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Abstract
The growing interest in leveraging large lan-001
guage models is driven by their exceptional002
imitation and reasoning capabilities. In-context003
learning (ICL), a streamlined method, has004
shown potential in boosting these models’ per-005
formance without modifying their underlying006
parameters, especially when supplied with suit-007
able demonstrations. However, existing meth-008
ods mainly choose demonstrations by com-009
paring surface-level semantic similarities (e.g.,010
based on embedding) and fall short of identify-011
ing the most fitting ones. This paper introduces012
the concept of a “latent learningscape”, a more013
nuanced representation that describes the char-014
acteristic of the demonstrations. Building on015
this concept, we develop a results-driven ap-016
proach to characterize the latent learningscape017
features of demonstrations, which then in-018
form the creation of more effective prompts.019
Through comprehensive testing across datasets020
in arithmetic, commonsense, and symbolic rea-021
soning tasks, our approach outperforms leading022
models, showing an average increase in scores023
by 7.4 percentage points.024

1 Introduction025

The captivating imitation and reasoning abilities ex-026

hibited by large language models (Thoppilan et al.,027

2022; Chowdhery et al., 2022; Brown et al., 2020)028

have sparked growing interest in their applications.029

In-context learning (ICL), as a lightweight method030

that refrains from altering model parameters, is031

increasingly proved by experiments to be able to032

enable large language models to achieve impres-033

sive results when appropriate demonstrations are034

supplied. These demonstrations, when appropri-035

ately chosen, effectively stimulate the latent ca-036

pabilities within large models, thereby enhancing037

overall performance. Kojima et al. (2023) revealed038

that Large language models (LLMs) are zero-shot039

reasoners. Wang et al. (2023a) compared and sum-040

marized these Zero-Shot methods. On the other041

Q1: In the parking lot, there are 3 Audi A4s and 4 Audi Q5s parked. At 
this time, 3 Audi Q5s left, and 5 Audi A7s arrived. How many sedans are 
currently in the parking lot?
A1: Initially, there are: 3 Audi A4s (sedans) and 4 Audi Q5s (SUVs)
……
Now, let's count the total number of sedans:
3 Audi A4s + 5 Audi A7s = 8 sedans

Q2: The number of rabbits in the cage is three times the number of 
chickens. The number of chickens is half the number of ducks, and there 
are 6 ducks. How many feet do they have in total?
A2: Given: The number of rabbits (R) is three times the number of 
chickens (C): R=3C.
……
Substitute the values: Total feet=36+6+12=54

X: In the cage, there are 5 rabbits, 3 chickens, and after 3 rabbits left, 
6 ducks arrived. How many poultry are there in the cage?

Embedding 
Corr. with X

Q1 0.4233

Q2 0.8151

Traditional methods Manul
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LLM……
The answer is 11

……
The answer is 9 ✅❌

Figure 1: When facing problem X, traditional approach
is to select demonstrations based on the similarity of
sentence embedding, which is similar in surface-level.
However, Q1 truly serves as a demonstration because
Q1 and X share the same learningscape.

hand, Wang et al. (2023c) introduced a method 042

with different decoding strategy, significantly im- 043

proved LLMs’ performance. Zhang et al. (2022) in- 044

troduced a demonstrations selecting methods based 045

on text similarity and clustering to make LLMs 046

better few-shots reasoners. However, to fully har- 047

ness the impact of demonstrations, it is imperative 048

to share same knowledge points, problem-solving 049

approaches, or concepts with test question, rather 050

than merely similar word or sentence embedding. 051

We first introduce the term latent learningscape, 052

which refers to the knowledge points, problem- 053

solving approaches, or concepts that aid in solving 054

problems. As depicted in Fig. 1, unlike demon- 055

strations selected solely based on the similarity of 056
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surface-level semantics by embedding-based meth-057

