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Abstract

Foundation models have demonstrated remark-001
able capabilities in handling diverse modali-002
ties and tasks, outperforming conventional ar-003
tificial intelligence (AI) approaches that are004
highly task-specific and modality-reliant. In005
the medical domain, however, the development006
of comprehensive foundation models is con-007
strained by limited access to diverse modalities008
and stringent privacy regulations. To address009
these constraints, this study introduces a novel010
knowledge injection approach, FEDKIM, de-011
signed to scale the medical foundation model012
within a federated learning framework. FED-013
KIM leverages lightweight local models to ex-014
tract healthcare knowledge from private data015
and integrates this knowledge into a central-016
ized foundation model using a designed adap-017
tive Multitask Multimodal Mixture Of Experts018
(M3OE) module. This method not only pre-019
serves privacy but also enhances the model’s020
ability to handle complex medical tasks involv-021
ing multiple modalities. Our extensive experi-022
ments across twelve tasks in seven modalities023
demonstrate the effectiveness of FEDKIM in024
various settings, highlighting its potential to025
scale medical foundation models without direct026
access to sensitive data.027

1 Introduction028

Similar to large language models (Zhao et al., 2023)029

and foundation models (Zhou et al., 2023a), med-030

ical foundation models (Thirunavukarasu et al.,031

2023; Moor et al., 2023) have achieved superior per-032

formance of handling diverse modalities and tasks033

within the medical domain. These models have034

the potential to revolutionize medical diagnostics035

and treatment by leveraging data-driven insights036

from large volumes of multimodal healthcare data.037

Due to the sensitive nature of medical data and the038

complexity of medical tasks, most existing medical039

foundation models usually rely on particular public040

medical datasets. This nature results in limitations041

Table 1: Summary of medical foundation models.

Medical Foundation Model Modalities Tasks
MMedLM2 (Qiu et al., 2024) Text Question-answering
LLava-Med(Liu et al., 2023a) Text, Image Visual Question-answering
Med-Flamingo(Yang et al., 2023) Text, Image Visual Question-answering
PMC_LLAMA(Lee et al., 2023) Text Question-answering
BiomedGPT(Gu et al., 2021) Text, Image Visual Question-answering
BioMedLM(Lewis et al., 2020) Text Question-answering

GatorTron(Hao et al., 2020) Text

Clinical concept extraction
Medical relation extraction
Semantic textual similarity
Natural language inference
Question-answering

Med-PaLM(Singhal et al., 2022) Text Question-answering
ChatDoctor(Li et al., 2023) Text Question-answering

of the existing medical foundation models, detailed 042

as follows: 043

(1) Unrealistic to conduct large-scale central- 044

ized training. The centralized training of med- 045

ical foundation models presents significant chal- 046

lenges, primarily due to the difficulties in aggre- 047

gating sensitive healthcare data. Regulations such 048

as the Health Insurance Portability and Account- 049

ability Act (HIPAA) in the United States and the 050

General Data Protection Regulation (GDPR) in the 051

European Union impose strict privacy restrictions 052

on the use of personal health information. This 053

regulatory environment makes it impractical to col- 054

lect and store large amounts of healthcare data in 055

a single location, which is typically required for 056

the effective training of high-performing medical 057

foundation models. 058

(2) Limited modality and task adaptability. 059

Current medical foundation models exhibit a high 060

degree of specialization, constraining their effec- 061

tiveness to a narrow range of downstream tasks 062

within specific modalities, as outlined in Table 1. 063

For instance, MMedLM (Qiu et al., 2024) is tai- 064

lored for text, while LLava-Med (Liu et al., 2023a) 065

focuses on both image and text modalities. In prac- 066

tical settings, comprehensive medical decisions of- 067

ten require integrating multiple types of health data 068

across various tasks. Yet, by being task or modality- 069
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Figure 1: Illustration of the proposed FEDKIM. (a) Framework overview, where the proposed FEDKIM contains
client and server updates. (b) Federated knowledge injection, where FEDKIM first aggregates models uploaded
from clients and then injects the aggregated model knowledge into medical foundation model F with three steps.
“PEFT” in Step 3 denotes parameter-efficient fine-tuning.

