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A B S T R A C T   

Brain activity in numerous perisylvian brain regions is modulated by the expectedness of linguistic stimuli. We 
leverage recent advances in computational parsing models to test what representations guide the processes re
flected by this activity. Recurrent Neural Network Grammars (RNNGs) are generative models of (tree, string) 
pairs that use neural networks to drive derivational choices. Parsing with them yields a variety of incremental 
complexity metrics that we evaluate against a publicly available fMRI data-set recorded while participants simply 
listen to an audiobook story. Surprisal, which captures a word’s un-expectedness, correlates with a wide range of 
temporal and frontal regions when it is calculated based on word-sequence information using a top-performing 
LSTM neural network language model. The explicit encoding of hierarchy afforded by the RNNG additionally 
captures activity in left posterior temporal areas. A separate metric tracking the number of derivational steps 
taken between words correlates with activity in the left temporal lobe and inferior frontal gyrus. This pattern of 
results narrows down the kinds of linguistic representations at play during predictive processing across the 
brain’s language network.   

1. Introduction 

This study concerns the kind of information that is used to shape 
expectations during language comprehension. Predictive processing has 
long been seen as central to rapid and efficient language comprehension 
(Tanenhaus et al., 1995; Marslen-Wilson, 1975). One mechanism by 
which prediction serves rapid comprehension is by pre-computing or 
pre-activating linguistic representations based on contextual cues and 
other top-down information. Preactivation is an important principle 
across different levels of comprehension, including lexical processing 
(Kutas and Federmeier, 2000) and syntactic parsing (Hale, 2014). On a 
neural level, prior work has found evidence that top-down information 
can propogate through, or cascade, from higher-level conceptual rep
resentations to lower-level lexical and perhaps perceptual stages (Dikker 
and Pylkk€anen, 2012; Molinaro et al., 2013; but c.f. Nieuwland et al., 
2018). The notion that top-down predictions can simultaneously impact 
multiple stages or levels of processing is consistent with neuroimaging 
research showing that the expectancy of a word impacts neural activa
tion in a broad range of language-related brain regions, including the 
temporal lobes bilaterally and inferior frontal regions (Willems et al., 
2016; Lopopolo et al., 2017; Henderson et al., 2016; Lowder et al., 2018; 

Brennan et al., 2016). We test here whether activity in these regions is 
conditioned by similar, or by different, aspects of linguistic context, with 
a specific focus on syntactic structure. 

Our study builds on recent work that has probed how neural activity 
reflects predictive processing using the linking hypothesis of “surprisal.” 
This quantity, which comes from information theory, measures the 
conditional probability of a word given some characterization of its 
context (see Hale, 2016 for an introduction and review with a focus on 
psycholinguistics.) At the sentence level, surprisal has been found to 
correlate with reading times (Hale, 2001), eye-tracking measures (Bos
ton et al., 2008; Demberg and Keller, 2008; Roark et al., 2009; Frank and 
Bod, 2011), electrophysiological responses (Frank et al., 2015; Hale 
et al., 2018; Brennan and Hale, 2019; Nelson et al., 2017; Brennan et al., 
2018), and functional magnetic resonance imaging signals (fMRI; Wil
lems et al., 2016; Lopopolo et al., 2017; Henderson et al., 2016; Lowder 
et al., 2018; Brennan et al., 2016). 

Focusing on spatially localized results from fMRI, brain regions 
whose activity is moderated by surprisal show overlap, but also inter
esting differences, across several studies. For example, Lopopolo et al. 
(2017) report activations in the left and right temporal lobes, both 
anterior and posterior overlapping the middle and superior temporal 
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gyri, and they also see activity in the superior frontal gyrus. Lopopolo 
et al. define surprisal for each word’s part-of-speech using a context 
comprising the two immediately preceding words (a third-order Markov 
language model.) Crucially, surprisal values based on different language 
models yield different results. Willems et al. (2016) use a similar Markov 
language model, but do so for each word individually (not for 
parts-of-speech). They report activation for surprisal that is constrained 
principally to the temporal lobes bilaterally. In contrast, Henderson 
et al. (2016) compute surprisal based on a context that explicitly en
codes phrase structure but, like Lopopolo et al. (2017), they examine 
parts-of-speech. They see effects primarily in the left inferior frontal 
gyrus and also the left anterior temporal lobe. 

Brennan et al. (2016), who also use fMRI and the surprisal linking 
hypothesis, apply statistical model comparison to tease apart expecta
tion effects as a function of whether they might reflect more 
sequence-based information, as in the Markov model, or hierarchical 
phrase-structure information. In this effort, they build on prior work 
with behavioral and electrophysiological measures by Frank and Bod 
(2011) and Frank et al. (2015) who themselves are entering into a larger 
debate in the language sciences about the role of abstract grammatical 
structure in online language processes (for discussion, see e.g. Caplan, 
1992, ch. 7, and Lewis and Phillips, 2015.) Focusing on expectations 
about a word’s part-of-speech, Brennan et al. report that sequence-based 
Markov models correlate with activity in the anterior and posterior 
temporal lobe, as well as the left inferior frontal gyrus. They also find 
effects when surprisal is defined in terms of a hierarchical 
phrase-structure grammar in those regions as well as a temporal-parietal 
region and a left premotor region. And, further, the effects for hierar
chical structure are found above-and-beyond effects for the 
sequence-based models in all regions examined except the left inferior 
frontal gyrus. The region of interest data used for those results are 
available in the public domain, and they form the dataset that we 
analyze in this study. 

To better understand the role of sequence-based and hierarchical 
information in guiding neural mechanisms for prediction, the present 
study draws on computational modeling from Hale et al. (2018) to 
extend in two specific ways our understanding of the localization of 
surprisal effects. First, we go beyond Markov models by using 
state-of-the-art Long Short-Term Memory or LSTM recurrent neural 
networks (e.g. Hochreiter and Schmidhuber, 1997; Mikolov et al., 
2010). Such networks operate over word sequences and do not explicitly 
encode phrase structure. But, rather than constraining prior context to a 
fixed window, as in a Markov model, or using a simple recurrent 
network with a strong proximity bias (as in electrophysiological work 
like Frank et al., 2015 and Brennan and Hale, 2019), these networks 
function to dynamically up-weight or down-weight different aspects of 
context, encoded in hidden layers. In this way, they may implicitly 
recover structural relations when demanded by the utility of that in
formation as determined during training (Linzen et al., 2016; Gulordava 
et al., 2018; Wilcox et al., 2019). They are thus a powerful baseline for 
comparing against models that explicitly encode hierarchical 
information. 