ods, Q1 share a same problem-solving approach058

with X, could truely serve as a effective demonstra-059

tion. In other words, Q1 and X share a common la-060

tent learningscape. The problem-solving approach061

mentioned here is one of the latent learningscapes062

we refer to. When demonstrations possess or en-063

compass the latent learningscape inherent in the064

test question, demonstrations can play a effective065

role.066

In leveraging ICL, we encounter the following067

challenges: (1) How to identify the latent learn-068

ingscape and the latent learningscape features be-069

hind demonstrations. (2) How to construct prompts070

that encompass sufficient latent learningscape fea-071

tures for correctly solving reasoning problems.072

In light of the challenges mentioned earlier, iden-073

tifying the latent learningscape behind demonstra-074

tions without human intervention is difficult. How-075

ever, it is possible to characterize the latent learn-076

ingscape features of demonstrations by defining077

the differences between demonstrations. Therefore,078

we propose a result-driven prompt construction079

method, without the explicit identifying the latent080

learningscape behind demonstrations. Instead, we081

leverage the corrective nature of demonstrations to082

characterize the latent learningscape. Specifically,083

we first establish two distinct question pools: the084

A-pool, containing questions answered correctly by085

the LLM, and the C-pool, containing challenging086

questions answered incorrectly by the LLM. Next,087

we use questions from the A-pool as demonstra-088

tions to answer the questions in the C-pool, aiming089

to explore the representational capabilities of the090

demonstrations in the A-pool. We store the latent091

features of these demonstrations in vector form and092

use them to distinguish between demonstrations.093

Then, we construct prompts using linearly indepen-094

dent vector groups to encompass a comprehensive095

range of latent learningscape features. Finally, the096

answer to the current problem is obtained by a ma-097

jority vote among the different groups of demon-098

strations defined by different linearly independent099

vectors.100

To demonstrate the effectiveness of our method,101

we conduct extensive experiments on reasoning102

problem datasets, including arithmetic, common-103

sense, and symbolic reasoning datasets. The re-104

sults indicate that our proposed method achieves105

the best or competitive performance compared to106

state-of-the-art methods, with an average score im-107

provement of 7.4 percentage points. Additionally,108

we conduct ablation experiments to validate the 109

effectiveness of different parts of our method and 110

its performance across different LLMs. 111

In summary, our contributions include: 112

• We introduce a universally applicable and in- 113

herently more logical representation method 114

for latent learningscape, named latent learn- 115

ingscape feature. This method overcomes 116

the limitations of surface-level semantic fea- 117

tures, circumventing the challenges of directly 118

identifying latent learningscape. The latent 119

learningscape feature represent differences be- 120

tween demonstrations and determine the in- 121

clusion relationship among them. This creates 122

favorable conditions for constructing compre- 123

hensive prompts that cover a wide range of 124

capabilities. 125

• We propose a framework to enhance LLM per- 126

formance using latent learningscape feature. 127

Our framework fully capitalizes on the ex- 128

cellent characteristics of latent learningscape 129

features, constructing prompts that encompass 130

a rich range of latent learningscape. This ap- 131

proach allows us to achieve superior results 132

with lower energy consumption. 133

• We conducted extensive experiments to val- 134

idate the effectiveness of our framework 135

against various baseline methods and across 136

different base large language models. 137

2 Related Work 138

2.1 Large Language Model 139

With the emergence of Transformer(Vaswani et al., 140

2023) and BERT (Devlin et al., 2019), signifi- 141

cant progress has been made in many NLP tasks. 142

Building upon these foundations, previous works 143

(Brown et al., 2020; Chowdhery et al., 2022; Anil 144

et al., 2023; Touvron et al., 2023) introduced large 145

language models with a substantial number of 146

parameters, showcasing powerful reasoning ca- 147

pabilities. As widely recognized, Kojima et al. 148

(2023) discovered that adding simple sentences 149

like "Let’s think step by step" stimulated the emer- 150

gent capability of LLM. Wang et al. (2023a) in- 151

troduced a new statement, PS (based on the "plan- 152

solve" problem-solving approach), significantly im- 153

proving the model’s performance across various 154

datasets. 155
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2.2 In-context Learning156