specific, existing models fail to recognize and lever-070

age the intricate relationships between different071

healthcare data modalities and tasks.072

The first limitation prevents training a medi-073

cal foundation model from scratch in a central-074

ized manner, while the second one exacerbates the075

challenge of developing a multimodal, multi-task076

medical foundation model. To overcome these077

obstacles, a viable solution is to scale existing078

medical foundation models and infuse them with079

medical knowledge. Given that medical data is080

stored on private clients, the federated learning (FL)081

paradigm (McMahan et al., 2017) offers a promis-082

ing approach, which is a decentralized and collabo-083

rative machine learning method where participants084

do not need to share data directly. Although several085

recent studies on federated foundation models (Lu086

et al., 2023; Chen et al., 2024a) have made progress,087

they primarily focus on enhancing services to local088

clients using existing foundation models. Impor-089

tantly, none have specifically tackled the challenge090

of injecting novel medical knowledge into existing091

medical foundation models in a federated manner.092

To tackle this new challenge, in this paper,093

we propose a novel approach: Federated Knowl-094

edge Injection for Medical foundation models095

(FEDKIM), as shown in Figure 1. FEDKIM adopts096

a flexible design, allowing it to incorporate vari-097

ous types of medical modalities to handle a vari-098

ety of medical tasks. Considering the real-world099

scenarios, FEDKIM deploys the medical founda- 100

tion model only on the server side and leverages 101

lightweight local models along with classic fed- 102

erated learning approaches to extract healthcare 103

knowledge from private data. 104

To effectively inject extracted medical knowl- 105

edge into the foundation model, FEDKIM uses 106

knowledge-rich parameters from the modality- 107

specific encoders updated from the local end. To 108

be specific, FEDKIM integrates this knowledge us- 109

ing parameter-efficient fine-tuning technique with 110

a novel multitask multimodal mixture of expert 111

module, namely M3OE. M3OE adaptively selects 112

appropriate expert systems for handling specific 113

tasks in given modalities, enabling FEDKIM to 114

deal with tasks in complex medical contexts. 115

Our experiments across 12 healthcare tasks with 116

7 modalities demonstrate the effectiveness of FED- 117

KIM, providing a solid foundation for future ex- 118

ploratory research on the medical knowledge injec- 119

tion problem. 120

2 The proposed FEDKIM Framework 121

In this section, we first introduce the setup of the 122

medical knowledge injection task (Section 2.1). 123

Next, we describe the proposed method, FED- 124

KIM. As depicted in Figure 1, FEDKIM consists 125

of two main components: knowledge extractors 126

(Section 2.2), which are deployed on local clients, 127

and a knowledge injector (Section 2.3), which is 128

2



deployed on the server.129

2.1 Framework Setups130

2.1.1 Client Setups131

The goal of this work is to scale and enhance132

the predictive ability of medical large language133

models (LLMs) by incorporating medical knowl-134

edge from private client data in a federated man-135

ner. To achieve this, we employ N clients,136

each representing a hospital or a medical insti-137

tute holding private medical data Dn. We assume138

that the private dataset Dn contains all medical139

modalities {M1, · · · ,MM} and can perform all140

tasks {T1, · · · , TT }. Each client trains a model141

fn = [ENCn();DECn()] using the data Dn, where142

ENCn() is the set of multimodal encoders and143

DECn() is the set of multi-task decoders/predictors.144

Thus, the model parameters θn of fn can be divided145

into θenc
n for the encoder and θdec

n for the decoder,146

which will be further upload to the server.147

2.1.2 Server Setups148

We deploy a generative medical foundation149

model on the server, denoted as F . We150

aim to inject medical knowledge represented by151

{θenc
1 , · · · ,θenc

N } into F and simultaneously up-152

date {θenc
1 , · · · ,θenc

N } by absorbing new knowl-153

edge from F . These updated encoders and the154

aggregated decoders will then be distributed to the155

corresponding clients for learning in the next com-156

munication round. To facilitate the updates of client157

parameters, we place a small amount of public data158

on the server, denoted as Dp.159

2.2 Client Updates – Knowledge Extraction160

from Private Clients161

This framework allows each client to handle T162

tasks simultaneously. Although these tasks have163

different training data, the modalities are partially164

shared, which motivates us to design a simple client165

model with M modality-specific encoders and T166

task-specific decoders. Details of the encoders are167

listed in Appendix D. We then use the following168

loss to train each client model:169

min
θn

Ln :=
1

T

T∑
t=1

1

|Dt
n|

∑
(xt

i,y
t
i)∈Dt

n

ℓt(fn(x
t
i;θn),y

t
i),

(1)

