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A B S T R A C T

Reference-based super-resolution (RefSR), significant success has been achieved in the field of super-resolution.
It reconstructs low-resolution (LR) inputs using high-resolution reference images, obtaining more high-
frequency details and alleviating the ill-posed problem of single-image super-resolution (SISR). Previous
research in the RefSR has mainly focused on finding correlations, transferring, and aggregating similar texture
information from LR reference (Ref) the LR. However, an essential detail of perceptual loss and adversarial loss
has been underestimated, impacting texture transfer and reconstruction negatively. In this paper, we propose
a feature reuse framework, FRFSR, which divides the model training into two steps. Firstly, the first model is
trained using reconstruction loss to enhance its texture transfer and aggregation abilities. Secondly, using all
losses for training, the feature output of the first model is reintroduced into the training process to supplement
texture, generating visually appealing images. The feature reuse framework is applicable to any RefSR model,
and experiments show that several RefSR methods exhibit improved performance when retrained with our
reuse framework. Considering that the textures in the reference are not entirely consistent with those in the
LR, this naturally leads to the problem of texture misuse. Therefore, we design a Dynamic Residual Block
(DRB). The DRB utilizes the feature perception capability of decoupled dynamic filters to dynamically aggregate
texture information between LR input and Ref images, reducing instances of texture misuse. The source code
can be obtained from https://github.com/Yi-Yang355/FRFSR.
1. Introduction

Single Image Super-Resolution (SISR) involves generating a
igh-resolution image with high-frequency information from a low-
esolution (LR) input. The practical significance of SISR in various

contexts such as medical imaging and surveillance is notable. Based
on the optimization criteria, the approaches of SISR can be divided
nto two categories. One approach optimizes pixel-level errors such as
ean squared error (MSE) and mean absolute error (MAE), potentially

esulting in images that are too smooth, and the other approach
nvolves visual perception-based errors such as perceptual loss and
dversarial loss. The latter results in images with better visual effects
nd greater alignment to human visual perception but may produce
rtifacts and unrealistic textures. These approaches face the inherent

problem of SISR the ill-posed nature of the problem because different
high-resolution images can be degraded to the same low-resolution
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image [1,2]. Reference-based super-resolution (RefSR) alleviates the
inherent problem of SISR to a certain extent by using an additional
high-resolution reference (Ref) image to transfer relevant textures and
achieve super-resolution. Methods of obtaining relevant Ref images
are varied and include web search and video frames. RefSR has two
primary limitations that compromise its performance. The first one
is accurately finding the correspondence between the LR and Ref.
Some existing methods address this through spatial alignment, such as
CrossNet [3], which utilizes optical flow estimation to align LR and
Ref, and SSEN [4], which employs deformable convolutions to learn
adaptive LR and Ref alignment. Other methods, such as SRNTT [5],
TTSR [6] adopt dense patch matching algorithms for patch matching
to find corresponding matches, whereas MASA [7] employs a coarse-
to-fine matching approach for reducing computational requirements.
However, obtaining accurate matching is challenging due to differences
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in resolution and texture distribution. 𝐶2-Matching [8] uses knowledge
distillation and contrastive learning to train a feature extractor, and a
ombination of patch matching and deformable convolution to improve
he accuracy of correspondence matching. The second challenge is
ffectively transferring texture features. TTSR proposes a cross-scale
eature integration module that conveys texture information using
ultiple texture transformers in a stacked manner, whereas MASA uses

a spatial adaptive module to remap the aligned Ref feature distribution,
ensuring robustness to different color and brightness distributions.
Additionally, DATSR [9] replaces the traditional ResBlock with the
Swin-Transformer [10], resulting in considerable improvements in
model performance.

Although deformable convolution [11,12] is capable of learning
mplicit alignment between feature maps LR and Ref, it still faces

challenges in aligning distant features. Furthermore, existing RefSR
methods effectively prioritize aggregating textures over reconstructing
heir own textures. It is also important to note that during the feature
ggregation process, the ResBlock treats all pixel features equally,
esulting in the introduction of irrelevant textures from the Ref image.
ven with DATSR replacing ResBlock with Swin-Transformer, the win-
ow self-attention calculation will noticeably increase the parameters
nd runtime.

To address these three issues, we first do not make any modifica-
tions to the deformable convolution, but instead shuffle the reference
image, thereby indirectly increasing the distance between similar fea-
tures, increasing the training difficulty and improving performance;
secondly, inspired by TADE [13], we use single-image feature embed-
ding to assist the LR inputs to self-reconstruct their features while

itigating the introduction of irrelevant textures. Finally, we introduce
a new feature aggregation module, namely Dynamic ResBlock (DRB).
Specifically, the DRB module adds a group of decoupled filters to
the residual block, which can aware texture information in both the
spatial and channel domains, and then adaptively aggregate relevant
textures, further reducing the introduction of irrelevant information
such as noise, wrong textures, etc. In addition, we employ residual
blocks with an Enhanced Spatial Attention (ESA) after the decoupled
filters to enhance the relevant texture information.

In addition to the aforementioned points, most previous works
overlook a crucial fact: the increase in perceptual loss and adversarial
loss adversely affects the texture transfer and reconstruction effects. To
fully utilize the texture transfer and reconstruction abilities of the re-
construction loss-trained model, we propose a feature reuse framework
FRFSR. In the training and testing process of 𝑅𝑒𝑓 𝑆 𝑅2 with three types
losses 𝑟𝑒𝑐 +𝑝𝑒𝑟+𝑎𝑑 𝑣, we will provide feature feedback to the feature
aggregation process from the 𝑅𝑒𝑓 𝑆 𝑅1 trained with only one loss 𝑟𝑒𝑐 .
This maneuver effectively diminishes the impact of perceptual and
adversarial losses on texture transfer and reconstruction. In summary,
this paper’s primary contributions are:

1. We introduce a feature reuse framework that effectively miti-
gates the degradation of texture reconstruction from the applica-
tion of perceptual loss and adversarial loss. We apply this frame-
work to various RefSR methods, which have shown consistent
improvements in performance.

2. To enhance the reconstruction of LR’s self-texture and main-
tain texture relevance, we utilize a single-image feature embed-
ding module. Unlike the approach used by [13], we exclude
feature upsampling and final image reconstruction processes
in this module, and focus solely on embedding the LR’s own
reconstructed features into the aggregation process.

3. We designed a dynamic residual block and introduced it into the
texture adaptive module. This block applies decoupled dynamic
filters and enhanced spatial attention to selectively perceive and
transfer textures from the Ref image. This approach adaptively
reduces the likelihood of introducing incorrect textures.
2

4. Our method achieved state-of-the-art (SOTA) performance in
multiple benchmarks, demonstrating significant improvements
in robustness to unrelated reference images and long-range fea-
ture alignment. Notably, even without the single image feature
embedding module, our method still achieved SOTA perfor-
mance in CUFED5.

2. Related work

2.1. Single image super-resolution

Single image super-resolution (SISR) aims to input a single LR
image and reconstruct it to an image with high-frequency details.

efore the emergence of deep learning, traditional methods such as
arious interpolation methods were usually used. With SRCNN [14]

first using deep learning methods to perform super-resolution, deep
learning-based super-resolution began to appear in large numbers.
Later, ResNet [15] appeared, which deepened the network layers.
EDSR [16], CARN [17] and other methods added residual structure
in super-resolution models, thus improving the performance of super-
resolution. After this, the attention mechanism merged, which can

ake the network selectively focus on some features and appropriately
gnore unnecessary features. RCAN [18] was the first to apply the

attention mechanism to super-resolution. Additionally, the game theory
approach used by GAN [19] has enabled GAN-based super-resolution
models, such as SRGAN [20], ESRGAN [21], RankSRGAN [22], AM-
PRN [23], and Real-ESRGAN [24] to deliver enhanced perceptual
quality in produced images. Recently, SRGAT [25] used the graph
attention network to help LR recover additional textures from neighbor-
ing patches. TDPN [26] utilizes a texture and detail-preserving network
that preserves texture and detail while the features are reconstructed.
However, the SISR problem is ill-posed, with low-resolution (LR) and
super-resolution (SR) having a one-to-many relationship.

