net [3] 25.48/0.764 28.52/0.793 25.11/0.764 23.36/0.741 -
SSEN-rec [4] 26.78/0.791 - - - -
SRNTT-rec [5] 26.24/0.784 28.54/0.793 25.50/0.783 28.95/0.885 27.59/0.780
TTSR-rec [6] 27.09/0.804 30.02/0.814 25.87/0.784 30.09/0.907 27.97/0.792
MASA-rec [7] 27.54/0.814 30.15/0.815 26.09/0.786 30.28/0.909 28.19/0.796
C2-Matching-rec [8] 28.24/0.841 30.18/0.817 26.03/0.785 30.47/0.911 28.32/0.801
WTRN-rec [30] 27.33/0.810 30.11/0.816 26.00/0.787 30.37/0.909 -
TADE-rec [13] 28.64/0.850 30.31/0.820 26.71/0.807 31.23/0.917 28.34/0.805
DATSR-rec [9] 28.72/0.856 30.20/0.818 26.52/0.798 30.49/0.912 28.52/0.807
RRSR-rec [32] 28.83/0.856 30.13/0.816 26.21/0.790 30.91/0.913 28.41/0.804
FRFSR-rec (Ours) 29.18/0.865 30.35/0.822 26.84/0.811 31.15/0.917 28.67/0.811

4.1. Datasets and metrics

4.1.1. Training dataset

We use CUFED [5] to train our model, which consists of a total of
11,871 image pairs, comprising 11,871 input images along with their
corresponding reference images, each with a resolution of 160 x 160.

4.1.2. Testing dataset

Our study evaluates the efficiency of our model across five bench-
mark datasets: CUFED5 [5], Urban100 [62], Mangal09 [63], Sun80
[64], and WR-SR [8]. CUFEDS5 contains a total of 126 input images,
each accompanied by five reference images of decreasing relevance,
denoted as L1-L4. Urban100 comprises primarily 100 urban images
known for their strong self-similarity. During testing, we utilized the
low-resolution input images themselves as reference images. Mangal09
consists of 109 manga images commonly used in super-resolution tasks.
We randomly select one image from the remaining 108 images as
the reference image. For Sun80 consists of 80 natural images, with
each input image having 20 corresponding reference images. During
testing, we randomly selected one reference image for evaluation. WR-
SR, proposed in [8], offers a richer variety of scenes and categories
compared to CUFEDS. It consists of 80 pairs of input images and
reference images, providing a more comprehensive evaluation of RefSR
performance. Our metrics for evaluation consisted of PSNR and SSIM
calculated on the Y channel in the YCbCr color space.

4.1.3. Implementation details

To obtain the LR inputs, we downsample the HR images by a
scale factor of 4. For data augmentation, we apply horizontal flip,
vertical flip, and random rotation. To increase the training difficulty
and improve the performance of long-distance feature alignment, we
divide the reference images into patches and shuffle them randomly.
We use the official RRDB [21] parameters as the pre-trained model
for the single image feature embedding module, which we train in two
stages. First, we use £ as the only loss function. Second, we use £,
£rer, and £%° for joint supervision. During the training process, we
choose the Adam optimizer and set the f#; and f§, parameters to 0.99

and 0.999, respectively. We set the initial learning rate of the model to
le—4 and the batch size to 9. The weights 4,, 4,, and A5 of £, £P¢",
and £99v are set to 1.0, 107, and 1079, respectively. Our model has a
floating-point operation complexity of approximately 116 GFLOPs and
took approximately 56 h to train on two NVIDIA GeForce RTX 3090
GPUs.

4.2. Comparison with state-of-the-art methods

We conduct quantitative and qualitative comparisons between our
proposed method and some existing SISR and RefSR methods. The
SISR methods are SRCNN [14], EDSR [16], RCAN [18], Enet [65],
SRGAN [20], ESRGAN [21], RankSRGAN [22]. The RefSR methods
are CrossNet [3], SSEN [4], SRNTT [5], TTSR [6], MASA [7], C2-
Matching [8], TADE [13], DATSR [9], and RRSR [32]. We train two
sets of parameters, one using only the reconstruction loss (denoted by
—rec), and the other using all losses.

4.2.1. Quantitative comparison

As shown in Table 1, our method achieves state-of-the-art results
on five benchmark datasets using only the reconstruction loss. Our
method leverages effective texture matching, dynamic texture transfer,
and complementary SISR features in the reconstruction process, which
enables it to transfer similar textures from the high-resolution reference
images in CUFED5 and WR-SR datasets to the LR images, enhancing
their high-frequency information, and to transfer self-features to assist
LR reconstruction on the self-similar dataset Urban100. As shown in
Table 3, our model outperforms all the other methods on all datasets
under the joint supervision of losses, although its performance slightly
degrades compared to the results obtained when only using recon-
struction loss. Interestingly, our method still maintains a significant
advantage (+0.8 dB) over the other RefSR methods, even with the
presence of perceptual loss and adversarial loss. Furthermore, our
method consistently achieves lower values for both Perceptual Index
(PI) and Fréchet Inception Distance (FID) compared to the other three
methods (C2-Matching, DATSR, RRSR) across the majority of datasets,
as illustrated in Table 2. The quantitative comparison under the two
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Three different methods, including C?-Matching, DATSR, and RRSR, are quantitatively compared in terms of Perceptual Index (PI) and Fréchet Inception
Distance (FID). It is noteworthy that the loss weights for these three methods are set consistently with our approach.