170

fn(xi;θn) = DECn,t(ENCn,m(xi;θ
enc
n,m);θdec

n,t ),

(2)
171

where Dt
n is the task-specific dataset, xt

i and yt
i 172

are the data features and the corresponding ground 173

truths, and ℓt is the loss function for a specific task, 174

such as cross-entropy. ENCn,m ⊆ ENCn is the 175

encoder for modality Mm with parameters θenc
n,m. 176

DECn,t ⊆ DECn is the decoder for the t-th task 177

with parameters θdec
n,t . The number of modality- 178

level encoders in ENCn,m is determined by the 179

input data, while amount of tasks determines the 180

number of task-oriented decoders. After the local 181

training, we will upload the encoder and decoder 182

parameters θenc
n and θdec

n to the server. 183

2.3 Server Updates – Knowledge Injection 184

into Medical LLM 185

2.3.1 Knowledge Aggregation 186

We assume that the predictive ability of F is bet- 187

ter than the uploaded decoders {θdec
1 , · · · ,θdec

N }, 188

and useful knowledge is primarily contained in 189

the encoders {θenc
1 , · · · ,θenc

N }. Thus, on the 190

server side, we aim to inject medical knowledge 191

{θenc
1 , · · · ,θenc

N } into the LLM F with the help 192

of public data Dp. Before the injection, we first 193

aggregate knowledge uploaded from each client 194

in traditional federated learning manners such as 195

FedAvg (McMahan et al., 2017) or FedProx (Li 196

et al., 2020), i.e., 197

θe = fFL([θ
1
e, · · · ,θM

e ]),

θd = fFL([θ
1
d, · · · ,θM

d ]),
(3) 198

where fFL can be flexibly replaced with any fed- 199

erated learning methods, such as personalized FL 200

methods (Jiang et al., 2019; T Dinh et al., 2020), 201

differential privacy-based FL methods (Hu et al., 202

2020; El Ouadrhiri and Abdelhadi, 2022), or adap- 203

tive FL methods (Reddi et al., 2020; Wang et al., 204

2022b,a). 205

2.3.2 Knowledge Injection 206

Effectively injecting medical knowledge θe is chal- 207

lenging since the LLM F cannot directly use these 208

diverse modality-specific encoders. To solve this 209

challenge, we leverage a straightforward yet ef- 210

fective feature alignment strategy that follows the 211

training of LLaVA (Liu et al., 2024) by concatenat- 212

ing the modality embeddings with the task prompt. 213

Subsequently, we embed our original Multimodal 214

Multi-tasking Mixture Of Experts (M3OE) into 215

the medical foundation model. M3OE allows the 216

medical foundation model F to adaptively select 217

specific expert system given different combination 218

3



of tasks and modalities. Next, we detail the process219

of knowledge injection.220

Step 1: Feature Alignment. For each input data221

(xt
j ,y

t
j) ∈ Dt

p from the t-th task, we first obtain222

its feature representations using the aggregated en-223

coders θe, i.e., etj = [e1j ; · · · ; eMj ] = g(θe(x
t
j)),224

where g(·) is the linear mapping function. We also225

embed the task prompt Pt using the encoder of F ,226

i.e., pt = EMBF (Pt)., where EMBF () is the text227

embedding layer of F . Then, the concatenation228

of the data feature etj and the task prompt feature229

pt will be used as the input of the encoder of F ,230

denoted as ht
j = [etj ;p

t].231

Step 2: Multimodal Multi-tasking Mixture of232

Experts (M3OE). A naive solution is directly using233

the aligned feature ht
j to generate the output. How-234

ever, such a naive end-to-end fine-tuning approach235

not only has weak distinguishability of different236

tasks but also ignores the generalization ability of237

FEDKIM to unseen tasks, even though the modal-238

ities have been encountered already. To address239

this issue, we develop a Multimodal Multi-tasking240

Mixture Of Experts (M3OE) module to allow FED-241

KIM to distinguish tasks dynamically.242

M3OE takes both the task description T t and the243

modality descriptions Mt associated with Task T t244

as inputs to compute the relevance of each expert245

for the given task and modality, where Mt is the246

concatenation of descriptions of all modalities con-247

cerning Task T t. T t and Mt are firstly encoded248

by the embedding layer of the foundation model F ,249

and subsequently processed to output weights for250

expert selection as follows:251

αt = softmax
(
MLP

(
Pooling

(
βt))) ,

βt =
(WqEMBF (Mt))(WkEMBF (T t))⊤√

dk
WvEMBF (T t)

(4)252

where αt ∈ RP and P is the number of experts.253

Wq, Wk, and Wv denote the attention matrices,254

and dk is the dimension size.255

The proposed M3OE effectively integrates the in-256

jected knowledge managed by two separate routers,257

resulting in a more streamlined and contextually258

aware computation of weights. The output, αt, rep-259

resents the attention-weighted selection of experts260

optimized for both the modality and the specific261

task. This approach provides the flexibility needed262

to handle complex medical scenarios by selecting263

the appropriate experts based on the context.264

Step 3: LoRA-M3OE based Parameter-Efficient265

Fine-tuning. Finally, we generate the representa-266

tion of each layer in F for the forward pass based 267

on LoRA (Hu et al., 2022) and the learned M3OE 268

weight using Eq. (4) as follows: 269

ctj = WFh
t
j +

P∑
p=1

αt
p(BpAph

t
j), (5) 270

where WF denotes the frozen parameters of F , 271

BpAp denotes the lower-rank adaptation module 272

serving as the p-th expert system. We will fine-tune 273

the proposed FEDKIM using the final output from 274

F and the ground truth yt
j . The design balances 275

efficacy and efficiency during knowledge injection, 276

allowing FEDKIM to decently handle the complex 277

nature of medical applications. 278

During the training, modality-specific encoders 279

θe gradually align with the medical LLM F that 280

contains abundant knowledge acquired through pre- 281

training. The alignment indicates prior knowledge 282

in F is also extracted during injection, in the form 283

of adjusted parameters restored in encoders. To 284

benefit local models and boost knowledge injection 285

in the next round, FEDKIM passes the updated 286

encoders θe and the aggregated decoders θd back 287

to local ends and performs the knowledge-driven 288

iterative training until convergence. 289

3 Experiment Setup 290

3.1 Task Introduction 291

In this study, we have training tasks and validation 292

tasks across different datasets and data modalities. 293

To provide a clear illustration, we present them in 294

Table 2. 295

Training Task. To examine the utility of the pro- 296

posed FEDKIM, we leverage four classification 297

tasks across six modalities to federatedly inject 298

medical knowledge into the selected foundation 299

model through multi-task training. Details regard- 300

ing these tasks are available in Appendix A. As 301

emphasized in Section 2, we perform training on 302

this suite of tasks in a multi-task pattern. 303

Validation Task. Typical medical foundation mod- 304

els, such as MMedLM2 (Qiu et al., 2024), of- 305

ten struggle with handling unseen tasks involving 306

novel modalities. To evaluate the extent to which 307

knowledge injection enables the medical founda- 308

tion model to tackle unseen tasks, we compile five 309

classification tasks (ECD, SP, PED, AD, and EBD) 310

and three generation tasks (MR, SNC, and MS). 311

Details on these tasks are provided in Appendix B. 312

4



Table 2: Tasks and modalities in this study.

