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Abstract

We extend the graph convolutional network method for deep learning on graph data to
higher order in terms of neighboring nodes. In order to construct representations for a node
in a graph, in addition to the features of the node and its immediate neighboring nodes,
we also include more distant nodes in the calculations. In experimenting with a number of
publicly available citation graph datasets, we show that this higher order neighbor visiting
pays off by outperforming the original model especially when we have a limited number of
available labeled data points for the training of the model.

1 Introduction

The problem of learning representations in a graph has been a major attraction in representation learning
for a while now. Several algorithms have been developed trying to represent the information from node
features, edge features, and adjacency matrix of a graph with a low dimensional vector in order to enable
further analysis on them (Grover & Leskovec, 2016; Zhu et al., 2003; Belkin et al., 2006; Ahmed et al., 2022;
Defferrard et al., 2016).

A semi-supervised learning method on graph-structured problem is defined when we are looking to find the
missing class labels for nodes (e.g. published papers) in a graph of relations (e.g. citation network of those
published papers) based on a small subset of known labels for nodes. These types of problems can also be
found when one is trying to cluster nodes of a graph into similar groups. Roughly speaking, by using these
learning techniques, we can obtain lower dimensional embedding vectors for nodes in a graph where we can
apply simple geometry distance functions to quantify the similarity or dissimilarity between two nodes.

Graph convolutional networks were introduced by Kipf & Welling (2016) as a method for aggregating the
features of the node and its neighbors in a convolving neural network layer in order to obtain embedding
vectors. The main formula behind a first-neighbor graph convolutional network is encapsulated in the
following formula:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H lW l) (1)

Where Ã = A + IN is the adjacency matrix of the original undirected graph G (for which we are trying to
learn the node embeddings) with the self-loops added in order to capture the feature vector of the node.
D̃ = D + IN is the degree matrix of the graph, where the diagonal element Dii is the degree of the node i,
plus one to account for the self-loop. H l is the feature matrix in the lth layer and H0 = X is simply the
feature vectors of each node. W l is the trainable weight matrix in the lth layer where its dimensions denote
the feature vector and the output dimensions of the convolutional layer and finally σ stands for a non-linear
activation function such as the rectified linear unit (ReLU) to introduce non-linearity into the model. This
model, alongside with many other representation learning methods for graphs, assumes that the connections
in a graph are signs of node similarity, which is not always the case in graph-structured datasets.

In previous studies done on real-world graphs, it is demonstrated how important it is to take into account
the global role of a node in a graph when trying to make predictions about it. As our contribution, in this
work we will expand the notion of graph convolutional networks to higher order neighbors of nodes in the
graph in order to capture long-range correlations between nodes and let the optimization method decide for
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the best coefficients for different sets of neighbors and node’s own feature vectors. Then we report the results
of this new method on a number of datasets to demonstrate how this higher order approximation affects the
performance of the model in terms of accuracy and efficiency, particularly in generalizing the model from a
lower number of labeled data. We will also experiment on random graphs in order to measure wall-clock time
performance against the original model.

2 Higher Order Neighbor Convolutions on Graphs

In this section we introduce our graph neural network model which is an expansion of the previously known
GCN to the nth neighborhood:

H1 = σ(
n∑

i=0
γiĀi H0W ) (2)

Where γi is a trainable coefficients for the ith neighborhood of the node, W is the trainable weight matrix,
H0 = X are the node features and H1 is the resulting node representations from this layer. Āi is the
normalized adjacency matrix of ith neighborhood where the sum of each row is equal to 1 to avoid the
dominance of high-degree nodes in the graph and (Āi)ab = 1 if the shortest path between two nodes is equal
to i, excluding the self-loops and (Āi)ab = 0 otherwise. In this definition, Ā0 would be the identity matrix,
Ā1 would be the normalized adjacency matrix and Ā2 would have elements equal to 1 where the shortest
path between two nodes is equal to 2 and so on. Note that this can be considered similar to expanding
the kernel size in a image processing convolutional neural network from 3 to 4 and larger. Computing Āis
would be computationally cheaper than finding the matrix of shortest paths, since we will be stopping the
approximation on a certain distance (e.g. 2 for second order neighborhood approximation).

The expanded propagation rule up to the second neighborhood approximation would look like the following:

H1 = σ((γ0I + γ1Ā1 + γ2Ā2) H0W ) (3)

3 An Experiment in Semi-Supervised Node Classification

Now that we have a propagation rule for this expanded model, in order to compare the results with the
first-neighborhood model, we turn to the problem of semi-supervised classification of nodes in a graph, where
we only have known labels for a tiny portion of the nodes and we want to classify other nodes. We will be
using graph-structured datasets from citation networks of different sizes. The objective is to classify graph
nodes into different classes by learning from only a few labeled nodes. The claim is that the information from
node features, combined with the information from the adjacency matrix of the graph can result in a better
representation learning for this task.