2.2. Reference-based image super-resolution

The biggest difference between RefSR and SISR is that the former
has an additional high-resolution Ref image. The RefSR can transfer
texture details from the Ref image to LR to help LR reconstruction, and
these texture details should be similar to the ground truth (GT). Cross-
Net [3] twists the reference image and LR to align them through the
low estimation network. SSEN [4] uses deformable convolution [11,

12] to align LR and Ref images. RRSGAN [27] utilizes deformable
convolutions to align the Ref and LR features. It also employs a Cor-
relation Attention Module (RAM) to enhance the model’s robustness
in different scenarios. Both of these methods are implicit alignment,
and some work performs feature matching between LR and Ref to
achieve explicit alignment. SRNTT [5] enumerates patches to transfer
multi-scale reference features. CIMR-SR [28] employs a content inde-
pendent searching the local matched patterns. E2ENT [29] constructs
a match and swap module to obtain similar texture and high-frequency
nformation. TTSR [6] introduces the Transformer architecture to more
easonably transfer reference features by combining soft and hard
ttention. MASA [7] uses a matching method from coarse to fine to
educe the computational complexity and a spatial adaptive module is
sed to make the transferred texture closer to GT. However, due to the
esolution gap between the LR and Ref image, the matching perfor-
ance is affected. 𝐶2-Matching [8] introduces knowledge distillation

and contrastive learning methods, which greatly improve the match-
ng robustness between LR and Ref. WTRN [30] utilizes the benefits

of wavelet transformation to categorize features into high-frequency
and low-frequency sub-bands, which facilitates the transfer of texture
patterns with more effectiveness. TADE [13] uses a decoupling frame-
work, which divides RefSR into two parts: super-resolution and texture
migration, which alleviates the two problems of reference-underuse
and reference-misuse. However, it does not take into consideration
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the lack of detailed textures in the super-resolution image, which
esults in inaccurate matching between SR and Ref. DATSR [9] uses
he Swin-Transformer [10] to replace the traditional ResBlock for
eature aggregation. ERVSR [31] introduces an attention-based fea-
ure align module and an aggregation upsampling module for video

super-resolution that attends LR features using the correlation be-
tween the reference and LR frames. Recently, RRSR [32] implemented
a reciprocal learning strategy, thereby strengthening the learning of
the model. [33,34] enhance the detail quality of input images by
transferring texture details from multiple reference images. Reviewing
the existing research findings, it can be seen that first, the existing
methods do not fully take into consideration the textural dissimilarities
between LR and Ref, so it is still inevitable that irrelevant textures
are introduced in the texture transfer process. Second, existing studies
have focused on improving the accuracy of matching and the ability
of texture transfer, but few studies have focused on the texture detail
reconstruction of LR itself. Third, no one has noticed that adding
perceptual loss and adversarial loss will lead to a decline in the texture
reconstruction effect. To address the aforementioned issues, we propose
a dynamic residual block (DRB) to perceive texture information, adap-
tively transfer and aggregate relevant textures and suppress irrelevant
textures and reconstruct their own features by embedding single-image
feature reconstruction LR features. In addition, we propose a feature
reuse framework to improve the texture reconstruction effect under
perceptual loss and adversarial loss supervision.

2.3. Dynamic weights

Unlike the weight sharing in conventional convolutions, dynamic
ilters [35–39] have content-aware characteristics and are capable of
ynamically adjusting and predicting filter weights based on input
eatures. The dynamic weights approach has been successfully applied
n various works, such as super-resolution [40–42], image deblur-

ring [43], image denoising [44], adaptive modulation [45,46] and
tyle transfer [47], because of its powerful representation and content-
wareness capabilities. The work in [32], which introduces a set of

reference-aware filters for selecting reference features to identify the
most suitable texture, is strongly related to our study. However, the
generation of these filters is computationally expensive due to their
deep separable and spatially changing nature, leading to high time
consumption. Inspired by [38], we propose to decouple the spatial and
hannel domains and use spatial and channel attention to dynamically

filter each pixel, extending this to texture-adaptive aggregation.

3. Methodology

3.1. Feature reuse reconstruction framework

Firstly, we discovered that RefSR struggles to reconstruct high-
frequency details from the LR image (𝐼𝐿𝑅) itself. To address this
issue, we utilize an SISR method without upsampling called SIFE to
reconstruct fine texture features 𝐹𝑠𝑖𝑓 𝑒 from 𝐼𝐿𝑅. These reconstructed
features are then integrated into the reconstruction process of the
reference-based super-resolution. This approach not only supplements
the difficult to reconstruct texture details in RefSR but also helps to
limit the introduction of irrelevant textures to some extent.

𝐹𝑠𝑖𝑓 𝑒 = 𝑆 𝐼 𝐹 𝐸(𝐼𝐿𝑅). (1)

We chose the same SISR baseline used in [13] to ensure a more
equitable comparison. Nevertheless, we removed the last upsampling
stage which is present in SISR.

Previous work has shown that feature reuse [15,48–51] prevents
the vanishing gradient issue in deep networks to enhance network
learning and parameter efficiency by inputting previous layers’ features
3

into subsequent layers. Various computer vision tasks, such as super-
resolution [52], image compression [53], and image restoration [54],
utilize the characteristic of feature reuse to enhance the efficiency and
effectiveness of their models. Prior studies have shown that SR images
which are produced using only reconstruction loss are much more
etailed in texture compared to those generated by models that use
erceptual and adversarial losses. To address this issue, we propose
o utilize a pre-trained model 𝑅𝑒𝑓 𝑆 𝑅1 that generates SR feature maps
ith fine textures through reconstruction loss only, and integrate them

nto the second model trained with three types losses to supplement
exture reconstruction and accelerate convergence of the second model
𝑒𝑓 𝑆 𝑅2, as shown in Fig. 1. Therefore, we extend feature reuse to the

raining process of the second models. In summary, first, we input the
R image 𝐼𝐿𝑅, Ref image 𝐼𝑅𝑒𝑓 and the features 𝐹𝑠𝑖𝑓 𝑒 extracted by a
re-trained SIFE network into the network to obtain the reconstructed
igh-resolution features 𝐹 𝑟𝑒𝑐

𝑆 𝑅 , which is then convolved to generate the
utput image 𝐼𝑟𝑒𝑐𝑆 𝑅. In this process, we only train the RefSR model with
econstruction loss, consistent with previous 𝑅𝑒𝑓 𝑆 𝑅1 methods.

𝐹 𝑟𝑒𝑐
𝑆 𝑅 = 𝑅𝑒𝑓 𝑆 𝑅1

(

𝐼𝐿𝑅, 𝐼𝑅𝑒𝑓 , 𝐹𝑠𝑖𝑓 𝑒
)

, (2)

𝐼𝑟𝑒𝑐𝑆 𝑅 = 𝐶 𝑜𝑛𝑣(𝐹 𝑟𝑒𝑐
𝑆 𝑅 ). (3)

At this stage, we have obtained a super-resolution network that
xhibits impressive texture transfer and reconstruction capabilities.
owever, to produce high-quality perceptual images, supervision using
erceptual and adversarial losses is typically required. Finally, to fur-
her enhance 𝑅𝑒𝑓 𝑆 𝑅2’s texture transfer and reconstruction capabilities,
e generate 𝐹 𝑟𝑒𝑐

𝑆 𝑅 with refined texture details using 𝑅𝑒𝑓 𝑆 𝑅1, and then
ncorporate this feature map back into the training of the 𝑅𝑒𝑓 𝑆 𝑅2. Note
hat in this process, the 𝑅𝑒𝑓 𝑆 𝑅1 and SIFE are only responsible for infer-
nce and does not participate in weight updating. The aforementioned
rocess can be represented as follows:

𝐼𝑎𝑙 𝑙𝑆 𝑅 = 𝐶 𝑜𝑛𝑣(𝑅𝑒𝑓 𝑆 𝑅2(𝐼𝐿𝑅, 𝐼𝑅𝑒𝑓 , 𝐹 𝑟𝑒𝑐
𝑆 𝑅 , 𝐹𝑠𝑖𝑓 𝑒)

)

. (4)

Utilizing this framework, we have built 𝑅𝑒𝑓 𝑆 𝑅1 with efficient texture
transfer and reconstruction performance, 𝑅𝑒𝑓 𝑆 𝑅2 with efficient per-
ceptual reconstruction performance. Through feature reuse, the FRFSR
model was collaboratively constructed, achieving a significant improve-
ment in both qualitative and quantitative experiments with reference
super-resolution. In the ablation study, we apply this framework to
MASA [7] and 𝐶2-Matching [8], demonstrating a significant improve-
ment in their performance.