Second, we adopt a hierarchical parsing model that accommodates 
the syntactic ambiguity common in natural language. While ambiguity 
is a frequent locus of study in psycholinguistics, prior work on hierar
chical sentence structure, as seen through the lense of surprisal, has 
relied on one-path “gold-standard” syntactic parses to determine the 
syntactic context. To capture ambiguity, we adopt a parser based on 
Recurrent Neural Network Grammars (RNNG; Dyer et al., 2016) intro
duced by Hale et al. (2018). This parser achieves competitive perfor
mance on standard natural language processing metrics and also, by 
virtue of its account of ambiguity and its capacity to explicitly encode 
abstract hierarchical sentence structure, offers a compelling tool to es
timate cognitive correlates of hierarchical processing. Using electroen
cephalography (EEG) data collected while participants listen to an 
audiobook, Hale et al. report responses that are modulated by surprisal 

and that are specific to the hierarchical component of their parser, 
above-and-beyond sequence-based surprisal effects estimated from a 
LSTM model. 

Here, we use the same computational models as Hale et al. but now 
apply them to spatially precise fMRI data. Doing so allows us to address 
which kinds of syntactic information impact processing that is distrib
uted across the set of language-related frontal and temporal regions that 
were described above. 

In sum, to better understand how sequence-based and hierarchical 
information might be used to guide expectations across language-related 
brain regions, we combine neural network-based language models that 
either do or do not explicitly encode hierarchy with an openly available 
fMRI dataset collected while participants listened to an audiobook. To 
preview our results: we find broad effects across regions for surprisal, 
but the influence of explicit hierarchy on surprisal, derived from the 
recurrent neural network grammar, is constrained to posterior areas of 
the left temporal lobe. 

2. Methods 

2.1. Stimulus & fMRI data 

We analyze fMRI time-series from 26 individuals in six regions of 
interest (ROI). These come from 28 publicly available datasets1 that 
were recorded while participants listened to a 12.4 min audiobook story 
(the first chapter of Alice’s Adventures in Wonderland) (Brennan et al., 
2016). We set aside two of the available datasets because those partic
ipants scored at chance on a post-scan comprehension questionnaire. 
Equipment and scan protocol details are available in Brennan et al. 
(2016). 

The time-series come from six ROIs that were localized in each in
dividual using a combination of functional and anatomical criteria that 
we summarize here. First, a statistical analysis identified voxels whose 
activity increased linearly with the rate that words appear in the story. 
This is a “broad brush” localizer that should reveal activation for regions 
involved in many different aspects of language comprehension spanning 
acoustic, phonological, lexical, syntactic, and semantic analysis. Peaks 
in this functional localizer exceeding at least t ¼ 2 were identified in six 
anatomically-defined regions: the left anterior temporal lobe (LATL), the 
right anterior temporal lobe (RATL), the left inferior frontal gyrus 
(LIFG), the left posterior temporal lobe (LPTL), the left inferior parietal 
lobule (LIPL), and a left posterior middle frontal gyrus premotor region 
(LPreM). The intersection of functional peaks with anatomical regions 
was based on the Harvard-Oxford probabalistic brain atlas. Not all 
participants showed a functional peak in each anatomical region (Ex
clusions: LATL ¼ 3, RATL ¼ 4, LIFG ¼ 5, LPTL ¼ 2, LIPL ¼ 2, LPreM ¼ 2). 
For each ROI, the fMRI signal was averaged within a 10 mm radius 
sphere around the functional peak. 

The data thus constitute, for each participant, up to six time-series 
each of 362 samples (12.4 min ¼ 744 s ¼ 372 samples at TR ¼ 2; the 
first 10 samples of data were discarded.) The individually-defined ROI 
peaks are shown in Fig. 2A. 

2.2. Computational modeling 

These fMRI time-series are modeled using metrics derived from 
computational models of sentence processing presented by Hale et al. 
(2018). To model the structural aspect of human language comprehen
sion, we use Recurrent Neural Network Grammars (RNNG) (Dyer et al., 
2016; Kuncoro et al., 2016). 

1 The data are available for download at https://sites.lsa.umich.edu/cnllab/ 
2016/06/11/data-sharing-fmri-timecourses-story-listening/. 
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2.2.1. Example-based introduction to RNNGs 
Putting RNNGs into an incremental parsing system yields a program 

that takes as input English words one by one in the order they would be 
spoken or heard in time. The output of this program is a phrase structure 
tree whose labels are consistent with the Penn Treebank (Marcus et al., 
1993). To build these trees, the RNNG-based incremental parser sto
chastically chooses a sequence of actions such as the ones shown in 
Table 1. The only options are (a) to open a new phrase (i.e. posit a new 
tree node) (b) to close-off a phrase (akin to the “reduce” action in a 
bottom-up shift-reduce algorithm) or (c) move on to the next word 
(“generate”). Actions are selected on the basis of a learned numerical 
vector, symbolized by the term st in Fig. 1. 

This Syntactic Context vector is itself determined by a numerical 
encoding of the current contents of a stack memory (Dyer et al., 2015); 
this is schematized in Fig. 1A. This “stack LSTM” allows classic symbolic 
parsing techniques (see chapter 3 of Hale, 2014, inter alia) to become 
deep neural networks. These networks are trained in a supervised 
manner on action sequences that correspond uniquely to already-parsed 
sentences that are provided as training data. During training, when the 
neural network guesses the wrong parser action, error is 
back-propagated through the entire system. This can affect many 
different trainable parameters, including Syntactic Context itself. While 
vector representations like Syntactic Context are not directly interpret
able, one of the things Syntactic Context is likely representing is the 
history of previous parser actions. If this is true, then the architecture as 
a whole qualifies as a relaxation of restrictive context-free assumptions 
that are inherent in more classical approaches to phrase structure 
parsing — such as probabilistic context-free grammars. At the same 
time, in virtue of having categorical representations that can be inter
preted as phrase structure trees it can potentially make use of 
tree-structural relationships such as c-command in deciding which ac
tion to take. 

