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Abstract
Deep equilibrium models (DEQs), as typical im-
plicit neural networks, have demonstrated remark-
able success on various tasks. There is, however,
a lack of theoretical understanding of the con-
nections and differences between implicit DEQs
and explicit neural network models. In this pa-
per, leveraging recent advances in random matrix
theory (RMT), we perform an in-depth analysis
of the conjugate kernel (CK) and neural tangent
kernel (NTK) matrices for implicit DEQs, when
the input data are drawn from a high-dimensional
Gaussian mixture. We prove that, in this setting,
the spectral behavior of these Implicit-CKs and
NTKs depend on the DEQ activation function
and initial weight variances, but only via a system
of four nonlinear equations. As a direct conse-
quence of this theoretical result, we demonstrate
that a shallow explicit network can be carefully
designed to produce the same CK or NTK as a
given DEQ. Despite derived here for Gaussian
mixture data, empirical results show that the pro-
posed theory and design principles also apply to
popular real-world datasets.

1. Introduction
Recently, a novel approach in neural network (NN) design
has gained prominence in the form of Implicit Neural Net-
works (Bai et al., 2019; El Ghaoui et al., 2021). As typical
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implicit NNs, deep equilibrium models (DEQs) introduce
a paradigm shift by resembling an infinite-depth weight-
shared model with input-injection. In contrast to traditional
explicit NNs such as multi-layer perceptrons, recurrent neu-
ral networks, and residual networks, DEQs derive features
by directly solving for fixed points. These fixed points repre-
sent equilibrium states in the NN’s computation, bypassing
conventional layer-by-layer forward propagation.

DEQs have demonstrated remarkable performance across a
variety of applications, including computer vision (Bai et al.,
2020; Xie et al., 2022), natural language processing (Bai
et al., 2019), neural rendering (Huang et al., 2021), and
solving inverse problems (Gilton et al., 2021). Despite the
empirical success achieved by DEQs, our theoretical under-
standing of these implicit models is still limited. As a telling
example, it remains unclear whether the training and/or gen-
eralization properties of implicit DEQs can be connected
to those of explicit NN models. Bai et al. (2019) show that
any deep explicit NN can be reformulated as an implicit
DEQ with carefully-designed weight re-parameterization.
Nonetheless, questions such as

• whether general DEQs have advantages over explicit
networks, or

• whether an equivalent explicit NN exists for a given
implicit DEQ,

remain largely open. Novel insights into these questions
are strongly desired, since implicit DEQs incur significantly
higher computational costs than explicit NNs during training
and inference, as a consequence of their reliance on iterative
solutions to fixed points (Micaelli et al., 2023; Fung et al.,
2022; Ramzi et al., 2021; Bai et al., 2021).

In this paper, we provide affirmative answers to the two
open questions above, by considering input data following
a Gaussian mixture model; refer to Remark 3.9 in Sec-
tion 3 for a precise statement. Building upon recent ad-
vances in random matrix theory (RMT), we investigate the
high-dimensional behavior of DEQs by focusing on their
conjugate kernel (CK) and neural tangent kernel (NTK) ma-
trices. These matrices offers an analytical assessment of the
convergence and generalization properties for both implicit
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and explicit NNs, when the networks are wide, see Jacot
et al. (2018) and Remark 2.5 below for a detailed discussion.
For input data drawn a K-class Gaussian mixture model
(GMM), we show, in the high-dimensional regime where
the data dimension p and their size n are both large and
comparable, that the Implicit-CKs and NTKs of DEQs can
be evaluated via more accessible random matrix models that
only depend on the variance parameter and the activation
function via a system of four equations. Possibly more sur-
prisingly, these high-dimensional “proxies” of Implicit-CKs
and NTKs have consistent forms with those of explicit NNs
recently established in Ali et al. (2022); Gu et al. (2022).

Inspired by this observation, we establish the high-
dimensional equivalence (in the sense of the CK and/or
NTK) between implicit DEQs and explicit models, by
matching their determining equations derived above. In
particular, our results reveal that a shallow explicit NN with
carefully designed activations is destined to exhibit identical
CK or NTK eigenspectral behavior as a given implicit DEQ,
the depth of the latter being essentially infinite. This implies,
at least for GMM data, that an equivalent shallow explicit
NN (with the same amount of memory) can be designed,
so as to avoid the significant computational overhead of im-
plicit DEQs. Despite our theoretical results are derived for
GMM data, we observe an unexpected close match between
our theory and the empirical results on real-world datasets.

1.1. Our Contributions

Our contributions are summarized as follows.

(1) We provide, by considering high-dimensional GMM
data, in Theorems 3.3 and 3.4, precise characteriza-
tions of CK and NTK matrices of implicit DEQs; we
particularly show that the Implicit-CKs and NTKs only
depend on the DEQ variance parameter and activation
function via a system of four nonlinear equations.

(2) We present, in Section 3.2, a comprehensive methodol-
ogy for crafting “equivalent” shallow NNs that emulate
a given implicit DEQ. This involves determining the ex-
plicit NN activations through the system of equations
derived in Theorems 3.3 and 3.4. We further illus-
trate the versatility of this framework in Examples 3.10
and 3.11, showcasing its applications to widely-used
ReLU and Tanh DEQs.

(3) We provide empirical evidence on GMM and real-
world datasets such as MNIST, Fashion-MNIST, and
CIFAR-10. Our numerical results demonstrate that the
carefully-designed explicit NNs exhibit performance
on par with the given implicit DEQs. This parity in
performance is observed across both GMM and diverse
realistic datasets, affirming the broad applicability and
effectiveness of the proposed framework.

1.2. Related Works

Here, we provide a brief review of related previous efforts.

Neural tangent kernels. Neural Tangent Kernel (NTK),
initially proposed by Jacot et al. (2018), examines the be-
havior of wide and deep NNs when trained using gradient
descent with small steps. Originally developed for fully-
connected NNs, the NTK framework has since then been
expanded to convolutional (Arora et al., 2019), graph (Du
et al., 2019), and recurrent (Alemohammad et al., 2020)
settings. See also Remark 2.5 below for the use of NTK in
the analysis of DNNs.

Over-parameterized DEQs. Feng & Kolter (2020) ex-
tend previous NTK studies to implicit DEQs and derive
the exact expressions of the CK and NTK of ReLU DEQs.
Agarwala & Schoenholz (2022) investigate the NTK of
DEQs under different random initializations. These studies
particularly asserts that (i) the Implicit-NTKs of DEQs are
equivalent to the corresponding weight-untied models in
the infinitely wide regime and (ii) implicit DEQs have non-
degenerate NTKs even in the infinite depth limit. These ob-
servations align with our findings. The connections between
Implicit-CKs/NTKs and Explicit-CKs/NTKs, however, re-
main unexplored. Here we perform a fine-grained analysis
on the Implicit-CKs and NTKs of DEQs and establish their
equivalence to explicit NN model. Also, while training
dynamics (and global convergence) of over-parameterized
DEQs have been investigated in previous works (Gao et al.,
2022; Gao & Gao, 2022; Ling et al., 2023; Truong, 2023) in
the NTK regime, it remain unclear how these DEQ training
dynamics distinguishes from those of explicit models.

Random matrix theory and NNs. Random matrix theory
(RMT) has emerged as a versatile and potent tool for evalu-
ating the behavior of large-scale systems characterized by
a substantial “degree of freedom.” Its application has been
increasingly embraced in the realm of NN analysis, span-
ning shallow (Pennington & Worah, 2017; Liao & Couillet,
2018b;a) and deep (Benigni & Péché, 2019; Fan & Wang,
2020; Pastur, 2022; Pastur & Slavin, 2023) models, homoge-
neous (e.g., standard normal) (Pennington & Worah, 2017;
Mei & Montanari, 2022) and mixture-type datasets (Liao &
Couillet, 2018b; Ali et al., 2022; Gu et al., 2022). From a
technical perspective, the most relevant papers are Ali et al.
(2022) and Gu et al. (2022), in which the eigenspectra of CK
and NTK were evaluated, for explicit single-hidden-layer
NN in Ali et al. (2022) and explicit deep NNs with multi-
ple (but finite) layers in Gu et al. (2022). Here, we extend
previous analysis to implicit DEQs with an effectively infi-
nite number of layers, and establish an equivalence between
implicit and explicit NN models.
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2. Preliminaries
Notations. We use N (0, I) to denote standard multivari-
ate Gaussian distribution. For a vector v, ∥v∥ is the Eu-
clidean norm of v. For a matrix A, we use Aij to denote
its (i, j)-th entry, ∥A∥F to denote its Frobenius norm, and
∥A∥ to denote its spectral norm. We use ⊙ to denote the
Hadamard product between matrices of the same size. We
let O(·), Θ(·) and Ω(·) denote standard Big-O, Big-Theta,
and Big-Omega notations, respectively.

In this paper, we focus on the DEQ model introduced in Bai
et al. (2019), defined as follows.
Definition 2.1 (Deep equilibrium model, DEQ). LetX =
[x1, · · · ,xn] ∈ Rp×n denote the input data, consider a
vanilla DEQ with output f(xi) given by

f(xi) = a
⊤z∗i , (1)

where a ∈ Rm and z(∗)i ≜ liml→∞ z
(l)
i ∈ Rm with

z
(l)
i =

1√
m
ϕ
(
σaAz

(l−1)
i + σbBxi

)
∈ Rm, for l ≥ 1,

(2)
for some appropriate initialization z(0)i . Here,A ∈ Rm×m

andB ∈ Rm×p are the DEQ weight parameters, σa, σb ∈ R
are constants, and ϕ is an element-wise activation. Note that
z∗i can also be determined as the equilibrium point of

z∗i =
1√
m
ϕ (σaAz

∗
i + σbBxi) . (3)

We position ourselves under the following assumptions on
the weights and activation functions of the DEQ.
Assumption 2.2 (Weights initialization). For the DEQ
model in Definition 2.1, the weight parameters a ∈ Rm,
A ∈ Rm×m andB ∈ Rm×p are initialized as independent
random vector or matrices having i.i.d. entries of zero mean,
unit variance, and finite fourth-order moment.
Assumption 2.3 (Activation function). For the DEQ
model in Definition 2.1, the activation function ϕ is
L1-Lipschitz, and at least four-times weakly differen-
tiable with respect to standard normal measure, i.e.,
maxk∈{0,1,2,3,4} |E[ϕ(k)(ξ)]| <∞ for ξ ∼ N (0, 1).