3.2. Correlation-based texture warp

For the RefSR task, a large part of the work is focused on accurately
finding the matching correspondence between the LR image and the
Ref image. This is crucial for subsequent texture transfer. We use
the correlation based texture warp, also known as the CTW block,
for matching correspondence, as shown in Fig. 2. Then, we use a
parameter-sharing texture encoder to extract the texture features of
LR and Ref images and generate 𝐹 𝑡𝑒𝑥

𝐿𝑅↑ ∈ R𝐶×𝐻𝐿𝑅↑×𝑊𝐿𝑅↑ , 𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 ∈

𝐶×𝐻𝑅𝑒𝑓×𝑊𝑅𝑒𝑓 . We keep the texture encoder consistent with [8] because
its training method of knowledge distillation and contrastive learning
lleviates the problem of inaccurate matching between LR and the ref-
rence image due to different resolutions, and enhances the robustness
f matching. Then, the texture features 𝐹 𝑡𝑒𝑥

𝐿𝑅↑ and 𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 are respectively

nfolded into 𝑙
(

𝐻𝑅𝑒𝑓 ×𝑊𝑅𝑒𝑓
)

patches to obtain
{

𝑄1, 𝑄2, 𝑄3,… , 𝑄𝑙
}

,
𝐾1, 𝐾2, 𝐾3,… , 𝐾𝑙

}

. The cosine similarity between 𝑄𝑚 and each patch
𝑛 is calculated using the inner product formula to form the similarity
atrix 𝑚,𝑛 ∈ R𝑙.

𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 , 𝐹

𝑡𝑒𝑥
𝐿𝑅↑ = 𝑢𝑛𝑓 𝑜𝑙 𝑑

(

𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 , 𝐹 𝑡𝑒𝑥

𝐿𝑅↑

)

, (5)

𝑚,𝑛 = 𝑆𝑝

(

𝐹 𝑡𝑒𝑥 T ⋅ 𝐹 𝑡𝑒𝑥
)

=
⟨

𝑄𝑚 ,
𝐾𝑛

⟩

, (6)
𝐿𝑅↑ 𝑅𝑒𝑓
‖

‖

𝑄𝑚
‖

‖

‖

‖

𝐾𝑛
‖

‖
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Fig. 1. The architecture of our FRFSR. We first utilized SIFE to reconstruct the features of the 𝐼𝐿𝑅, obtaining 𝐹𝑠𝑖𝑓 𝑒, which was then embedded into two RefSR models. We eliminated
the upsampling and image reconstruction process in SIFE. Next, 𝑅𝑒𝑓 𝑆 𝑅1 was trained solely using the reconstruction loss (-𝑟𝑒𝑐) and then all loss was utilized in training 𝑅𝑒𝑓 𝑆 𝑅2.
We feed back 𝐹 𝑟𝑒𝑐

𝑆 𝑅 , which 𝑅𝑒𝑓 𝑆 𝑅1 reconstructed, during the process into the feature aggregation process to guide 𝑅𝑒𝑓 𝑆 𝑅2 in retaining more texture features.
Fig. 2. The architecture of the correlation-based texture warp (CTW).
where 𝐹 𝑡𝑒𝑥
𝐿𝑅↑ and 𝐹 𝑡𝑒𝑥

𝑅𝑒𝑓 respectively represent the patch features of 𝐹 𝑡𝑒𝑥
𝐿𝑅↑

and 𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 after being split into patches. 𝑄𝑚

‖𝑄𝑚‖
and 𝐾𝑛

‖𝐾𝑛‖
respectively

represent the normalized features of the 𝑚th patch in 𝐹 𝑡𝑒𝑥
𝐿𝑅↑ and the 𝑛th

patch in 𝐹 𝑡𝑒𝑥
𝑅𝑒𝑓 , and ⟨⋅, ⋅⟩ represents the inner product operation. 𝐹 𝑡𝑒𝑥

𝐿𝑅↑
T

denotes the transpose of 𝐹 𝑡𝑒𝑥
𝐿𝑅↑. For a given patch 𝑄𝑚 in 𝐹 𝑡𝑒𝑥

𝐿𝑅↑, the most
similar patch 𝐾𝑛 in 𝐹 𝑡𝑒𝑥

𝑅𝑒𝑓 can be found and recorded as 𝑃𝑚
𝑚𝑎𝑥. The index

matrix 𝑃 =
{

𝑃 1
𝑚𝑎𝑥, 𝑃 2

𝑚𝑎𝑥,… , 𝑃 𝑙
𝑚𝑎𝑥

}

∈ R𝑙 is formed by recording the
indices of these most similar patches.

𝑃𝑚
𝑚𝑎𝑥 = argmax

𝑛
𝑚,𝑛, (7)

where 𝑚,𝑛 represents the confidence score of patch 𝐾𝑛 corresponding
to patch 𝑄𝑚 which is most similar to it. All 𝑃𝑚

𝑚𝑎𝑥 form the index matrix
𝑃 . To use optical flow to initially warp the reference features, we need
to convert the index matrix P into flow information. The process is
shown below:
(

 ,
)

= G
(

𝑊 , 𝐻 )

, (8)
4

𝑦 𝑥 𝐿𝑅 𝐿𝑅
 =
[

𝑃 mod 𝑊𝐿𝑅↑; ⌊𝑃 , 𝑊𝐿𝑅⌋
]

−
[

𝑥;𝑦
]

. (9)

where [; ] represents the concatenation of two vectors, G(⋅) represents
the grid function, which generates a grid with a width of 𝑊𝐿𝑅 and
a height of 𝐻𝐿𝑅, 𝑥 and 𝑦 denote the coordinate values along the
height and width of the grid, The symbols represent the mathematical
operations of module and floor division, respectively, and  represents
the flow information.

Finally, we select three different scales of feature maps 𝐹𝑅𝑒𝑓 ex-
tracted by the pre-trained VGG19 [55]. The reason for choosing VGG19
is that it has a strong feature extraction ability and does not require
training of additional feature extraction modules. Furthermore, by
utilizing flow information at various scales, we distort three reference
features 𝐹 𝑟

𝑅𝑒𝑓 at respective scales using optical flow, obtaining three
features The detailed procedure is as follows:
(

𝐺ℎ𝑟𝑦 , 𝐺ℎ𝑟𝑥

)

= G
(

𝑊𝑟, 𝐻𝑟
)

, (10)

ℎ𝑟 , ℎ𝑟 = 𝑠𝑝𝑙 𝑖𝑡
([

𝐺 𝑟 , 𝐺 𝑟

]

− 
)

, (11)
𝑥 𝑦 ℎ𝑦 ℎ𝑥



Knowledge-Based Systems 314 (2025) 113201X. Mei et al.
Fig. 3. The structure of the feature alignment module (FAM) and Dynamic ResBlock Module (DRB).
𝐺𝑟 =

[

2 × ℎ𝑟𝑥
max

(

𝑊𝑟 − 1, 1) − 1;
2 × ℎ𝑟𝑦

max
(

𝐻𝑟 − 1, 1) − 1
]

, (12)

𝐹 𝑟
𝑅𝑒𝑓 = (

(

𝐹 𝑟
𝑅𝑒𝑓 , 𝐺𝑟

)

), (13)

where, 𝐻𝑟 and 𝑊𝑟 represent the height and width of the 𝑟th scale 𝐹 𝑟
𝑅𝑒𝑓 ,

respectively, 𝑠𝑝𝑙 𝑖𝑡(⋅) represents the separation of two vectors according
to the concatenated channels and (⋅, ⋅) represents the optical flow
warping function.

3.3. Texture-adaptive aggregation module

Using an effective texture transfer based on a corresponding match-
ing relationship is another important goal of the RefSR task. To more
effectively transfer and aggregate the textures in reference images, we
propose a multi-scale dynamic texture transfer module, as shown in
the gray background in Fig. 1. In our module, we utilize the multi-
scale characteristics to progressively aggregate texture features from
multi-scale reference images and learn to generate richer textures.
Unlike the direct texture transfer methods used in [5,6], we use specific
deformable convolutions [11,12] for texture alignment between 𝐹𝐿𝑅
and 𝐹 𝑟

𝑅𝑒𝑓 for RefSR tasks, and finally use several Dynamic ResBlock
modules to complete texture transfer and aggregation.

3.3.1. Texture alignment module
The image texture offset is typically calculated as the data distribu-

tion difference between the source-domain block and the target-domain
block. However, due to the lack of positional constraints during the
distortion process, the characteristic textures of 𝐹 𝑟

𝑅𝑒𝑓 and 𝐹 𝑟
𝑅𝑒𝑓 may

differ from those of 𝐹𝐿𝑅. to obtain the offset required for deformable
convolution, we concatenate 𝐹𝐿𝑅, 𝐹 𝑟

𝑅𝑒𝑓 , and 𝐹𝐿𝑅 Ref to obtain the offset
𝛥𝑃 𝑘.