We describe the elements of this parser in general terms here, with a 
focus on those components that bear on interpreting the fMRI data. For 
greater detail, see Dyer et al. (2016); Kuncoro et al. (2016); Hale et al. 
(2018). 

2.2.2. Key aspects of the parsing model 
One such element is the stack memory shown in Fig. 1A. Classical 

symbolic parsing systems would employ such a stack to keep track of 
partially-built phrase structure at a given point during incremental 
processing. For instance, it might contain the depth-1 tree whose root 
label is NP and whose three daughters are “the” “rabbit” and “hole.” 
Whenever the RNNG-based parser opts to close off a phrase, such as this 
NP, a composition function is triggered in which the elements on the 
stack that comprise that phrase and the phrasal label itself are popped 

off and encoded into a single element. Inclusion of this function means 
that phrasal composition is explicitly encoded within the RNNG. 
Following Hale et al. (2018), we also explore an alternative architecture 
which does not include this composition function. The alternative, 
dubbed RNNG� COMP, places on the stack a sequence of bracketed ex
pressions but does not explicitly encode whether those expressions 
belong to a single (composed) term. Specifically, RNNG� COMP replaces 
the “close phrase” action (ENDPHRASE in Fig. 1B) with a different action 
that adds a special symbol to the stack indicating the end of a phrase. For 
example, the first row of Table 2 shows stack contents from the RNNG 
that is illustrated in Fig. 1. For RNNG� COMP, the same information would 
instead be encoded by a sequence of seven symbols on the stack as 
illustrated in row 2 of Table 2. This table shows how, in RNNG� COMP, the 
individual daughters of NP are each held on the stack separately, rather 
than being composed into a single representation. Without the compo
sition mechanism, it becomes necessary to employ special right-bracket 
symbols like )NP in order to be able to correctly build trees. 

As is the case in human sentence comprehension, the RNNG parser 
does not have the capacity to look ahead to upcoming words. Thus, 
decisions made based on a partial word sequence may turn out to be 
incorrect based on subsequent words. We use the standard technique of 
“beam search” to navigate this non-determinism (Roark, 2004). The 
parser keeps track of a set of candidate analyses, the “beam”, which are 
ranked based on the probabilities of their constituent actions. This 
approach matches the broad adoption of ranked-parallel parsing in 
psycholinguistics (e.g. Gibson, 1991; Jurafsky, 1996). In the case of a 
generative model like the RNNG, the beam search algorithm must take 
into account the imbalance in probability between structural actions and 
lexical actions (Stern et al., 2017). The “word-synchronous” search al
gorithm from Stern et al. resolves this imbalance by searching through 
structural actions until a sufficent number of candidate analyses in the 
beam take a lexical action; see Algorithm 1 from Hale et al. (2018), 
repeated in the Supplemental Materials, for the implementation used 
here. The number of analyses needed to achieve a synchronous state is a 
free parameter k in this model; we set k ¼ 200 as this value yielded a 
good fit to neural signals recorded using electroencephalography (EEG) 
in prior work (Hale et al., 2018). The number of analyses in the beam 
that are carried forward from each word is fixed at k=10 ¼ 20. 

As mentioned earlier the network weights of the RNNG, as well as 
those in the various baseline models discussed below, are all set via 
Backpropagation Through Time on a common training corpus made up 
of chapters 2–12 of Alice’s Adventures in Wonderland, comprising 
24,941 words. The corpus was parsed using the Stanford parser (Klein 
and Manning, 2003) yielding a syntactic annotation in accordance with 
the Penn Treebank annotation scheme (Marcus et al., 1993). Further 
training details are given in Hale et al. (2018). 

While our principle goal is to quantify model quality in terms of how 
well they fit human neural signals, we can also quantify the quality of 
the model in terms of the text itself. Perplexity is a common metric which 
summarizes the average uncertainty of a language model when con
fronted with text (Jelinek, 1998), computed as: 

2�
1
N

PN

w¼1
log2ðPrðwjCtxtÞÞ

where PrðwjCtxtÞ is the model-estimated probability of word w given its 
Syntactic Context. When computed for the first chapter of Alice’s Ad
ventures in Wonderland, our models show values of 25.01, 23.16, and 
24.10, for the full RNNG, RNNG� COMP, and a LSTM baseline (described 
below), respectively.2 These are lower than those typically observed in 
computational linguistics, which likely reflects the relatively small 
genre-specific training text used. For present purposes, what is 

Table 1 
An example of a sequence of RNNG parser actions used in the analysis of Alice’s 
Adventures in Wonderland. 

2 Note that RNNG perplexity reflects the joint probability of (tree, string) 
pairs while LSTM only reflects string probabilities. 
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important is that these values are much smaller than would be expected 
if the models had not learned any regularities in the text (under a uni
form language model, perplexity is equal to vocabulary size and there 
are about 2,900 word types in the present case.) And, further, these 
show that the models all perform roughly equally in terms of predicting 
the text itself. 

The next sections turn to how we use these models to derive pre
dictions for the fMRI data collected from participants listening to the 
audiobook. 