Here, we consider the weak differentiability of a func-
tion, which generalizes the notation of derivative for non-
differentiable (but integrable) functions. Specifically, us-
ing the Gaussian integration by parts formula, one has
E[ϕ′(ξ)] = E[ξϕ(ξ)] for ξ ∼ N (0, 1), as long as the right-
hand side expectation exists. It can be checked that Assump-
tion 2.3 holds for commonly-used smooth, e.g., Tanh, and
piecewise linear activations, e.g., ReLU and Leaky ReLU.

For the stability of training and inference of DEQs, it is of
crucial significance to guarantee the existence and unique-
ness of the equilibrium point in Eq. (3) (Winston & Kolter,

2020; El Ghaoui et al., 2021). To that end, we introduce the
following assumption on the variance parameter σa.
Assumption 2.4 (Variance parameter). For the DEQ model
in Definition 2.1, the variance parameter σa in Eq. (3) sat-
isfies σ2

a < 1/(4L2
1), with L1 the Lipschitz constant of the

activation function ϕ as demanded in Assumption 2.3.

It follows from Assumption 2.2 and standard singular
value bounds of random matrices (Vershynin, 2018) that
∥A∥ ≤ 2

√
m with high probability. Then, by noting that

ϕ(·) is L1-Lipschitz, one has, under Assumption 2.4, that
the transformation in Eq. (2) is a contractive mapping. This
thus ensures the existence of the unique fixed point z∗.

We are interested in the conjugate kernel and the neural
tangent kernel (Implicit-CK and Implicit-NTK, for short) of
the implicit DEQ in Definition 2.1.
Remark 2.5 (On CKs and NTKs). Conjugate kernels (CKs)
and neural tangent kernels (NTKs) are closely related ker-
nels useful in the analysis of NNs (Fan & Wang, 2020).
During gradient descent training, the network parameters
change and the NTK also evolves over time. It has been
shown in Jacot et al. (2018) and follow-up works that for suf-
ficiently wide DNNs trained on gradient descent with small
learning rate: (i) the NTK is approximately constant after
initialization; and (ii) running gradient descent to update the
network parameters is equivalent to kernel gradient descent
with the NTK. This duality allows one to assess the training
dynamics, generalization, and predictions of wide DNNs
as closed-form expressions involving NTK eigenvalues and
eigenvectors, see Bartlett et al. (2021, Section 6).

For Implicit-CKs and NTKs, we recall the following result.
Proposition 2.6 (Implicit-CKs and NTKs of DEQ, (Feng &
Kolter, 2020; Gao et al., 2023)). Under Assumptions 2.2-2.4,
the Implicit-CK of the DEQ model in Definition 2.1 takes
the following form:

G∗ = lim
l→∞

G(l), (4)

where the (i, j)-th entry of G(l) is defined recursively as1

G
(l)
ij = E[(z(l)i )⊤z

(l)
j ], i.e.,G(0)

ij = (z
(0)
i )⊤z

(0)
j and

G
(l)
ij = E(ul,vl)[ϕ(ul)ϕ(vl)], (5)

with (ul, vl) ∼ N

(
0,

[
Λ

(l)
ii Λ

(l)
ij

Λ
(l)
ji Λ

(l)
jj

])
and Λ

(l)
ij =

σ2
aG

(l−1)
ij +σ2

bx
⊤
i xj , for l ≥ 1. The corresponding Implicit-

NTK takes the formK∗ = liml→∞K
(l) whose the (i, j)-th

entry is defined as

K
(l)
ij =

l+1∑
h=1

(
G

(h−1)
ij

l+1∏
h′=h

Ġ
(h′)
ij

)
, (6)

1Note that the expectation is conditioned on the input data, and
is taken with respect to the random weights.
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with Ġ(l)
ij = σ2

aE(ul,vl)∼N (0,Λ
(l)
ij )

[ϕ′(ul)ϕ
′(vl)] so that

K∗
ij ≡ G∗

ij/(1− Ġ∗
ij). (7)

The existence and uniqueness of the DEQ Implicit-
CK and NTK expressions given in Proposition 2.6 are guar-
anteed under Assumptions 2.2-2.4, see Gao et al. (2023) for
a detailed proof using a Gaussian process argument.

For the purpose of our theoretical analysis, we consider in-
put data drawn from the following high-dimensional Gaus-
sian mixture model.

Assumption 2.7 (High-dimensional Gaussian mixture
model, GMM). Consider n data vectors x1, · · · ,xn ∈ Rp

independently drawn from one of the K-class Gaussian
mixtures C1, · · · , CK , i.e., for xi ∈ Ca, we have

√
pxi ∼ N (µa,Ca), a ∈ {1, · · · ,K}. (8)

We assume, for n, p both large that (i) p = Θ(n) and na
the cardinality of class Ca satisfies na = Θ(n); (ii) ∥µa∥ =

O(1); (iii) for C◦ ≡
∑K

a=1
na

n Ca and C◦
a ≡ Ca − C◦,

we have ∥Ca∥ = O(1), trC◦
a = O

(√
p
)

and tr(CaCb) =
O(p) for a, b ∈ {1, · · · ,K}.

Remark 2.8 (On GMM in Assumption 2.7). The normal-
ization by

√
p of the GMM in Eq. (8) is commonly used

in the literature of high-dimensional statistics and over-
parameterized DNNs and ensures that the data vectors have
bounded Euclidean norms ∥xi∥ = O(1) with high proba-
bility for n, p large. The assumptions on the scaling of the
means and covariances in Assumption 2.7, despite being
technical at first sight, ensure the GMM classification in
Eq. (8) remains non-trivial for n, p large, and have been
extensively studied in the literature for various ML meth-
ods ranging from LDA, spectral clustering, SVM, to shal-
low and deep neural networks, see for example (Couillet &
Benaych-Georges, 2016; Louart et al., 2018; Dobriban &
Wager, 2018; Liao & Couillet, 2019; Elkhalil et al., 2020;
Couillet & Liao, 2022; Gu et al., 2022) as well as (Blum
et al., 2020, Section 2). On the other hand, it is known
that GMM is a universal approximator, in that given a data
distribution, there exists a GMM (with possibly a large num-
ber of components) that can approximate that distribution
to an arbitrary error, see for example (Goodfellow et al.,
2016). In the high-dimensional regime under study where
the data dimension p and sample size n are both large and
comparable, theoretical and empirical evidences have been
provided to support the modeling of realistic image data
using high-dimensional GMM, see (Seddik et al., 2020).

3. Main Results
In this section, we present in Section 3.1 our main technical
results on the high-dimensional characterization of CK and

NTK matrices of implicit DEQs, in Theorems 3.3 and 3.4,
respectively. We then show in Section 3.2 that the proposed
theoretical analysis allows to construct, for a given implicit
DEQ model, an equivalent and shallow explicit NN model
that shares the same CK eigenspectra as the implicit DEQ.

3.1. High-dimensional Characterization of
Implicit-CK and NTK Matrices

Let us start by introducing some notations that will be used
in the remainder of this paper. For GMM data in Assump-
tion 2.7, denote

J ≡ [j1, · · · , jK ] ∈ Rn×K , ja ∈ Rn,

with [ja]i = 1xi∈Ca
of class Ca, a ∈ {1, . . . ,K} (note that

the rows of J are standard one-hot-encoded label vectors in
RK). We define the second-order data fluctuation vector as

ψ ≡ {∥xi − E[xi]∥2 − E[∥xi − E[xi]∥2]}ni=1 ∈ Rn,

and use

T = {trCaCb/p}Ka,b=1 ∈ RK×K , t = {trC◦
a/

√
p} ∈ RK ,

to denote the GMM second-order statistics. Also, let

τ0 ≡
√

trC◦/p, (9)

for C◦ ≡
∑K

a=1
na

n Ca as in Assumption 2.7, and τ∗ be the
fixed point to the following equation

τ∗ =
√
σ2
aE [ϕ2(τ∗ξ)] + σ2

b τ
2
0 , ξ ∼ N (0, 1), (10)

the existence and uniqueness of which is ensured under
Assumption 3.1 as follows.

Assumption 3.1. For the DEQ model in Definition 2.1, the
variance parameter σa satisfies σ2

a < 2/(E[(ϕ2(τξ))′′]) for
τ > 0 and ξ ∼ N (0, 1).

Remark 3.2 (Existence and uniqueness of τ∗). It can be
checked that for any given τ0 > 0 and variance parameter
σa satisfying Assumption 3.1, the right-hand side of Eq. (10)
constitutes a contractive mapping. This ensures the exis-
tence of a unique fixed point τ∗ in Eq. (10). See Lemma A.2
in Appendix A for a detailed proof of this fact.

With these notations, we are ready to present our first result
on the high-dimensional characterization of CK matrices for
implicit DEQs, the proof of which is given in Appendix B.

Theorem 3.3 (High-dimensional approximation of Implic-
it-CKs). For the DEQ model in Definition 2.1 with GMM
input as in Assumption 2.7, let Assumptions 2.2 and 2.3 hold,
and let the activation ϕ be centered such that E[ϕ(τ∗ξ)] = 0
for ξ ∼ N (0, 1) and τ∗ in Eq. (10). Further assume
that the variance parameter σa satisfies both Assump-
tions 2.4 and 3.1. Then, the Implicit-CK matrixG∗ defined
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in Eq. (4) of Proposition 2.6 can be well approximated, in
a spectral norm sense with

∥∥G∗ −G
∥∥ = O

(
n−1/2

)
, by a

random matrixG explicitly given by

G ≡ α∗,1X
⊤X + V C∗V

⊤ + (γ2∗ − τ20α∗,1)In, (11)

where V =
[
J/

√
p, ψ

]
∈ Rn×(K+1),

C∗ =

[
α∗,2tt

⊤ + α∗,3T α∗,2t
α∗,2t

⊤ α∗,2

]
∈ R(K+1)×(K+1),

and non-negative scalars γ∗, α∗,1, α∗,2, α∗,3 ≥ 0 are de-
fined, for ξ ∼ N (0, 1), as

γ∗ =
√
E[ϕ2(τ∗ξ)], α∗,1 =

σ2
bE[ϕ′(τ∗ξ)]2

1− σ2
aE[ϕ′(τ∗ξ)]2

,

α∗,2 =
E[ϕ′′(τ∗ξ)]2

4(1− σ2
aE[ϕ′(τ∗ξ)]2)

α2
∗,4,

α∗,3 =
E[ϕ′′(τ∗ξ)]2

2(1− σ2
aE[ϕ′(τ∗ξ)]2)

(σ2
aα∗,1 + σ2

b )
2

(12)

with α∗,4 = (1− σ2
a

2 E[(ϕ2(τ∗ξ))′′])−1σ2
b .

Theorem 3.3 reveals the surprising fact that, for high-
dimensional GMM input in Assumption 2.7, the Implicit-
CK G∗, despite its mathematically involved form (as the
fixed point of the recursion) in Eq. (4), is close to a much
simpler random matrixG. This “equivalent” CK matrixG,

(1) depends, as expected, on the input GMM data (X),
their class structure (J) and higher-order statistics (t
and T ), but in a rather explicit fashion; and

(2) is independent of the distribution of the (randomly
initialized) weight matricesA andB; and

(3) depends on σ2
a, σ2

b , and the activation ϕ only via four
scalars α∗,1, α∗,2, α∗,3, γ∗ explicitly given in Eq. (12).