Liu et al. (2021) proposed using sentence em-157

bedding distance for selecting demonstrations in158

LLM’s In-context learning. Su et al. (2022) uti-159

lized sentence embedding distance to select a rep-160

resentative small dataset from a large training set161

to retrieve demonstrations. Zhang et al. (2022)162

introduces a classical method for finding represen-163

tative demonstrations, enhancing few-shot Com-164

monsense Reasoning. Building on this, Gonen165

et al. (2022) introduced perplexity in selecting166

demonstration examples, and Levy et al. (2023)167

emphasized the importance of diversity. Nguyen168

and Wong (2023); Li and Qiu (2023) proposed169

outcome-oriented approaches, measuring outcome170

differences and defining InfoScore for model pre-171

diction improvement. Rubin et al. (2022) build a172

supervised retriever EPR using LM scores, an effec-173

tive endeavor to bypass surface-level semantic fea-174

tures. Building upon this, Li et al. (2023a) further175

optimized the EPR for adaptability across diverse176

datasets. In Ye et al. (2023) trained a DPP retriever177

to align with LM output scores through contrastive178

learning and obtained the optimal demonstration179

set during inference. Wang et al. (2023b) pro-180

posed an approach that combined a small Language181

Model (LM) with a large LM, using the small LM182

to select demonstrations for In-context Learning183

by the large model. Zhou et al. (2023) proposed a184

multi-stage prompt approach, breaking down com-185

plex problems into simpler ones. Ye and Durrett186

(2022) instructed the LLM to cross-check the rea-187

soning process based on the facts presented in the188

prompt, enabling a more keen identification of po-189

tential errors in the answers. Li et al. (2023b) not190

only constructed various prompts but also trained191

a Step-Aware Verifier to validate the correctness192

of the reasoning proces. Zelikman et al. (2022)193

treated incorrectly answered questions equally, ob-194

taining rationales by adding hints and improved the195

LLM’s performance. Gao et al. (2023); Chen et al.196

(2023) introduced a code compiler, guiding the197

model for better few-shot performance, demanding198

more from annotators. Its effectiveness for com-199

monsense reasoning tasks is unclear.200

3 Method201

Our approach consists of three steps, namely: (1)202

Basic Pools Construction: Establish the appropri-203

ate question pool and the challenging question pool.204

(2) Latent Learningscape Feature Characteriza-205

tion: Characterize questions’ latent learningscape 206

features based on their ability to correct challeng- 207

ing questions and questions with demonstration 208

potential in the demonstration pool. (3) Compre- 209

hensive Demonstration Set Construction: For- 210

mation of linearly independent groups from the 211

latent learningscape features in the demonstration 212

pool, creating a comprehensive set of prompts for 213

testing and conducting majority voting. 214

3.1 Basic Pools Construction 215

Construction of Easy and Challenging Question 216

Pools We commence by randomly selecting ques- 217

tions from the training set and employing LLM 218

for answer generation, as shown in Algorithm 1. 219

If the correct answer can be obtained, it indicates 220

that the difficulty of the question aligns with the 221

model’s capabilities, and should be added to the 222

A-Pool (appropriate question pool). If the correct 223

answer cannot be obtained, it suggests that the ques- 224

tion poses a challenge for the model and should be 225

added to the C-Pool (challenging question pool). 226

The stopping criteria include reaching a specified 227

threshold (m) for the number of questions in the 228

A-Pool and another threshold (n) for the number 229

of questions in the C-Pool. Here, (m) and (n) are 230

hyperparameters, where (n) determines the length 231

of the latent learningscape feature vector, and (m) 232

influences the final quantity of prompts generated. 233

Typically, (m) is set to 30, and (n) is set to 10. 234

3.2 Latent Learningscape Feature 235

Characterization 236

Each question in the A-Pool (appropriate ques- 237

tion pool), along with its reasoning process and 238

answer, serves as a one-shot prompt demonstration, 239

as shown in Algorithm 2. These demonstration 240

are concatenated with each question in the C-Pool 241

(challenging question pool), challenging the large 242

model to correct errors. If a question from the A- 243

Pool fails to correct any question in the C-Pool, it 244

is considered lacking potential as a demonstration 245

and should be eliminated. Conversely, if a ques- 246