2.2.3. Complexity metrics used in this study 
To link the RNNG parsing model with neural fMRI data, we define 

two complexity metrics that quantify different aspects of the model’s state 
at each word. As such, these metrics tap into different aspects of pro
cessing complexity. The principle aim of this paper is to probe predictive 
syntactic processing. To this end we use the information theoretic 
quantity of SURPRISAL to model the (un)expectedness of a word given its 
syntactic left-context (Hale, 2001, 2016; Boston et al., 2008); SURPRISAL is 
calculated as the log-ratio of the forward probabilities of the analyses in 
the beam: 

log2

�
BeamAfter

BeamBefore

�

Or, equivalently (see Hale, 2016): 

� log2ðPrðwi
�
�Ctxtw0…wi� 1 ÞÞ

This metric is higher when encountering a word that is unexpected, 
and lower when a word is expected. The word-by-word nature of SUR

PRISAL distinguishes it from perplexity, defined above, which rates the 
average uncertainty of a language model on a text. Prior work has shown 
a good match between SURPRISAL and, for example, the N400 event- 
related potential (ERP) brain response associated with lexical process
ing (Frank et al., 2015). Important for our purposes, SURPRISAL values vary 
depending on how the (left-)context for forward probabilities is defined. 
ERP research has shown that contexts that make hierarchical informa
tion explicit, as with RNNGs, yield SURPRISAL values that show better fits 
to ERP signals than when SURPRISAL is calculated using sequence infor
mation alone (Hale et al., 2018; Brennan and Hale, 2019). 

As in Hale et al. (2018), we define several different models for 
computing SURPRISAL. In addition to the full RNNG, we also compute 
surprisal when the explicit composition mechanism is removed 
(RNNG� COMP). We further compute SURPRISAL from a state-of-the-art 
LSTM recurrent neural network (e.g. Mikolov et al., 2010). Rather 

than explicitly encoding phrase structure, such networks operate over 
word sequence information although they may implicitly recover 
structural relations through training (Linzen et al., 2016; Gulordava 
et al., 2018). This key difference between LSTM and the RNNG models is 
illustrated in row 3 of Table 2 which contrasts the sequence information 
available to the LSTM with the structural Syntactic Context available to 
the RNNG models in the rows above.3 As already mentioned in the 
Introduction, we predict that SURPRISAL should affect a broad range of 
stages of language comprehension and, thus, we expect this measure to 
modulate activity across the language-related ROIs we probe. The key 
theoretical question is whether, and in which regions, SURPRISAL values 
based on explicit hierarchical structure outperform those values based 
on the sequence-based LSTM baseline. 

The RNNG model also affords another complexity metric which seeks 
to capture the intuitive notion of sentence processing “work.” This 
metric is called DISTANCE and it can be understood as a more realistic 
version of the node-counting metrics used in Brennan et al. (2012, 
2016). The additional realism comes from explicitly modeling the am
biguity resolution process, which node-counting metrics do not address. 
These classical measures only tabulate effort spent building the correct 
tree, without regard to effort spent sifting through alternative trees. This 
latter factor would be required in an incremental parsing system that 
actually copes with ambiguity. DISTANCE models this factor, over and 
above the basic equation between tree nodes and parser effort. It counts 
the number of syntactic analyses across the entire beam considered by 
the parser in terms of individual actions as illustrated in Table 1. This 
amounts to a penalty for cases where the RNNG-based incremental 
parser has a hard time finding phrase structures that span the next input 
word. DISTANCE is roughly analogous to the “Arcs Attempted” metric in 
Kaplan (1972). 

As it is defined in terms of the search procedure rather than the 
grammar, DISTANCE does not map on to any particular syntactic rela
tionship (e.g. it is not c-command). Nor does it map on to expectedness 
of a word in the way that SURPRISAL does. Rather the DISTANCE metric 
connects best with efforts to probe the neural bases of combinatoric 
operations themselves (e.g. Pylkk€anen, 2016; Brennan and Pylkk€anen, 

Fig. 1. Data-flow diagram for the RNNG used in this 
paper. The arrows indicate the order in which the 
RNNG updates a vector representation of the Syntactic 
Context as it processes an input sequence. The final 
such state is st . (A) In this example, the Syntactic 
Context st includes, among other pieces, a composed 
Noun Phrase with daughters the rabbit hole. (B) The 
parser makes a decision about which of three actions 
to take based on st . Depending on the action taken, the 
parser stochastically generates (C-1) phrasal labels or 
(C-2) individual lexical items.   

3 LSTM language models are a powerful baseline for comparing against the 
RNNG as the former is capable of recovering structural dependencies, but only 
does so as demanded by the utility of that information as determined during 
training. This contrasts with the RNNG, for which the architecture forces a 
structural bias. 
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2017; Pallier et al., 2011; Snijders et al., 2009; Zaccarella et al., 2017). 
While prior work has not reached a consensus, the principle loci of such 
combinatoric processing in that literature include the LATL, LPTL, and 
the LIFG; we predict that DISTANCE will modulate activity within that 
network and further expect improved fit to the fMRI data when 
composition is explicitly encoded. 

Earlier work with the same dataset (Brennan et al., 2016) used a set 
of computational models and complexity metrics that are theoretically 
related to the LSTM and RNNG models used here, but differ in several 

key respects. Importantly, those previous models were limited as ac
counts of comprehension in that they were defined only over 
parts-of-speech, not individual lexical items, and they did not address 
the issue of structural ambiguity. We discuss those metrics in more detail 
in the Supplemental Material, and present analyses incorporating those 
metrics along-side the RNNG-based models used here. 

3. Statistical analysis 

We use hierarchical regression and model comparison to test the fit 
between SURPRISAL and DISTANCE from this family of computational models 
and the fMRI time-series from six language-related ROIs. 

To align the linguistic metrics with the hemodynamic data, we 
transform the word-by-word values from the computational models, and 
several control variables that are described below, into estimators for 
the hemodynamic signal (Brennan et al., 2012, 2016; Just and Varma, 
2007). The steps for this transformation are as follows. (i) Each variable 
of interest (e.g. SURPRISAL, DISTANCE, etc.) is given a time-stamp based on 
the offset of each word in the audiobook story. (ii) These time-aligned 
vectors are then convolved with the canonical Hemodynamic 
Response Function (HRF) using the spm_volterra() function from 