A similar result can be derived for the Implicit-NTK matri-
ces and is given as follows, proven in Appendix C.

Theorem 3.4 (High-dimensional approximation of Implic-
it-NTKs). Under the same settings and notations of Theo-
rem 3.3, we have, that the Implicit-NTK matrixK∗ defined
in Eq. (7) of Proposition 2.6 can be well approximated, in
a spectral norm sense with

∥∥K∗ −K
∥∥ = O

(
n−1/2

)
, by a

random matrixK explicitly given by

K ≡ β∗,1X
⊤X + V D∗V

⊤ + (κ2∗ − τ20β∗,1)In, (13)

where V ∈ Rn×(K+1) is as defined in Theorem 3.3, and

D∗ =

[
β∗,2tt

⊤ + β∗,3T β∗,2t
β∗,2t

⊤ β∗,2

]
∈ R(K+1)×(K+1),

as well as non-negative scalars κ∗, β∗,1, β∗,2, β∗,3 ≥ 0,

κ∗ =
τ∗√

1− σ2
aE[ϕ′(τ∗ξ)2]

, β∗,1 =
α∗,1

1− σ2
aE[ϕ′(τ∗ξ)]2

,

β∗,2 =
α∗,2

1− σ2
aE[ϕ′(τ∗ξ)]2

,

β∗,3 =
α∗,3 + β∗,1(σ

2
aE[ϕ′′(τ∗ξ)]2 + σ2

b )α∗,1

1− σ2
aE[ϕ′(τ∗ξ)]2

,

for ξ ∼ N (0, 1), with α∗,1, α∗,2, α∗,3 as defined in Eq. (12).

Theorem 3.4 tells us that the NTK matrices of implicit DEQs
take a similar form as their CKs, and (approximately for
n, p large) depend on σa, σb and the activation via the key
parameters β∗,1, β∗,2, β∗,3 and κ∗.
Remark 3.5 (On centered activation). Given any activa-
tion function ϕ̃(·) that satisfies Assumption 2.3, a cen-
tered activation ϕ can be obtained by simplify subtract-
ing a constant as ϕ(x) = ϕ̃(x) − E[ϕ̃(τ∗x)] with τ∗ =√
σ2
aE[(ϕ̃(τ∗ξ)− E[ϕ̃(τ∗ξ)])2] + σ2

b τ
2
0 .

3.2. High-dimensional Equivalence between DEQs and
Shallow Explicit Networks

Implicit DEQs are known, per Definition 2.1, to be formally
equivalent to infinitely deep explicit NN models (Bai et al.,
2020; Xie et al., 2022). In the sequel, we show how our
theoretical analyses in Theorems 3.3 and 3.4 provide a gen-
eral recipe to construct shallow explicit NN models that are
“equivalent” to a given implicit DEQ model, in the sense that
the CK and/or NTK matrices of the two networks are close
in spectral norm. We first review previous results on explicit
NN models in Section 3.2.1, and present, in Section 3.2.2,
guidelines to construct a shallow explicit NN equivalent to
a given DEQ.

3.2.1. A BRIEF REVIEW OF EXPLICIT CKS AND NTKS

We consider the following L-layer explicit NN model.
Definition 3.6 (Fully-connected explicit NN model). Let
X = [x1, · · · ,xn] ∈ Rp×n denote the input data, consider
an L-layer fully-connected explicit NN model with output
given by a⊤x

(L)
i for a ∈ RmL , x(0)

i = xi and

x
(l)
i =

1
√
ml

σl(Wlx
(l−1)
i ), for l = 1, · · · , L, (14)

where Wl ∈ Rml×ml−1 are weight matrices and σl : R →
R are element-wise activation functions.

As in Assumptions 2.2 and 2.3 for implicit DEQs, we also
assume that the weights Wls in Definition 3.6 have i.i.d.
entries of zero mean, unit variance, and finite fourth-order
moment; and the activations σl are four-times weakly differ-
entiable with respect to standard Gaussian measure.
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For fully-connected explicit NNs in Definition 3.6, we recall
the following result on their Explicit-CKs and NTKs.
Proposition 3.7 (Explicit-CKs and NTKs, (Jacot et al.,
2018; Fan & Wang, 2020)). For a fully-connected L-layer
NN model in Definition 3.6, its Explicit-CK matrix Σ(l) at
layer l ∈ {1, · · · , L} is defined as

Σ
(l)
ij = Eu,v[σl(ul)σl(vl)], Σ(0) =X⊤X, (15)

with (ul, vl) ∼ N
(
0,

[
Σ

(l−1)
ii Σ

(l−1)
ij

Σ
(l−1)
ji Σ

(l−1)
jj

])
. And the

Explicit-NTK matrix Θ(l) at layer l is defined as

Θ(l) = Σ(l) +Θ(l−1) ⊙ Σ̇(l), Θ(0) =X⊤X, (16)

with Σ̇
(l)
ij = Eul,vl [σ

′
l(ul)σ

′
l(vl)].

The Explicit-CK and NTK matrices in Proposition 3.7 for
the fully-connected explicit NN model in Definition 3.6
have been recently studied in Gu et al. (2022).
Theorem 3.8 (High-dimensional approximation of Explic-
it-CKs, (Gu et al., 2022, Theorem 1)). For fully-connected
NN model in Definition 3.6 with GMM input in Assump-
tion 2.7, let τ̃0 = τ0 as defined in Eq. (9) and τ̃1, · · · τ̃L ≥ 0
be a sequence of non-negative scalars satisfying τ̃l =√

E[σ2
l (τ̃l−1ξ)], for ξ ∼ N (0, 1) and l ∈ {1, · · · , L}. Fur-

ther assume that the activation functions σl(·) are centered
such that E[σl(τ̃l−1ξ)] = 0. Then, for the Explicit-CK ma-
trix Σ(l) defined in Eq. (15) of Proposition 3.7, it holds
that ∥Σ(l) −Σ

(l)∥ = O
(
n−1/2

)
for a random matrix Σ

(l)

explicitly given by

Σ
(l)

= α̃l,1X
⊤X + V C̃lV

⊤ + (τ̃2l − τ20 α̃l,1)In, (17)

with V ∈ Rn×(K+1) as defined in Theorem 3.3,

C̃l =

[
α̃l,2tt

⊤ + α̃l,3T α̃l,2t
α̃l,2t

⊤ α̃l,2

]
∈ R(K+1)×(K+1),

and non-negative scalars α̃l,1, α̃l,2, α̃l,3 defined recursively
as α̃0,1 = α̃0,4 = 1, α̃0,2 = α̃0,3 = 0, and

α̃l,1 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,1,

α̃l,2 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,2 +
1

4
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,4,

α̃l,3 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,3 +
1

2
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,1,

with α̃l,4 = E[(σ2
l (τ̃l−1ξ))

′′]α̃l−1,4, for ξ ∼ N (0, 1).

In the following, we establish, by combining Theo-
rems 3.3 and 3.8, explicit connections between the CK matri-
ces of implicit DEQs and fully-connected explicit NNs. Ex-
ploiting this connection, we further provide a recipe to con-
struct an explicit network “equivalent” to any given DEQ,
with approximately the same CK. Results for NTK can be
similarly obtained by combining our Theorem 3.4 with Gu
et al. (2022, Theorem 2) and is omitted here.

3.2.2. DESIGNING EQUIVALENT EXPLICIT NNS VIA CK
MATCHING

Comparing Theorem 3.3 to Theorem 3.8, we see that
the high-dimensional approximationG of the Implicit-CK
in Eq. (11) takes a consistent form with that (Σ

(l)
) of the

Explicit-CK in Eq. (17), with coefficients α∗s and α̃s deter-
mined by the corresponding activation ϕ and σl, respectively.
Inspired by this observation, our idea is to design activa-
tions of an L-layer explicit NN such that its Explicit-CK
Σ(L) shares the same coefficients as the Implicit-CKG∗ of
a given implicit DEQ of interest. Specifically, for a given
implicit DEQ as in Definition 2.1,

(1) we first compute the four key parameters
α∗,1, α∗,2, α∗,3 and γ∗ of the implicit DEQ ac-
cording to Eq. (12) of Theorem 3.3;

(2) we then select activations σl with undetermined param-
eters for the L-layer explicit NN in Definition 3.6, and
use Theorem 3.8 to represent α̃L,1, α̃L,1, α̃L,1, τ̃L as
functions of the activation parameters;

(3) we determine the activations σl of the explicit NN by
solving the following set of equations,

τ̃L = γ∗, α̃L,i = α∗,i, i ∈ {1, 2, 3}. (18)

This gives the desired fully-connected explicit NN model
that shares the same CK as the given DEQ.

It remains to determine the depth of the equivalent explicit
NN model. Note, by comparing Theorem 3.8 to Theo-
rem 3.3, that for a given implicit DEQ, it is not always
possible to determine a single-hidden-layer explicit NN hav-
ing the same CK. This is discussed in the following remark.

Remark 3.9 (Implicit- versus Explicit-CK). It fol-
lows from Theorem 3.8 that, for the single-hidden-
layer explicit NN (with L = 1 in Definition 3.6),
one must have α̃1,2 = 1

2 α̃1,3, regardless of the
choice of activation. On the contrast, α∗,2 = 1

2α∗,3
does not necessarily hold for the Implicit-CK of all
DEQs. As such, for a given DEQ,

• if α∗,2 = 1
2α∗,3, then a single-hidden-layer

explicit NN suffices to match the given DEQ;

• otherwise if α∗,2 ̸= 1
2α∗,3, then an explicit NN

with (at least) two hidden layers is required.

As a consequence of Remark 3.9, we discuss, in the follow-
ing, the two instances of commonly used implicit DEQ with
ReLU and Tanh activations, and illustrate how to construct
equivalent shallow explicit NNs in both cases. The detailed
expressions and proofs are given in Appendix D.
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Figure 1. Evolution of relative spectral norm error ∥G∗ −
G∥/∥G∗∥ w.r.t. sample size n, for DEQs in Definition 2.1
with different activations and σ2

a = 0.2, on two-class GMM,
p/n = 0.8, µa = [08(a−1); 8;0p−8a+7], and Ca = (1 + 8(a−
1)/

√
p)Ip, a ∈ {1, 2}.