tion from the A-Pool successfully corrects one or 247

more Challenging questions, it is deemed suitable 248

for the D-pool (demonstration Pool). The latent 249

learningscape features of these questions are repre- 250

sented using binary vectors of length n, where each 251

position is either 0 or 1 . If a particular challeng- 252

ing question from the C-Pool can be corrected by 253

a appropriate question from the A-Pool, then the 254

position in the binary vector corresponding to that 255
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Figure 2: Stage 1: Basic Pools Construction.Random some questions from the training set and let the LLM perform
reasoning. Those obtaining the correct answers are added to the A-Pool (appropriate question pool), while those that
cannot are added to the C-Pool (challenging question pool). Stage 2: latent learningscape feature Characterization.
Characterize the latent learningscape feature by utilizing the ability to correct questions in the C-Pool. Stage 3:
Construction of Prompts. Constructing prompts based on linearly independent groups and ranking them according
to the number of 1 s. ⊗ means pairing each example on its left with every challenging question on its right in a
pairwise manner.

challenging question in the C-Pool is set to 1 in the256

latent learningscape feature vector of the appropri-257

ate question. If the question cannot be corrected,258

the corresponding position is set to 0 . Addition-259

ally, if a challenging question was ever corrected, it260

should be added to the A-Pool for further consider-261

ation, with the condition that they can correct any262

challenging question other than itself. Importantly,263

if a question in the C-Pool was never corrected, it264

suggests that the corresponding knowledge points,265

problem-solving approaches, concepts, and themes266

have not been covered in the A-Pool. Therefore,267

through labeled LLM question-answering to get268

reasoning process, it should be added to the D-pool269

with a latent learningscape feature vector contain-270

ing a 1 at its corresponding position and 0 else-271

where, forming a vector of length n.272

3.3 Construction of Prompts273

Each entry in the D-pool (demonstration Pool),274

comprising a question, reasoning process, and cor-275

rect answer, is referred to as a demonstration exam-276

ple. In order to make the most of these selectively277

filtered demonstration examples, two metrics are278

considered when choosing demonstration examples 279

from the D-pool to construct a few-shot prompt: 280

the number of times a demonstration example has 281

been used (t) and its contribution (c). The usage 282

count (t) indicates how many prompts have already 283

utilized the current demonstration example, while 284

the contribution (c) signifies the increase in rank of 285

the vector group formed by its latent learningscape 286

feature vector after using the current demonstration 287

example. Priority is given to the usage count as the 288

primary consideration, with lower usage counts tak- 289

ing precedence. In cases of equal usage counts, the 290

contribution (c) is considered, with higher values 291

receiving higher priority. With this algorithm, we 292

ensure the thorough utilization of each demonstra- 293

tion example from the D-pool while obtaining sev- 294

eral full-rank, linearly independent vector groups. 295

These vector groups are then used to determine 296

the set of demonstration examples constituting the 297

few-shot prompt. At this point, we have obtained 298

several sets of demonstration examples that meet 299

our criteria. However, we may not actually need 300

to use all of them, so it is necessary to rank them 301

based on their quality. We rank them according 302
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to the number of 1 s in the vector groups corre-303

sponding to each demonstration example set. A304

higher count of 1 s indicates better quality, and thus305

a higher ranking. We select the top-k demonstra-306

tion example sets for concatenation with the test307

and determine the final answer through majority308

voting. Typically, k is set to 10.309

Algorithm 1 Basic Pools Construction
Input: Training data set Strain= {qi,ai}
Output: Appropriate Question Pool A, Challeng-

ing Question Pool C
1: m← A threshold, n← C threshold
2: while |A| < m or |C| < n do;
3: Select (qi, ai) from Strain

4: ri ←Model response to qi;
5: if ri matches ai then
6: Add (qi, ri, ai) to A;
7: else;
8: Add (qi, ai) to C;
9: end if;

10: end while;

Algorithm 2 Latent Learningscape Feature Char-
acterization
Input: Appropriate Question Pool A, Challenging