Fig. 2. (A) Individually-defined ROIs for six color-coded regions. (B) Regression coefficients for linguistic control predictors. (C) Regression coefficients for LSTM 
SURPRISAL when included in a model with all control predictors. (D) Regression coefficients for SURPRISAL from RNNG� COMP and from the full RNNG when added, step- 
wise, to a model with LSTM SURPRISAL and control predictors. (E) Regression coefficients for DISTANCE from RNNG� COMP and from the full RNNG when added, step-wise, 
to a model with LSTM SURPRISAL and control predictors. Asterisks (*) indicate a model comparison result such that adding just the indicated term to a model comprised 
of lower-order terms improves the likelihood of the data with p < 0:0083, correcting for multiple comparisons across ROIs. Circled asterisks (⊛) indicate such an 
effect in the presence of a statistically reliable interaction between ROI and the target term. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 2 
Stack contents for the example sentence beginning The rabbit hole … 
from the RNNG and RNNG� COMP models along-side an equivalent LSTM 
representation. Vertical lines delimit distinct stack cells; ▹ indicates 
boundaries in a word sequence. 
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the SPM8 toolbox and then (iii) orthogonalized against the convolved 
output for a simple “word rate” indicator variable that is set to one at 
word-offset and to zero otherwise; this removes low-level correlations 
between the vectors introduced by their common timing. Finally, (iv) 
the resulting vectors are re-sampled to 0.5 Hz and truncated to match the 
362 samples of fMRI data recorded for each ROI. The results of this 
procedure are a set of estimators for hemodynamic signals that vary in 
accordance with states of our computational models as quantified by the 
complexity metrics. 

We constructed separate regression models for the fMRI time-series, 
z-transformed, from each of the six ROIs. Control predictors in the 
regression models include the convolved vectors for the rate of word 
occurrence which was also used as a functional language localizer (z- 
transformed), acoustic sound power (z-transformed), six movement 
parameters for each participant estimated during fMRI pre-processing 
(mean centered), word frequency (HAL corpus values, log- 
transformed), and a manual annotation of prosodic break strength. 
(The control predictors were not orthogonalized against the “word rate” 
indicator variable.) Each of these control factors was entered as a fixed 
effect into a hierarchical regression model fit with the lmer() function 
from the lme4 package in R (Bates and Maechler, 2009; R Development 
Core Team, 2006). A random intercept term was included for each 
participant and a random slope term was included by participant for the 
word rate predictor. 

Against these baseline models for each ROI, we sequentially add 
terms of interest derived from the computational models described 
above. In step (1) we add a term for LSTM SURPRISAL. The analysis then 
splits into one path for RNNG SURPRISAL and another for RNNG DISTANCE. 
On one path, we begin with the model with control predictors and the 
LSTM term and in step (2a) we add the SURPRISAL predictor dervied from 
RNNG� COMP. Then, further, step (2b) adds both the RNNG� COMP and full 
RNNG SURPRISAL predictors together. The other path begins also with a 
model containing all control predictors and the LSTM term, but then 
adds in step (3a) first just DISTANCE from the RNNG� COMP model, and then 
in step (3b) both RNNG� COMP and the full RNNG DISTANCE terms together. 
This step-wise sequence of model-building is schematized on the right- 
hand side of Fig. 2. 

Bivariate correlation coefficients for each term entered into the 
models are shown in Table 3. Note that LSTM SURPRISAL shows substantial 
similarity, but not identity, with SURPRISAL from the RNNG models (r >
0:8). The metrics derived from the full RNNG, as compared to 
RNNG� COMP, are also quite similar (both r > 0:6); these correlations 
underscore the importance of step-wise model comparison, described 
below, to evaluate the unique contribution of each term, and encourage 
caution when interpreting individual coefficient values. 

Constructing models in this step-wise fashion allows us to evaluate 
the contribution of the RNNG SURPRISAL and DISTANCE terms above-and- 
beyond lower-order control covariates and LSTM SURPRISAL using model 
comparison. Model comparsion was done using the anova() function 
in R to compute the likelihood ratio between models that differ in just 
one term. For nested models, as used here, this ratio follows the χ2 

distribution with degrees of freedom equal to difference in the number 
of terms between models. Individual terms were considered “statistically 
significant” if this model comparison reached p < 0:05=6 ¼ 0:0083, 
which adjusts the significance threshold for testing across six ROIs using 
a Bonferroni correction. 

4. Results 

The six ROIs are shown in different colors in Fig. 2A where each dot 
represents an individual participant’s peak. Regression coefficients from 
the control model and the step-wise more complex models are plotted, 
below, in Fig. 2B–F. These coefficients are extracted from the minimal 
model containing each term. For example, the coefficients for LSTM 
SURPRISAL in panel C come from the model for each ROI containing just 

control predictors and LSTM SURPRISAL, but without any terms derived 
from the RNNG. Statistical significance, indicated by asterisks, comes 
from step-wise model comparison of the more complex models against 
simpler models described in the Methods section, above. 

Panel B in Fig. 2 shows coefficients for the control predictors. The 
first row indicates a strong positive effect for the word rate predictor; 
this result is trivial as the same predictor was originally used to func
tionally localize these ROIs (Brennan et al., 2016). Results for the other 
control predictors are discussed below. 

Our principal question concerns how linguistic predictions based on 
different types of syntactic information modulate responses across this 
set of language-related regions. Panel C in Fig. 2 shows the coefficients 
in each ROI for LSTM SURPRISAL when this term is included in a model 
with the control predictors. This coefficient shows a statistically signif
icant positive effect in all six ROIs. Summary statistics for the model 
comparisons in each ROI are given in Table 4. This result is consistent 
with prior work showing that lexical predictions based on sentence 
context modulate activity in a range of fronto-temporal language-related 
regions as top-down activity “cascades” from higher-level compositional 
processing through to lower lexical and sub-lexical levels. 

We next test in what way the explicit encoding of linguistic hierarchy 
might modulate activity above-and-beyond the effect of the LSTM. Panel 
D in Fig. 2 shows the coefficents for SURPRISAL from both the RNNG� COMP 
and full RNNG models. These are added sequentially, one at a time, onto 
lower-order models that include LSTM SURPRISAL and control predictors. 
We find that the RNNG does capture variance in the LPTL and LIPL ROIs 
as shown in the statistical summaries in Table 5. In the LPTL, 
RNNG� COMP SURPRISAL captures variance such that higher SURPRISAL leads 
to greater activity. A different pattern is seen in the LIPL such that SUR

PRISAL from the full RNNG captures variance above-and-beyond that 
explained with the LSTM, RNNG� COMP, and control predictors. But, the 
effect direction is such that there is lower activity for higher SURPRISAL. 
Such a result should be interpreted with great caution; an important 
factor to consider is that the LSTM, RNNG� COMP, and full RNNG pre
dictors are highly correlated with each other (see Table 3); this may lead 
to unstable estimates for the resulting coefficients but does not impact 
the model comparison statistics. Indeed, when RNNG� COMP and LSTM 
SURPRISAL are removed from the model, we see a positive coefficient for 
RNNG SURPRISAL, β ¼ 0:025;SE ¼ 0:010. 