To more accurately transfer the texture features in the multi-
scale reference feature 𝐹 𝑟

𝑅𝑒𝑓 , We use specific deformable convolu-
tion designed for RefSR to achieve multiple domain-specific mappings
𝐹𝐿𝑅 → 𝐹 𝑟

𝑅𝑒𝑓 ;𝐹
𝑟
𝑅𝑒𝑓 , accurately mapping to the corresponding domain

for texture alignment. As shown in the flowchart in Fig. 3(a), To
achieve accurate alignment, the texture features of 𝐹𝐿𝑅 are mapped
to 𝐹 𝑟

𝑅𝑒𝑓 ;𝐹
𝑟
𝑅𝑒𝑓 . The required offset for the mapping 𝐹𝐿𝑅 → 𝐹 𝑟

𝑅𝑒𝑓 ;𝐹
𝑟
𝑅𝑒𝑓

is obtained by aligning the feature distributions of 𝐹 𝑟
𝑅𝑒𝑓 ;𝐹

𝑟
𝑅𝑒𝑓 using

deformable convolutions. We concatenate 𝐹𝐿𝑅, 𝐹 𝑟
𝑅𝑒𝑓 , and 𝐹 𝑟

𝑅𝑒𝑓 , to
obtain the stable offset 𝛥𝑃𝑘. This is because using the optically distorted
reference feature to guide deformable convolution [56] training can
make the training process more stable.

𝛥𝑃 𝑘 = 𝐶 𝑜𝑛𝑣
(

𝐶 𝑜𝑛𝑣
(

[

𝐹𝐿𝑅;𝐹 𝑟
𝑅𝑒𝑓 ;𝐹

𝑟
𝑅𝑒𝑓

]

)

)

, (14)

where 𝐶 𝑜𝑛𝑣 (⋅) represents the convolution layer. After this, for each
patch 𝑃𝐿𝑅 in LR, we used the previously obtained index matrix P to
find the corresponding most similar patch 𝑃𝑅𝑒𝑓 in 𝐹 𝑟

𝑅𝑒𝑓 . We use 𝛥𝑃
to represent the spatial difference between 𝑃𝐿𝑅 and 𝑃𝑅𝑒𝑓 , that is, 𝛥𝑃 =
𝑃𝐿𝑅−𝑃𝑅𝑒𝑓 , which is the pre-offset output by CTW. Finally, the improved
deformable convolution is used to aggregate 𝑃 and its surrounding
5

𝐿𝑅
textures. The specific process is shown below:

𝐹 𝑝
𝑡𝑒𝑥 =

𝐺
∑

𝑔=1

𝐾
∑

𝑘=1
𝜔𝑔 ⋅ 𝑥𝑔

(

𝑃𝐿𝑅 + 𝛥𝑃 + 𝑃𝑘 + 𝛥𝑃 𝑘
𝑔

)

⋅ 𝛥𝑚𝑘
𝑔 , (15)

where 𝐺 represents the number of groups, 𝐾 denotes the total number
of sampling patches, and 𝑘 enumerates the sampling patch. 𝜔𝑔 denotes
the shared patch irrelevant projection weight of each group, and 𝛥𝑚𝑘

𝑔
denotes the normalized modulation scalar of 𝑘th the sampling patch in
the gth group, 𝑥𝑔 represents the sliced input feature map. 𝛥𝑃 𝑘

𝑔 is the
offset corresponding to the grid sampling patch 𝑃𝑘 in the g-th group.

By using deformable convolutions to guide the learning of offsets, it
becomes possible to calculate the offsets more accurately and achieve
texture alignment between 𝑃𝐿𝑅 and 𝑃𝑅𝑒𝑓 , the surrounding textures of
the most similar patches in each corresponding reference feature can
be aggregated, fully utilizing the contextual information in each patch,
thus providing a guarantee for subsequent texture transfer.

3.3.2. Dynamic ResBlock module
To effectively aggregate the features of 𝐹𝐿𝑅, 𝐹𝑡𝑒𝑥, and 𝐹𝑠𝑖𝑓 𝑒. We

propose DRM for self-adapting transfer and aggregating related texture
features. Furthermore, to address the challenge of RefSR difficulty in re-
constructing high-frequency information from LR alone, we incorporate
the output feature 𝐹𝑠𝑖𝑓 𝑒 of SIFE during aggregation. This feature repre-
sents the reconstructed features of LR itself, as shown in the flowchart
in Fig. 3(b). Specifically, we concatenate the aligned texture feature 𝐹𝑡𝑒𝑥
with 𝐹𝐿𝑅 and 𝐹𝑠𝑖𝑓 𝑒, and input them into a convolution layer. Then, we
use the dynamic residual block to transfer and aggregate the related
textures in the reference feature to obtain the output 𝐹𝑎𝑔 𝑔 . It is worth
noting that we only embed 𝐹𝑠𝑖𝑓 𝑒 in the DRB module corresponding to
the smallest scale, that is, only the feature mapping of the smallest scale
is used. The other DRB modules at other scales only aggregate 𝐹𝐿𝑅 and
𝐹𝑡𝑒𝑥 features.

𝐹 𝑟𝑒𝑐
𝑎𝑔 𝑔 = 𝐷 𝑅𝐵

(

𝐶 𝑜𝑛𝑣
(

[

𝐹𝑡𝑒𝑥;𝐹𝐿𝑅;𝐹𝑠𝑖𝑓 𝑒
]

)

)

+ 𝐹𝐿𝑅. (16)

To train the second model, we reused the feature map 𝐹 𝑟𝑒𝑐
𝑎𝑔 𝑔 created

by the first model. As a result, we added this feature map to the feature
aggregation process to enhance the texture features. Eq. (16) can be
expressed in the following form:

𝐹 𝑎𝑙 𝑙
𝑎𝑔 𝑔 = 𝐷 𝑅𝐵

(

𝐶 𝑜𝑛𝑣
(

[

𝐹𝑡𝑒𝑥;𝐹𝐿𝑅;𝐹𝑠𝑖𝑓 𝑒;𝐹 𝑟𝑒𝑐
𝑎𝑔 𝑔

]

)

)

+ 𝐹𝐿𝑅. (17)

The DRB module consists of two decoupled dynamic filters and a
ResBlock with an ESA (Enhanced Spatial Attention) [57]. In the DRB
module, we do not utilize standard convolutions or dynamic filters.
The main reason is that standard convolutions lack content aware-
ness and have high computational complexity. Dynamic filters address
content adaptation but significantly increase computational complex-
ity. To overcome these limitations, we introduces lightweight decou-
pled dynamic filter that enhances content-aware perception through
lightweight spatial and channel attention branches. Moreover, The
parameter count of the dynamic decoupled filters is consistent with that
of traditional convolution. The decoupled dynamic filter are shown in
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Fig. 4. The structure of dynamic filter module (DFM). ‘FC’ denotes the fully connected
layer and ‘GAP’ denotes the global average pooling. ‘FN’ denotes filter normalization.

Fig. 4, inspired by the significant advancements brought by attention
mechanisms, by decoupling the dynamic filters into channel filters and
spatial filters, we can effectively perceive the related texture content
between 𝐹𝐿𝑅, 𝐹𝑡𝑒𝑥 and 𝐹𝑠𝑖𝑓 𝑒, while addressing the issue of computa-
tional intensity. The spatial dynamic filter and channel dynamic filter
can be represented by the following equations:

𝐻𝑠𝑓 =
∑

𝑗

∑

𝑐
𝑓𝑠𝑓 (𝑖, 𝑗) × 𝐹(𝑖,𝑗 ,𝑐) + 𝑏𝑖, (18)

𝐻𝑐 𝑓 =
∑

𝑐

∑

𝑗
𝑓𝑐 𝑓 (𝑗 , 𝑐) × 𝐹(𝑖,𝑗 ,𝑐) + 𝑏, (19)

where 𝐻𝑠𝑓 (⋅) denotes to the spatial dynamic filter, 𝐻𝑐 𝑓 (⋅) denotes the
channel dynamic filter at 𝑐th channel, 𝑏𝑖 is the bias vector, 𝑐 represents
the number of channels. the bias vector 𝑏 remains unchanged at the
channel. Then the routing weight and the final aggregated features can
be generated:

𝑘 =
(

𝛾𝑠𝑓
(

𝐻𝑠𝑓
𝑖
)

+ 𝛽𝑠𝑓
)

⊙
(

𝛾𝑐 𝑓 (𝐻𝑐 𝑓
𝑐

)

+ 𝛽𝑐 𝑓
)

, (20)

𝐹 ′
𝑡𝑒𝑥 = 𝑘 ∗ 𝐹𝑡𝑒𝑥 (21)

where, 𝐻𝑠𝑓
𝑖 and 𝐻𝑐 𝑓

𝑖 represent the values obtained from the spatial
and channel filter branches, respectively, after normalization is applied,
while 𝑘 =

(

1,2,… ,𝑛
)

denotes the routing weights. 𝛾𝑠𝑓 , 𝛾𝑐 𝑓 ,
𝛽𝑠𝑓 , and 𝛽𝑐 𝑓 are similar to BN [58] and specify the learnable mean and
standard deviation of the two branches. ‘⊙’ and ‘∗’ are used to denote
element-wise multiplication and the filter application, respectively.