Question Pool C
Output: Demonstration Pool D

1: for each (qi, ri, ai) in A do
2: fi = [0]× |C|
3: for each (qj , aj) in C do
4: pij ← concat(qi, ri, ai, qj)
5: rij ←Model response to pij
6: if rij matches aj then
7: fi[j] = 1
8: end if
9: if CountOne(fi) > 0 then

10: Add ((qi, ri, ai), fi) to D
11: end if
12: end for
13: end for

4 Main Experiments310

We conducted experiments using the widely311

adopted large language model, ChatGPT(gpt-3.5-312

turbo-0613), across three distinct categories encom-313

passing a total of nine datasets to validate the fea-314

sibility and efficacy of our proposed method. The315

first categories include five mathematical datasets:316

GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,317

2017), MathQA (Amini et al., 2019) (first 400 318

questions), SVAMP (Patel et al., 2021), and Type 319

1 of NumGLUE (Mishra et al., 2022). The sec- 320

ond category involves two commonsense reasoning 321

datasets, namely CommonsenseQA (Talmor et al., 322

2019) and StrategyQA (Geva et al., 2021). The 323

third category comprises two symbolic reasoning 324

datasets, specifically Last Letter (Wei et al., 2023) 325

and Coin Flip (Wei et al., 2023). 326

4.1 Baseline 327

We employed three zero-shot CoT methods, 328

namely, a method that directly answers without 329

the addition of a trigger sentence,to show the Basic 330

abilities of the model (The current model already 331

has a certain level of CoT capability). A method 332

proposed by (Wang et al., 2023a), and another pro- 333

posed by (Kojima et al., 2023) and updated by 334

(Zhang et al., 2022). They each appended the fol- 335

lowing statement to the end of the question: 336

PS+: A: Let’s first understand the problem, ex- 337

tract relevant variables and their corresponding 338

numerals, and make a plan. Then, let’s carry out 339

the plan, calculate intermediate variables (pay at- 340

tention to correct numerical calculation and com- 341

monsense), solve the problem step by step, and 342

show the answer. 343

One by one: A: let’s think not just step by step, 344

but also one by one. 345

Additionally, we utilized a few-shot CoT method 346

Auto-CoT based on text similarity, proposed by 347

(Zhang et al., 2022), and a method employing a 348

self-consistency decoding strategy as a baseline, 349

proposed by (Wang et al., 2023c). 350

The selection of three zero-shot CoT methods 351

stemmed from an intriguing observation during ex- 352

perimentation. The performance variations among 353

different zero-shot CoT methods across various 354

datasets seemed to exceed our initial expectations. 355

This observation prompted some contemplation, 356

leading us to retain these three baselines. A de- 357

tailed discussion on these baselines will follow in 358

the subsequent sections of the experimental results 359

analysis. 360

4.2 Main Results 361

The results of the main experiments are presented 362

in Table 1. From the results, our method exhibits 363

significant advantages over various baselines in 364

mathematical analogy reasoning tasks and sym- 365

bolic reasoning tasks. Furthermore, within these 366

datasets, despite the increased complexity com- 367
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Methods
(based on GPT-3.5)

Arithmetic Commonsense Symbolic

NumGLUE GSM8K AQuA MathQA SVAMP CSQA Strategy Letter Coin

Basic 76.5 69.37 53.9 53.6 82.0 59.7 75.5 22.0 55.0
One by one 69.1 76.8 55.5 53.8 81.0 63.5 69.9 65.6 91.2
PS+ 72.8 72.9 53.5 57.1 78.0 66.3 77.2 45.2 59.8
Auto-CoT 82.0 78.3 57.4 49.8 80.0 65.8 74.3 79.0 95.0
Self-Consistency 82.0 85.5 64.5 61.1 84.0 77.1 70.3 83.8 58.2