Finally, the DISTANCE metric that we extract from the RNNG allows us 
to investigate how the number of parse steps explored by the model 
modulates brain activity across these regions. These effects are shown in 
panel E of Fig. 2 and model comparisons are summarized in Table 6. 
RNNG DISTANCE captures variance above-and-beyond LSTM SURPRISAL and 
other control covariates in the LATL, LIFG, LPTL and the LIPL. 
Furthermore, these effects were specific to the full RNNG, not 
RNNG� COMP, in the LATL, LIFG and LPTL. 

The results thus far reflect regression analyses that were fit individ
ually to each ROI. We quantify the statistical reliability of differences 
between regions in the following way. For each of five target terms we 
construct a regression model which includes that target term and all 
control and lower-order predictors (just as in the step-wise model 
comparison) and then we also add a main effect of ROI as well as in
teractions between ROI and every other term. This model also includes a 
random slope for the effect of ROI by subject. We then conduct a like
lihood ratio test for the change in likelihood when we remove just the 
interaction term between the target predictor (e.g. RNNG DISTANCE) and 
ROI. 

This interaction analysis indicates that there is no significant inter
action between LSTM SURPRISAL and ROI (χ2ð5Þ ¼ 4:96; p ¼ 0:421). 
There is a statistically significant interaction between RNNG� COMP SUR

PRISAL and ROI (χ2ð5Þ ¼ 20:37; p ¼ 0:001), between RNNG� COMP DIS

TANCE and ROI (χ2ð5Þ ¼ 13:15; p ¼ 0:022), and also between RNNG 
DISTANCE and ROI (χ2ð5Þ ¼ 18:44; p ¼ 0:002). There is no significant 
interaction with ROI for RNNG SURPRISAL (χ2ð5Þ ¼ 9:09; p ¼ 0:105). 
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These interaction effects lend support to the claim that the hierarchical 
effects for RNNG� COMP SURPRISAL and for DISTANCE are specific to certain 
ROIs. 

Returning to the control predictors, the coefficients in Fig, 2B show 
that sound power has a positive effect in the LPTL, adjacent to the pri
mary auditory cortex. The index of prosodic break strength shows pos
itive effects in both the left and right ATL, and a negative effect in the 
LIPL. Word frequency shows more moderate effects across regions likely 
due its reduced impact in a story-book setting with strong contextual 
influences. 

The results discussed above all reflect the step-wise addition of 
higher-level syntactic predictors over baseline control terms, as illus
trated on the right-hand side of Fig. 2. All of the coefficients from each of 
the models that were fit by this step-wise procedure are summarized in 
Fig. S1 in the Supplementary Material. To check how sensitive our 
conclusions might be to the use of step-wise comparison, we also fit a 
single regression model with all target terms simultaneously. The results 

of this fit are given in Fig. 3 (see also Supplemental Table S1). Results for 
all DISTANCE measures are qualitatively unchanged (yellow points), as is 
the effect of RNNG� COMP SURPRISAL observed in the LPTL and LIPL (red 
points). LSTM SURPRISAL shows a reliable positive effect only in the LATL, 
RATL, and LIPL (black points), but this term does not show reliable ef
fects in the other ROIs when entered along-side RNNG SURPRISAL terms. 

A reviewer raised the question of how these results compare with 
those from an earlier analysis by our group (Brennan et al., 2016) that 
compared a different set of complexity metrics with the same fMRI data. 
These include surprisal metrics derived using different language models 
and also node count metrics based on the number of phrase-structure 
nodes using a gold-standard syntactic analysis that does not take into 
account structural ambiguity. Interpreting such a comparison is chal
lenging as the models used in that work differ from the present in several 
important ways. In addition to lacking an account of structural ambi
guity, those models were defined over each word’s part-of-speech, while 
the present models are defined over individual lexical items themselves. 
The comparison analysis is detailed in the Supplemental Materials 
(Tables S3, S4, and S5.) Briefly, while RNNG DISTANCE results are un
changed when considered above-and-beyond both surprisal and 
structure-based node counts, it appears that the prior SURPRISAL pre
dictors capture similar variance to that captured by the RNNG� COMP 
SURPRISAL predictor. 

5. Discussion 

This study aims to narrow down the kind of information used to 
guide predictive processing across different brain regions that are 
engaged in sentence-level language comprehension. We combined 
publicly available fMRI data collected while participants listen to a 

Table 3 
Bivariate correlations (Pearson’s r) between terms entered as predictors into the hierarchical regression models (excluding motion parameters). Off-diagonal cells 
where jrj � 0:2 are indicated in bold face.   

sound 
power 

word rate word 
frequency 

prosodic 
breaks 

LSTM 
surprisal 

RNNG 
distance 

RNNG 
surprisal 

RNNG 
distance 

RNNG� COMP 

surprisal 

sound 1.00         
rate 0.45 1.00        
frequency 0.09 0.28 1.00       
breaks � 0.13 � 0.18 � 0.17 1.00      
LSTM.s 0.02 � 0.03 � 0.12 0.15 1.00     
RNNG.d ¡0.22 0.05 0.10 � 0.02 0.08 1.00    
RNNG.s � 0.07 � 0.05 � 0.18 0.22 0.82 0.22 1.00   
RNNG-c.d � 0.08 0.10 0.04 ¡0.20 0.12 0.64 0.17 1.00  
RNNG-c.s � 0.03 � 0.06 � 0.19 0.13 0.86 0.20 0.93 0.20 1.00  

Table 4 
Model comparison statistics for LSTM SURPRISAL when added step-wise to a model 
containing all control predictors. Asterisks (*) indicate an improvement in model 
fit that surpasses a Bonferroni-corrected α ¼ 0:05=6 ¼ 0:0083.  