Task Type Task Modality
Image Signal Vital signs Lab events Input Output Text

Training

COVID-19 Detection (CD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Lung Opacity Detection (LOD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

ECG Abnormal Detection (EAD) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Mortality Prediction (MP) ✗ ✗ ✓ ✓ ✓ ✓ ✗

Validation

Enlarged Cardiomediastinum Detection (ECD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Pleural Effusion Detection (PED) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Atelectasis Detection (AD) ✓ ✗ ✗ ✗ ✗ ✗ ✗

Ectopic Beats Detection (EBD) ✗ ✓ ✗ ✗ ✗ ✗ ✗

Sepsis Prediction (SP) ✗ ✗ ✓ ✓ ✓ ✓ ✗

MedVQA-RAD (MR) ✓ ✗ ✗ ✗ ✗ ✗ ✓
MedVQA-Slake (MS) ✓ ✗ ✗ ✗ ✗ ✗ ✓
Signal Noise Clarification (SNC) ✗ ✓ ✗ ✗ ✗ ✗ ✓

3.2 Data Partition313

For each training task, we divide the data into four314

parts in a ratio of 7:1:1:1. Specifically, 70% of the315

data, Dn, is private data evenly distributed to N316

clients for training local models. Another 10% of317

the data is public data, Dp, placed on the server for318

tuning the foundation model. An additional 10%319

of the data is development data, Dd, kept on the320

server as a validation set. The remaining 10% of321

the data, Dt, is used as testing data for these tasks.322

More details regarding the data distribution can be323

found in Appendix C.324

3.3 Baselines325

Since the task of medical knowledge injection is326

novel and unexplored, there are no existing base-327

lines. Therefore, we establish our own baselines,328

detailed as follows:329

FedPlug. FedPlug acquires modality-specific en-330

coders through the federated learning process de-331

scribed in Section 2.2 . These encoders are then332

integrated into the foundation model for fine-tuning.333

By aligning multimodal medical input with the se-334

mantic space of the foundation model, FedPlug335

enables the model to handle multiple modalities.336

Throughout this process, only the aggregated en-337

coders are trainable.338

FedPlugL. Building on the FedPlug framework,339

FedPlugL incorporates the Low-Rank Adaptation340

(LoRA) technique (Hu et al., 2022) to better inte-341

grate multimodal features into the semantic space342

of the large language model (LLM), thereby opti-343

mizing the federated learning process. In addition344

to the trainable encoders in FedPlug, each layer of345

the LLM is equipped with a tunable LoRA module.346

3.4 FL Backbone Approaches 347

We implement our FEDKIM based upon the fol- 348

lowing backbone approaches: 349

FedAVG (McMahan et al., 2017) is a conven-
tional federated learning method, producing a
global model by aggregating distributed models
[θ1, · · · ,θM ] as follows:

favg([θ
1, · · · ,θM ]) =

1

N

N∑
n=1

θn.

FedProx (Li et al., 2020) aims to extend FedAvg 350

by regularizing each local loss function with an L2 351

term as follows: 352

min
θn

Jn(θ
n;θ∗) = Ln(θ

n) +
λ

2
||θn − θ∗||2, (6) 353

where θ∗ is the global model, Ln(·) is the corre- 354

sponding loss function, and λ is the hyperparameter 355

for weighting. 356

MMedLM-21 (Qiu et al., 2024) is an advanced 357

unimodal Large Language Model. Benefiting from 358

multilingual pre-training, MMedLM-2 achieves the 359

state-of-the-art performance in multiple question 360

answering tasks, thus selected as the backbone of 361

our foundation model deployed on the server. 362

3.5 Implementation Details 363

All experiments were conducted in an Ubuntu 364

20.04 environment using two NVIDIA A100 GPUs. 365

We utilized MMedLM-2, the aforementioned state- 366

of-the-art pre-trained medical language model, as 367

the target of medical knowledge injection. The 368

learning rate was set to 5 × 10−4 for the founda- 369

tion model and 1 × 10−4 for the local models. λ 370

for FedProx was set to 1 × 10−4. Cross-entropy 371

loss was used for training the local models, while 372

1https://huggingface.co/Henrychur/MMedLM2
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(a) FedAvg-based Knowledge Injection Performance.
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(b) FedProx-based Knowledge Injection Performance.