Example 3.10 (DEQ with Tanh activation). For a given
implicit DEQ (denoted Tanh-DEQ) in Definition 2.1 with
Tanh activation, i.e., ϕ(x) = Tanh(x), a single-hidden-
layer equivalent explicit NN (denoted H-Tanh-ENN) as
in Definition 3.6, with Hard-Tanh-type activation:

σH-Tanh(x) ≡ ax · 1−c≤x≤c + ac · (1x≥c − 1x≤−c), (19)

with undetermined parameters a > 0, c ≥ 0, can be con-
structed so that their CKs, denoted as G∗

Tanh and Σ
(1)
H-Tanh,

satisfy ∥G∗
Tanh−Σ

(1)
H-Tanh∥ = O(n−1/2), by solving a system

of nonlinear equations induced from Eq. (18).

Example 3.11 (DEQ with ReLU activation). For a given im-
plicit DEQ (denoted ReLU-DEQ) as in Definition 2.1 with
centered ReLU activation, i.e., ϕ(x) = ReLU(x)−τ∗/

√
2π,

a two-hidden-layer equivalent explicit NN (denoted L-
ReLU-ENN) with Leaky-ReLU-type activation:

σ
(l)
L-ReLU(x) ≡ max(alx, blx)−

al − bl√
2π

τ̃l, l = 1, 2, (20)

with undetermined parameters al ≥ bl ≥ 0, can be con-
structed so that their CKs, denoted as G∗

ReLU and Σ
(2)
L-ReLU,

satisfy ∥G∗
ReLU −Σ

(2)
L-ReLU∥ = O(n−1/2), by solving a sys-

tem of polynomial equations induced from Eq. (18).

4. Experiments
In this section, we provide numerical experiments to validate
our theoretical results. We consider both Gaussian mixture
data and samples drawn from commonly used real-world
datasets such as MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky,
2009). The experiments are conducted with a repetition
of five trials, and we report both the average performance
and accompanying error bars. Due to space limitation,

0
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Figure 2. Left: Visualization of activations of DEQs (dashed)
and those of equivalent explicit NNs (solid). Right: Evolution
of relative spectral norm errors ∥G∗

Tanh − Σ
(1)
H-Tanh∥/∥G

∗
Tanh∥ and

∥G∗
ReLU − Σ

(2)
L-ReLU∥/∥G

∗
ReLU∥ w.r.t. sample size n on GMM as

in Figure 1 for Example 3.10 (red) and Example 3.11 (blue),
respectively.

we refer the readers to Appendix E for additional exper-
iments. The code to reproduce the results in this section is
available at https://github.com/StephenLi24/
INN_eqvi_ENN.

High-dimensional approximations of Implicit-CKs and
NTKs. Figure 1 compares the difference between Implicit-
CKs G∗ and their high-dimensional approximations G
given in Theorem 3.3, on binary Gaussian mixture data,
for DEQs as Definition 2.1 with four commonly-used acti-
vations: ReLU, Tanh, Swish, and Leaky-ReLU (L-ReLU).
The computation of G follows from its definition in The-
orem 3.3. For the Implicit-CK G∗, we take an estimation
approach similar to that in Gao et al. (2023): each element
G∗

ij is estimated as (z∗i )
⊤z∗j using a high-dimensional DEQ

defined in Eq. (3) with m = 212 and z∗i estimated through
a large number l of fixed-point iterations defined in Eq. (2).
See Gao et al. (2023) for a convergence analysis of this
estimation (to G∗) w.r.t. the width m and the number l of
fixed-point iterations. We refer the interested readers to Cho
& Saul (2009); Tsuchida et al. (2018); Novak et al. (2019)
for fast and efficient estimation/computation of CKs and
NTKs.

We observe from Figure 1 that, for different activations,
as n, p increase, the relative errors consistently and signifi-
cantly decrease, as in line with our Theorem 3.3. The exper-
imental observations regarding NTKs and Theorem 3.4 are
similar and are placed in Appendix E.1. Possibly surpris-
ingly, the high-dimensional approximations of Implicit-CKs
and Implicit-NTKs, despite derived here for GMM in Theo-
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Figure 3. Classification accuracies of implicit DEQs and explicit models trained with SGD. Top: Evolution of classification accuracies
w.r.t. the width m of Tanh-DEQ (green), the corresponding equivalent explicit H-Tanh-ENN (blue), and Tanh-ENN (red). Bottom:
Evolution of classification accuracies w.r.t. the width m of ReLU-DEQ (green), the corresponding equivalent explicit L-ReLU-ENN
(blue), and ReLU-ENN (red). For MNIST (left) and Fashion-MNIST datasets (middle), raw data are taken as the network input; for
CIFAR-10 dataset (right) , flattened output of the 16th convolutional layer of VGG-19 are used.

rems 3.3 and 3.4, exhibits unexpected similar behavior on
realistic MNIST data, see Appendix E.2 for detailed results.

Equivalent Explicit-CKs and NTKs. In Figure 2, we
testify the results in Examples 3.10 and 3.11 by constructing
shallow explicit networks with Hard Tanh-type (H-Tanh-
ENN) and Leaky ReLU-type (L-ReLU-ENN) activation
equivalent to implicit DEQs with Tanh (Tanh-DEQ) and
ReLU (ReLU-DEQ) activation, respectively. We see that,
while the two types of NN models are different in that (i)
DEQs are implicitly defined while ENNs are explicitly
defined, and (ii) ENNs use different activations from DEQs,
their CK matrices are close in spectral norm, as long as
the activation of ENNs are carefully chosen according to
our Examples 3.10 and 3.11. This observation is again
consistent on synthetic GMM, and possibly surprisingly,
realistic MNIST data. We conjecture that this is due to a
high-dimensional universal phenomenon and that our results
hold more generally beyond GMM for, say, data drawn from
the family of concentrated random vectors (Ledoux, 2005).
We refer the interested readers to Couillet & Liao (2022,
Chapter 8) for more discussions on this point.

Test performance of explicit NNs on realistic data. To
explore the extent of the proposed high-dimensional equiv-
alence between implicit DEQs and shallow explicit NN
models across various realistic datasets, we conduct a com-

prehensive comparison of the classification accuracies using
both implicit and explicit models. The results of this compar-
ison, depicted in Figure 3, provide insights into the perfor-
mance of DEQs against carefully (or not) designed explicit
NNs. Following Examples 3.10 and 3.11, we construct a
single-hidden-layer H-Tanh-ENN and a two-hidden-layer L-
ReLU-ENN to match Tanh-DEQ and ReLU-DEQ, respec-
tively. The undetermined parameters a, c and al, bl of the
activations H-Tanh-ENN and L-ReLU-ENN are determined
by solving the system of equations induced from Eq. (18).
For comparison, we also construct a single-hidden-layer
explicit NN with Tanh activation (denoted Tanh-ENN) and
a two-hidden-layer explicit NN with ReLU activation (de-
noted ReLU-ENN). Models are trained using SGD opti-
mizer with learning rates of 10−1 for MNIST and Fashion-
MNIST, and 10−2 for CIFAR-10. The batch size is set to
128 with a maximum training epoch of 100. To ensure a
fair comparison, the hidden layer of explicit NNs share the
same width, m ∈ 25−12, as the implicit DEQs. As m in-
creases, the performance of L-ReLU-ENN closely matches
that of ReLU-DEQ, while a noticeable performance gap ex-
ists between ReLU-ENN and ReLU-DEQ. A similar result
is observed in the case of H-Tanh-ENN and Tanh-DEQ.
These trends are in line with the theoretical guaranteed of-
fered by our analysis, that focuses on CKs and NTKs and
formally holds in the m→ ∞ limit. Experiments are also
conducted using the Adam optimizer, where similar trends
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can be observed. Please refer to Appendix E.4 for these
results. Moreover, we observe the remarkable advantage of
ENN over DEQs on the time costs of inference and train-
ing, see Appendix E.5 for detailed results. This observation
substantiates our theory and underscores the practical ad-
vantages of our approach by, e.g., enabling the design of
memory-efficient explicit NNs that achieve the performance
of implicit DEQs without the computational overhead asso-
ciated with fixed-point iterations.

5. Conclusion
In this paper, we investigate the connections and differences
between implicit DEQs and explicit NNs. We employ RMT
to analyze the eigenspectra of the NTKs and CKs of implicit
DEQs. For high-dimensional Gaussian mixture data, we
establish high-dimensional approximations for the NTK and
CK of implicit DEQs. Notably, we reveal that the eigenspec-
tra of the NTK and CK of implicit DEQs are determined
solely by the variance parameter and the activation function.
Based on this observation, we establish the equivalence be-
tween implicit DEQs and explicit NNs in high dimensions.
We propose a method for designing activation functions
for explicit neural networks to match the spectral behavior
of the CK (or NTK) of implicit DEQs. Results on GMM
data and real-world data demonstrate that shallow explicit
NNs using our theoretically designed activation functions
achieve comparable performance to implicit DEQs, with
significantly reduced computational overhead.
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Supplementary Material
Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit Models

for High-dimensional Gaussian Mixtures

A. Preliminaries
We are interested in the associated conjugate kernel and the neural tangent kernel (Implicit-CK and Implicit-NTK, for
short) of implicit neural networks defined in Eq. (3). According to the results in (Feng & Kolter, 2020, Theorem 2), the
corresponding Implicit-CK takes the following form

G∗ = lim
l→∞

G(l), (21)

where the (i, j)-th entry ofG(l) is defined recursively asG(0)
ij = 0 and2

G
(l)
ij = E[ϕ(u(l))ϕ(v(l))], with (u(l), v(l)) ∼ N

(
0,

[
Λ

(l)
ii Λ

(l)
ij

Λ
(l)
ji Λ

(l)
jj

])
, l ≥ 1, (22)

where Λ
(1)
ij = x⊤

i xj , and Λ
(l)
ij = σ2

aG
(l−1)
ij + σ2

bx
⊤
i xj , i.e., Λ(l) = σ2

aG
(l−1) + σ2

bX
⊤X . The Implicit-NTK is defined

asK∗ = liml→∞K
(l) whose the (i, j)-th entry is defined as

K
(l)
ij =

l+1∑
h=1

(
G

(h−1)
ij

l+1∏
h′=h

Ġ
(h′)
ij

)
, (23)

where Ġ(l)
ij = σ2

aE(u(l),v(l))[ϕ
′(u(l))ϕ′(v(l))]. The limit of Implicit-NTK is

K∗
ij ≡

G∗
ij

1− Ġ∗
ij

. (24)

We consider n data vectors x1, · · · ,xn ∈ Rp independently drawn from one of the K-class Gaussian mixture C1, · · · , CK
and denoteX = [x1, · · · ,xn] ∈ Rp×n, with class Ca having cardinality na, i.e., for xi ∈ Ca, we have

xi ∼ N (µa/
√
p,Ca/p)

Assumption A.1. We assume that, as n→ ∞, we have, for a ∈ {1, · · · ,K} that,

• p/n→ c ∈ (0,∞) and na/n→ ca ∈ (0, 1); and

• ∥µa∥ = O(1); and

• for C◦ ≡
∑K

a=1
na

n Ca and C◦
a ≡ Ca −C◦, we have ∥Ca∥ = O(1), trC◦

a = O
(
p

1
2

)
and tr(CaCb) = O(p) for

a, b ∈ {1, · · · ,K}; and

• τ0 =
√
trC◦/p converges in (0,∞).