Ours 83.3 88.0 69.6 63.3 88.0 75.6 73.7 92.0 100.0

Table 1: Performance comparison of different methods based on gpt-3.5-turbo across various tasks. Evaluation
metrics include NumGLUE (type 1) (Mishra et al., 2022), GSM8K (Cobbe et al., 2021), AQuA (Ling et al.,
2017), MathQA (first 400) (Amini et al., 2019), SVAMP (Patel et al., 2021), ComensenseQA (Talmor et al., 2019),
StrategyQA (Geva et al., 2021), Last Letter (Wei et al., 2023), and Coin Flip (Wei et al., 2023). Results are reported
as percentages. The highest scores for each task are highlighted in bold, and the second-highest scores are underlined.
*Some incorrect questions in the Coin Flip dataset have been corrected.

pared to baselines other than self-consistency, our368

method demonstrates a more pronounced superior-369

ity, substantially enhancing performance (average370

improvement of 11% across 7 datasets). In con-371

trast to the self-consistency approach, our method372

achieves superior performance while operating at373

significantly lower energy consumption (approxi-374

mately 0.25-0.5 times of its energy consumption).375

However, in two general datasets, our method does376

not replicate the performance observed in the other377

two datasets. Notably, the baseline with the high-378

est energy consumption also appears less robust,379

presenting an intriguing phenomenon that will be380

further analyzed in the subsequent sections.381

4.3 Analysis382

Just like the diverse nature of the world, each383

dataset possesses its unique characteristics. Upon384

observing unexpected performances in the Strat-385

egyQA, and Coin Flip datasets across various386

methods, we conducted a thorough analysis of387

the datasets. In the StrategyQA dataset, the PS+388

method outperforms both our method and the389

high-energy consumption Self-consistency method.390

Upon analyzing the data, we attribute this to the391

dataset’s alignment with a problem-solving ap-392

proach known as "plan-solve." For example, con-393

sider the question "Hydrogen’s atomic number394

squared exceeds the number of Spice Girls?" in395

this dataset. The PS+ method tackles such prob-396

lems by first macro-analyzing the entire question,397

formulating a solving plan based on the complete398

question, and then executing it. On the other hand,399

the "step-by-step" method finds an entry point, de-400

termines the next action direction based on the pre-401

vious step. In comparison, the former aligns more 402

closely with the problem-solving approach humans 403

employ when facing such questions, while the lat- 404

ter demonstrates robust performance in the Coin 405

Flip dataset. In this dataset, questions are struc- 406

tured similarly to "A coin is heads up. Lucky does 407

not flip the coin. Mireya flips the coin. Jj flips the 408

coin. Kc flips the coin. Is the coin still heads up? 409

Note that ’flip’ here means ’reverse.’" Clearly, the 410

human problem-solving approach for such ques- 411

tions is step-by-step, strictly relying on the results 412

of the previous step to determine the parameters for 413

the next step. This explains why the "step-by-step" 414

method achieves a score of 91.2 in this dataset. 415

Moreover, both PS+ and "step-by-step" methods 416

exhibit unexpected differences in two symbolic rea- 417

soning tasks, as analyzed above. These tasks are 418

better suited for the "step-by-step" method, and the 419

difficulties faced by the PS+ method in tasks it is 420

not adept at can be comprehended based on this 421

analysis. 422

We continue the discussion on the performance 423

of the Auto-CoT method, and it is observable that 424

this embedding similarity-based approach performs 425

well on the majority of datasets, particularly ex- 426

celling in the Coin Flip dataset. This is attributed to 427

the inherent characteristics of the Coin Flip dataset, 428

where clear distinctions between data categories ex- 429

ist, allowing for effective differentiation based on 430

surface-level semantics. Consequently, the method 431

can identify representative data for each category 432

based on surface-level semantics, making it partic- 433

ularly suitable for such datasets. 434

In other words, datasets characterized by high 435

uniformity in surface-level semantics are well- 436
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suited for this method. However, it’s important437