Method CUFED5 Sun80 Urban Manga

PI FID| PI| FID| PI| FID| PI} FID|
C2-Matching [8] 2.6758 45.73 4.2813 16.61 4.0452 25.49 3.9057 13.36
DATSR [9] 2.6234 43.48 4.2801 16.60 4.0936 24.53 3.9127 13.12
RRSR [32] 2.4791 41.23 4.2752 16.57 4.0628 22.41 3.8149 12.95
FRFSR (Ours) 2.4453 39.76 4.2704 15.69 4.0645 20.96 3.7854 11.67

Table 3

The model is trained using all losses and the results are compared with PSNR/SSIM. Text highlighted in bold indicates the most favorable outcome.

Method CUFED [5] SUNSO [64] Urbanl100 [62] Manga [63] WR-SR [8]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRGAN [20] 24.40/0.702 26.76/0.725 24.07/0.729 25.12/0.802 26.21/0.728

ESRGAN [21] 21.90/0.633 24.18/0.651 20.91/0.620 23.53/0.797 26.07/0.726

RankSRGAN [22] 22.31/0.635 25.60/0.667 21.47/0.624 25.04/0.803 26.15/0.719

SRNTT [5] 25.61/0.764 27.59/0.756 25.09/0.774 27.54/0.862 26.53/0.745

TTSR [6] 25.53/0.765 28.59/0.774 24.62/0.747 28.70/0.886 26.83/0.762

MASA [7] 24.92/0.729 27.12/0.708 23.78/0.712 27.34/0.848 25.76/0.717

C2-Matching [8] 27.16/0.805 29.75/0.799 25.52/0.764 29.73/0.893 27.80/0.780

WTRN [30] 25.98/0.761 28.46/0.756 24.88/0.747 29.18/0.878 -

TADE [13] 27.37/0.816 28.85/0.768 25.80/0.776 30.12/0.889 27.40/0.769

DATSR [9] 27.95/0.835 29.77/0.800 25.92/0.775 29.75/0.893 27.87/0.787

RRSR [32] 28.09/0.835 29.57/0.793 25.68/0.767 29.82/0.893 27.89/0.784

FRFSR (Ours) 28.71/0.852 29.89/0.804 26.65/0.802 30.89/0.906 28.27/0.793

Table 4
Performance comparison under different relevance levels on CUFED5.
Method L1 L2 L3 L4
PSNR/SSIM LPIPS PSNR/SSIM LPIPS PSNR/SSIM LPIPS PSNR/SSIM LPIPS

Cross-Net [3] 25.48/0.764 - 25.48/0.764 - 25.47/0.763 - 25.46/0.763 -
SRNTT-rec [5] 26.15/0.781 0.248 26.04/0.776 0.252 25.98/0.775 0.258 25.95/0.774 0.261
SSEN-rec [4] 26.78/0.791 - 26.52/0.783 - 26.48/0.782 - 26.42/0.781 -
TTSR-rec [6] 26.99/0.800 0.230 26.74/0.791 0.239 26.64/0.788 0.244 26.58/0.787 0.251
MASA-rec [7] 27.35/0.814 0.205 26.92/0.796 0.232 26.82/0.793 0.238 26.74/0.790 0.242
C2-Matching-rec [8] 28.24/0.841 0.170 27.39/0.813 0.193 27.17/0.806 0.204 26.94/0.799 0.230
WTRN-rec [30] 27.23/0.807 0.236 26.90/0.794 0.236 26.79/0.792 0.240 26.71/0.789 0.245
TADE-rec [13] 28.64/0.850 - 27.77/0.821 - 27.46/0.815 - 27.23/0.807 -
DATSR-rec [9] 28.50/0.850 0.166 27.47/0.820 0.209 27.22/0.811 0.218 26.96/0.803 0.2281
RRSR-rec [32] 28.64/0.850 0.161 27.77/0.821 0.201 27.46/0.815 0.211 27.23/0.807 0.223
FRFSR-rec (Ours) 29.01/0.860 0.152 28.01/0.831 0.189 27.77/0.824 0.198 27.49/0.815 0.209

paradigms demonstrates that our model exhibits a strong generalization
ability and achieves optimal performance.

