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Abstract

Evaluating the performance of Grammatical Er-
ror Correction (GEC) systems is a challenging
task due to its subjectivity. Designing an evalua-
tion metric that is as objective as possible is cru-
cial to the development of GEC task. However,
mainstream evaluation metrics, i.e., reference-
based metrics, introduce bias into the multi-
reference evaluation by extracting edits without
considering the presence of multiple references.
To overcome this issue, we propose Chunk-
LEvel Multi-reference Evaluation (CLEME),
designed to evaluate GEC systems in the multi-
reference evaluation setting. CLEME builds
chunk sequences with consistent boundaries for
the source, the hypothesis and references, thus
eliminating the bias caused by inconsistent edit
boundaries. Furthermore, we observe the con-
sistent boundary could also act as the boundary
of grammatical errors, based on which the F0.5

score is then computed following the correction
independence assumption. We conduct exper-
iments on six English reference sets based on
the CoNLL-2014 shared task. Extensive ex-
periments and detailed analyses demonstrate
the correctness of our discovery and the effec-
tiveness of CLEME. Further analysis reveals
that CLEME is robust to evaluate GEC systems
across reference sets with varying numbers of
references and annotation styles 1.

1 Introduction

Grammatical Error Correction (GEC) is a task
that involves making local substitutions to cor-
rect grammatical errors in a given ungrammatical
text (Bryant et al., 2022; Ma et al., 2022; Ye et al.,
2022; Ma et al., 2023). The practical value of GEC
in daily life has led to increasing attention being
paid to this task (Li et al., 2021, 2022a,b; Kaneko
∗∗indicates equal contribution.
††Corresponding author: Hai-Tao Zheng. (E-mail:
zheng.haitao@sz.tsinghua.edu.cn)
1All the source codes of CLEME are released at https://
github.com/THUKElab/CLEME.
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Figure 1: A comparison of edits automatically extracted
by ERRANT and CLEME. An orange block is an edit.

et al., 2022; Li et al., 2023; Ye et al., 2023a,b;
Zhang et al., 2023). However, it is intractable to
evaluate GEC systems due to the highly subjective
nature of the task and the low inter-annotator agree-
ment (IAA) (Choshen and Abend, 2018). There-
fore, most datasets improve compatibility by incor-
porating multiple references to guarantee a more
realistic evaluation of the model performance.

There are two broad categories of GEC metrics:
reference-based and reference-less. Reference-
based metrics evaluate GEC systems by compar-
ing their hypotheses and human-annotated ref-
erences in terms of edits (Dahlmeier and Ng,
2012; Bryant et al., 2017) or n-grams (Napoles
et al., 2015). Reference-less metrics are pro-
posed to evaluate GEC systems without references.
However, Deutsch et al. (2022) demonstrate that
reference-less metrics are inherently biased and
limited in their ability to evaluate generated text.
Therefore, we focus on reference-based metrics,
which can evaluate in an interpretable manner, thus
providing useful insights for model analysis.

Figure 1 illustrates how existing reference-based
metrics, such as ERRANT, extract the edit and then
compute the F0.5 score by comparing hypotheses
and references. However, these metrics often fail
to consider multiple references, which can result in
bias during multi-reference evaluation. We argue
that this bias arises because the current approach
rewards equally good corrections unfairly. For in-

https://github.com/THUKElab/CLEME
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stance, the ungrammatical phrase the technologies
were is equally well-corrected by both Ref. 1 and
Ref. 2. However, if a hypothesis aligns with Ref.
1’s corrections (i.e., [the → ϵ] and [were → have],
TP=2), it will be rewarded less than the correc-
tions of Ref. 2 (i.e., [the → ϵ], [technologies →
technology] and [were → has], TP=3).

In this paper, we propose Chunk-LEvel Multi-
reference Evaluation (CLEME), which enables
unbiased F0.5 scores for GEC multi-reference eval-
uation. Inspired by (Gotou et al., 2020), CLEME
transforms the source, the hypothesis and all the
references into chunk sequences with consistent
boundaries, thereby eliminating the bias in GEC
multi-reference evaluation.