After the decoupled dynamic filtering, we have effectively perceived
the relevant texture content between 𝐹𝐿𝑅, 𝐹𝑡𝑒𝑥 and 𝐹𝑠𝑖𝑓 𝑒. However, as
shown in the feature visualization in Fig. 13, although the dynamic
filter can effectively perceive and aggregate relevant reference textures,
it also leads to texture misuse. Therefore, we embedded ESA into
the residual block, as shown in Fig. 5, to enhance the related tex-
ture features of 𝐹𝐿𝑅, aggregate reference features with high relevance
while suppressing interference features with low relevance. We also
conducted experiments to demonstrate its effectiveness, and the feature
visualization of the ESA module in Fig. 14 shows that ESA can sharpen
features and weaken the introduction of irrelevant textures. It is worth
noting that this attention module is lightweight and only adds a small
number of parameters.

ESA has been proven to be efficient and effective in previous
work [57,59]. This is because it uses 1 × 1 convolution and 3 × 3 con-
volution with a stride of 2 to compress the channel size and spatial size
respectively, and further reduces the feature size using max pooling.
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This attention-based texture-adaptive aggregation method not only
transfers and fuses effective textures from reference images and reduces
interference from irrelevant textures, it also ensures that the features
𝐹𝑠𝑖𝑓 𝑒 reconstructed by the SISR method are well integrated into 𝐹𝐿𝑅.
By aggregating 𝐹𝑠𝑖𝑓 𝑒 features, it not only makes up for the defect
that reference-based super-resolution is difficult to reconstruct its own
texture, it also suppresses the generation of irrelevant textures to a large
extent.

3.4. Loss functions

Reconstruction loss. To ensure the model has an excellent texture trans-
fer ability and image reconstruction ability, we use the following
reconstruction loss to train the model.

𝑟𝑒𝑐 = ‖

‖

𝐼𝐻 𝑅 − 𝐼𝑆 𝑅‖‖1 , (22)

where 𝐼𝐻 𝑅 represents the ground truth image, 𝐼𝑆 𝑅 represents the super-
resolved image. ‖⋅‖1 represents 𝑙1 norm. Only using reconstruction loss
to train the model will cause the image to be too smooth.

Perceptual loss. By calculating perceptual loss [60] in the feature do-
main, the generated image can be more semantically similar to GT.
Perceptual loss is shown as follows:

𝑝𝑒𝑟 = 1
𝑉

𝐶
∑

𝑖=1

‖

‖

‖

𝜙𝑖
(

𝐼𝐻 𝑅
)

− 𝜙𝑖
(

𝐼𝑆 𝑅
)

‖

‖

‖𝐹
, (23)

where 𝜙𝑖(⋅) represents the 𝑖th intermediate layer of VGG19 [55]. ‖⋅‖𝐹
represents Frobenius norm, 𝐶 and 𝑉 represent the number of channels
and volume of feature maps respectively.

Adversarial loss. The generator 𝐺 and discriminator  improve to-
gether in a game against each other, ensuring the model is able to
generate output images with pleasing visual effects. The adversarial loss
we choose is WGAN [61], which is shown as follows:

𝑎𝑑 𝑣 = − (

𝐼𝑆 𝑅
)

. (24)

During the training process, the loss of discriminator  is shown as
follows:

 = 
(

𝐼𝑆 𝑅
)

−
(

𝐼𝐺 𝑇
)

+ 𝜆
(

‖

‖

‖

∇𝐼
(

𝐼
)

‖

‖

‖2
− 1

)2
, (25)

where ∇𝐼 represents the random convex combination of 𝐼𝐻 𝑅 and 𝐼𝑆 𝑅.
Finally, the total loss function is shown as follows:

𝑎𝑙 𝑙 = 𝜆1𝑟𝑒𝑐 + 𝜆2𝑝𝑒𝑟 + 𝜆3𝑎𝑑 𝑣, (26)

where 𝜆1, 𝜆2, and 𝜆3 are respectively the weight coefficients for each
loss.

4. Experiments

This section commences by presenting the datasets essential to the
training and testing of the models. We utilized PSNR (Peak Signal to
Noise Ratio), SSIM (Structural Similarity), and LPIPS (Learned Percep-
tual Image Patch Similarity) as quantitative comparison metrics. PSNR
serves as a metric for evaluating image quality, while SSIM quantifies
the structural similarity between two images. Their formulas are shown
as (27) and (28) respectively. LPIPS is also commonly employed to
measure perceptual similarity between two images, making it more
aligned with human perception. Its formula is consistent with the
perceptual loss. Subsequently, we comparatively analyze several super-
resolution methods along various aspects for our approach. Ablation
studies are conducted on the SIFE and DRB components, along with the
feature reuse framework. Lastly, we evaluate the efficacy of our pro-
posed approach against other super-resolution methods in a practical
implementation.

𝑃 𝑆 𝑁 𝑅(𝐼𝐻 𝑅, 𝐼𝑆 𝑅) = 10 ⋅ log10( 2552
𝑀 𝑆 𝐸(𝐼𝐻 𝑅, 𝐼𝑆 𝑅)

) (27)

𝑆 𝑆 𝐼 𝑀(𝐼𝐻 𝑅, 𝐼𝑆 𝑅) =
(2𝜇𝐼𝐻 𝑅𝜇𝐼𝑆 𝑅 + 𝑐1)(2𝜎𝐼𝐻 𝑅𝜎𝐼𝑆 𝑅 + 𝑐2)

(𝜇2
𝐼𝐻 𝑅 + 𝜇2

𝐼𝑆 𝑅 + 𝑐1)(𝜎2𝐼𝐻 𝑅 + 𝜎2𝐼𝑆 𝑅 + 𝑐2)
(28)
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Fig. 5. The structure of Enhanced Spatial Attention (ESA).
Table 1
PSNR/SSIM are the evaluation metrics uesd to compare the other methods quantitatively. The model is trained using only reconstruction loss
(-𝑟𝑒𝑐). Text highlighted in bold indicates the most favorable outcome.
Method CUFED [5] SUN80 [64] Urban100 [62] Manga [63] WR-SR [8]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [14] 25.33/0.745 28.26/0.781 24.41/0.738 27.12/0.850 27.27/0.767
EDSR [16] 25.93/0.777 28.52/0.792 25.51/0.783 28.93/0.891 28.07/0.793
ENet [65] 24.24/0.695 26.24/0.702 23.63/0.711 25.25/0.802 25.47/0.699
RCAN [18] 26.33/0.781 29.97/0.814 25.99/0.787 30.11/0.908 27.91/0.793
RRDB [21] 26.41/0.783 29.99/0.814 25.98/0.788 29.87/0.907 27.96/0.793

Cross-Net [3] 25.48/0.764 28.52/0.793 25.11/0.764 23.36/0.741 –
SSEN-𝑟𝑒𝑐 [4] 26.78/0.791 – – – –
SRNTT-𝑟𝑒𝑐 [5] 26.24/0.784 28.54/0.793 25.50/0.783 28.95/0.885 27.59/0.780
TTSR-𝑟𝑒𝑐 [6] 27.09/0.804 30.02/0.814 25.87/0.784 30.09/0.907 27.97/0.792
MASA-𝑟𝑒𝑐 [7] 27.54/0.814 30.15/0.815 26.09/0.786 30.28/0.909 28.19/0.796
𝐶2-Matching-𝑟𝑒𝑐 [8] 28.24/0.841 30.18/0.817 26.03/0.785 30.47/0.911 28.32/0.801
WTRN-𝑟𝑒𝑐 [30] 27.33/0.810 30.11/0.816 26.00/0.787 30.37/0.909 –
TADE-𝑟𝑒𝑐 [13] 28.64/0.850 30.31/0.820 26.71/0.807 31.23/0.917 28.34/0.805
DATSR-𝑟𝑒𝑐 [9] 28.72/0.856 30.20/0.818 26.52/0.798 30.49/0.912 28.52/0.807
RRSR-𝑟𝑒𝑐 [32] 28.83/0.856 30.13/0.816 26.21/0.790 30.91/0.913 28.41/0.804
FRFSR-𝑟𝑒𝑐 (Ours) 29.18/0.865 30.35/0.822 26.84/0.811 31.15/0.917 28.67/0.811
4.1. Datasets and metrics

4.1.1. Training dataset
We use CUFED [5] to train our model, which consists of a total of

11,871 image pairs, comprising 11,871 input images along with their
corresponding reference images, each with a resolution of 160 × 160.