3.1 Model Architectures

Here we define two graph neural networks with two layers of our expanded GCN layers on an undirected
graph G up to the second and third neighbor approximation. The forward model for these neural networks
would take the following forms:

(4)Z2 = softmax((γ1
0I + γ1

1Ā1 + γ1
2Ā2) ReLU(γ0

0I + γ0
1Ā1 + γ0

2Ā2) X W 0) W 1)

(5)Z3 = softmax((γ1
0I + γ1

1Ā1 + γ1
2Ā2 + γ1

3Ā3) ReLU(γ0
0I + γ0

1Ā1 + γ0
2Ā2 + γ0

3Ā3) X W 0) W 1)

Where W 0 ∈ RF ×L and W 1 ∈ RL×O with F being the number of features of the nodes, L being the dimension
of the hidden layer, and O the dimension of the embedding vectors. The weights in the model are then
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optimized by gradient descent using Adam stochastic optimization and we include a dropout (Srivastava
et al., 2014) in the network to improve generalization. We will use the negative log loss likelihood as the
loss function here. The pre-processing step would include calculating the Ā1, Ā2, and Ā3 matrices and
normalizing the feature vectors.

3.2 Related Works and Baseline Model

Several previous approaches for the problem of learning graph representations have been studied in the past.
Some of the classical methods such as the label propagation and manifold regularization on graphs, take
advantage of graph Laplacian regularization and have been inspired by rigorous graph theory. But more recent
methods, inspired by the success of deep learning models in different fields, can learn node representations by
sampling from different types of random-walks across the graph such as DeepWalk, node2vec, role2vec, and
Planetoid.

Although the scheme of neural networks on graph was studied before (Gori et al., 2005; Scarselli et al.,
2009), graph convolutional neural networks in their current form were introduced by Duvenaud et al. (2015)
and further studied in works by Niepert et al. (2016); Bruna et al. (2014), introducing a spectral graph
convolutional neural network and introduction of a fast local convolution by Hammond et al. (2009).

In a closely related work by Atwood & Towsley (2015), the authors use diffusion across graph nodes in order
to calculate the convolutional representations for nodes. Our work is different in the sense that we also
allow the model to optimize the coefficients of the contributions of different neighborhood layers and the
features of the node itself based on the problem. This would be more significant when dealing with graphs
where, for example, the features of the 2nd-hop neighbors are also important. As a simple example, triangles
have been prove to play an important role in community structures of experimental networks (Klymko
et al., 2014; Oloomi et al., 2021). Examples of these graphs would be knowledge graphs such as transaction
networks where we are looking for specific types of frauds such as money-laundering. In these networks the
multi-hop structure loops are important to identify fraudulent motifs (Singh & Best, 2019). A similar idea
has also been studied in Abu-El-Haija et al. (2019) where the authors assign different weight matrices for
different neighborhood distances, whereas in this work we will be using the same weight matrix for different
neighborhoods but as a linear combination. Also notice how our proposed expansion is different from just
stacking up more vanilla GCN layers in order to get distant neighbor aggregation (like the study by Li et al.
(2022)) in terms of the number of parameters and model complexity since we are using the same weight
matrix for different neighborhood distances and just add a linear combination coefficient.

Distant neighborhood aggregation is not just limited to graph convolutional networks, but also studied in
random walks and other methods as in Xu et al. (2018). In this work, the authors develop a local-structure-
aware framework for involving the information from farther nodes in different graph representation learning
models. Also the authors in Yang et al. (2022) modify the graph neural networks to remove the noise from
irrelevant propagations by taking into account the structural role of a node using eigenvalue decomposition of
the graph. Which is similar to our work in terms of extending the graph embeddings to higher order relations.

Since based on previous experiments on their paper (Kipf & Welling, 2016), the original graph convolutional
networks (which considers only the first neighbors in convolution) outperforms the classical models and
early deep models (DeepWalk, node2vec, Planetoid) on the same task as here, in order to demonstrate the
performance gain acquired from considering farther neighbors, we will only compare our results to the original
GCN. We will be using the similar neural network structure used in the original paper, which is a two layer
GCN with ReLU activation function.

3.3 Experimental Setup

We will be testing the performance of the models on publicly available citation network datasets, alongside
with artificial random datasets for wall-clock time performance analysis.
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Table 1: Dataset statistics

Dataset Nodes Edges Classes Features

Citeseer 3327 4732 6 3703
Cora 2708 5409 7 1433
Pubmed 19717 44338 3 500

Table 2: Training hyperparameters

Dropout L2 Output Dimension Learning Rate

0.5 5e-4 16 0.01

3.3.1 Datasets

Datasets used for model performance evaluation are presented in Table 1. Citeseer, Cora, and Pubmed are
citation network datasets where each node represents published papers and a directed link from one node
to another translates to a citation of the second paper in the first one. In these datasets, node features are
bag-of-words vectors for each paper.

Note that in all the datasets we are neglecting the direction of edges and consider an undirected graph for
the learning task.