4.2.2. Qualitative evaluation

Figs. 6 and 7 shows the visual comparison of our model and the
existing SISR and RefSR methods. It can be clearly seen that RCAN
and RRDB have difficulty in reconstructing texture information due
to the severe degradation of high-frequency information, especially in
text and texture-dense areas. Compared with SISR, RefSR can transfer
similar textures from the reference images, thus producing more texture
details. Compared with some existing RefSR methods, the adaptive
nature of FRFSR allows for the perception and transferal of texture
information from the Ref images. Thus, the model is capable of com-
pensating for missing high-frequency details in LR, leading to the
reconstruction of images with texture details more closely resembling
the ground truth. For example, in the third pair of local details in
Fig. 6, RCAN and RRDB fail to reconstruct any window blind texture,
and the existing RefSR methods generate some texture details, but
the images are very unrealistic and far from the ground truth. Our
proposed method can generate a sharper, clearer blind texture that is
very close to the ground truth. This demonstrates the effectiveness of
our texture search and texture-adaptive aggregation methods. Due to
the feature reuse framework, FRFSR can preserve increasingly more
realistic texture information when trained with £7¢¢ + £P¢" + £ such
as the text on the clothes in the fourth pair of images in Fig. 7, and the
stone pillar texture in the second pair of images. Compared with the

other RefSR methods, our method can generate complete text texture
and stone pillar texture, reflecting the advantages of the feature reuse
framework and our method.

4.2.3. Comparison of robustness of texture transformations

Texture transfer robustness is an important criterion for evaluating
the performance of RefSR models. As shown on the left of Fig. 8,
SOTA methods suffer from texture mis-transfer. Moreover, even if the
texture of the Ref image is irrelevant, the model should exhibit good
adaptive texture transfer robustness. CUFED5 provides four reference
images with different levels of relevance (L1-L4). Table 4 shows the re-
sults of different models under different relevance settings. The results
demonstrate that our model surpasses several existing RefSR models
in terms of texture transfer and robustness. Notably, especially when
the reference image is least relevant, our model achieves a perfor-
mance gain of 0.26 dB over other SOTA models. To further validate
the superiority of our model, we created the CUFEDR dataset, which
extended all HR images from Urban100, Mangal09 and Sun80 into a
reference set, consisting of 289 images. During testing, we randomly
selected one HR from CUFEDR as a reference image for testing, and
the test results are shown in Table 5. Even if the reference image is
irrelevant, our model outperforms RRSR by 0.3 dB, as shown on the
right of Fig. 8. These experiment results indicate that our model can
match and transfer similar textures from relevant reference images,
and also possesses adaptive texture transfer robustness in low-relevance
scenarios.
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Fig. 6. Qualitative comparison of the SISR and RefSR methods. All these methods are trained with the L1 loss. It can be seen from the figure that our method can transfer and

reconstruct more texture details from the reference images.

Table 5

Robustness comparison for irrelevant texture transfer on CUFEDR testing set.
Method CUFEDR

PSNR/SSIM LPIPS

TTSR-rec [6] 26.40/0.778 0.273
MASA-rec [7] 26.59/0.784 0.260
C2-Matching-rec [8] 26.50/0.784 0.265
DATSR-rec [9] 26.43/0.784 0.267
RRSR-rec [32] 26.58/0.785 0.259
Ours-rec 26.88/0.795 0.241

4.2.4. Comparison of robustness of long-range alignment

To enhance the robustness of our model with respect to long-
distance feature alignment, we integrated training with long-distance
alignment and context perturbation samples. Specifically, we divide the
reference image into multiple n X n patches, then randomly shuffle
their positions, and finally reassemble them into a new complete sample
image, which disturbs the contextual dependency of the image and
enlarges the misalignment distance between relevant patches. During
testing, we perform three different levels of random shuffling on the
reference image, namely easy, medium, and hard, which divide the
image into 2x2,4x4, and 8 x 8 patches respectively, as shown in Fig. 9.
Fig. 10 shows our model and the other RefSR method for different

levels of randomly shuffled reference images. It is worth noting that
we refrained from retraining the model with the strategy of random
shuffling. We observed that, although this strategy did not lead to
improvements in PSNR, it maintained a certain level of robustness
under varying degrees of confusion in reference images. By using cross-
layer semantic regularization to fuse and enhance texture features with
similar semantics at different granularities, we show that our model is
more robust than the C2-Matching method. It is worth noting that we
only use medium-level data augmentation during training.

4.3. Discussion of model size and computation cost

In this section, we compare our method with other methods in terms
of parameter size and running time, as shown in Tables 7 and 6.

Our model improves the running time by 33.5% and reduces the
parameters by 25% compared to DATSR [9], which is based on Swin-
Transformer [10] as the basic module. However, compared to MASA’s
[7] coarse-to-fine matching method, our method increases both running
time and parameters, but our method greatly improves the perfor-
mance. our model consists of two parts: relevant texture search and
transfer with SIFE, the model parameters are relatively large. The SIFE
module can reduce the introduction of some texture error, so it plays an
auxiliary role. It is worth noting that after removing the SIFE module,
the parameters are only 13.5M, but the performance can still reach
SOTA.
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Fig. 8. To the left is an exemplification of reference misuse in present methods, whereas to the right stands a texture reconstruction image with a reference unrelated to the
original.