ROI LogLik χ2ð1Þ p  

LATL � 11530 39.72 <0.001 * 
RATL � 11210 14.50 <0.001 * 
LIFG � 10649 32.4 <0.001 * 
LPTL � 11961 33 <0.001 * 
LIPL � 12003 20 <0.001 * 
LPreM � 12137 16.5 <0.001 *  

Table 5 
Model comparison statistics for RNNG and RNNG� COMP SURPRISAL. ØLSTM denotes 
a model fit with all control predictors as well as LSTM SURPRISAL. Asterisks (*) 
indicate an improvement in model fit that surpasses a Bonferroni-corrected α ¼
0:05=6 ¼ 0:0083.  

ROI Comparison LogLik χ2ð1Þ p 

LATL RNNG� COMP > ØLSTM  � 11530 0.27 0.60 
RNNG > RNNG� COMP þ ØLSTM  � 11529 0.21 0.65 

RATL RNNG� COMP > ØLSTM  � 11208 4.4 0.04 
RNNG > RNNG� COMP þ ØLSTM  � 11208 0.2 0.67 

LIFG RNNG� COMP > ØLSTM  � 10646 4.1 0.04 
RNNG > RNNG� COMP þ ØLSTM  � 10645 2.1 0.15 

LPTL RNNG� COMP > ØLSTM  � 11957 8.0 0.005* 
RNNG > RNNG� COMP þ ØLSTM  � 11957 0.3 0.564 

LIPL RNNG� COMP > ØLSTM  � 12002 0.6 0.457 
RNNG > RNNG� COMP þ ØLSTM  � 11999 7.3 0.007* 

LPreM RNNG� COMP > ØLSTM  � 12136 1.0 0.3 
RNNG > RNNG� COMP þ ØLSTM  � 12136 1.1 0.3  

Table 6 
Model comparison statistics for RNNG and RNNG� COMP DISTANCE. ØLSTM denotes a 
model fit with all control predictors as well as LSTM SURPRISAL. Asterisks (*) 
indicate an improvement in model fit that surpasses a Bonferroni-corrected α ¼
0:05=6 ¼ 0:0083.  

ROI Comparison LogLik χ2ð1Þ p 

LATL RNNG� COMP > ØLSTM  � 11528 3 0.08 
RNNG > RNNG� COMP þ ØLSTM  � 11513 31 0.001* 

RATL RNNG� COMP > ØLSTM  � 11208 4.4 0.04 
RNNG > RNNG� COMP þ ØLSTM  � 11208 0.5 0.46 

LIFG RNNG� COMP > ØLSTM  � 10643 10.1 0.001* 
RNNG > RNNG� COMP þ ØLSTM  � 10639 8.5 0.004* 

LPTL RNNG� COMP > ØLSTM  � 11947 29 < 0.001* 
RNNG > RNNG� COMP þ ØLSTM  � 11933 28 < 0.001* 

LIPL RNNG� COMP > ØLSTM  � 11994 16 < 0.001* 
RNNG > RNNG� COMP þ ØLSTM  � 11993 3 0.08 

LPreM RNNG� COMP > ØLSTM  � 12136 1.6 0.20 
RNNG > RNNG� COMP þ ØLSTM  � 12134 4.5 0.03  
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naturalistic story with a computational parsing model that we quantify 
in two ways: the (un)expectedness of a word, or SURPRISAL, and the 
number of parsing steps, or DISTANCE, explored by the model between 
words. We examine the fit between these metrics and fMRI activity 
across a set of fronto-temporal regions to test where the explicit 
encoding of phrase-structure captures aspects of the brain signal above- 
and-beyond word-sequence information and other control covariates. 
We do see evidence for phrase-structure effects: when SURPRISAL is 
conditioned by explicit hierarchy, as in the RNNG language model, this 
improves the fit against fMRI data from the LPTL and LIPL. The DISTANCE 

metric correlates with activity in the LIFG, LATL, LIPL and LPTL and, 
further all of these fits except for the LIPL are improved when the RNNG 
not only encodes hierarchy, but composes phrases together into single 
expressions. 

We see effects for SURPRISAL across all six ROIs when that value comes 
from a LSTM language model (Fig. 2 and Table 4) which does not encode 
syntactic structure explicitly but may recover such information implic
itly (Linzen et al., 2016; Wilcox et al., 2019). This is consistent with a 
range of prior neuroimaging studies that use a similar methodology as 
ours, but calculate surprisal from other kinds of language-models (Wil
lems et al., 2016; Lopopolo et al., 2017; Henderson et al., 2016). This 
result is also in-line with that obtained by Brennan et al. (2016) (using 
the same datasets as analyzed here) who see effects when surprisal is 
defined by a probabalistic context-free grammar in all six of these same 
ROIs. The model used in that work, unlike the present model, calculated 
probabilities for each word’s part-of-speech, not the lexical item itself. 
Henderson et al. (2016) also report effects when surprisal is calculated 
for parts-of-speech using a phrase structure grammar, and find their 
largest effect in the LIFG, along-side a less robust effect in the LATL, 
while other work in which surprisal is defined on the basis of only 
sequential information (a Markov model) find primarily effects in the 
temporal lobes bilaterally (Willems et al., 2016; Lopopolo et al., 2017). 

When SURPRISAL is calculated from a RNNG language model, which 
does encode hierarchy explicitly, such a model improves fits to fMRI 
signals recorded in the LPTL and LIPL (Fig. 2 and Table 5).4 This pattern 
holds whether or not the RNNG DISTANCE terms are included in the model 
fits (Fig. 3). Brennan et al. (2016) also found hierarchical surprisal 

improved fits in both the LPTL and LIPL above-and-beyond a sequential 
Markov-model baseline. As already noted above, they characterized hi
erarchical surprisal using a one-path gold-standard context-free grammar 
parse-tree and only computed surprisal for each word’s part-of-speech, 
not for the lexical item itself. They also report improved fits of the same 
kind in other regions including LATL, RATL, and LIFG, which we do not 
find in the present results. One reason for that difference may be due to 
the more sophisticated baseline LSTM model used in the present study; its 
gated memory architecture allows it more flexibility in capturing 
contextual dependencies that are both proximal and distal to the target 
word. Unfortunately, the present analysis does not offer a minimal 
comparison to that earlier work: in addition to different architectures, the 
earlier models had a different domain (parts-of-speech) than the present 
models (lexical items). 