Some quantities. We first introduce the following notations. For xi,xj ∈ Rp with i ̸= j, let

xi = µi/
√
p+ εi/

√
p, xj = µj/

√
p+ εj/

√
p,

2Note that the expectation is conditioned on the input data, and is taken with respect to the random weights.
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so that εi ∼ N (0,Ci), εj ∼ N (0,Cj), and

x⊤
i xj =

1

p
ε⊤i εj︸ ︷︷ ︸

O(p−1/2)

+
1

p
µ⊤

i µj +
1

p
(µ⊤

i εj + µ
⊤
j εi)︸ ︷︷ ︸

O(p−1)

,

ψi =
1

p
∥εi∥2 −

1

p
trCi = O

(
p−1/2

)
, si ≡ ∥µi∥2/p+ 2µ⊤

i εi/p = O
(
p−1
)
,

ti =
1

p
trC◦

i = O
(
p−1/2

)
, τ0 =

√
1

p
C◦ = O(1),

χi = ti + ψi︸ ︷︷ ︸
O(p−1/2)

+ si︸︷︷︸
O(p−1)

= ∥xi∥2 − τ20 .

It can be checked that

∥xi∥2 =
1

p
(µi + εi)

⊤(µi + εi) =
1

p
∥µi∥2 +

2

p
µ⊤

i εi +
1

p
ε⊤i εi

=
1

p
∥µi∥2 +

2

p
µ⊤

i εi︸ ︷︷ ︸
≡si=O(p−1)

+
1

p
trC◦︸ ︷︷ ︸

≡τ2
0=O(1)

+
1

p
trC◦

i︸ ︷︷ ︸
≡ti=O(p−1/2)

+ ψi︸︷︷︸
O(p−1/2)

By Taylor-expanding
√
∥xi∥2 around τ20 , we have

∥xi∥ = τ0 +
1

2τ0
(∥µi∥2/p+ 2µ⊤

i εi/p+ ti + ψi)−
1

8τ30
(ti + ψi)

2 +O
(
p−3/2

)
. (25)

Additionally, we denote Sij terms of the form

Sij ≡ Sij(γ1, γ2) =
1

p
ε⊤i εj(γ1(ti + ψi) + γ2(tj + ψj)),

for random or deterministic scalars γ1, γ2 = O(1) (with high probability when being random). Note that Sij = O
(
p−1
)

and more importantly, it leads to, in matrix form, a matrix of spectral norm order O
(
p−1
)

(Couillet & Benaych-Georges,
2016).

Moreover, we recursively define τl as

τl =
√
σ2
aE[ϕ2(τl−1ξ)] + σ2

b τ
2
0 , (26)

for l = 1, 2, · · · . The following lemma shows that the unique fixed point of Eq. (26) exits under Assumption 3.1.

Lemma A.2. Let Assumption 3.1 hold. As l → ∞, τl converges to a fixed point τ∗ such that

lim
l→∞

τl ≡ τ∗ =
√
σ2
aE[ϕ2(τ∗ξ)] + σ2

b τ
2
0 .

Proof. Let t = τ2l−1. By taking the derivative with respect to t on the RHS of Eq. (10), we have

∂

∂t

(
σ2
aE [f(τl−1ξ)] + σ2

b τ
2
0

)
=σ2

a

∂

∂t
E
[
f(
√
t · ξ)

]
=σ2

a

∂

∂t

(∫
1√
2π
f(
√
t · x)e− x2

2 dx

)
=σ2

a

1√
2π

∫
f ′(

√
t · x) x

2
√
t
e−

x2

2 dx

=
σ2
a

2
· E[f ′′(τl−1ξ)], by the Gaussian integration by parts formula,

13
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which implies that the RHS of Eq. (10) is a contractive mapping if

σ2
a <

2

L2
.

As a result, under Assumption 3.1, the unique fixed point τ∗ exists.

The quantity τ∗ will play a crucial role in our proof.

B. Proof of Theorem 3.3
With loss of generality, we assume thatG(0) = E[ϕ2(τ∗ξ)] · In, i.e.,G(0)

ii = E[ϕ2(τ∗ξ)] andG(0)
ij = 0 for i ̸= j.

We prove Theorem 3.3 by performing induction on the hypothesis that ∥G(l−1) − G̃(l−1)∥ → 0 holds at layer l − 1 with

G̃(l−1) ≡ αl−1,1X
⊤X + V C(l−1)V ⊤ + (E[ϕ2(τ∗ξ)]− τ20αl−1,1)In, (27)

for C(l−1) =

[
αl−1,2tt

⊤ + αl−1,3T αl−1,2t
αl−1,2t

⊤ αl−1,2

]
, and work onG(l) at layer l.

Note that Λ(l)
ij = σ2

aG
(l−1)
ij + σ2

bx
⊤
i xj , i.e., Λ(l) = σ2

aG
(l−1) + σ2

bX
⊤X . Thus, it holds that ∥Λ(l) − Λ̃(l)∥ → 0 for

Λ̃(l) ≡ λl,1X
⊤X + V C

(l)
Λ V

⊤ + (τ2∗ − τ20λl,1)In,

for C(l)
Λ =

[
λl,2tt

⊤ + λl,3T λl,2t
λl,2t

⊤ λl,2

]
where λl,1 = σ2

aαl−1,1 + σ2
b , λl,2 = σ2

aαl−1,2, and λl,2 = σ2
aαl−1,3.

The following lemma plays an important role in our proof.

Lemma B.1 ( (Gu et al., 2022)). Let Assumptions 2.3-A.1 hold. Given a matrix Λ ∈ Rn×n such that

Λii = τ2 + λ4χi + λ5(ti + ψi)
2 +O

(
p−3/2

)
Λij = λ1x

⊤
i xj + λ2(ti + ψi)(tj + ψj) + λ3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
,

where λk, k = 1, · · · , 5, and τ are arbitrary constants, it holds that

E

ϕ(√Λii · ξi
)
× ϕ

 Λij√
Λii

· ξi +

√
Λjj −

(Λij)
2

Λii
· ξj


=E[ϕ′(τξ)]2 + E[ϕ′′(τξ)]2 · λ1x⊤

i xj

+ E[ϕ′(τξ)]E[ϕ′′′(τξ)] · λ4
2

(χi + χj) +O
(
p−1
)
,

for independent ξi, ξj and ξ ∼ N (0, 1). Moreover, if the activation function ϕ(·) is “centered”, such that E[ϕ(τξ)] = 0, it
holds that

E

ϕ(√Λii · ξi
)
× ϕ

 Λij√
Λii

· ξi +

√
Λjj −

(Λij)
2

Λii
· ξj


=E[ϕ′(τξ)]2Λij +

λ21
2
E[ϕ′′(τξ)]2

(
1

p
ε⊤i εj

)2

+
λ24
4
E[ϕ′′(τξ)]2(ti + ψi)(tj + ψj)

+ Sij +O
(
p−3/2

)
.
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On the diagonal. By induction hypothesis on the layer l, we have

Λ
(l)
ii = τ2∗ + λl,4χi + λl,5(ti + ψi)

2 +O
(
p−3/2

)
. (28)

For l = 1, Λ(1) = σ2
aG

(0)
ii + σ2

b∥xi∥2 = σ2
aE[ϕ2(τ∗ξ)] + σ2

b∥xi∥2 = τ2∗ , and the hypothesis holds with λ1,4 = λ1,5 = 0.

For l > 1, by Eq. (4), we have

Λ
(l+1)
ii = σ2

aE

[
ϕ

(√
Λ

(l)
ii · ξ

)2
]
+ (1− σ2

a)∥xi∥2,

for ξ ∼ N (0, 1).

By Taylor-expanding, one gets√
Λ

(l)
ii = τ∗ +

1

2τ∗
λl,4χi +

4τ2∗λl,5 − λ2l,4
8τ3∗

(ti + ψi)
2 +O

(
p−3/2

)
.

For simplicity, we denote the shortcut f(·) = ϕ2(·). By Talor-expanding and Eq. (25), one gets

Λ
(l+1)
ii =σ2

aE

[
ϕ

(√
Λ

(l)
ii · ξ

)2
]
+ σ2

b∥xi∥2 = σ2
aE
[
f

(√
Λ

(l)
ii · ξ

)]
+ σ2

b∥xi∥2

=σ2
aE

[
f(τ∗ξ) + f ′(τ∗ξ)ξ

(
1

2τ∗
λl,4χi +

4τ2∗λl,5 − λ2l,4
8τ3∗

(ti + ψi)
2

)]

+ σ2
aE
[
1

2
f ′′(τ∗ξ)ξ

2

]
λ2l,4
4τ∗

(ti + ψi)
2 + σ2

b (τ
2
0 + χi) +O

(
p−3/2

)
=σ2

aE [f(τ∗ξ)] + σ2
b τ

2
0 +

(
σ2
a

λl,4
2

E[f ′′(τ∗ξ)] + σ2
b

)
χi

+ σ2
a

4λl,5E[f ′′(τ∗ξ)] + λ2l,4E[f ′′′′(τ∗ξ)]
8

(ti + ψi)
2 +O

(
p−3/2

)
,

(29)

where we use the facts that

E[f ′(τ∗ξ)] = τ∗E[f ′′(τ∗ξ)], E[f ′′′′(τ∗ξ)(ξ2 − 1)] = τ2∗E[f ′′′′(τ∗ξ)],

for ξ ∼ N (0, 1), as a result of the Gaussian integration by parts formula.