Existing metrics assume that corrections of gram-
matical errors are dependent. That is, whenever
there is more than one reference for a source, the
metrics try each reference in turn, and then the
highest score is taken as the final score. However,
we observe that grammatical errors corrections in
terms of chunks can be considered approximately
independent. For example, the ungrammatical
phrases the technologies were and for shown in
Figure 1 can be corrected independently, i.e., the
correction of the technologies were has no bearing
on the correction of for. Based on this observation,
we compute F0.5 scores following the assumption
that corrections of grammatical errors are indepen-
dent. Specifically, we iterate through the chunks
of a hypothesis and consider a chunk correct if it
matches any of the corresponding chunks in the
references. In this case, the hypothesis in Figure 1
would be rewarded 2TP, rather than 1TP and 1FP,
which is the traditional case. To demonstrate the ef-
fectiveness and robustness of CLEME, we conduct
experiments on six English reference sets with vary-
ing numbers of references and annotation styles,
either calculating the F0.5 score at the corpus- or
sentence-level.

In summary, our contributions are three folds:

(1) We propose CLEME, a reference-based metric
that evaluates GEC systems at the chunk-level,
aiming to provide unbiased F0.5 scores for
GEC multi-reference evaluation.

(2) We observe that the corrections of grammat-
ical errors in terms of chunks are approxi-
mately independent. Therefore, we propose to
compute F0.5 scores based on the correction
independence assumption.

(3) Extensive experiments and human evaluation
are conducted to confirm the effectiveness and
robustness of our approach.

2 Preliminary Study

2.1 Consistent Boundaries

We determine consistent chunk-level boundaries
by chunk partition process to debias the multi-
reference evaluation, as depicted in Figure 2. We
first extract the edit sets of the hypothesis and ref-
erences, and then merge the overlapping edits into
a chunk. It’s worth noting that the source, hypoth-
esis and references are all segmented into chunk
sequences with the same number of chunks, regard-
less of the number of their tokens. This process
is straightforward since we can locate and exam-
ine all possible corrections of an erroneous chunk.
For example, the chunk by the can be corrected in
two ways, i.e., with in Ref. 1 and through in Ref.
2. The resulting chunks fall into three categories:
1) unchanged chunks, which contain the same
text segments as the source sentence, 2) corrected
chunks, which consist of non-empty text segments
different from the source sentence, and 3) dummy
chunks are empty chunks.

2.2 Boundaries of Grammatical Errors

Figure 2 illustrates the merging of overlapping edits
into either corrected or dummy chunks, which are
then separated by unchanged chunks. This raises
the question, are chunk boundaries the boundaries
of grammatical errors?

Dataset. To answer the question, we conduct ex-
periments on BN-10GEC (Bryant and Ng, 2015).
The dataset comprises 1,312 source sentences that
are identical to the CoNLL-2014 test data (Ng et al.,
2014). Each source sentence is associated with 10
references annotated by 10 native English speakers,
including two official annotators of CoNLL-2014,
the first author of the paper, and seven freelancers
recruited via an online recruitment website.

Experiment Setup. For each source sentence,
we sample 9 references and run the chunk parti-
tion process described in Section 2.1. The result-
ing chunk sequences are determined collectively
by all 9 references. The edits of the remaining
reference {e1, · · · , eM} are then used to calculate
the following three statistics: 1) The In-Corrected-
Chunk (ICC) ratio indicates the proportion of edits
included by corrected/dummy chunks of the other



references. An edit is included by a chunk if the
interval of the edit falls within that of the chunk.
2) The In-Unchanged-Chunk (IUC) ratio gives the
proportion of edits included by unchanged chunks
of the other references. 3) The Cross-Chunk (CC)
ratio computes the proportion of edits that extend
beyond the original boundaries. These statistics are
calculated as follows:

ICC =
1

M

M∑
i=1

f1(ei), (1)

IUC =
1

M

M∑
i=1

f2(ei), (2)

CC = 1− ICC − IUC, (3)

where M is the number of edits from the remain-
ing reference. If the edit ei is included in a cor-
rected/dummy chunk, the function f1(ei) returns 1,
otherwise 0. Likewise, if the edit ei is included in
an unchanged chunk, the function f2(ei) returns 1,
otherwise 0. We sample 9 different references for
chunk partition in each run and repeatedly calculate
the statistics using the remaining reference.