4.1.2. Testing dataset
Our study evaluates the efficiency of our model across five bench-

mark datasets: CUFED5 [5], Urban100 [62], Manga109 [63], Sun80
[64], and WR-SR [8]. CUFED5 contains a total of 126 input images,
each accompanied by five reference images of decreasing relevance,
denoted as L1-L4. Urban100 comprises primarily 100 urban images
known for their strong self-similarity. During testing, we utilized the
low-resolution input images themselves as reference images. Manga109
consists of 109 manga images commonly used in super-resolution tasks.
We randomly select one image from the remaining 108 images as
the reference image. For Sun80 consists of 80 natural images, with
each input image having 20 corresponding reference images. During
testing, we randomly selected one reference image for evaluation. WR-
SR, proposed in [8], offers a richer variety of scenes and categories
compared to CUFED5. It consists of 80 pairs of input images and
reference images, providing a more comprehensive evaluation of RefSR
performance. Our metrics for evaluation consisted of PSNR and SSIM
calculated on the Y channel in the YCbCr color space.

4.1.3. Implementation details
To obtain the LR inputs, we downsample the HR images by a

scale factor of 4. For data augmentation, we apply horizontal flip,
vertical flip, and random rotation. To increase the training difficulty
and improve the performance of long-distance feature alignment, we
divide the reference images into patches and shuffle them randomly.
We use the official RRDB [21] parameters as the pre-trained model
for the single image feature embedding module, which we train in two
stages. First, we use 𝑟𝑒𝑐 as the only loss function. Second, we use 𝑟𝑒𝑐 ,
𝑝𝑒𝑟, and 𝑎𝑑 𝑣 for joint supervision. During the training process, we
choose the Adam optimizer and set the 𝛽 and 𝛽 parameters to 0.99
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and 0.999, respectively. We set the initial learning rate of the model to
1e–4 and the batch size to 9. The weights 𝜆1, 𝜆2, and 𝜆3 of 𝑟𝑒𝑐 , 𝑝𝑒𝑟,
and 𝑎𝑑 𝑣 are set to 1.0, 10−4, and 10−6, respectively. Our model has a
floating-point operation complexity of approximately 116 GFLOPs and
took approximately 56 h to train on two NVIDIA GeForce RTX 3090
GPUs.

4.2. Comparison with state-of-the-art methods

We conduct quantitative and qualitative comparisons between our
proposed method and some existing SISR and RefSR methods. The
SISR methods are SRCNN [14], EDSR [16], RCAN [18], Enet [65],
SRGAN [20], ESRGAN [21], RankSRGAN [22]. The RefSR methods
are CrossNet [3], SSEN [4], SRNTT [5], TTSR [6], MASA [7], 𝐶2-
Matching [8], TADE [13], DATSR [9], and RRSR [32]. We train two
sets of parameters, one using only the reconstruction loss (denoted by
−𝑟𝑒𝑐), and the other using all losses.

4.2.1. Quantitative comparison
As shown in Table 1, our method achieves state-of-the-art results

on five benchmark datasets using only the reconstruction loss. Our
method leverages effective texture matching, dynamic texture transfer,
and complementary SISR features in the reconstruction process, which
enables it to transfer similar textures from the high-resolution reference
images in CUFED5 and WR-SR datasets to the LR images, enhancing
their high-frequency information, and to transfer self-features to assist
LR reconstruction on the self-similar dataset Urban100. As shown in
Table 3, our model outperforms all the other methods on all datasets
under the joint supervision of losses, although its performance slightly
degrades compared to the results obtained when only using recon-
struction loss. Interestingly, our method still maintains a significant
advantage (+0.8 dB) over the other RefSR methods, even with the
presence of perceptual loss and adversarial loss. Furthermore, our
method consistently achieves lower values for both Perceptual Index
(PI) and Fréchet Inception Distance (FID) compared to the other three
methods (𝐶2-Matching, DATSR, RRSR) across the majority of datasets,
as illustrated in Table 2. The quantitative comparison under the two
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Table 2
Three different methods, including 𝐶2-Matching, DATSR, and RRSR, are quantitatively compared in terms of Perceptual Index (PI) and Fréchet Inception
Distance (FID). It is noteworthy that the loss weights for these three methods are set consistently with our approach.

Method CUFED5 Sun80 Urban Manga

PI↓ FID↓ PI↓ FID↓ PI↓ FID↓ PI↓ FID↓

𝐶2-Matching [8] 2.6758 45.73 4.2813 16.61 4.0452 25.49 3.9057 13.36
DATSR [9] 2.6234 43.48 4.2801 16.60 4.0936 24.53 3.9127 13.12
RRSR [32] 2.4791 41.23 4.2752 16.57 4.0628 22.41 3.8149 12.95
FRFSR (Ours) 2.4453 39.76 4.2704 15.69 4.0645 20.96 3.7854 11.67
Table 3
The model is trained using all losses and the results are compared with PSNR/SSIM. Text highlighted in bold indicates the most favorable outcome.
Method CUFED [5] SUN80 [64] Urban100 [62] Manga [63] WR-SR [8]

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRGAN [20] 24.40/0.702 26.76/0.725 24.07/0.729 25.12/0.802 26.21/0.728
ESRGAN [21] 21.90/0.633 24.18/0.651 20.91/0.620 23.53/0.797 26.07/0.726
RankSRGAN [22] 22.31/0.635 25.60/0.667 21.47/0.624 25.04/0.803 26.15/0.719

SRNTT [5] 25.61/0.764 27.59/0.756 25.09/0.774 27.54/0.862 26.53/0.745
TTSR [6] 25.53/0.765 28.59/0.774 24.62/0.747 28.70/0.886 26.83/0.762
MASA [7] 24.92/0.729 27.12/0.708 23.78/0.712 27.34/0.848 25.76/0.717
𝐶2-Matching [8] 27.16/0.805 29.75/0.799 25.52/0.764 29.73/0.893 27.80/0.780
WTRN [30] 25.98/0.761 28.46/0.756 24.88/0.747 29.18/0.878 –
TADE [13] 27.37/0.816 28.85/0.768 25.80/0.776 30.12/0.889 27.40/0.769
DATSR [9] 27.95/0.835 29.77/0.800 25.92/0.775 29.75/0.893 27.87/0.787
RRSR [32] 28.09/0.835 29.57/0.793 25.68/0.767 29.82/0.893 27.89/0.784
FRFSR (Ours) 28.71/0.852 29.89/0.804 26.65/0.802 30.89/0.906 28.27/0.793
Table 4
Performance comparison under different relevance levels on CUFED5.

Method L1 L2 L3 L4

PSNR/SSIM LPIPS PSNR/SSIM LPIPS PSNR/SSIM LPIPS PSNR/SSIM LPIPS

Cross-Net [3] 25.48/0.764 – 25.48/0.764 – 25.47/0.763 – 25.46/0.763 –
SRNTT-𝑟𝑒𝑐 [5] 26.15/0.781 0.248 26.04/0.776 0.252 25.98/0.775 0.258 25.95/0.774 0.261
SSEN-𝑟𝑒𝑐 [4] 26.78/0.791 – 26.52/0.783 – 26.48/0.782 – 26.42/0.781 –
TTSR-𝑟𝑒𝑐 [6] 26.99/0.800 0.230 26.74/0.791 0.239 26.64/0.788 0.244 26.58/0.787 0.251
MASA-𝑟𝑒𝑐 [7] 27.35/0.814 0.205 26.92/0.796 0.232 26.82/0.793 0.238 26.74/0.790 0.242
𝐶2-Matching-𝑟𝑒𝑐 [8] 28.24/0.841 0.170 27.39/0.813 0.193 27.17/0.806 0.204 26.94/0.799 0.230
WTRN-𝑟𝑒𝑐 [30] 27.23/0.807 0.236 26.90/0.794 0.236 26.79/0.792 0.240 26.71/0.789 0.245
TADE-𝑟𝑒𝑐 [13] 28.64/0.850 – 27.77/0.821 – 27.46/0.815 – 27.23/0.807 –
DATSR-𝑟𝑒𝑐 [9] 28.50/0.850 0.166 27.47/0.820 0.209 27.22/0.811 0.218 26.96/0.803 0.2281
RRSR-𝑟𝑒𝑐 [32] 28.64/0.850 0.161 27.77/0.821 0.201 27.46/0.815 0.211 27.23/0.807 0.223
FRFSR-𝑟𝑒𝑐 (Ours) 29.01/0.860 0.152 28.01/0.831 0.189 27.77/0.824 0.198 27.49/0.815 0.209
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paradigms demonstrates that our model exhibits a strong generalization
ability and achieves optimal performance.