Thus , we prove that Λ(l+1)
ii = τ2∗ + λl+1,4χi + λl+1,5(ti + ψi)

2 +O
(
p−3/2

)
, where

λl+1,4 =
σ2
a

2
E[f ′′(τ∗ξ)]λl,4 + σ2

b ,

λl+1,5 =
σ2
a

2
E[f ′′(τ∗ξ)]λl,5 +

σ2
a

8
E[f ′′′′(τ∗ξ)]λ2l,4.

(30)

By Lemma A.2, under Assumption 3.1, it holds that σ2
a

2 E[f ′′(τl−1ξ)] < 1, which implies that, as l → ∞, the iterations
in Eq. (30) converge. Let l → ∞, we obtain that

λ∗,4 ≡ lim
l→∞

λl,4 =

(
1− σ2

a

2
E[f ′′(τ∗ξ)]

)−1

σ2
b

λ∗,5 ≡ lim
l→∞

λl,5 =
σ2
a

8

(
1− σ2

a

2
E[f ′′(τ∗ξ)]

)−1

E[f ′′′′(τ∗ξ)]λ2∗,4.
(31)
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Off the diagonal. For i ̸= j, by induction hypothesis on the layer l − 1, we have

Λ
(l)
ij = λl,1Aij + λl,2(ti + ψi)(tj + ψj) + λl,3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
.

Using the Gram-Schmidt orthogonalization for standard Gaussian random variable, we write

Λ
(l+1)
ii = σ2

aE
[
ϕ2
(√

Λ
(l)
ii · ξi

)]
+ σ2

b∥xi∥2,

Λ
(l+1)
ij = σ2

aE

ϕ(√Λ
(l)
ii · ξi

)
× ϕ

 Λ
(l)
ij√
Λ

(l)
ii

· ξi +

√√√√√Λ
(l)
jj −

(
Λ

(l)
ij

)2
Λ

(l)
ii

· ξj


+ σ2

bx
⊤
i xj .

Using Lemma B.1, we have

Λ
(l+1)
ij =σ2

aE

ϕ(√Λ
(l)
ii · ξi

)
× ϕ

 Λ
(l)
ij√
Λ

(l)
ii

· ξi +

√√√√√Λ
(l)
jj −

(
Λ

(l)
ij

)2
Λ

(l)
ii

· ξj


+ σ2

bx
⊤
i xj

=σ2
aE[ϕ′(τ∗ξ)]2Λ

(l)
ij

+ σ2
a

(
λl,1
2

E[ϕ′′(τ∗ξ)]2
(
1

p
ε⊤i εj

)2

+
λ2l,4
4

E[ϕ′′(τ∗ξ)]2(ti + ψi)(tj + ψj)

)
+ Sij + σ2

bx
⊤
i xj +O

(
p−3/2

)
=σ2

aE[ϕ′(τ∗ξ)]2
(
λl,1x

⊤
i xj + λl,2(ti + ψi)(tj + ψj) + λl,3

(
1

p
ε⊤i εj

)2
)

+ σ2
a

(
λ2l,1
2

E[ϕ′′(τ∗ξ)]2
(
1

p
ε⊤i εj

)2

+
λ2l,4
4

E[ϕ′′(τ∗ξ)]2(ti + ψi)(tj + ψj)

)
+ Sij + σ2

bx
⊤
i xj +O

(
p−3/2

)
.

Consequently, it holds that

Λ
(l+1)
ij = λl+1,1x

⊤
i xj + λl+1,2(ti + ψi)(tj + ψj) + λl+1,3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
, (32)

where

λl+1,1 = σ2
aE[ϕ′(τ∗ξ)]2λl,1 + σ2

b ,

λl+1,2 = σ2
aE[ϕ′(τ∗ξ)]2λl,2 +

σ2
a

4
E[ϕ′′(τ∗ξ)]2λ2l,4,

λl+1,3 = σ2
aE[ϕ′(τ∗ξ)]2λl,3 +

σ2
a

2
E[ϕ′′(τ∗ξ)]2λ2l,1.

(33)

Assembling in matrix form. By using the fact that ∥M∥2 ≤ nmaxi,j |Mij | for M ∈ Rn×n and {Sij}ij =
O∥·∥(p

−1/2) (Couillet & Benaych-Georges, 2016), and by noting the fact that Λ(l+1) = σ2
aG

(l) + σ2
bX

⊤X , i.e,
λl,1 = σ2

aαl−1,1 + σ2
b , λl,2 = σ2

aαl−1,2, and λl,2 = σ2
aαl−1,3, it holds that

G(l) = αl,1X
⊤X + V C(l)V ⊤ + (E[ϕ2(τ∗ξ)]− τ20αl,1)In +O∥·∥(p

− 1
2 ) (34)

where

V = [J/
√
p,ψ] , C(l) =

[
αl,2tt

⊤ + αl,3T αl,2t
αl,2t

⊤ αl,2

]
, (35)
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with non-negative scalars αl,1, αl,2, αl,3, αl,4 ≥ 0 defined recursively as

αl,1 = σ2
aE[ϕ′(τ∗ξ)]2αl−1,1 + σ2

bE[ϕ′(τ∗ξ)]2,

αl,2 = σ2
aE[ϕ′(τ∗ξ)]2αl−1,2 +

1

4
E[ϕ′′(τ∗ξ)]2α2

l−1,4,

αl,3 = σ2
aE[ϕ′(τ∗ξ)]2αl−1,3 +

1

2
E[ϕ′′(τ∗ξ)]2(σ2

aαl−1,1 + σ2
b )

2,

αl,4 =
σ2
a

2
E[(ϕ2(τ∗ξ))′′]αl−1,4 + σ2

b ,

(36)

Note that it holds that σ2
aE[ϕ′(τ∗ξ)]2 < 1 and 1

2σ
2
aE[(ϕ2(τ∗ξ))′′] < 1 under Assumptions 2.4 and 3.1. This means that, as

l → ∞, the iterations in Eq. (36) converge. Let l → ∞, we obtain that

G∗ = α∗,1X
⊤X + V CV ⊤ + (E[ϕ2(τ∗ξ)]− τ20α∗,1)In +O∥·∥(p

− 1
2 ) (37)

where

V = [J/
√
p,ψ] , C =

[
α∗,2tt

⊤ + α∗,3T α∗,2t
α∗,2t

⊤ α∗,2

]
, (38)

with non-negative scalars α∗,1, α∗,2, α∗,3, α∗,4 ≥ 0 defined as

α∗,1 =
σ2
bE[ϕ′(τ∗ξ)]2

1− σ2
aE[ϕ′(τ∗ξ)]2

, α∗,2 =
α2
∗,4E[ϕ′′(τ∗ξ)]2

4(1− σ2
aE[ϕ′(τ∗ξ)]2)

, (39)

α∗,3 =
(σ2

aα∗,1 + σ2
b )

2E[ϕ′′(τ∗ξ)]2

2(1− σ2
aE[ϕ′(τ∗ξ)]2)

, α∗,4 =
σ2
b

1− σ2
a

2 E[(ϕ2(τ∗ξ))′′]
. (40)

C. Proof of Theorem 3.4
C.1. The CK Ġ

Before proving Theorem 3.4, one needs to deal with the CK Ġ.

Recall that

Ġ
(l)
ij = σ2

aE(u(l),v(l))[ϕ
′(u(l))ϕ′(v(l))], with (u(l), v(l)) ∼ N

(
0,

[
Λ

(l)
ii Λ

(l)
ij

Λ
(l)
ji Λ

(l)
jj

])
.

Using the Gram-Schmidt orthogoalizaiton procedure, we have

Ġ
(l)
ii = σ2

aE

[
ϕ′
(√

Λ
(l)
ii · ξi

)2
]

Ġ
(l)
ij = σ2

aE

ϕ′(√Λ
(l)
ii · ξi

)
× ϕ′

 Λ
(l)
ij√
Λ

(l)
ii

· ξi +

√√√√√Λ
(l)
jj −

(
Λ

(l)
ij

)2
Λ

(l)
ii

· ξj




(41)

On the diagonal. First, recall that

√
Λ

(l)
ii = τ∗ +

1

2τ∗
λl,4χi +

4τ2∗λl,5 − λ2l,4
8τ3∗

(ti + ψi)
2 +O

(
p−3/2

)
.
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Denote the shortcut f(t) = (ϕ′(t))2 for simplicity, using Taylor-expand again, we have

Ġ
(l)
ii =σ2

aE

[
ϕ′
(√

Λ
(l)
ii · ξ

)2
]
= σ2

aE
[
f

(√
Λ

(l)
ii · ξ

)]

=σ2
aE

[
f(τ∗ξ) + f ′(τ∗ξ)ξ

(
1

2τ∗
λl,4χi +

4τ2∗λl,5 − λ2l,4
8τ3l−1

(ti + ψi)
2

)]

+ σ2
aE
[
1

2
f ′′(τ∗ξ)ξ

2

]
λ2l,4
4τ2∗

(ti + ψi)
2 +O

(
p−3/2

)
=σ2

aE [f(τ∗ξ)] +

(
σ2
a

λl,4
2

E[f ′′(τ∗ξ)]
)
χi

+ σ2
a

4λl,5E[f ′′(τ∗ξ)] + λ2l,4E[f ′′′′(τ∗ξ)]
8

+O
(
p−3/2

)
,

Thus, we conclude that

Ġ
(l)
ii = σ2

aE

[
ϕ′
(√

Λ
(l)
ii ξ

)2
]
= σ2

aτ̇
2
∗ +O

(
p−1/2

)
, (42)

with the sequence τ̇∗ defined as follows

τ̇∗ =
√

E [ϕ′(τ∗ξ)2].