Results. As shown in Table 1, the number of
corrected and dummy chunks are less than that
of edits since overlapping edits are merged into a
chunk. A total of 90.66% edits are included by
the corrected/dummy chunks, which suggests the
grammatical errors to be corrected have been con-
sidered by the other references. However, only
7.74% edits are included by corrected chunks, indi-
cating that these edits may be over-corrected since
the other references believe no grammatical errors
needed correction. Interestingly, 1.61% edits cross
the chunk boundaries, suggesting that the chunk
boundaries are stable enough to serve as the bound-
aries of grammatical errors to some extent. Addi-
tionally, human evaluation in Section 4.2 could be
used as another argument to support this conclu-
sion. Therefore, we have the following assumption.

Correction independence assumption:
grammatical error corrections are independent.

That is, the correction of a grammatical error
does not impact the correction of other grammatical
errors. With this assumption, F0.5 scores can be
calculated using an alternate method, which will
be introduced in Section 3.

Item Number (perc.) Length

Sentences 1,312 23.0
References 13,120 22.9
Edits 36,677 1.0
Unchanged Chunks 93,469 (77.63%) 2.5
Corrected/Dummy Chunks 26,948 (22.37%) 2.4
ICC 33,251 (90.66%) -
IUC 2,837 (7.74%) -
CC 589 (1.61%) -

Table 1: Statistics of the BN-10GEC dataset.

3 Method

3.1 Chunk Evaluation

As shown in Figure 2, each chunk consists of edit
operation(s), start index, end index, and correct to-
kens. Conventional reference-based metrics such
as MaxMatch (M2) and ERRANT compute F0.5

scores based on the correction dependence assump-
tion. They evaluate the performance for each ref-
erence separately and select the one that yields
the best result for the source sentence. CLEME-
dependent also computes F0.5 scores in this way
by treating corrected/dummy chunks as edits. On
the other hand, CLEME-independent is proposed
to compute F0.5 scores based on the correction
independence assumption. A corrected/dummy
chunk from the hypothesis is considered correct
if it matches one of the corresponding chunks from
the references. It is worth noting that CLEME is
able to fully inherit pre-classified errors from ER-
RANT, where each corrected/dummy chunk may
consist of multiple error with different types.

3.2 Length Weighting

The average length of chunks is much longer than
that of edits shown in Table 1, resulting in the un-
fairness of chunk evaluation if a longer chunk is
rewarded equally with a shorter one. Therefore,
we add length weighting to the chunk evaluation.
The intuition of length weighting is to compensate
for long chunk matching. The weights of True
Positives (TPs), False Positives (FPs), and False
Negatives (FNs) are computed as follows:2

wTP = clip
(

α1

1 + (α1 − 1) exp(ℓ− x)
, cmin, cmax

)
, (4)

wFP = clip
(

α2

1 + (α2 − 1) exp(x− ℓ)
, cmin, cmax

)
, (5)

2We do not apply length weighting to TNs since it is unneces-
sary for F0.5 scores.
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Figure 2: Overview of our approach CLEME. CLEME first 1) extracts edits of the hypothesis and the references, 2)
merges the overlapping edits into chunks, and then 3) computes the F0.5 scores based on two different assumptions.