4.2.2. Qualitative evaluation
Figs. 6 and 7 shows the visual comparison of our model and the

existing SISR and RefSR methods. It can be clearly seen that RCAN
and RRDB have difficulty in reconstructing texture information due
to the severe degradation of high-frequency information, especially in
text and texture-dense areas. Compared with SISR, RefSR can transfer
similar textures from the reference images, thus producing more texture
details. Compared with some existing RefSR methods, the adaptive
nature of FRFSR allows for the perception and transferal of texture
nformation from the Ref images. Thus, the model is capable of com-
ensating for missing high-frequency details in LR, leading to the
econstruction of images with texture details more closely resembling
he ground truth. For example, in the third pair of local details in

Fig. 6, RCAN and RRDB fail to reconstruct any window blind texture,
and the existing RefSR methods generate some texture details, but
the images are very unrealistic and far from the ground truth. Our
proposed method can generate a sharper, clearer blind texture that is
very close to the ground truth. This demonstrates the effectiveness of
our texture search and texture-adaptive aggregation methods. Due to
the feature reuse framework, FRFSR can preserve increasingly more
realistic texture information when trained with 𝑟𝑒𝑐 +𝑝𝑒𝑟 +𝑎𝑑 𝑣, such
as the text on the clothes in the fourth pair of images in Fig. 7, and the
tone pillar texture in the second pair of images. Compared with the
8
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other RefSR methods, our method can generate complete text texture
nd stone pillar texture, reflecting the advantages of the feature reuse

framework and our method.

4.2.3. Comparison of robustness of texture transformations
Texture transfer robustness is an important criterion for evaluating

the performance of RefSR models. As shown on the left of Fig. 8,
SOTA methods suffer from texture mis-transfer. Moreover, even if the
exture of the Ref image is irrelevant, the model should exhibit good
daptive texture transfer robustness. CUFED5 provides four reference
mages with different levels of relevance (L1-L4). Table 4 shows the re-

sults of different models under different relevance settings. The results
emonstrate that our model surpasses several existing RefSR models
n terms of texture transfer and robustness. Notably, especially when
he reference image is least relevant, our model achieves a perfor-

mance gain of 0.26 dB over other SOTA models. To further validate
he superiority of our model, we created the CUFEDR dataset, which

extended all HR images from Urban100, Manga109 and Sun80 into a
reference set, consisting of 289 images. During testing, we randomly
selected one HR from CUFEDR as a reference image for testing, and
the test results are shown in Table 5. Even if the reference image is
rrelevant, our model outperforms RRSR by 0.3 dB, as shown on the
ight of Fig. 8. These experiment results indicate that our model can
atch and transfer similar textures from relevant reference images,

nd also possesses adaptive texture transfer robustness in low-relevance
cenarios.
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Fig. 6. Qualitative comparison of the SISR and RefSR methods. All these methods are trained with the L1 loss. It can be seen from the figure that our method can transfer and
reconstruct more texture details from the reference images.
Table 5
Robustness comparison for irrelevant texture transfer on CUFEDR testing set.

Method CUFEDR

PSNR/SSIM LPIPS

TTSR-𝑟𝑒𝑐 [6] 26.40/0.778 0.273
MASA-𝑟𝑒𝑐 [7] 26.59/0.784 0.260
𝐶2-Matching-𝑟𝑒𝑐 [8] 26.50/0.784 0.265
DATSR-𝑟𝑒𝑐 [9] 26.43/0.784 0.267
RRSR-𝑟𝑒𝑐 [32] 26.58/0.785 0.259
Ours-𝑟𝑒𝑐 26.88/0.795 0.241

4.2.4. Comparison of robustness of long-range alignment
To enhance the robustness of our model with respect to long-

distance feature alignment, we integrated training with long-distance
alignment and context perturbation samples. Specifically, we divide the
reference image into multiple n × n patches, then randomly shuffle
their positions, and finally reassemble them into a new complete sample
image, which disturbs the contextual dependency of the image and
enlarges the misalignment distance between relevant patches. During
testing, we perform three different levels of random shuffling on the
reference image, namely easy, medium, and hard, which divide the
image into 2×2, 4×4, and 8 × 8 patches respectively, as shown in Fig. 9.
Fig. 10 shows our model and the other RefSR method for different
9

levels of randomly shuffled reference images. It is worth noting that
we refrained from retraining the model with the strategy of random
shuffling. We observed that, although this strategy did not lead to
improvements in PSNR, it maintained a certain level of robustness
under varying degrees of confusion in reference images. By using cross-
layer semantic regularization to fuse and enhance texture features with
similar semantics at different granularities, we show that our model is
more robust than the 𝐶2-Matching method. It is worth noting that we
only use medium-level data augmentation during training.

4.3. Discussion of model size and computation cost

In this section, we compare our method with other methods in terms
of parameter size and running time, as shown in Tables 7 and 6.

Our model improves the running time by 33.5% and reduces the
parameters by 25% compared to DATSR [9], which is based on Swin-
Transformer [10] as the basic module. However, compared to MASA’s
[7] coarse-to-fine matching method, our method increases both running
time and parameters, but our method greatly improves the perfor-
mance. our model consists of two parts: relevant texture search and
transfer with SIFE, the model parameters are relatively large. The SIFE
module can reduce the introduction of some texture error, so it plays an
auxiliary role. It is worth noting that after removing the SIFE module,
the parameters are only 13.5M, but the performance can still reach
SOTA.
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Fig. 7. Qualitative comparison of the SISR and RefSR methods. In this category of methods, perceptual loss and generative adversarial loss have been incorporated.
Fig. 8. To the left is an exemplification of reference misuse in present methods, whereas to the right stands a texture reconstruction image with a reference unrelated to the
original.
4.4. Ablation studies

In this section, we evaluate our method’s dynamic residual block
component and single image feature embedding using CUFED5. Table 8
shows the evaluation results. We also apply the feature reuse frame-
work to other RefSR methods to demonstrate its effectiveness (see
Fig. 15).
10
4.4.1. Single image feature embedding
The reconstructed features from SISR can effectively compensate for

the remaining features other than the texture features in the Ref image.
To verify the effectiveness of single-image feature embedding, we do
not consider feature embedding when transferring texture, and we find
that both the performance of transferring matching texture from the
Ref image and reconstructing a similar texture that does not exist in
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Fig. 9. Diagram of different degrees of random disruption.

Table 6
Running time of FRFSR compared with other RefSR methods on CUFED5.

Model Runtime (ms)

SRNTT [5] 13 256
TTSR [6] 505
MASA [7] 336
𝐶2-Matching [8] 361
DATSR [9] 1214
FRFSR (Ours) 807

Table 7
Comparison between our FRFSR and other RefSR methods in the number of
parameters.

Model Params PSNR↑/SSIM↑

CorssNet [3] 33.18M 25.48/0.764
𝐶2-Matching-𝑟𝑒𝑐 [8] 8.9M 28.24/0.841
TADE-𝑟𝑒𝑐 [13] 10.9M+15.9M 28.64/0.850
RRSR-𝑟𝑒𝑐 [32] 22.6M 28.83/0.856
Ours-𝑟𝑒𝑐 (w/o SIFE) 13.5M 28.93/0.865
Ours-𝑟𝑒𝑐 13.5M+15.9M 29.16/0.865

Table 8
Quantitative evaluation of the ablation study on the single-image feature embedding
module and dynamic residual ResBlock component on the CUFED5.