3.3.2 Training and Testing Procedure

In order to compare the ability of each model in generalizing from the training data, we will treat the number
of available labelled nodes as a parameter. So we will be training each model on different number of available
nodes per class and then measure their performance on the a balanced set of the remaining nodes. We will
be using 1, 2, 5, 10, 15, and 20 nodes per class for training, 30 nodes for validation and stopping the training,
and the rest of the nodes (in a balanced way between classes) for measuring the accuracy. Note that in
each repetition of the experiment, all of these nodes are shuffled randomly. We continue the training for a
maximum number 200 epochs and use early stopping on 20 epochs. Meaning that if the validation accuracy
does not improve after any 20 consecutive epochs, the training will be halted. Other training hyperparameters
are presented in Table 2. We repeat training and testing for each model for a total number of 500 different
random initializations from Glorot & Bengio (2010) and report the mean and the standard deviation of the
accuracy as results.

3.3.3 Implementation

We will be using PyTorch Paszke et al. (2019) for implementing the models to work on a GPU accelerated
fashion and we will make use of sparse matrix multiplications in PyTorch, which results in a complexity of
O(E) i.e. linear in number of non-zero matrix elements.

4 Results

Results for different datasets and number of available labeled nodes are presented in Table 3. GCN is the
original graph convolutional network, GCN-2 represents the network with layers expanding up to the second
neighborhood in Equation 4, and GCN-3 is expanding up to the third neighborhood in Equation 5. The results
are in agreement with the validity of the expansion along neighborhood size, meaning that the accuracy of the
model remains the same or increases with the graph convolution neighborhood size. When a lower number of
training datapoints are available, higher order models outperform the original GCN by a larger margin but in
abundance of training datapoints, we observe a saturated similar accuracy amongst the different models.
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Table 3: Accuracy and the standard error of the models on different datasets with various number of available
nodes for training. A higher order model always outperforms or matches the accuracy of a lower order model.

n = 1 Cora Citeseer Pubmed

GCN 35.5 ±0.4 24.5 ±0.3 50.2 ±0.5

GCN-2 44.5 ±0.4 28.3 ±0.3 53.8 ±0.5

GCN-3 48.2 ±0.4 30.8 ±0.3 54.7 ±0.7

n = 2

GCN 49.9 ±0.3 31.8 ±0.4 59.3 ±0.4

GCN-2 57.8 ±0.3 36.2 ±0.3 61.3 ±0.4

GCN-3 61.5 ±0.3 40.1 ±0.3 60.6 ±0.6

n = 5

GCN 68.0 ±0.3 46.9 ±0.4 68.3 ±0.3

GCN-2 71.1 ±0.2 50.0 ±0.3 68.8 ±0.2

GCN-3 71.5 ±0.2 51.4 ±0.2 69.4 ±0.3

n = 10

GCN 75.9 ±0.2 57.4 ±0.3 72.8 ±0.2

GCN-2 76.6 ±0.1 57.8 ±0.2 73.2 ±0.1

GCN-3 76.6 ±0.1 57.9 ±0.1 73.5 ±0.2

n = 15

GCN 78.3 ±0.2 61.3 ±0.2 74.6 ±0.1

GCN-2 78.7 ±0.1 61.4 ±0.1 75.0 ±0.2

GCN-3 78.9 ±0.1 61.2 ±0.1 74.8 ±0.2

n = 20

GCN 79.8 ±0.2 63.7 ±0.2 75.5 ±0.1

GCN-2 80.0 ±0.1 63.6 ±0.1 76.3 ±0.1

GCN-3 80.1 ±0.1 63.4 ±0.1 76.1 ±0.1

The average training time per epoch on random graphs of size N with 2N edges for different models are
presented in Figure 4. Since the preprocessing step of calculating Āi matrices is only done once on each
dataset, we are omitting this preprocessing step from the training time analysis.
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Figure 1: Wall-clock training time per epoch for different order of neighborhood and different random graphs
of N nodes and 2N edges.

Looking at the performance gain per epoch, we can see that some of this higher computation cost is
compensated by a faster learning in the expanded GCN models. The data in Figure 4 is acquired by
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averaging the accuracy per epoch for 100 different random initializations of the models on the Cora dataset.
This shows that the expanded models would reach the same performance in a significantly lower number of
epochs.

Figure 2: Mean accuracy of each model per epoch when training on the Cora dataset. The curves show
average and standard deviation of accuracy on each training epoch on validation and training data. We can
see how the expanded models tend to learn faster from the data.

5 Future Work and Conclusion

The introduced expanded model has several limitations which may be improved in the future works. The
current model does not include edge features and edge weights natively. There are several possible workarounds
for this issue, such as converting the edges into nodes with features but including the edge features in the
convolution, or similar solutions to the work done by Hu et al. (2019). Expansion of the current gradient
descent optimization to a mini-batch stochastic one, such as Gasteiger et al. (2022) would also be helpful for
larger datasets where memory limitations would not allow full-batch calculations.

In this work we have expanded the current notion of graph convolutional neural networks to a model which
considers different coefficients for node’s self-features and each layer of neighborhood. This would help remove
two original assumptions in this model where only the features of the node itself and the first neighbors (with
similar coefficients) where used to learn node representations. Our model’s propagation rule is expandable in
terms of neighborhood distance and experiments on several datasets show a better generalization capability
of this model compared to the original GCN, without adding to the trainable parameters, and particularly
with a low number of available training nodes.
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