wFN = clip
(

α3

1 + (α3 − 1) exp(ℓ− x)
, cmin, cmax

)
, (6)

where α1, α2 and α3 are scale factors for TPs, FPs
and FNs respectively, x is the length of the chunk,
ℓ is the average length of chunks, and the function
clip(v, a, b) clips the value v between a and b. The
curves of length weighting are depicted in Figure 3.
Formally, given a system corrected/dummy chunk
set CH and a gold corrected/dummy chunk set
CR, we apply length weighting on each chunk to
compute precision, recall and F0.5 as follows:

P =

∑
c∈CH∩CR

wTP
c∑

c∈CH∩CR

wTP
c +

∑
c∈CH\CR

wFP
c

, (7)

R =

∑
c∈CH∩CR

wTP
c∑

c∈CH∩CR

wTP
c +

∑
c∈CR\CH

wFN
c

, (8)

Fβ = (1 + β2) · P ·R
(β2 · P ) +R

, (9)

where β = 0.5 is usually used, which weighs pre-
cision twice as much as recall.
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Figure 3: Curves of length weighting with different α
for ℓ = 2. All the curves pass through the point (ℓ, 1.0).
A curve with a larger scale factor has a greater slope.

3.3 Corpus-level v.s. Sentence-level

We compute F0.5 scores of GEC systems at both
corpus-level and sentence-level following (Gong
et al., 2022). Corpus-level metrics compute an
F0.5 score over the entire dataset. Sentence-level
metrics compute an F0.5 score over each sentence
of the dataset and evaluate GEC systems by us-



ing the average F0.5 score. CLEME-dependent
and CLEME-independent are corpus-level met-
rics, and their sentence-level variants are respec-
tively SentCLEME-dependent and SentCLEME-
independent. Both levels of the GEC metric are
developed to provide more user-friendly options.
Sentence-level metrics should be used if consis-
tent evaluation weight for each sample is desired.
This ensures that the evaluation result of each sam-
ple has the same influence on the final score. On
the other hand, if harder samples containing more
edits should have larger weight, then corpus-level
metrics should be used instead.

4 Experiments

4.1 Correlations with Human Judgments

Dataset. To verify the effectiveness of CLEME,
we measure correlations between reference-based
metrics and human judgments on multiple English
reference sets, including CoNLL-2014 (Grund-
kiewicz et al., 2015), BN-10GEC (Bryant and Ng,
2015) and SN-8GEC (Sakaguchi et al., 2016). All
the reference sets are based on CoNLL-2014 (Ng
et al., 2014), consisting of 1,312 source sentences.
SN-8GEC collected 8 references sets of annota-
tions from both experts and non-experts, including
4 sets of minimal edits and 4 sets of fluency edits
(2 by experts and 2 by non-experts). Reference sets
statistics are reported in Appendix A.

The human judgments for the outputs of 13 GEC
systems (including the unchanged source text) are
presented by (Grundkiewicz et al., 2015), where
eight native speaker were asked to rank the output
of all the systems from best to worst. Two system
ranking lists are generated using Expected Wins
(EW) (Macháček and Bojar, 2013) and TrueSkill
(TS) (Sakaguchi et al., 2014) respectively.

Experiment Settings. Following (Gong et al.,
2022; Chollampatt and Ng, 2018), we compute the
Pearson γ and Spearman correlation coefficient ρ
between reference-based metrics and human judg-
ments based on corpus-level ranking. We tune the
hyperparameters on CoNLL-2014 and keep the hy-
perparameters on the other reference sets, in order
to demonstrate the adaptability of our approach.
The detailed hyperparameters of CLEME are re-
ported in Appendix B.

Evaluation Metrics. We compare our approach
with the following reference-based metrics, includ-

ing corpus- and sentence-level variants 3:

• GLEU and SentGLEU (Napoles et al., 2015)
are n-gram based metrics, which reward hy-
pothesis n-grams that overlap with the refer-
ence but not the source and penalize hypoth-
esis n-grams that overlap with the source but
not the reference.

• M2 and SentM2 (Dahlmeier and Ng, 2012)
dynamically extract the hypothesis edits with
the maximum overlap of gold annotations.

• ERRANAT and SentERRANT (Bryant et al.,
2017) extract edits by utilizing a linguistically-
enhanced alignment algorithm.