Model SIFE DRB ESA PSNR↑/SSIM↑ LPIPS↓

Baseline(DATSR) 28.72/0.856 0.1630
Baseline+DRB ✓ 28.88/0.860 0.1592
Baseline+DRB+ESA ✓ ✓ 28.93/0.865 0.1563
Baseline+SIFE ✓ 29.01/0.861 0.1462
Baseline+DRB+SIFE+ESA ✓ ✓ ✓ 29.16/0.865 0.1431

the Ref image are affected. Table 9 shows that with the help of the
SIFE module, our model not only improved by 0.37 dB on CUFED5,
but also achieved corresponding improvements on other datasets. In
addition, we also compared our model with the decoupled and coupled
frameworks in TADE [13] at the same time, further demonstrating
the effectiveness of SIFE. It can be observed that the coupled model
achieves better metrics on high-resolution reference datasets with sim-
ilar textures, such as CUFED5 and WR-SR. However, its performance
is relatively poorer on datasets like Urban100 and Manga109, which
lack similar high-resolution textures. This phenomenon suggests that
the coupled model possesses stronger texture aggregation capabilities.
In contrast, the decoupled model, leveraging features reconstructed
from upsampled SISR methods, has richer inherent feature information.
Therefore, it is more suitable when the reference image lacks relevant
textures. However, RefSR methods prioritize matching and aggregating
reference textures. Hence, we consider that having stronger texture
transfer and aggregation capabilities is crucial for RefSR. Consequently,
we ultimately opt for the coupled framework. On the other hand, as
shown in Fig. 11, adding the SIFE module can facilitate the model’s
learning, alleviate detail loss, and not only transfer richer and finer
texture details from the Ref images in CUFED5, it can also make
texture features more prominent in the SR images reconstructed on
other datasets. It is worth noting that adding the SIFE module can
suppress irrelevant texture transfer to some extent, as shown in the
third row. Through quantitative and qualitative evaluation, the SIFE
module improves the model’s ability to transfer texture and recover
texture details that do not exist in the Ref image.
11
Table 9
Quantitative ablation experiments of SIFE on multiple benchmark datasets. In addition,
we also chose the decoupled and non-decoupled frameworks in TADE for comparison.

Method CUFED5 Sun80 Urban100 WR-SR
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Decouple 28.93/0.859 30.38/0.821 26.89/0.811 28.41/0.796
w/o SIFE 28.68/0.853 30.07/0.814 25.95/0.779 28.24/0.794
w/ SIFE (Couple) 29.01/0.861 30.35/0.821 26.80/0.810 28.52/0.806

Table 10
Quantitative ablation study on adding FRF on multiple methods.

Model FRF PSNR↑/SSIM↑ LPIPS↓

MASA [7] 24.92/0.729 0.0987
MASA+FRF ✓ 25.16/0.744 0.0954
𝐶2-Matching [8] 27.16/0.805 0.1229
𝐶2-Matching+FRF ✓ 28.05/0.834 0.1198
Ours 28.29/0.840 0.0992
Ours+FRF ✓ 28.71/0.852 0.0974

4.4.2. Dynamic residual block
The aligned reference features contain a lot of noise information,

and using ResBlock to directly aggregate the reference features will
cause the SR image to have irrelevant textures and noise. As shown in
Fig. 12, we add dynamic filters and enhanced spatial attention (ESA) in
the residual block, which can effectively perceive relevant textures and
adaptively aggregate them. Even though dynamic filters can effectively
select reference textures, the feature visualization in Fig. 13 reveals
that there are still many non-relevant textures present after dynamic
filtering. Therefore, we add ESA to the ResBlock to further eliminate
non-relevant textures. Fig. 14 shows the feature visualization of ESA.
It can be seen that after adding ESA, the texture features with higher
relevance become more prominent, and the texture edges become
sharper. As shown in Table 8, compared with Baseline, the model
with DRB has a 0.25 dB improvement on PSNR and the LPIPS [66]
also decreased by 0.0067, and the smaller LPIPS corresponds to better
performance.

4.4.3. Feature reuse framework
We found that compared with the model trained with reconstruction

loss, the model trained with all loss exhibited a worse performance on
texture transfer and reconstruction. To reduce the impact of adversarial
loss and perceptual loss, we used a Feature Reuse Framework (FRF)
to supplement the texture that could not be reconstructed. Table 10
shows the effect of FRF on MASA and 𝐶2-Matching. It can be seen
that after adding FRF, all models consistently improved. Although
PSNR and SSIM cannot determine visual quality, we also use LPIPS
as an evaluation indicator. It is noted that our model is slightly lower
than MASA on LPIPS, which is because MASA uses larger weights for
adversarial loss and perceptual loss, resulting in better visual effects
for the final output. Our loss weights are consistent with 𝐶2-matching,
but compared with 𝐶2-Matching with FRF added, our model improved
by 0.66 dB and 0.018 on PSNR and SSIM respectively, and LPIPS
decreased by 0.0224. We visualize the methods with FRF added, and
the visualization results are shown in Fig. 15. It is noted that the model
trained with only reconstruction loss (-𝑟𝑒𝑐) has more texture details
than the model trained with all losses. However, after adding FRF, the
texture can be restored to normal. This indicates that this framework
can reduce the impact of adversarial loss and perceptual loss on texture
reconstruction.

4.4.4. Web search applications
Image search by image is a common feature of the existing network,

which is also one of the most typical applications of RefSR. By searching
for reference images based on the user input LR image, RefSR can
reconstruct LR. At the same time, this is also a way to verify the
generalization ability of RefSR. We selected two low-resolution images
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Fig. 10. Robustness of different models in long distance feature alignment. Our FRFSR is better than TTSR, MASA and 𝐶2-Matching with varying levels of graphic clutter.
Fig. 11. Ablation analysis of the SIFE module. In addition to boosting the performance
of texture transfer and reconstruction, the SIFE module effectively suppresses irrelevant
textures from being introduced.

Fig. 12. Replacing ResBlock with DRB can effectively enhance the network’s ability to
learn texture transfer, suppress the introduction of unrelated texture, and enable the
generated texture to approach the GT.

Fig. 13. Visualization of features at different stages on the 4× feature scale. From
left to right are feature visualization after PiexlShuffle, features before input Dynamic
Filter, and features after output Dynamic Filter.
12
Fig. 14. Feature visualization of Enhanced Spatial Attention (ESA). After undergoing
ESA processing, a substantial amount of noisy textures have been eliminated, and the
textures have become sharper.

from DIV2K and RealSR, respectively, and utilized Google’s image
search function to find corresponding reference images. For the RealSR
input images, we introduced random Gaussian noise, JPEG noise, and
Poisson noise. Our FRFSR method was then compared with other SISR
and RefSR methodologies, and the results are presented in Fig. 16.
Compared with ESRGAN, and existing RefSR methods (SRNTT, TTSR,
MASA, 𝐶2-Matching, DATSR), our method can transfer more details
and textures from the images found in the web, even if there are
differences in lighting, texture size or perspective in the reference
image. Therefore, the SR image reconstructed by our method has a
better visual quality.

4.4.5. Discussion in remote sensing
RefSR has been applied in various fields such as remote sens-

ing [67], thanks to its excellent texture transfer and reconstruction
performance. Therefore, to further highlight the advantages of our
method, we have added a performance comparison of multiple RefSR
methods on remote sensing images in this section. Typically, remote
sensing datasets lack corresponding reference images. Thus, we selected
one image from the HRSCD dataset [68] for downsampling as the
input image and found another image with similar textures from the
same dataset as the reference image. Both qualitative and quantitative
comparisons are depicted in Fig. 17. It can be observed that our method
still performs well in reconstructing textures in remote sensing images,
demonstrating the scalability of our approach.

5. Conclusion

In this paper, we introduce a feature reuse framework that success-
fully mitigates the negative impacts of the perceptual and adversarial
losses that arise during the texture reconstruction process. Our method
is composed of two modules: a single-image feature embedding module
for reconstructing the self-features of the LR input image, and a texture
adaptive aggregation module for reconstructing the effective texture
of the perceptual aggregate reference image. Our approach improves
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Fig. 15. Qualitative ablation study on adding FRF (Feature Reuse Framework) to multiple methods, where the first row is the SR results of each model trained with only
reconstruction loss, the second row is the output results of models trained with all losses, and the third row is the output results of each model after adding FRF.
Fig. 16. Web search applications on multiple methods. The first line involves selecting two images from DIV2K for traditional downsampling, followed by searching for similar
images on Google. The second line involves choosing two high-resolution images from the RealSR dataset and introducing random Gaussian noise, JPEG noise, and Poisson noise.
robustness to unrelated references. The experiments conducted on var-
ious benchmarks show that our approach outperforms existing RefSR
methods in both qualitative and quantitative measures.
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