Figure 2: Performance comparison between FEDKIM and baselines on the zero-shot evaluation.

the foundation model was optimized using general373

autoregressive loss. The number of clients N was374

set to 5, and the number of experts P was set to 12375

for FEDKIM. To ensure a fair comparison, we set376

the number of communication rounds to 10 for all377

methods involved in the comparison.378

4 Performance Evaluation379

We examine our proposed FEDKIM from the zero-380

shot evaluation (subsection 4.1) and fine-tuning381

evaluation (subsection 4.2) perspectives.382

4.1 Zero-shot Evaluation383

In the zero-shot evaluation, there is no overlap be-384

tween the training tasks and evaluation tasks, which385

targets at examining the zero-shot capability of the386

medical foundation models enabled by FEDKIM.387

The experiment results on unseen tasks are shown388

in Figure 2, with FedAvg (Figure 2a) and FedProx389

(Figure 2b) as the backbone federated approaches.390

We use black •, orange, blue, and green curves391

to denote MMedLM2, FedPlug, FedPlugL, and392

FEDKIM, respectively. Accuracy for classification393

tasks and BLEU for generation tasks are used for394

visualization. Based on the experiment results, we395

provide the observations and discussion below:396

(1) The original foundation model MMedLM2397

fails to do the zero-shot evaluation on the unseen398

tasks in the training process. This is due to its399

extremely limited multimodal capabilities.400

(2) FedPlug, which only incorporates the feder-401

ated encoder, performs the worst across all tasks,402

regardless of the type. This observation under-403

scores the necessity of effectively utilizing public 404

data to align the medical foundation model with 405

external knowledge. Without proper integration, 406

external knowledge—although derived through 407

federated approaches on vast amounts of private 408

data—cannot be directly assimilated into the medi- 409

cal foundation model. 410

(3) Even though FedPlugL approaches FED- 411

KIM’s performance on several tasks, it still falls 412

short, particularly in generation tasks like Med- 413

VQA. This indicates that the knowledge injected 414

through FedPlug+LoRA does not fully generalize 415

to unseen tasks, as training was exclusively per- 416

formed on classification tasks. In contrast, FED- 417

KIM, despite also being trained on classification 418

tasks, achieves better performance on these tasks 419

and maintains superior capability in handling un- 420

seen classification tasks. Comparing our FED- 421

KIM with FedPlugL, FEDKIM shows the supe- 422

rior performance on all the tasks, especially on 423

the tasks of SNC (↑ 82.36% with FedAvg), PED 424

(↑ 43.92% with FedAvg), and AD (↑ 48.12%). On 425

the other tasks, such as MR, EBD, and ECD, these 426

approaches reach closed performance. This success 427

is attributed to the M3OE module, which enables 428

FEDKIM to adaptively select appropriate experts 429

to jointly handle novel tasks based on the context. 430

Furthermore, our proposed FEDKIM works well 431

with the federated backbones of FedAvg and Fed- 432

Prox. It also generally maintains the advantages of 433

a more advanced federated learning method (Fed- 434

Prox) over the vanilla approach. Comparing Fig- 435

ure 2a and Figure 2b, the performance with Fed- 436
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Prox generally outperforms the one with FedAvg437