• PT-M2 and SentPT-M2 (Gong et al., 2022)
are recently proposed reference and PLM-
based GEC metric, which score edits using
the knowledge of pre-trained language model.

Additionally, CLEME can evaluate GEC sys-
tems by accuracy scores, which is usually not im-
plemented by conventional reference-based metrics.
Please refer to Appendix C for the introduction and
analyses of evaluating GEC systems by accuracy.

Results. Table 2 reports the correlations between
reference-based metrics and human judgments. For
the corpus-level metrics, GLEU achieves the high-
est correlations on BN-10GEC and NE-fluency ref-
erence sets. However, GLEU suffers from negative
correlations on NE-Minimal, which is caused by
low-quality annotations 4 of NE-Minimal, indicat-
ing that GLEU may not be a robust metric, consis-
tent with the findings of (Sakaguchi et al., 2016).
ERRANT performs slightly better than M2 on most
reference sets, while PT-M2 is a strong corpus-level
metric, which achieves the highest or comparable
correlations on all reference sets at the cost of more
than 10× running time than other reference-based
metrics. Our proposed CLEME-dependent and
CLEME-independent make better use of consistent
chunk boundaries, thus performing slightly better
than M2 and ERRANT on most reference sets. No-
tably, CLEME-independent achieves comparable
performance to CLEME-dependent, showing the

3We do not experiment with I-measure (Felice and Briscoe,
2015) due to its negative correlation and high computing
complexity (Grundkiewicz et al., 2015).

4The phenomenon exists on all sentence-level metrics. We
remove unchanged references from some reference sets to
avoid it.



Metric CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

EW TS EW TS EW TS EW TS EW TS EW TS

M2 γ 0.623 0.672 0.547 0.610 0.597 0.650 0.590 0.659 0.575 0.634 0.582 0.649
ρ 0.687 0.720 0.648 0.692 0.654 0.703 0.654 0.709 0.577 0.648 0.648 0.703

GLEU γ 0.701 0.750 0.678 0.761 0.533 0.513 0.693 0.771 -0.044 -0.113 0.674 0.767
ρ 0.467 0.555 0.754 0.806 0.577 0.511 0.710 0.757 -0.005 -0.055 0.725 0.819

ERRANT γ 0.642 0.688 0.586 0.644 0.578 0.631 0.594 0.663 0.585 0.637 0.597 0.659
ρ 0.659 0.698 0.637 0.698 0.742 0.786 0.720 0.775 0.747 0.797 0.753 0.797

PT-M2 γ 0.693 0.737 0.650 0.706 0.626 0.667 0.621 0.681 0.630 0.675 0.620 0.682
ρ 0.758 0.769 0.690 0.824 0.709 0.736 0.758 0.802 0.736 0.758 0.758 0.802

CLEME-dependent (Ours)
γ 0.648 0.691 0.602 0.656 0.594 0.644 0.589 0.654 0.595 0.643 0.612 0.673
ρ 0.709 0.742 0.692 0.747 0.797 0.813 0.714 0.775 0.786 0.835 0.720 0.791

CLEME-independent (Ours)
γ 0.649 0.691 0.609 0.659 0.593 0.643 0.587 0.653 0.601 0.647 0.611 0.672
ρ 0.709 0.731 0.692 0.747 0.791 0.802 0.731 0.791 0.797 0.841 0.714 0.786

SentM2 γ 0.871 0.864 0.567 0.646 0.805♣ 0.836♣ 0.655 0.732 0.729♣ 0.785♣ 0.621 0.699
ρ 0.731 0.758 0.593 0.648 0.806♣ 0.845♣ 0.731 0.764 0.797♣ 0.846♣ 0.632 0.687

SentGLEU γ 0.784 0.828 0.756 0.826 0.742♣ 0.773♣ 0.785 0.846 0.723♣ 0.762♣ 0.778 0.848
ρ 0.720 0.775 0.769 0.824 0.764♣ 0.797♣ 0.791 0.846 0.764♣ 0.830♣ 0.768 0.846