Off the diagonal. For i ̸= j, by Lemma B.1, it holds that

E

ϕ′(√Λ
(l)
ii · ξi

)
× ϕ′

 Λ
(l)
ij√

Λ
(l−1)
ii

· ξi +

√√√√√Λ
(l)
jj −

(
Λ

(l)
ij

)2
Λ

(l)
ii

· ξj




=E[ϕ′(τ∗ξ)]2 + E[ϕ′′(τ∗ξ)]2 · λl,1x⊤
i xj

+ E[ϕ′(τ∗ξ)]E[ϕ′′′(τ∗ξ)] ·
λl,4
2

(χi + χj) +O
(
p−1
)

Thus, we have

Ġ
(l)
ij = σ2

aE

ϕ′(√Λ
(l)
ii · ξi

)
× ϕ′

 Λ
(l)
ij√
Λ

(l)
ii

· ξi +

√√√√√Λ
(l)
jj −

(
Λ

(l)
ij

)2
Λ

(l)
ii

· ξj




= σ2
aE[ϕ′(τ∗ξ)]2 + σ2

aE[ϕ′′(τ∗ξ)]2 · λl,1x⊤
i xj

+ σ2
aE[ϕ′(τ∗ξ)]E[ϕ′′′(τ∗ξ)] ·

λl,4
2

(χi + χj) +O
(
p−1
)

= α̇l,0 + α̇l,1x
⊤
i xj + α̇l,2 (χi + χj) +O

(
p−1
)
,

(43)

with

α̇l,0 = σ2
aE[ϕ′(τ∗ξ)]2,

α̇l,1 = σ2
aE[ϕ′′(τ∗ξ)]2λl,1 = σ2

aE[ϕ′′(τ∗ξ)]2(σ2
aαl−1,1 + σ2

b ),

α̇l,2 =
σ2
a

2
E[ϕ′(τ∗ξ)]E[ϕ′′′(τ∗ξ)]λl,4 =

σ2
a

2
E[ϕ′(τ∗ξ)]E[ϕ′′′(τ∗ξ)]αl,4.
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As l → ∞, it holds that

α̇∗,0 ≡ lim
l→∞

α̇l,0 = σ2
aE[ϕ′(τ∗ξ)]2,

α̇∗,1 ≡ lim
l→∞

α̇l,1 = σ2
aE[ϕ′′(τ∗ξ)]2(σ2

aα∗,1 + σ2
b ),

α̇∗,2 ≡ lim
l→∞

α̇l,2 =
σ2
a

2
E[ϕ′(τ∗ξ)]E[ϕ′′′(τ∗ξ)]α∗,4.

C.2. Implicit NTKs

With the above results at hand, we now proceed to the proof of Theorem 3.4. We assume the induction hypothesis holds for
l − 1, that

K
(l−1)
ii = κ2l−1 +O

(
p−1/2

)
,

K
(l−1)
ij = βl−1,1x

⊤
i xj + βl−1,2(ti + ψi)(ti + ψi) + βl−1,3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
.

On the diagonal. First, using the results of Eq. (29) and Eq. (42), we have

K
(l)
ii = G

(l)
ii +K

(l−1)
ii · Ġ(l)

ii = E[ϕ2(τ∗ξ)] + σ2
aκ

2
l−1E[ϕ′(τ∗ξ)2] +O

(
p−1/2

)
.

Thus, it holds that

K
(l)
ii = κ2l +O

(
p−1/2

)
,

with

κ2l = E
[
ϕ2(τ∗ξ)

]
+ σ2

aE[ϕ′(τ∗ξ)2] · κ2l−1.

Under Assumption 2.4, it holds that σ2
aE
[
ϕ′(τ∗ξ)

2
]
< 1. Thus, for l → ∞, one gets that

κ2∗ ≡ lim
l→∞

κ2l =
(
1− σ2

aE
[
ϕ′(τ∗ξ)

2
])−1 E

[
ϕ2(τ∗ξ)

]
. (44)

Off the diagonal. For i ̸= j, using the results of Eq. (32) and Eq. (32), we get

K
(l)
ij =G

(l)
ij +K

(l−1)
ij Ġ

(l)
ij

=αl,1x
⊤
i xj + αl,2(ti + ψi)(tj + ψj) + αl,3

(
1

p
ε⊤i εj

)2

+

(
βl−1,1x

⊤
i xj + βl−1,2(ti + ψi)(tj + ψj) + βl−1,3

(
1

p
ε⊤i εj

)2
)

×
(
α̇l,0 + α̇l,1x

⊤
i xj + α̇l,2 (χi + χj) +O

(
p−1
))

+O
(
p−3/2

)
=(αl,1 + βl−1,1 · α̇l,0)x

⊤
i xj + (αl,2 + βl−1,2 · α̇l,0)(ti + ψi)(tj + ψj)

+ (αl,3 + βl−1,3 · α̇l,0 + βl−1,1 · α̇l,1)

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
,

so that it holds that

K
(l)
ij = βl,1x

⊤
i xj + βl,2(ti + ψi)(ti + ψi) + βl,3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
.
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with

βl,1 = αl,1 + βl−1,1α̇l,0,

βl,2 = αl,2 + βl−1,2α̇l,0,

βl,3 = αl,3 + βl−1,3α̇l,0 + βl−1,1α̇l,1.

As l → ∞, it holds that liml→∞ τl = τ∗, liml→∞ αl,k = α∗,k, and liml→∞ α̇l,k = α̇∗,k, for k = 1, 2, 3. Therefore, for
l → ∞, one gets that

K∗
ij = β∗,1x

⊤
i xj + β∗,2(ti + ψi)(tj + ψj) + β∗,3

(
1

p
ε⊤i εj

)2

+ Sij +O
(
p−3/2

)
,

where

β∗,1 ≡ lim
l→∞

βl,1 = (1− α̇∗,0)
−1α∗,1,

β∗,2 ≡ lim
l→∞

βl,2 = (1− α̇∗,0)
−1α∗,2,

β∗,3 ≡ lim
l→∞

βl,3 = (1− α̇∗,0)
−1(α∗,3 + β∗,1α̇∗,1).

Assembling in matrix form: Using the fact that ∥M∥2 ≤ nmaxi,j |Mij | for M ∈ Rn×n and {Sij}ij =
O∥·∥(p

−1/2) (Couillet & Benaych-Georges, 2016), it holds that

K∗ = β∗,1X
⊤X + V D∗V

⊤ + (κ2∗ − τ20β∗,1)In +O∥·∥(p
− 1

2 ), (45)

with

V = [J/
√
p,ψ] , D∗ =

[
β∗,2tt

⊤ + β∗,3T β∗,2t
β∗,2t

⊤ β∗,2

]
, (46)

and

T =

{
1

p
trCaCb

}K

a,=1

, t =

{
1
√
p
trC◦

a

}
. (47)

D. Proof and discussions of Examples 3.10 and 3.11
Let τ̃0 = τ0 as defined in Eq. (9) and τ̃1, · · · τ̃L ≥ 0 be a sequence of non-negative scalars satisfying τ̃l =

√
E[σ2

l (τ̃l−1ξ)],

for ξ ∼ N (0, 1) and l ∈ {1, · · · , L}. It follows from Theorem 3.8 that ∥Σ(l) −Σ
(l)∥ = O

(
n−1/2

)
, where

Σ
(l)

= α̃l,1X
⊤X + V C̃lV

⊤ + (τ̃2l − τ20 α̃1)In, (48)

with V ∈ Rn×(K+1) as defined in Theorem 3.3,

C̃l =

[
α̃l,2tt

⊤ + α̃l,3T α̃l,2t
α̃l,2t

⊤ α̃l,2

]
∈ R(K+1)×(K+1).

and non-negative scalars α̃l,1, α̃l,2, α̃l,3 defined recursively as α̃0,1 = α̃0,4 = 1, α̃0,2 = α̃0,3 = 0, and

α̃l,1 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,1,

α̃l,2 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,2 +
1

4
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,4,

α̃l,3 = E[σ′
l(τ̃l−1ξ)]

2α̃l−1,3 +
1

2
E[σ′′

l (τ̃l−1ξ)]
2α̃2

l−1,1.
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For a given Tanh-DEQ, we first compute the four key parameters α∗,1, α∗,2, α∗,3 and γ∗ of the implicit DEQ according to
Eq. (12) of Theorem 3.3. For the single-hidden-layer Hard-tanh explicit NN, it can be easily checked that the corresponding
CK matrix is determined by

α̃1,1 = E[σ′
l(τ0ξ)]

2, α̃1,2 = α̃1,3 = 0.

For H-Tanh-ENN with the activation σH-Tanh(x) ≡ ax · 1−c≤x≤c + ac · (1x≥c − 1x≤−c) with a > 0 and c ≥ 0,
α̃1,1, α̃1,2, α̃1,3, τ̃1 can be represented as functions of the activation parameters by following results

E[(σH-Tanh(τ0ξ))
2] =

1

2

(
c2 + a2 + (c2 − a2)e−2τ2

0 − c2e−τ2
0

)
, E[(σH-Tanh(τ0ξ))

′] = ae−τ2
0 /2,

E[(σH-Tanh(τ0ξ))
′′] = −ce−τ2

0 /2, E[((σH-Tanh(τ0ξ))
2)′′] = 2e−2τ2

0

(
a2 + c2(eτ

2
0 − 1)

)
.

To match Tanh-DEQ, we determine the activations of H-Tanh-ENN by solving the system

α̃1,1 = α∗,1, α̃1,2 = α∗,2, α̃1,3 = α∗,3, τ̃1 = γ∗.

For a given ReLU-DEQ, we first compute the four key parameters α∗,1, α∗,2, α∗,3 and γ∗ of the implicit DEQ according to
Eq. (12) of Theorem 3.3. For a two-hidden-layer explicit NN, it can be easily checked that the corresponding CK matrix is
determined by

α̃2,1 = E[σ′
2(τ̃1ξ)]

2α̃1,1

α̃2,2 = E[σ′
2(τ̃1ξ)]

2α̃1,2 +
1

4
E[σ′′

2 (τ̃1ξ)]
2α̃2

1,4,

α̃2,3 = E[σ′
2(τ̃1ξ)]

2α̃1,3 +
1

2
E[σ′′

2 (τ̃1ξ)]
2α̃2

1,1,

and

α̃1,1 = E[σ′
1(τ̃0ξ)]

2, α̃1,2 =
1

4
E[σ′′

1 (τ̃0ξ)]
2, α̃1,3 =

1

2
E[σ′′

1 (τ̃0ξ)]
2, α̃1,4 =

1

2
E[(σ2

1(τ0ξ))
′′].

For L-ReLU-ENN with the activation σ(l)
L-ReLU(x) ≡ max(alx, blx)− al−bl√

2π
τl−1, α̃2,1, α̃2,2, α̃2,3, τ̃2 can be represented as

functions of the activation parameters by following results

E[(σ(l)
L-ReLU(τl−1ξ))

2] =
(a2l + b2l )(π − 1) + 2albl

2π
τ2l−1, E[(σ(l)

L-ReLU(τl−1ξ))
′] =

al + bl
2

,

E[(σ(l)
L-ReLU(τl−1ξ))

′′]2 =
al − bl√
2πτl−1

, E[((σ(l)
L-ReLU(τl−1ξ))

2)′′] =
(a2l + b2l )(π − 1) + 2albl

π
.

To match ReLU-DEQ, we determine the activations of L-ReLU-ENN by solving the system

α̃2,1 = α∗,1, α̃2,2 = α∗,2, α̃2,3 = α∗,3, τ̃2 = γ∗.

On the numerical determination of σ(l)
L-ReLU and σH-Tanh. The system of nonlinear equations mentioned above does

not admit explicit solutions but can be efficiently solved using numerical methods, such as the least squares method
(implemented through the optimize.minimize function in the SciPy library).