4.4. Ablation studies 4.4.1. Single image feature embedding
The reconstructed features from SISR can effectively compensate for
In this section, we evaluate our method’s dynamic residual block the remaining features other than the texture features in the Ref image.
component and single image feature embedding using CUFED5. Table 8 To verify the effectiveness of single-image feature embedding, we do
shows the evaluation results. We also apply the feature reuse frame- not consider feature embedding when transferring texture, and we find
work to other RefSR methods to demonstrate its effectiveness (see that both the performance of transferring matching texture from the
Fig. 15). Ref image and reconstructing a similar texture that does not exist in

10
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Fig. 9. Diagram of different degrees of random disruption.

Table 6
Running time of FRFSR compared with other RefSR methods on CUFED5.

Model

Runtime (ms)

SRNTT [5] 13256
TTSR [6] 505
MASA [7] 336
C2-Matching [8] 361
DATSR [9] 1214
FRFSR (Ours) 807

Table 7
Comparison between our FRFSR and other RefSR methods in the number of
parameters.

Model Params PSNR1/SSIM?T
CorssNet [3] 33.18M 25.48/0.764
C2-Matching-rec [8] 8.9M 28.24/0.841
TADE-rec [13] 10.9M+15.9M 28.64/0.850
RRSR-rec [32] 22.6M 28.83/0.856
Ours-rec (W/o SIFE) 13.5M 28.93/0.865
Ours-rec 13.5M+15.9M 29.16/0.865
Table 8

Quantitative evaluation of the ablation study on the single-image feature embedding
module and dynamic residual ResBlock component on the CUFED5.

Model SIFE DRB ESA PSNR1/SSIMt LPIPS|
Baseline(DATSR) 28.72/0.856 0.1630
Baseline+DRB v 28.88/0.860 0.1592
Baseline+DRB+ESA v v 28.93/0.865 0.1563
Baseline+SIFE v 29.01/0.861 0.1462
Baseline+DRB+SIFE+ESA v v v 29.16/0.865 0.1431

the Ref image are affected. Table 9 shows that with the help of the
SIFE module, our model not only improved by 0.37 dB on CUFED5,
but also achieved corresponding improvements on other datasets. In
addition, we also compared our model with the decoupled and coupled
frameworks in TADE [13] at the same time, further demonstrating
the effectiveness of SIFE. It can be observed that the coupled model
achieves better metrics on high-resolution reference datasets with sim-
ilar textures, such as CUFED5 and WR-SR. However, its performance
is relatively poorer on datasets like Urban100 and Mangal09, which
lack similar high-resolution textures. This phenomenon suggests that
the coupled model possesses stronger texture aggregation capabilities.
In contrast, the decoupled model, leveraging features reconstructed
from upsampled SISR methods, has richer inherent feature information.
Therefore, it is more suitable when the reference image lacks relevant
textures. However, RefSR methods prioritize matching and aggregating
reference textures. Hence, we consider that having stronger texture
transfer and aggregation capabilities is crucial for RefSR. Consequently,
we ultimately opt for the coupled framework. On the other hand, as
shown in Fig. 11, adding the SIFE module can facilitate the model’s
learning, alleviate detail loss, and not only transfer richer and finer
texture details from the Ref images in CUFED5, it can also make
texture features more prominent in the SR images reconstructed on
other datasets. It is worth noting that adding the SIFE module can
suppress irrelevant texture transfer to some extent, as shown in the
third row. Through quantitative and qualitative evaluation, the SIFE
module improves the model’s ability to transfer texture and recover
texture details that do not exist in the Ref image.

11
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Table 9
Quantitative ablation experiments of SIFE on multiple benchmark datasets. In addition,
we also chose the decoupled and non-decoupled frameworks in TADE for comparison.

Method CUFED5 Sun80 Urban100 WR-SR
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Decouple 28.93/0.859 30.38/0.821  26.89/0.811  28.41/0.796
w/o SIFE 28.68/0.853 30.07/0.814 25.95/0.779 28.24/0.794
w/ SIFE (Couple)  29.01/0.861  30.35/0.821 26.80/0.810 28.52/0.806

Table 10

Quantitative ablation study on adding FRF on multiple methods.
Model FRF PSNR1/SSIM?t LPIPS|
MASA [7] 24.92/0.729 0.0987
MASA+FRF v 25.16/0.744 0.0954
C2-Matching [8] 27.16/0.805 0.1229
C2-Matching+FRF v 28.05/0.834 0.1198
Ours 28.29/0.840 0.0992
Ours+FRF v 28.71/0.852 0.0974

4.4.2. Dynamic residual block

The aligned reference features contain a lot of noise information,
and using ResBlock to directly aggregate the reference features will
cause the SR image to have irrelevant textures and noise. As shown in
Fig. 12, we add dynamic filters and enhanced spatial attention (ESA) in
the residual block, which can effectively perceive relevant textures and
adaptively aggregate them. Even though dynamic filters can effectively
select reference textures, the feature visualization in Fig. 13 reveals
that there are still many non-relevant textures present after dynamic
filtering. Therefore, we add ESA to the ResBlock to further eliminate
non-relevant textures. Fig. 14 shows the feature visualization of ESA.
It can be seen that after adding ESA, the texture features with higher
relevance become more prominent, and the texture edges become
sharper. As shown in Table 8, compared with Baseline, the model
with DRB has a 0.25 dB improvement on PSNR and the LPIPS [66]
also decreased by 0.0067, and the smaller LPIPS corresponds to better
performance.