on different tasks, such as PED ↑ 15.25%.438

These observations further show the adaptability439

of FEDKIM to enable medical foundation models440

to have zero-shot capability across different tasks441

and federated learning frameworks.442

4.2 Fine-tuning Evaluation443

While injecting medical knowledge into founda-444

tion models demonstrates the potential for handling445

unseen tasks, it remains uncertain whether the en-446

hanced foundation model can also perform well on447

previously encountered tasks. To address this, we448

conducted a fine-tuning evaluation, with the train-449

ing process detailed in Section 3.1 considered as450

fine-tuning for these tasks. The test sets for these451

tasks were used for evaluation, and the fine-tuning452

results are presented in Table 3. For a compre-453

hensive evaluation, we utilize accuracy, precision,454

recall, and F1 score as metrics for these tasks.455

Compared to the experiments on unseen tasks,456

it is evident that the knowledge-injected medical457

foundation model performs significantly better on458

familiar tasks. This showcases the explicit utiliza-459

tion of knowledge acquired through federated train-460

ing. Similar to the zero-shot evaluation, approaches461

combined with FedProx consistently outperform462

those with FedAvg, underscoring the importance of463

effective knowledge extraction during the injection464

process.465

Furthermore, FEDKIM consistently outperforms466

the two baselines, FedPlug and FedPlugL. This467

competitive performance validates the design and468

effectiveness of the M3OE module.469

4.3 Ablation Study470

We conduct an ablation study on the COVID-19471

detection task to assess the impact of each mod-472

ule within our proposed FEDKIM. Retaining all473

other modules as in the main experiments, we474

explore the following variant settings: (1) FED-475

KIMpub: Instead of utilizing knowledge from pri-476

vate datasets Dn, this configuration solely lever-477

ages public dataset Dp for centralized training.478

Consequently, the federated training module dis-479

cussed in Section 2.2 is excluded, with the encoder480

θe updated exclusively through public training as481

detailed in Section 2.3. (2) FEDKIMT : This vari-482

ant omits the task description module that guides483

the expert selection process, testing the importance484

of task-specific information in routing the mixture485

of experts. (3) FEDKIMM: Similarly, we remove486

the modality description module to examine its in- 487

fluence on expert selection. 488

The results of the ablation study are presented in 489

Table 4. They indicate that each component signifi- 490

cantly enhances FEDKIM’s performance. Specif- 491

ically, a substantial decline in performance with 492

FEDKIMpub highlights the crucial role of knowl- 493

edge injected from local clients through federated 494

learning. This locally enriched encoder allows the 495

medical foundation model to better adjust to un- 496

seen modalities, thereby enhancing its effectiveness 497

compared to models trained without this knowl- 498

edge. Moreover, the absence of task or modal- 499

ity descriptions diminishes FEDKIM’s ability to 500

manage specific tasks through multi-task training, 501

validating the design of the M3OE module. This 502

module equips FEDKIM to effectively navigate 503

complex healthcare scenarios that involve diverse 504

tasks and modalities. In summary, the synergistic 505

integration of local knowledge, along with the task 506

and modality description modules, crucially bol- 507

sters the performance of our proposed FEDKIM. 508

5 Related Work 509

Medical Foundation Models. Foundation mod- 510

els, known for their vast parameters and training 511

datasets, have demonstrated impressive capabili- 512

ties across domains (Touvron et al., 2023; Zhou 513

et al., 2023a; Yang et al., 2024; Li et al., 2024a; 514

Abbasian et al., 2024), and are becoming increas- 515

ingly prevalent in healthcare. Thirunavukarasu et 516

al. (Thirunavukarasu et al., 2023) highlight the po- 517

tential of large language models (LLMs) in clini- 518

cal settings. Moor et al. (Moor et al., 2023) pro- 519

pose a generalist medical AI for diverse tasks us- 520

ing multimodal data. Specialized medical foun- 521

dation models have been developed for disease 522

detection (Zhou et al., 2023b), cancer biomarker 523

identification (Pai et al., 2024), echocardiogram 524

interpretation (Christensen et al., 2024), image 525

segmentation (Zhang et al., 2023a), and precision 526

oncology (Truhn et al., 2024). Despite these ad- 527

vancements, there is a research gap in creating 528

datasets and benchmarks to integrate and leverage 529

distributed medical data. 530

Federated Fine-tuning with Foundation Mod- 531

els. Fine-tuning foundation models (FMs) with 532

task-specific data is essential for improved perfor- 533

mance in specialized tasks. Federated Learning 534

(FL) supports this by utilizing locally stored data 535

and distributed computational resources. Research 536
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Table 3: Fine-tuning evaluation for training tasks. ✗ denotes incapacity.

Task Method LLM FedAvg FedProx
Metric MMedLM-2 FedPlug FedPlugL FEDKIM FedPlug FedPlugL FEDKIM

Covid-19
Detection

Accuracy ✗ 98.34 94.21 98.48 86.11 95.73 98.98
Precision ✗ 96.07 99.27 96.61 65.09 99.32 98.28
Recall ✗ 97.44 77.78 97.44 97.72 83.76 97.72
F1 ✗ 96.75 87.22 97.02 78.13 90.88 98.00

Lung
Opacity

Detection

Accuracy ✗ 95.48 85.45 94.99 93.13 78.64 95.10
Precision ✗ 98.22 99.85 98.32 93.74 72.20 97.15
Recall ✗ 92.95 74.03 91.90 92.95 95.58 93.27
F1 ✗ 95.51 83.69 95.00 93.35 82.26 95.17

ECG
Abnormal
Detection

Accuracy ✗ 43.15 42.28 44.75 45.25 50.94 58.46
Precision ✗ 56.97 82.61 61.11 60.85 58.01 58.46
Recall ✗ 11.22 1.49 13.80 17.80 58.20 100.00
F1 ✗ 18.74 2.93 22.52 27.55 58.10 73.78

Mortality
Prediction

Accuracy ✗ 84.11 53.63 90.01 82.41 91.42 89.99
Precision ✗ 16.35 10.96 35.88 13.87 47.57 36.97
Recall ✗ 21.43 63.04 23.29 16.64 15.22 27.33
F1 ✗ 18.55 18.67 28.24 15.13 23.06 31.43

Table 4: Ablation study results.
Setting Accuracy Precision Recall F1
FEDKIMpub 94.07 90.63 85.47 87.98
FEDKIMT 98.34 96.28 97.12 96.70
FEDKIMM 98.41 97.13 96.58 96.86
FEDKIM 98.48 96.61 97.44 97.02