SentERRANT γ 0.870 0.846 0.885 0.896 0.768♣ 0.803♣ 0.806 0.732 0.710♣ 0.765♣ 0.793 0.847
ρ 0.742 0.747 0.786 0.830 0.775♣ 0.819♣ 0.813 0.764 0.780♣ 0.841♣ 0.830 0.857

SentPT-M2 γ 0.949 0.938 0.602♣ 0.682♣ 0.831♣ 0.855♣ 0.689 0.763 0.770♣ 0.822♣ 0.648 0.725
ρ 0.907 0.874 0.626♣ 0.670♣ 0.808♣ 0.819♣ 0.797 0.841 0.813♣ 0.857♣ 0.742 0.786

SentCLEME-dependent (Ours)
γ 0.876 0.844 0.915 0.913 0.806♣ 0.838♣ 0.849 0.886 0.742♣ 0.795♣ 0.876 0.921
ρ 0.824 0.808 0.835 0.874 0.775♣ 0.819♣ 0.824 0.863 0.797♣ 0.846♣ 0.791 0.846

SentCLEME-independent (Ours)
γ 0.868 0.857 0.855♣ 0.876♣ 0.821♣ 0.856♣ 0.841 0.877 0.782♣ 0.831♣ 0.852 0.896
ρ 0.725 0.758 0.659♣ 0.714♣ 0.775♣ 0.819♣ 0.808 0.846 0.819♣ 0.874♣ 0.762 0.825

Table 2: Overview of correlations between mainstream GEC metrics and human judgments. We highlight the
highest score in bold and the second-highest score with underlines. SN-8GEC consists of four reference sets, i.e.,
E-Minimal, E-Fluency, NE-Minimal and NE-Fluency. ♣ We remove unchanged reference sentences for higher
correlations due to low-quality annotations. Otherwise, negative correlations are possible.

effectiveness of computing F0.5 scores based on the
correction independence assumption.

The majority of the sentence-level metrics out-
perform their corpus-level counterparts because
they weigh samples equally, which is in line with
the bias of human annotation. Despite the strong
performance of PT-M2, SentPT-M2 achieves lower
correlations on BN-10GEC, E-Fluency and NE-
Fluency compared to other sentence-level metrics.
It suggests that scoring edits using pre-trained lan-
guage models may not generalize well to unseen
reference sets for sentence-level metrics. Our ap-
proach aligns better with human judgments than
existing reference-based metrics for most refer-
ence sets. Specifically, SentCLEME-dependent per-
forms best on BN-10GEC and NE-Fluency, and per-
forms on a par with the best metric on E-Fluency,
indicating it is more suitable for fluent reference
sets. This phenomenon aligns with our intuition
since fluent editing is more likely to follow the
correction dependence assumption. In contrast,
SentCLEME-independent achieves higher correla-
tions on E-Minimal and NE-Minimal, as we would
expect from minimal editing that is more likely
to follow the correction independence assumption.
These results suggests that reference sets may have
a preference towards one of the correction assump-

tions. Additionally, our approach achieves higher
correlations on (N)E-Fluency rather than (N)E-
Minimal, while SentM2 and SentERRANT per-
form worse on E-Fluency than E-Minimal. This
is because CLEME evaluates GEC systems using
longer chunks rather than scrappy edits, which
could better reflect whether a grammatical error is
fluently corrected. Overall, our approach achieves
higher or comparable correlations on sentence-
level than existing reference-based methods.

4.2 Human Evaluation

Experiments have shown the effectiveness of eval-
uating GEC systems based on the correction inde-
pendence assumption. In this section, we aim to
demonstrate whether the correction independence
assumption makes sense for humans. We define
the correction independence of a pair of chunks
as the irrelevance of the correction of one chunk
to the correction of the other. A simple case is
presented in Appendix E. To evaluate this assump-
tion, we conduct human evaluation experiments
on 1,000 sentences randomly sampled from BN-
10GEC (Bryant and Ng, 2015). Three annotators
were asked to judge whether a pair of chunks is
correction-independent.