4.4.3. Feature reuse framework

We found that compared with the model trained with reconstruction
loss, the model trained with all loss exhibited a worse performance on
texture transfer and reconstruction. To reduce the impact of adversarial
loss and perceptual loss, we used a Feature Reuse Framework (FRF)
to supplement the texture that could not be reconstructed. Table 10
shows the effect of FRF on MASA and CZ?-Matching. It can be seen
that after adding FRF, all models consistently improved. Although
PSNR and SSIM cannot determine visual quality, we also use LPIPS
as an evaluation indicator. It is noted that our model is slightly lower
than MASA on LPIPS, which is because MASA uses larger weights for
adversarial loss and perceptual loss, resulting in better visual effects
for the final output. Our loss weights are consistent with C?-matching,
but compared with C2-Matching with FRF added, our model improved
by 0.66 dB and 0.018 on PSNR and SSIM respectively, and LPIPS
decreased by 0.0224. We visualize the methods with FRF added, and
the visualization results are shown in Fig. 15. It is noted that the model
trained with only reconstruction loss (-rec) has more texture details
than the model trained with all losses. However, after adding FRF, the
texture can be restored to normal. This indicates that this framework
can reduce the impact of adversarial loss and perceptual loss on texture
reconstruction.

4.4.4. Web search applications

Image search by image is a common feature of the existing network,
which is also one of the most typical applications of RefSR. By searching
for reference images based on the user input LR image, RefSR can
reconstruct LR. At the same time, this is also a way to verify the
generalization ability of RefSR. We selected two low-resolution images
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Fig. 10. Robustness of different models in long distance feature alignment. Our FRFSR is better than TTSR, MASA and C?-Matching with varying levels of graphic clutter.
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Fig. 11. Ablation analysis of the SIFE module. In addition to boosting the performance
of texture transfer and reconstruction, the SIFE module effectively suppresses irrelevant
textures from being introduced.
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Fig. 12. Replacing ResBlock with DRB can effectively enhance the network’s ability to
learn texture transfer, suppress the introduction of unrelated texture, and enable the
generated texture to approach the GT.

Fig. 13. Visualization of features at different stages on the 4x feature scale. From
left to right are feature visualization after PiexlShuffle, features before input Dynamic
Filter, and features after output Dynamic Filter.
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Fig. 14. Feature visualization of Enhanced Spatial Attention (ESA). After undergoing
ESA processing, a substantial amount of noisy textures have been eliminated, and the
textures have become sharper.

from DIV2K and RealSR, respectively, and utilized Google’s image
search function to find corresponding reference images. For the RealSR
input images, we introduced random Gaussian noise, JPEG noise, and
Poisson noise. Our FRFSR method was then compared with other SISR
and RefSR methodologies, and the results are presented in Fig. 16.
Compared with ESRGAN, and existing RefSR methods (SRNTT, TTSR,
MASA, C2?-Matching, DATSR), our method can transfer more details
and textures from the images found in the web, even if there are
differences in lighting, texture size or perspective in the reference
image. Therefore, the SR image reconstructed by our method has a
better visual quality.

4.4.5. Discussion in remote sensing

RefSR has been applied in various fields such as remote sens-
ing [67], thanks to its excellent texture transfer and reconstruction
performance. Therefore, to further highlight the advantages of our
method, we have added a performance comparison of multiple RefSR
methods on remote sensing images in this section. Typically, remote
sensing datasets lack corresponding reference images. Thus, we selected
one image from the HRSCD dataset [68] for downsampling as the
input image and found another image with similar textures from the
same dataset as the reference image. Both qualitative and quantitative
comparisons are depicted in Fig. 17. It can be observed that our method
still performs well in reconstructing textures in remote sensing images,
demonstrating the scalability of our approach.

5. Conclusion

In this paper, we introduce a feature reuse framework that success-
fully mitigates the negative impacts of the perceptual and adversarial
losses that arise during the texture reconstruction process. Our method
is composed of two modules: a single-image feature embedding module
for reconstructing the self-features of the LR input image, and a texture
adaptive aggregation module for reconstructing the effective texture
of the perceptual aggregate reference image. Our approach improves
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MASA-+FRF

[8]+FRF

Ours+FRF

Fig. 15. Qualitative ablation study on adding FRF (Feature Reuse Framework) to multiple methods, where the first row is the SR results of each model trained with only
reconstruction loss, the second row is the output results of models trained with all losses, and the third row is the output results of each model after adding FRF.

LR ESRGAN MASA  [8]

LR ESRGAN MASA

(8]

Reference DATSR RRSR  Ours

Reference

DATSR

Fig. 16. Web search applications on multiple methods. The first line involves selecting two images from DIV2K for traditional downsampling, followed by searching for similar
images on Google. The second line involves choosing two high-resolution images from the RealSR dataset and introducing random Gaussian noise, JPEG noise, and Poisson noise.

robustness to unrelated references. The experiments conducted on var-
ious benchmarks show that our approach outperforms existing RefSR
methods in both qualitative and quantitative measures.