E. Additional Experimental Results
E.1. High dimensional equivalents of Implicit-NTKs

Figure 4 compares the difference between Implicit-NTKs K∗ and their high-dimensional approximation K given in
Theorem 3.4, on two-class Gaussian mixture data, on DEQs as Definition 2.1 with four commonly used activations: ReLU,
Tanh, Swish, and Leaky-ReLU (L-ReLU). We observe from Figure 4 that, for different activations, as n, p increase, the
relative errors consistently and significantly decrease, as in line with our Theorem 3.4.
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Figure 4. Evolution of relative spectral norm error ∥K∗ −K∥/∥K∗∥ w.r.t. sample size n, for DEQs in Definition 2.1 with different
activations and σ2

a = 0.2, on two-class GMM, p/n = 0.8, µa = [08(a−1); 8;0p−8a+7], and Ca = (1 + 8(a− 1)/
√
p)Ip, a ∈ {1, 2}.

Implicit-NTK matrices K∗ defined in Eq. (7) are taken with expectation estimated from DEQs with random A and B of width m = 212.
The asymptotic equivalent matrices K are obtained by Theorem 3.4.

E.2. Visualization results of the spectrum of Implicit-CKs and those Implicit-NTKs

In Figure 5 and Figure 6, we provide visualization results of the spectral densities of Implicit-CKs and Implicit-NTKs,
respectively, along with their corresponding high-dimensional approximations. We observe from Figure 5 and Figure 6
that the proposed theoretical results, despite derived here for GMM data and in the limit of n, p→ ∞, provide extremely
accurate prediction of the Implicit-CK eigenspectral behavior (i) for not-so-large n, p and (ii) possibly surprisingly, also on
realistic MNIST data.

E.3. Visualization results of the spectrum of Implicit-CKs and equivalent Explicit-CKs

In Figure 7, we compare the spectral densities of Implicit-CK matrices of given DEQs with those of Explicit-CK matrices
of the corresponding “equivalent” shallow explicit NNs by following Examples 3.10 and 3.11. We observe that the CK
matrices of ENNs are close to those of the corresponding DEQs. This observation is consistent on GMM data and realistic
MNIST data. We conjecture that this is due to a high-dimensional universal phenomenon and that our results (on both CK
and NTK matrices) hold more generally beyond the GMM setting, say, for data drawn from the family of concentrated
random vectors (Ledoux, 2005; Louart & Couillet, 2018).

E.4. Adam Results

We present the classification results of implicit DEQs and explicit models trained with the Adam optimizer in Figure 8.
Each model is trained with the Adam optimizer, using initial learning rates of 10−2 for MNIST and Fashion-MNIST, and
10−3 for CIFAR-10. The remaining experimental settings mirror those of the SGD experiment depicted in Figure 3. The
results obtained with the Adam optimizer are similar to those achieved with SGD.

E.5. Time cost comparison

We compare the time costs of the inference and training of DEQs and the corresponding “equivalent” ENNs. As shown in
Tables 1 and 2, the inference time cost of a DEQ is about 2− 3× that of an ENN with the same dimension. This is due to
the fact that it takes numerous iterations for a DEQ to reach the iteration error threshold. Additionally, we observe that
ENNs have a remarkable advantage over DEQs in terms of training speed.
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Figure 5. Eigenvalue density of Implicit-CK matrices (blue) G∗
ReLU of ReLU-DEQ (top) and G∗

Tanh of Tanh-DEQ (bottom) and the
corresponding high dimensional approximation GReLU and GTanh (red) , on two-class GMM data (left) with p = 1000, n = 800,
µa = [08(a−1); 8;0p−8a+7], Ca = (1+8(a−1)/

√
p)Ip, for a ∈ {1, 2}, here ∥G∗

ReLU −GReLU∥ ≈ 0.26 and ∥G∗
Tanh −GTanh∥ ≈ 0.81;

and on two-class MNIST data (right) (number 6 versus number 8), with p = 784, n = 3000, for which ∥G∗
ReLU −GReLU∥ ≈ 1.80 and

∥G∗
Tanh −GTanh∥ ≈ 2.02. For the MNIST case, small eigenvalues close to zero are removed for better visualization.
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Figure 6. Eigenvalue density of Implicit-NTK matrices (blue) K∗
ReLU of ReLU-DEQ (top) and K∗

Tanh of Tanh-DEQ (bottom) and the
corresponding high dimensional approximation KReLU and KTanh (red) , on two-class GMM data (left) with p = 1000, n = 800,
µa = [08(a−1); 8;0p−8a+7], Ca = (1+8(a−1)/

√
p)Ip, for a ∈ {1, 2}, here ∥K∗

ReLU−KReLU∥ ≈ 0.34 and ∥K∗
Tanh−KTanh∥ ≈ 0.76;

and on two-class MNIST data (right) (number 6 versus number 8), with p = 784, n = 3000, for which ∥K∗
ReLU −KReLU∥ ≈ 3.93 and

∥K∗
Tanh −KTanh∥ ≈ 4.82. For the MNIST case, small eigenvalues close to zero are removed for better visualization.
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Figure 7. Eigenvalue density of Implicit-CK matrices (blue) of ReLU-DEQ (top) and Tanh-DEQ (bottom) and Explicit-CK matrices
(red) of the corresponding “equivalent” L-ReLU-ENN and H-Tanh-ENN, on two-class GMM data (left) with p = 1000, n = 800,
µa = [08(a−1); 8;0p−8a+7], Ca = (1+8(a−1)/

√
p)Ip, for a ∈ {1, 2}, here ∥G∗

ReLU−Σ
(2)
L-ReLU∥ ≈ 0.32 and ∥G∗

Tanh−Σ
(1)
H-Tanh∥ ≈ 0.88;

and on two-class MNIST data (right) (number 6 versus number 8), with p = 784, n = 3000, for which ∥G∗
ReLU −Σ

(2)
L-ReLU∥ ≈ 2.34 and

∥G∗
Tanh −Σ

(1)
H-Tanh∥ ≈ 4.79. For the MNIST case, small eigenvalues close to zero are removed for better visualization.

25 26 27 28 29 210 211 212
0.7

0.8

0.9

1

m

Te
st

ac
cu

ra
cy

MNIST

H-Tanh-ENN
Tanh-DEQ
Tanh-ENN

25 26 27 28 29 210 211 212
0.7

0.8

0.9

m

Fashion-MNIST

H-Tanh-ENN
Tanh-DEQ
Tanh-ENN

25 26 27 28 29 210 211 212
0.7

0.75

0.8

0.85

0.9

m

CIFAR10

H-Tanh-ENN
Tanh-DEQ
Tanh-ENN

25 26 27 28 29 210 211 212

0.7

0.8

0.9

1

m

Te
st

ac
cu

ra
cy

L-ReLU-ENN
ReLU-DEQ
ReLU-ENN

25 26 27 28 29 210 211 212

0.7

0.8

0.9

m

L-ReLU-ENN
ReLU-DEQ
ReLU-ENN

25 26 27 28 29 210 211 212
0.6

0.7

0.8

0.9

m

L-ReLU-ENN
ReLU-DEQ
ReLU-ENN

Figure 8. Classification accuracies of implicit DEQs and explicit models trained with Adam. Top: Evolution of classification accuracies
w.r.t. the width m of Tanh-DEQ (green), the corresponding equivalent explicit H-Tanh-ENN (blue), and Tanh-ENN (red). Bottom:
Evolution of classification accuracies w.r.t. the width m of ReLU-DEQ (green), the corresponding equivalent explicit L-ReLU-ENN
(blue), and ReLU-ENN (red). For MNIST (left) and Fashion-MNIST datasets (middle), raw data are taken as the network input; for
CIFAR-10 dataset (right) , flattened output of the 16th convolutional layer of VGG-19 are used.
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Dimension 32 64 128 256 512 1024 2048 4096

MINIST

ReLU-DEQ 0.26 0.26 0.27 0.28 0.27 0.29 0.30 0.32
L-ReLU-ENN 0.09 0.11 0.12 0.15 0.14 0.11 0.10 0.16

Tanh-DEQ 0.24 0.24 0.27 0.26 0.28 0.26 0.28 0.29
H-Tanh-ENN 0.12 0.12 0.11 0.11 0.14 0.11 0.10 0.10

Fashion MINIST

ReLU-DEQ 0.26 0.27 0.26 0.26 0.32 0.32 0.31 0.32
L-ReLU-ENN 0.17 0.13 0.14 0.11 0.12 0.13 0.12 0.14

Tanh-DEQ 0.22 0.24 0.25 0.26 0.28 0.27 0.28 0.30
H-Tanh-ENN 0.13 0.13 0.12 0.12 0.11 0.12 0.10 0.12

CIFAR 10

ReLU-DEQ 0.23 0.22 0.23 0.24 0.27 0.28 0.28 0.31
L-ReLU-ENN 0.09 0.08 0.09 0.09 0.09 0.09 0.10 0.10

Tanh-DEQ 0.20 0.20 0.21 0.22 0.23 0.23 0.26 0.27
H-Tanh-ENN 0.09 0.08 0.09 0.09 0.09 0.08 0.08 0.09

Table 1. Comparison of the inference time for a single input image between DEQs and explicit NNs across different datasets. The
inference time is recorded on a machine with Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz with a single 3090 GPU.

Dimension 32 64 128 256 512 1024 2048 4096

MINIST

ReLU-DEQ 68.76 72.72 82.00 95.52 97.38 93.96 110.04 189.54
L-ReLU-ENN 3.045 2.67 3.52 3.75 4.12 3.65 3.09 3.97

Tanh-DEQ 65.34 83.94 84.72 84.78 85.14 94.14 306.00 322.56
H-Tanh-ENN 2.76 5.32 2.80 2.65 2.96 2.69 6.59 2.64

Fashion MINIST

ReLU-DEQ 58.46 81.72 72.78 73.38 141.72 156.42 169.74 246.42
L-ReLU-ENN 3.53 3.17 3.07 2.70 2.84 3.06 2.71 3.11

Tanh-DEQ 70.80 80.28 81.48 79.38 91.50 96.00 109.98 113.04
H-Tanh-ENN 2.98 2.78 2.76 2.19 2.71 3.30 2.19 2.47

CIFAR 10

ReLU-DEQ 225.00 253.26 302.16 172.68 870.00 1167.60 1208.40 1204.20
L-ReLU-ENN 2.47 3.21 2.28 3.05 4.65 5.34 4.71 4.53

Tanh-DEQ 68.60 79.26 89.22 92.98 108.00 192.46 254.46 307.56
H-Tanh-ENN 2.24 2.90 2.91 3.06 2.99 2.91 3.36 7.17

Table 2. Comparison of the training time for one epoch (batch size 128) between DEQs and explicit NNs across different datasets. The
running time is recorded on a machine with Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz with a single 3090 GPU.
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