Table 3 reports the ratio of correction indepen-
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Annotator Ratio of Correction Independence

A1 90.85%
A2 93.55%
A3 91.14%

Annotator Cohen’s-κ

A1 v.s. A2 38.66%
A1 v.s. A3 43.10%
A2 v.s. A3 39.34%

Table 3: A comparison of correction independence
annotations across three annotators.

dence and Cohen’s-κ (Cohen, 1960) inter-annotator
agreement (IAA) across the three annotators. Re-
sults show that more than 90% pairs of chunks
are correction-independent for all the annotators,
indicating that it is reasonable to evaluate GEC
systems based on the correction independence as-
sumption. Moreover, considering the subjectivity
of GEC task, the IAA statistics show that it is rel-
atively easy to judge whether a pair of chunks is
correction-independent, compared with the previ-
ous study (Bryant and Ng, 2015) 5.

5 Analysis

5.1 False Negative

We observe that the number of false negatives
(FNs) identified by CLEME is significantly lower
than that of ERRANT. This difference can be at-
tributed to the distinct definitions used by each
system. While ERRANT considers FNs as ed-
its in the reference that do not match those made
in the hypothesis, CLEME identifies FNs as cor-
rected/dummy chunks in the reference that do not
match the chunks in the hypothesis. We argue the
definition of ERRANT is problematic, as it tends to

5Bryant and Ng (2015) attempted to compute IAA at the sen-
tence level. Three raters were asked simply to decide whether
200 sentences were correct or not. The authors reported IAA
of just 0.16, 0.4 and 0.23.
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Figure 5: Effect of scale factors on BN-10GEC.

Text FP FN

Source It has improved compared for the last century.
Hyp. It has improved compared between the last century.

ERRANT
Ref. 1 It has improved compared to the century. 1 1
Ref. 2 It has improved compared with the century. 1 1

CLEME
Ref. 1 It has improved compared to the century. 1 0
Ref. 2 It has improved compared with the century. 1 0

Table 4: Cases of ERRANT and CLEME. ERRANT
gives FP=1 and FN=1 since the hypothesis does not
match one of the edits of references. CLEME gives only
FP=1 since the hypothesis tries to correct the error.

overestimate FN counts in grammatical error cor-
rection (GEC) systems, which is evident from the
examples presented in Table 4. On the other hand,
CLEME’s definition also includes true negatives
(TNs), making it possible to calculate accuracy.

5.2 Ablation Study

We present ablation analyses of our approaches on
BN-10GEC - we have similar findings on other
reference sets. We report Pearson correlations γ
using Expected Wins ranking. The trend is similar
for Spearson correlations and TrueSkill ranking.

Number of References. Since CLEME is de-
signed for multi-reference evaluation, it degrades
to conventional reference-based metrics such as
M2 and ERRANT when only one reference is
available. Here we demonstrate how correlations
change against an increasing number of available
references. The results reported in Figure 4 indi-
cate that the correlations of corpus-level metrics do
not change significantly with the increasing num-
ber of available references. However, except for
SentGLEU, correlations of sentence-level metric
are consistently higher than corpus-level metrics,
and steadily increase with more references. There-
fore, we recommend evaluating GEC systems us-
ing sentence-level metrics rather than corpus-level



Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6
Source On the other hand , if there are ways can help us to control or cure the disease , we can going .
Hyp. On the other hand , if there are ways that can help us to control and cure the disease , we can go .
Ref. 1 On the other hand , if there are ways that can help us to control or cure the disease , we can go .
Ref. 2 On the other hand , if there are things that can help us to control and cure the disease , we can go .

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5
Source On one hand , we do not want this potential danger causing firghtenning affects in our lives .
Hyp. On one hand , we do not want this potential danger causing frightening affects in our lives .
Ref. 1 On one hand , we do not want this potential danger having frightening effects in our lives .
Ref. 2 On the one hand , we do not want this potential danger to have frightening effects on our lives .