CRediT authorship contribution statement

Xiaoyong Mei: Writing — original draft, Validation, Methodology,
Investigation, Conceptualization. Yi Yang: Writing — original draft,
Visualization, Validation, Software, Methodology, Conceptualization.
Ming Li: Writing — original draft, Validation, Supervision, Methodol-
ogy, Conceptualization. Changqin Huang: Writing — review & editing,
Visualization, Validation. Kai Zhang: Writing — review & editing, Vi-
sualization, Validation. Fudan Zheng: Writing — review & editing,
Visualization, Validation.

13

Declaration of competing interest

The authors declare that there are no known competing financial
interests or personal relationships that might have influenced the work
reported in this paper. We affirm that our research has been con-
ducted without bias, and all findings are presented in an objective and
transparent manner.

Acknowledgments

This work was supported in part by the National Key Research and
Development Program of China (No. 2022YFC3303600), and in part
by the Research Project on Ideological and Political Work under the
Philosophy and Social Science Planning Program of Zhejiang Province
(No. 25GXSZ009YB). Ming Li acknowledged the support from Jinhua
Science and Technology Plan (No. 2023-3-003a).



X. Mei et al.

Reference

(8]
24.93/0.622

RRSR
25.50/0.663

Knowledge-Based Systems 314 (2025) 113201

4

DATSR
25.19/0.658

Ours
26.72/0.744

Fig. 17. In both qualitative and quantitative comparisons within the HRSCD dataset, our model demonstrates significant advantages in texture reconstruction for remote sensing
images.

Data availability

Data will be made available on request.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[91

[10]

[11]

[12]

Y. Guo, J. Chen, J. Wang, Q. Chen, J. Cao, Z. Deng, Y. Xu, M. Tan, Closed-
loop matters: Dual regression networks for single image super-resolution, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, 2020, pp. 5407-5416.

D. Ulyanov, A. Vedaldi, V. Lempitsky, Deep image prior, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018,
pp. 9446-9454.

H. Zheng, M. Ji, H. Wang, Y. Liu, L. Fang, CrossNet: An end-to-end reference-
based super resolution network using cross-scale warping, in: Proceedings of the
European Conference on Computer Vision, ECCV, 2018, pp. 88-104.

G. Shim, J. Park, LS. Kweon, Robust reference-based super-resolution with
similarity-aware deformable convolution, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp.
8425-8434.

Z. Zhang, Z. Wang, Z. Lin, H. Qi, Image super-resolution by neural texture
transfer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2019, pp. 7982-7991.

F. Yang, H. Yang, J. Fu, H. Lu, B. Guo, Learning texture transformer network for
image super-resolution, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2020, pp. 5791-5800.

L. Lu, W. Li, X. Tao, J. Lu, J. Jia, MASA-SR: Matching acceleration and spatial
adaptation for reference-based image super-resolution, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021,
pp. 6368-6377.

Y. Jiang, K.C. Chan, X. Wang, C.C. Loy, Z. Liu, Robust reference-based super-
resolution via C?-matching, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR, 2021, pp. 2103-2112.

J. Cao, J. Liang, K. Zhang, Y. Li, Y. Zhang, W. Wang, L.V. Gool, Reference-based
image super-resolution with deformable attention transformer, in: Proceedings of
the European Conference on Computer Vision, ECCV, 2022, pp. 325-342.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin trans-
former: Hierarchical vision transformer using shifted windows, in: Proceedings
of the IEEE/CVF International Conference on Computer Vision, ICCV, 2021, pp.
10012-10022.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional
networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2017, pp. 764-773.

X. Zhu, H. Hu, S. Lin, J. Dai, Deformable convnets v2: More deformable, better
results, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2019, pp. 9308-9316.

14

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Huang, X. Zhang, Y. Fu, S. Chen, Y. Zhang, Y.-F. Wang, D. He, Task decoupled
framework for reference-based super-resolution, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp.
5931-5940.

C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep
convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. (2) (2015)
295-307.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, 2016, pp. 770-778.

B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks
for single image super-resolution, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2017, pp. 136-144.
N. Ahn, B. Kang, K.-A. Sohn, Fast, accurate, and lightweight super-resolution
with cascading residual network, in: Proceedings of the European Conference on
Computer Vision, ECCV, 2018, pp. 252-268.

Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, Y. Fu, Image super-resolution using
very deep residual channel attention networks, in: Proceedings of the European
Conference on Computer Vision, ECCV, 2018, pp. 286-301.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial networks, Commun. ACM (11)
(2020) 139-144.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A.
Aitken, A. Tejani, J. Totz, Z. Wang, et al., Photo-realistic single image super-
resolution using a generative adversarial network, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017,
pp. 4681-4690.

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, ESRGAN:
Enhanced super-resolution generative adversarial networks, in: Proceedings of
the European Conference on Computer Vision (ECCV) Workshops, 2018.

W. Zhang, Y. Liu, C. Dong, Y. Qiao, RankSRGAN: Generative adversarial
networks with ranker for image super-resolution, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, ICCV, 2019, pp. 3096-3105.