The results for SURPRISAL are not statistically reliable when tested 
along-side SURPRISAL effects derived from models used by Brennan et al. 
(2016) (Supplemental Table S4; the LIPL effect reaches p ¼ 0:01, which 
does not meet our bonferroni-corrected threshold of α ¼ 0:0083). This 
indicates that the two kinds of models are capturing shared variance in 
the fMRI data. But, understanding the nature of any overlap is chal
lenging due to the already-mentioned differences in their domain and 
other architectural aspects. The fact that language-users themselves 
predict specific lexical items, and do so in light of the regular ambiguity 
in every-day language, recommends something with the same features 
as the present RNNG models a priori. Yet, the empirical fits for 
part-of-speech-based predictions from those earlier, and simpler, models 
suggests to us that it will be valuable in future work to probe how to 
integrate part-of-speech predictions along-side lexical-specific 
predictions. 

Along-side effects for SURPRISAL, we use the DISTANCE complexity metric 
to probe for neural signals reflecting compositional processing. DISTANCE 

counts the steps of structural analysis pursued by the parser as it moves 
from word-to-word. In this way, it aligns with a large number of prior 
efforts that probe for composition effects by comparing stimuli with 
more or less syntactic structure, including sentences and word-lists (e.g. 
Mazoyer et al., 1993; Stowe et al., 1998; Vandenberghe et al., 2002; 
Humphries et al., 2006; Rogalsky and Hickok, 2009; Brennan and 
Pylkk€anen, 2012; Pallier et al., 2011), simple phrases to non-phrasal 
stimuli (e.g. Pylkk€anen et al., 2014; Bemis and Pylkk€anen, 2011; Blan
co-Elorrieta and Pylkk€anen, 2016; Westerlund et al., 2015), or via 
computational parsing models (Brennan et al., 2012; Brennan and 
Pylkk€anen, 2017; Nelson et al., 2017b). The effects we see of DISTANCE in 

Fig. 3. Regression coefficients with 99% Confidence Interals for all terms (excluding movement parameters) from each of the six ROIs when all terms are fit together 
in a single model. Abbreviations used: ‘.s’ indicates SURPRISAL measures; ‘.d’ indicates DISTANCE measures; ‘RNNG-c’ indicates RNNG� COMP models. 

4 The effect for RNNG SURPRISAL in the LIPL is in the negative direction. This 
directionality appears to be influenced by the presence of highly correlated 
predictors like RNNG� COMP surprisal. We do not here speculate on the inter
pretation of this direction because the combination of data and models appear 
insufficient to accurately estimate its direction when taking lower-order pre
dictors into account. 
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the LATL, LPTL, LPTL and LIFG are broadly in accordance with results 
from those prior studies (Fig. 2 and Table 6).5 Furthermore, the model 
comparison between the full RNNG DISTANCE values, and those values 
when the RNNG does not explicitly compose phrasal units together 
(RNNG� COMP) in the LATL, LIFG, and LPTL lends support to the cogni
tive importance of compositional mechanisms during online parsing 
(Lewis and Phillips, 2015; Sprouse and Hornstein, 2016; Hale et al., 
2018). Finally the results for DISTANCE are not sensitive to whether SUR

PRISAL terms are or are not included in the models (Fig. 3), nor are they 
sensitive to the presence of node-counting measures that were used to 
estimate structural analysis effort in earlier work (Supplemental Table 
S5). What sets DISTANCE apart from those earlier measures is that it 
explicitly reflects the ambiguity present in every-day parsing and 
quantifies structural analysis in the presence of this ambiguity. 

A possible point of contention concerns the relative breadth of our 
DISTANCE result as compared to more narrow findings reported in some 
prior studies, especially those focused on minimal comparisons of simple 
phrases to non-phrases (e.g. Bemis and Pylkk€anen, 2011, et seq.). Those 
studies do not find effects in inferior frontal regions. We suggest that 
careful consideration of the DISTANCE metric can help to resolve the 
apparent mismatch. The observed correlations may reflect a neural 
mechanism that varies in proportion to the number of parser operations 
– in accordance with a kind of semantic composition or syntactic 
structure-building. But, the parser tends to take more actions when it has 
entered states that are unexpected or unusual; in other words, when new 
information requires a kind of syntactic reanalysis. Indeed, several 
prominent theories of the role for the LIFG in language comprehension 
assign a role related to addressing ambiguous or conflicted input (e.g. 
Bornkessel-Schlesewsky and Schlesewsky, 2013; Novick et al., 2010). 
The suggestion that DISTANCE may relate, at least in part, to late-stage 
reanalysis operations is supported by results from Hale et al. (2018) 
who find this measure to correlate with a late, P600-like, EEG compo
nent. Future work using more granular complexity metrics to tease apart 
these different aspects of the DISTANCE metric may be useful in offering a 
more nuanced window into this particular pattern of results. 

6. Conclusion 

The expectedness of a word modulates brain activity in a wide range 
of regions associated with many levels of language comprehension. 
Using fMRI data from story-listening and a parser based on Recurrent 
Neural Network Grammars, we see evidence that explicit representation 
of hierarchy plays a role in a subset of these regions, like the left pos
terior temporal lobe. Parsing steps that not only encode structure, but 
compose phrases together into single terms, modulates activity in the 
left temporal lobe and inferior frontal regions. These findings generalize 
across the range of linguistic input found in a natural literary text. These 
quantitative matches between states of a computational model and 
neural data narrow down the kinds of information that are being pro
cessed across perisylvian language-related bain regions. These results 
point towards future work that probes, in a more granular way, the 
specific hierarchical structures that are in play during incremental 
processing. 
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