to note that this is essentially a case of overfitting.438

Datasets with such characteristics are not preva-439

lent, nor is this a common occurrence in real-life440

scenarios. In contrast, our method is capable of441

transcending the limitations imposed by surface-442

level semantics, resulting in superior performance443

across a broader spectrum of datasets.444

The self-consistency method demonstrates uni-445

versality and often achieves commendable results.446

However, in comparison, our approach attains supe-447

rior performance with lower energy consumption.448

This is attributed to our identification of genuinely449

representative examples, and by adhering to di-450

versity rules, we assemble them into high-quality451

demonstration example combinations. In contrast452

to other baselines, this enables us to achieve better453

results through the amalgamation of diverse and454

representative examples, all while operating at a455

lower energy cost.456

For our method, it can be observed that it did457

not achieve particularly favorable results on two458

commonsense reasoning datasets. This is because,459

compared to other datasets, commonsense datasets460

have more open-ended content and emphasize the461

model’s memory of basic knowledge. In this sce-462

nario, the impact of In-context learning abilities463

on the results is no longer the primary factor. In464

other words, our method can identify high-quality465

demonstration example sets, thereby better stim-466

ulating the model’s In-context learning abilities.467

Mathematical reasoning datasets and symbolic rea-468

soning datasets heavily rely on the model’s abil-469

ity in this regard, explaining the excellent perfor-470

mance of our method on these datasets. Common-471

sense reasoning, with its open-ended and memory-472

focused nature, requires attention to the suitability473

of problem-solving approaches, rather than model’s474

In-context learning ability (such as "Plan-Solve"475

for the StrategyQA dataset).476

5 Ablation Experiment477

5.1 Settings & Datasets478

To further investigate the effectiveness of our479

method, we conducted ablation experiments from480

the following perspectives:481

- We employed different models Gemini pro482

(Anil et al., 2023) and Llama-70B (Touvron et al.,483

2023), to validate the robustness of our approach.484

This aimed to observe whether our method could485

yield the expected results across diverse models.486

Methods
(based on Gemini)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

PS+ 67.9 75.0 36.3 54.5
Auto-CoT 75.6 79.0 58.0 31.2
Self-Consistency 83.3 92.0 57.4 73.6
Ours 84.6 94.0 77.6 67.0

Table 2: Ours methods on Gemini pro.

Methods
(based on Llama)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

PS+ 55.5 60.0 33.7 33.0
Auto-CoT 65.4 65.0 57.3 34.0
Self-Consistency 66.7 81.0 65.3 34.5

Ours 74.1 87.0 66.7 46.5

Table 3: Ours methods on Llama-70B.