Q. Wang, Q. Gao, L. Wu, G. Sun, L. Jiao, Adversarial multi-path residual network
for image super-resolution, IEEE Trans. Image Process. (2021) 6648-6658.

X. Wang, L. Xie, C. Dong, Y. Shan, Real-ESARGAN: Training real-world blind
super-resolution with pure synthetic data, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, ICCV, 2021, pp. 1905-1914.

Y. Yan, W. Ren, X. Hu, K. Li, H. Shen, X. Cao, SRGAT: Single image super-
resolution with graph attention network, IEEE Trans. Image Process. (2021)
4905-4918.

Q. Cai, J. Li, H. Li, Y.-H. Yang, F. Wu, D. Zhang, TDPN: Texture and detail-
preserving network for single image super-resolution, IEEE Trans. Image Process.
(2022) 2375-2389.

R. Dong, L. Zhang, H. Fu, RRSGAN: Reference-based super-resolution for remote
sensing image, IEEE Trans. Geosci. Remote Sens. (2022).


http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb27

X. Mei et al.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

X. Yan, W. Zhao, K. Yuan, R. Zhang, Z. Li, S. Cui, Towards content-independent
multi-reference super-resolution: Adaptive pattern matching and feature ag-
gregation, in: Proceedings of the European Conference on Computer Vision,
ECCV.

Y. Xie, J. Xiao, M. Sun, C. Yao, K. Huang, Feature representation matters: End-to-
end learning for reference-based image super-resolution, in: European Conference
on Computer Vision, ECCV.

Z. li, Z.-S. Kuang, Z.-L. Zhu, H.-P. Wang, X.-L. Shao, Wavelet-based texture
reformation network for image super-resolution, IEEE Trans. Image Process.
(2022) 2647-2660.

Y. Kim, J. Lim, H. Cho, M. Lee, D. Lee, K.-J. Yoon, H.-J. Choi, Efficient reference-
based video super-resolution (ERVSR): Single reference image is all you need,
in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, WACV.

L. Zhang, X. Li, D. He, F. Li, Y. Wang, Z. Zhang, RRSR: Reciprocal reference-
based image super-resolution with progressive feature alignment and selection,
in: Proceedings of the European Conference on Computer Vision, ECCV, 2022,
pp. 648-664.

L. Zhang, X. Li, D. He, F. Li, E. Ding, Z. Zhang, LMR: A large-scale multi-reference
dataset for reference-based super-resolution, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, CVPR, 2023, pp. 13118-13127.
H. Zou, L. Xu, T. Okatani, Geometry enhanced reference-based image super-
resolution, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2023, pp. 6123-6132.

B. Yang, G. Bender, Q.V. Le, J. Ngiam, CondConv: Conditionally parameterized
convolutions for efficient inference, Adv. Neural Inf. Process. Syst. (NeurIPS)
(2019).

N. Ma, X. Zhang, J. Huang, J. Sun, WeightNet: Revisiting the design space
of weight networks, in: Proceedings of the European Conference on Computer
Vision, ECCV, 2020, pp. 776-792.

F. Wu, A. Fan, A. Baevski, Y.N. Dauphin, M. Auli, Pay less attention with
lightweight and dynamic convolutions, 2019, arXiv preprint arXiv:1901.10430.
J. Zhou, V. Jampani, Z. Pi, Q. Liu, M.-H. Yang, Decoupled dynamic filter
networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, 2021, pp. 6647-6656.

J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018,
pp. 7132-7141.

A.B. Molini, D. Valsesia, G. Fracastoro, E. Magli, DeepSUM: Deep neural network
for super-resolution of unregistered multitemporal images, IEEE Trans. Geosci.
Remote Sens. (5) (2019) 3644-3656.

X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, J. Sun, Meta-SR: A magnification-
arbitrary network for super-resolution, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp.
1575-1584.

Y. Shi, H. Zhong, Z. Yang, X. Yang, L. Lin, DDet: Dual-path dynamic enhancement
network for real-world image super-resolution, IEEE Signal Process. Lett. (2020)
481-485.

J. Lee, H. Son, J. Rim, S. Cho, S. Lee, Iterative filter adaptive network for
single image defocus deblurring, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 2034-2042.

R. Ma, S. Li, B. Zhang, Z. Li, Generative adaptive convolutions for real-world
noisy image denoising, in: Proceedings of the AAAI Conference on Artificial
Intelligence, (2) 2022, pp. 1935-1943.

H. Zheng, Z. Lin, J. Lu, S. Cohen, E. Shechtman, C. Barnes, J. Zhang, N. Xu,
S. Amirghodsi, J. Luo, Image inpainting with cascaded modulation GAN and
object-aware training, in: European Conference on Computer Vision, ECCV.

T. Park, M.-Y. Liu, T.-C. Wang, J.-Y. Zhu, Semantic image synthesis with
spatially-adaptive normalization, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR.

P. Chandran, G. Zoss, P. Gotardo, M. Gross, D. Bradley, Adaptive convolutions
for structure-aware style transfer, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 7972-7981.