in this field includes full tuning (Deng et al., 2023;537

Fan et al., 2023), partial tuning (Peng et al., 2024;538

Marchisio et al., 2022; Khalid et al., 2023), and539

parameter-efficient fine-tuning (PEFT) (Lu et al.,540

2023; Zhang et al., 2023b). Notably, (Lu et al.,541

2023) involves clients hosting FMs and exchang-542

ing adapters with the server, which aggregates and543

redistributes them. Similarly, FedPETuning (Zhang544

et al., 2023b) shares parts of client models for pre-545

trained language models in FL. Unlike these stud-546

ies, which require clients to have FMs, our ap-547

proach positions the medical FM on the server,548

facilitating collaborative enhancement of medical549

FM models without accessing local data.550

Parameter-efficient Fine-tuning on Foundation551

Model Full-parameter Fine-Tuning of foundation552

models, while promising in terms of performance553

enhancement, requires extremely extensive com-554

putational resources. Consequently, researchers555

have investigated Parameter-efficient Fine-tuning556

(PEFT) techniques. PEFT methods aim to adapt557

pre-trained models to specific tasks using a mini-558

mal number of additional parameters. Low-Rank559

Adaptation (LoRA) (Hu et al., 2022), a widely560

recognized PEFT method, reduces the number of561

trainable parameters by factorizing weight matri-562

ces into low-rank representations, achieving signif-563

icant parameter efficiency. Additionally, previous564

studies have utilized modular approaches, such as565

adapters (Gao et al., 2023) and the Perceiver Re-566

sampler (Alayrac et al., 2022), to adapt new modal-567

ities to foundation models. 568

Researchers have explored combining the Mix- 569

ture of Experts (Jacobs et al., 1991) concept 570

with Low-Rank Adaptation (LoRA) for Parameter- 571

efficient Fine-tuning (PEFT) (Li et al., 2024b; Wu 572

et al., 2023). To guide the selection of experts in 573

complex scenarios, they have leveraged modality 574

information (Luo et al., 2024; Li et al., 2024c), 575

instructions (Chen et al., 2023, 2024b; Wu et al., 576

2023; Li et al., 2024b), or pre-defined task IDs (Liu 577

et al., 2023b). However, these MOE methodologies 578

do not specifically address the complex, modality- 579

diverse scenarios found in the healthcare domain. 580

6 Conclusion 581

This work introduces the concept of knowledge in- 582

jection into medical foundation models, emphasiz- 583

ing its critical role and potential in the development 584

of comprehensive medical models. We propose 585

a novel approach, FEDKIM, designed to extract 586

and inject healthcare knowledge into foundation 587

models, thereby enhancing their ability to handle 588

multiple tasks and modalities. FEDKIM leverages 589

flexible federated learning techniques to extract 590

knowledge from distributed medical data. The ex- 591

tracted knowledge is then injected into the foun- 592

dation model using our proposed adaptive M3OE 593

module. Our exhaustive experimental results on 12 594

tasks and 7 modalities demonstrate the effective- 595

ness of FEDKIM in diverse settings, showcasing its 596

excellent capability in handling either encountered 597

or unseen healthcare tasks. This study validates the 598

potential of injecting knowledge into foundation 599

models using federated learning, providing a cru- 600

cial solution for developing a healthcare foundation 601

model without accessing sensitive data. 602
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7 Limitations603

This work explores the problem of medical knowl-604

edge injection within the PEFT framework. Due605

to current computational limitations, we have not606

yet combined Full-parameter Fine-Tuning with our607

proposed FEDKIM. Additionally, our study utilizes608

MMedLM2, which has 7 billion parameters, but609

injecting knowledge into larger foundation models610

is restricted by available computational resources.611

In future research, we plan to investigate the inte-612

gration of knowledge injection with Full-parameter613

Fine-Tuning. We also aim to evaluate the efficacy614

of our approach on larger medical foundation mod-615

els to further validate its scalability and potential.616
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Table 5: Details about the datasets.

Task Type Task Total Samples Private
Clients

Public
(Server)

Development Testing

Training
Tasks

Lung Opacity Detection 18,406 12,880 1,849 1,841 1,836
COVID-19 Detection 13,808 9,665 1,380 1,380 1,383
ECG Abnormal Detection 21,797 15,259 2,179 2,180 2,179
Mortality Prediction 38,129 26,690 3,812 3,812 3,813

Validation

Enlarged Cardiomediastinum Detection 234 ✗ ✗ ✗ 234
Pleural Effusion Detection 234 ✗ ✗ ✗ 234
Atelectasis Detection 234 ✗ ✗ ✗ 234
Sepsis Prediction 1,000 ✗ ✗ ✗ 1,000
MedVQA-RAD 1,000 ✗ ✗ ✗ 1,000
MedVQA-Slake 1,000 ✗ ✗ ✗ 1,000
Signal Noise Clarification 1,000 ✗ ✗ ✗ 1,000
Ectopic Beats Detection 2,000 ✗ ✗ ✗ 2,000