- We replaced the construction of linearly inde- 487

pendent groups in Stage 3 with a method that ran- 488

domly selects 10 sets of 3 examples from demon- 489

stration pool to verify the effectiveness of Stage 3. 490

Additionally, we used a method of randomly select- 491

ing 10 sets of 3 examples from the training set for 492

comparison to validate the overall effectiveness of 493

our method. 494

- In Stage 3, we sorted the vector groups based 495

on the number of 1 s in each vector to examine the 496

influence of the quantity of vector groups partici- 497

pating in the final vote. We conducted experiments 498

with different values of k in the top-k selection, 499

including k=3, 5, 10 and 20. 500

- Regarding datasets, to comprehensively eval- 501

uate the method’s performance while considering 502

computational costs, we selected four datasets from 503

all three categories, encompassing two arithmetic 504

reasoning datasets, one commonsense reasoning 505

dataset, and one symbolic reasoning dataset for 506

experimentation. 507

5.2 Analysis 508

Table 2 and 3 demonstrate that our method con- 509

sistently achieves outstanding performance when 510

used with different models. However, the results in- 511

dicate that when the performance of the auto-CoT 512

method declines, our method also experiences a de- 513

crease in effectiveness. We posit that the auto-CoT 514

method relies on the model’s In-context learning 515

ability, and its performance is inhibited when this 516

capability is insufficient. While our method is a su- 517

perior approach to finding demonstration examples, 518

it is evident that it also relies heavily on the model’s 519

In-context learning ability. Relatively speaking, the 520

self-consistency method exhibits less sensitivity to 521

7



the capabilities of In-context learning, as its design522

is not particularly dependent on this learning ability.523

Being inherently a decoding strategy, this method is524

less influenced by the impact of In-context learning525

abilities on its performance.526

It is evident in table 4 that the performance of527

the randomly selected 10 3-shot demonstration ex-528

ample sets from the D-pool (demonstration pool)529

remains significantly higher than that of the ran-530

domly selected 10 3-shot demonstration example531

sets from the training set. However, the optimal per-532

formance is still achieved by our complete method.533

This indicates that the D-pool we have selected in-534

deed captures potential demonstrations, resulting in535

more stable and superior performance even when536

randomly chosen from it compared to randomly se-537

lecting from the training set. Similarly, our method538

of linearly independent vector groups further solid-539

ifies this advantage, making the performance more540

stable and outstanding.541

In Table 5, it can be observed that although the542

performance did not reach the optimal level when543

k = 10 in top-k, there is a significant improvement544

compared to k = 5 (average of 3.38%). In compari-545

son to k = 20, the performance loss of this method546

is relatively slight (average of -1%). We believe547

that even though our method is an approach that is548

closer to the essence of things relative to surface549

semantics, it is not necessarily the only final correct550

answer. Specifically, the latent learningscape fea-551

ture vectors of certain questions may be very simi-552

lar or even identical, but this does not imply com-553

plete consistency in the knowledge points, problem-554

solving approaches, concepts, themes behind those555

questions. Therefore, we need a majority voting556

process to balance this potential bias. Experimental557

results indicate that too few votes still pose a risk of558

exposing the aforementioned problem, but the risk559

significantly decreases when the number of votes is560

10. With 20 votes, the improvement trend starts to561

decline. Considering comprehensive performance562

and energy consumption, we choose to involve the563

top 10 in the voting process.564

6 Conclusion565

In this paper, we introduced a latent learningscape566

that is more closely aligned with the essence of567

In-context learning abilities, representing knowl-568

edge points, problem-solving approaches, concepts,569

and themes that truly enable effective In-context570

learning. Building upon this foundation, we pro-571

Methods
(based on GPT-3.5)

Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

Ours 87.1 94.0 76.3 93.0
w/o stage 3 84.6 92.0 76.3 92.0
w/o stage 2 & 3 82.7 88.0 75.5 81.6

Table 4: Comparison of ours method with our method
without stage 3 Construction of Prompts and our method
without stage 2 latent learningscape feature Characteri-
zation & 3 Construction of Prompts. w/o stage 3: ran-
dom select demonstrations from demonstration pool;
w/o stage 2 & 3: random select demonstrations from
training set;

top-k
Arithmetic Commonsense Symbolic

NumGLUE SVAMP CSQA Letter

k=3 87.1 89.0 69.3 82.7
k=5 78.2 92.0 73.0 89.2

k=10 87.1 94.0 76.3 93.0
k=20 87.1 96.0 77.6 93.7

Table 5: Ours methods with different top-k in stage 3.

posed a result-driven three-stage method. Firstly, 572

we constructed latent learningscape features for 573

demonstration example with the potential to serve 574

as demonstrations. Next, we generated several 575

demonstration example sets covering a comprehen- 576

sive latent learningscape by constructing linearly 577

independent vector groups, which were used as 578

demonstrations in the few-shot prompt. Experi- 579

mental results demonstrate that our method indeed 580

enhances the model’s In-context learning abilities, 581

achieving significant performance improvements 582

without a substantial increase in energy consump- 583

tion. Moreover, compared to the highest energy- 584

consuming methods, our approach not only outper- 585

forms them but also achieves better results. Abla- 586

tion experiments confirm the effectiveness of our 587

method across different models, indicating that we 588

have genuinely identified examples with demon- 589

stration potential and, by defining their latent learn- 590

ingscape features, combined them into more valu- 591

able compositions. 592

7 Limitation 593

There are two limitations to this work. First, the 594

performance of our method is inherently tied to the 595

capabilities of LLMs. Due to the reliance of our 596

method on the ICL capabilities of the model, its 597

performance on small or middle language models 598

may not be optimal. Further research is needed to 599

explore the application methods of our approach 600

8



on small or middle language models. Second, al-601

though our method aims to achieve superior results602

with lower energy consumption, the energy effi-603

ciency aspect is not explicitly quantified in com-604

parison to other methods. A more comprehensive605

energy analysis is needed to provide a holistic un-606

derstanding of the trade-offs involved.607
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