15

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Knowledge-Based Systems 314 (2025) 113201

G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected con-
volutional networks, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2017, pp. 4700-4708.

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomed-
ical image segmentation, in: Medical Image Computing and Computer-Assisted
Intervention-MICCAI 2015: 18th International Conference, Proceedings, Part III
18, 2015, pp. 234-241.

S. Zagoruyko, N. Komodakis, Wide residual networks, 2016, arXiv preprint
arXiv:1605.07146.

R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, 2015, arXiv
preprint arXiv:1505.00387.

T. Tong, G. Li, X. Liu, Q. Gao, Image super-resolution using dense skip connec-
tions, in: Proceedings of the IEEE/CVF International Conference on Computer
Vision, ICCV, 2017, pp. 4799-4807.

Y. Mei, L. Li, Z. Li, F. Li, Learning-based scalable image compression with
latent-feature reuse and prediction, IEEE Trans. Multimed. (2021) 4143-4157.

Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, H.U. Li, A general u-shaped transformer
for image restoration, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2022, pp. 19-24.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu, H. Li, et
al., Internimage: Exploring large-scale vision foundation models with deformable
convolutions, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR.

J. Liu, J. Tang, G. Wu, Residual feature distillation network for lightweight
image super-resolution, in: Proceedings of the European Conference on Computer
Vision, ECCV, 2020, pp. 41-55.

S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in: International Conference on Machine
Learning, ICML, 2015, pp. 448-456.

Z. Li, Y. Liu, X. Chen, H. Cai, J. Gu, Y. Qiao, C. Dong, Blueprint separable
residual network for efficient image super-resolution, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2022,
pp. 833-843.

J. Johnson, A. Alahi, L. Fei-Fei, Perceptual losses for real-time style transfer
and super-resolution, in: Proceedings of the European Conference on Computer
Vision, ECCV, 2016, pp. 694-711.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved
training of wasserstein gans, Adv. Neural Inf. Process. Syst. ( NeurIPS) (2017).
J.-B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed
self-exemplars, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, 2015, pp. 5197-5206.

Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, K. Aizawa,
Sketch-based manga retrieval using mangal09 dataset, Multimedia Tools Appl.
(2017) 21811-21838.

L. Sun, J. Hays, Super-resolution from internet-scale scene matching, in: 2012
IEEE International Conference on Computational Photography, ICCP, 2012, pp.
1-12.

M.S. Sajjadi, B. Scholkopf, M. Hirsch, EnhanceNet: Single image super-
resolution through automated texture synthesis, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, ICCV, 2017, pp. 4491-4500.

R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable
effectiveness of deep features as a perceptual metric, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018,
pp. 586-595.

R. Dong, S. Yuan, B. Luo, M. Chen, J. Zhang, L. Zhang, W. Li, J. Zheng, H.
Fu, Building bridges across spatial and temporal resolutions: Reference-based
super-resolution via change priors and conditional diffusion model, 2024, arXiv
preprint arXiv:2403.17460.

R.C. Daudt, B. Le Saux, A. Boulch, Y. Gousseau, Multitask learning for large-scale
semantic change detection, Comput. Vis. Image Underst. 187 (2019) 102783.


http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb36
http://arxiv.org/abs/1901.10430
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb39
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb40
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb41
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb42
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb43
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb44
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb45
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb46
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb47
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb48
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb48
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb48
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb48
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb48
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb49
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1505.00387
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb52
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb52
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb52
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb52
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb52
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb53
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb53
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb53
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb54
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb54
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb54
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb54
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb54
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb56
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb57
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb57
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb57
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb57
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb57
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb58
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb58
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb58
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb58
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb58
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb59
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb60
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb60
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb60
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb60
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb60
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb61
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb61
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb61
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb62
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb62
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb62
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb62
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb62
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb63
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb63
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb63
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb63
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb63
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb64
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb64
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb64
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb64
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb64
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb65
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb65
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb65
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb65
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb65
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb66
http://arxiv.org/abs/2403.17460
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb68
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb68
http://refhub.elsevier.com/S0950-7051(25)00248-5/sb68

	A feature reuse framework with texture-adaptive aggregation for reference-based super-resolution
	Introduction
	Related Work
	Single Image Super-Resolution
	Reference-based Image Super-Resolution
	Dynamic Weights

	Methodology
	Feature Reuse Reconstruction Framework
	Correlation-based Texture Warp
	Texture-Adaptive Aggregation Module
	Texture Alignment Module
	Dynamic ResBlock Module

	Loss Functions

	Experiments
	Datasets and Metrics
	Training Dataset
	Testing Dataset
	Implementation Details

	Comparison with State-of-the-art Methods
	Quantitative Comparison
	Qualitative Evaluation
	Comparison of Robustness of Texture Transformations
	Comparison of Robustness of Long-range Alignment

	Discussion of Model Size and Computation Cost
	Ablation Studies
	Single Image Feature Embedding
	Dynamic Residual Block
	Feature Reuse Framework
	Web Search Applications
	Discussion in Remote Sensing


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References