A Details of Training Tasks931

COVID-19 Detection (CD) involves identifying932

COVID-19 symptoms from X-ray images using the933

COVQU dataset (Rahman et al., 2021) to evaluate934

the model’s ability to interpret medical images.935

Lung Opacity Detection (LOD) uses chest X-936

ray images to classify lung opacity based on data937

from the RSNA Pneumonia Detection Challenge938

2018 (rsn), annotated by medical practitioners.939

ECG Abnormal Detection (EAD) is an unimodal940

binary classification task that determines abnormal941

patterns in 10-second, 12-lead ECG signals from942

PTB-XL database (Wagner et al., 2020).943

Mortality Prediction (MP) predicts ICU patient944

survival or death using multimodal dynamic fea-945

tures vital signs, lab tests, input and output, with946

data sourced from MIMIC-III (Johnson et al.,947

2016).948

B Details of Validation Tasks949

Enlarged Cardiomediastinum Detection950

(ECD) (Irvin et al., 2019) aims to assess the951

presence of an enlarged cardiomediastinum using952

medical images from clinical evaluations. This953

task measures the model’s capability to interpret954

radiographic data effectively.955

Sepsis Prediction (SP) aims to forecast the like-956

lihood of sepsis during ICU stays, testing the957

model’s ability to understand various clinical fea-958

tures. These features are identical to those used959

in the mortality prediction task, extracted from960

the MIMIC-III database through the preprocess-961

ing pipeline (van de Water et al., 2024).962

Medical Visual Question Answering on RAD963

(MR) involves using both visual images and textual964

questions as inputs to generate answers. This task965

evaluates the model’s ability to align text and image 966

modalities within the medical domain. The VQA- 967

RAD dataset is utilized for this task (Lau et al., 968

2018). 969

Signal Noise Clarification (SNC) is a generative 970

task that focuses on accurately describing noise in 971

ECG signals based on corresponding textual ques- 972

tions. The data is extracted from an existing ECG 973

question-answering dataset (Oh et al., 2024). The 974

signals are recorded in 12 channels and last for 10 975

seconds, similar to the ECG Abnormal Detection 976

task. 977

Pleural Effusion Detection (PED) (Irvin et al., 978

2019) is derived from the CheXpert dataset and in- 979

volves using X-ray images to identify the presence 980

of pleural effusion, testing the model’s ability to 981

interpret radiographic data. 982

Atelectasis Detection (AD) (Irvin et al., 2019) also 983

uses X-ray images from the CheXpert dataset to 984

detect atelectasis, evaluating the model’s capability 985

in analyzing medical images. 986

Medical Visual Question Answering on Slake 987

(MS) (Liu et al., 2021) utilizes both visual images 988

and textual questions from the SLAKE dataset to 989

generate answers, assessing the model’s proficiency 990

in aligning text and image modalities in the medical 991

domain. 992

Ectopic Beats Detection (EBD) aims to identify 993

ectopic beats in ECG signals sourced from the PTB- 994

XL database (Wagner et al., 2020). 995

C Dataset Details 996

For tasks involved in training, we adopt the data 997

partition setup detailed in Section 3.2. For tasks 998

utilized in zero-shot evaluation, we select a subset 999

of corresponding datasets to facilitate the inference 1000

efficiency. We cover 1,000 randomly sampled sam- 1001
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Table 6: Single task fine-tuning evaluation.

Task Method LLM FedAvg FedProx
Metric MMedLM-2 FedPlug FedPlugL FEDKIM FedPlug FedPlugL FEDKIM

COVID-19
Detection

Accuracy ✗ 92.34 99.56 99.57 84.16 95.66 98.91
Precision ✗ 93.59 98.87 99.15 77.27 84.18 100.00
Recall ✗ 74.92 99.43 99.15 53.27 98.68 95.73
F1 ✗ 79.15 99.14 99.15 63.07 90.85 97.82

Lung
Opacity

Detection

Accuracy ✗ 89.42 51.69 94.93 91.23 90.90 93.63
Precision ✗ 84.69 51.74 93.60 87.76 88.06 92.55
Recall ✗ 97.16 99.79 96.85 96.52 95.37 95.37
F1 ✗ 90.50 68.10 95.19 91.93 91.57 93.94

ECG
Abnormal
Detection

Accuracy ✗ 43.15 48.79 58.46 45.25 50.80 58.00
Precision ✗ 56.97 65.02 58.46 60.85 58.47 58.34
Recall ✗ 11.22 26.82 100.00 17.80 54.67 98.51
F1 ✗ 18.74 37.98 73.78 27.55 56.51 73.28

Mortality
Prediction

Accuracy ✗ 84.11 91.67 64.16 82.41 90.98 57.38
Precision ✗ 16.35 43.24 12.86 13.87 40.68 13.25
Recall ✗ 21.43 14.91 56.21 16.64 14.91 72.98
F1 ✗ 18.55 22.18 20.94 15.13 21.82 22.42

ples for the tasks of Sepsis Prediction, MedVQA-1002

Slake, MedVQA-RAD, Signal Noise Clarification.1003

For Ectopic Beats Detection, we cover 1,000 posi-1004

tive cases and 1,000 negative cases randomly sam-1005

pled from the dataset, as the original annotations1006

concerning ectopic beats are highly sparse. For1007

Enlarged Cardiomediastinum Detection, Pleural1008

Effusion Detection and Atelectasis Detection, we1009

leverage an existing validation set, which involves1010

234 samples. Statistics about the datasets leveraged1011

in this study are available in Table 5.1012

D Modality Encoding1013

We list all encoders along with corresponding1014

modalities in Table 7. Note that all these encoders1015

can be flexibly replaced with other qualified en-1016

coders under the framework of FEDKIM.1017

Table 7: Details of modality-specific encoders.

Modality Encoder
Image Deit-tiny (Touvron et al., 2021)
Signal CNN (LeCun et al., 1998)

Vital Sign Transformer (Vaswani et al., 2017)
Lab Results Transformer (Vaswani et al., 2017)

Input Transformer (Vaswani et al., 2017)
Output Transformer (Vaswani et al., 2017)

E Single-task Fine-tuning Evaluation1018

In addition to the evaluation discussed in Sec-1019

tion 4, another auxiliary topic worth investigat-1020

ing is whether FEDKIM can enhance a model’s1021

performance on a single task. This is particularly 1022

meaningful for practitioners who aim to address 1023

a specific task, given the scarcity and specializa- 1024

tion often associated with medical data. Therefore, 1025

we designed a single-task fine-tuning evaluation, 1026

where FEDKIM is applied to the foundation model 1027

for each individual training task. The experimental 1028

results are presented in Table 6. 1029

The results verify that FEDKIM, benefiting from 1030

a well-designed knowledge injection strategy, out- 1031

performs both baselines in most tasks. This explo- 1032

ration demonstrates the applicability of FEDKIM 1033

even when tasks for injection are limited, thereby 1034

broadening its application scope in complex medi- 1035

cal scenarios. 1036
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