Chunk 1 Chunk 2 Chunk 3 Chunk 4
Source Especially for the young people without marrige , if he/she is known to have some genetic risk .
Hyp. Especially for the young people without marriage , if the latter is known to have some genetic risk .
Ref. 1 Especially for unmarried young people marrige who are known to have some genetic risk .
Ref. 2 This is especially the case for young people who are unmarried , if he/she is known to have some genetic risk .

Table 5: Cases of chunk partition. These tables are automatically generated by CLEME. More cases from multiple
datasets and language are provided in Appendix F.

metrics for the multi-reference evaluation setting.

Parameter Sensitivity Analysis. The scale fac-
tors introduced in Section 3.2 dictate how much
the weights of chunks change with their length. We
report the corrections for various scale factors, as
shown in Figure 5. The results demonstrate that
CLEME is resilient to hyperparameter selection.

5.3 Case Study

Table 5 presents additional examples of CLEME.
In the top group, chunk 2 and chunk 4 of the hy-
pothesis respectively match those of Ref. 1 and
Ref. 2. In this case, CLEME-dependent gives
TP=1 and FP=1, while CLEME-independent gives
TP=2. In the second group, the hypothesis exactly
corrects the ungrammatical word firghtenning in
chunk 4. However, it cannot be rewarded since the
entire chunk is not corrected. In the bottom group,
two given references have made extensive modifi-
cations, with an unchanged chunk young people.
Evaluating hypotheses in terms of chunks is gener-
ally more challenging than fragmented edits, but it
provides a more comprehensive diagnosis.

Even though there are larger grammatical er-
rors spanning a significant portion of a sentence,
CLEME would not necessarily collapse, i.e., pro-
ducing one single correction chunk spanning the
entire sentence. If collapse happens, the quality of
the reference set should be checked first. This is
because that collapse happens only if the input sen-
tences of chunk partition are completely different,
resulting in a trivial chunk partition result, which is
an extreme case that has not been observed in our

Reference-based Metrics Granularity Score Deterministic

M2 (Dahlmeier and Ng, 2012) Phrase-level Edit Fβ •
GLEU (Napoles et al., 2015) N-gram Weighted Precision ◦
ERRANT (Bryant et al., 2017) Phrase-level Edit Fβ •
CLEME (Ours) Chunk-level Edit Fβ •

Table 6: A comparison of mainstream reference-based
GEC metrics. GLEU is indeterministic since it involves
sampling operation.

experiments.

6 Related Work

6.1 Reference-based Metrics
Reference-based metrics score GEC systems under
the guidance of manually written references. M2

scorer (Dahlmeier and Ng, 2012) determines an
optimal edit sequence between a source sentence
and a system hypothesis that achieves the highest
overlap with the gold-standard annotation. The per-
formance of each system is then represented using
the F0.5 score. However, optimality in terms of
overlap does not guarantee optimality in GEC eval-
uation. Bryant et al. (2017) showed that M2 scorer
exploits its dynamic edit boundary prediction to
artificially maximize true positives and minimize
false positives, thus producing slightly inflated
scores. Therefore, (Bryant et al., 2017) proposed
ERRANT, which improves edit extraction using a
linguistically-enhanced alignment algorithm and
merging rules, improving the alignment of tokens
with similar linguistic properties. Despite its effec-
tiveness, ERRANT is language-dependent and bias
still exists in multi-reference evaluation. Inspired
by BLEU (Papineni et al., 2002) in NMT, Napoles



et al. (2015) proposed GLEU, an n-gram based met-
ric for GEC evaluation. To remedy the shortcoming
that F0.5 is unable to differentiate a do-nothing sys-
tem and a bad system unless TP > 0, I-measure (Fe-
lice and Briscoe, 2015) generates an exact (global
optimal) alignment using a three-way alignment al-
gorithm and computes weighted accuracy to score
GEC systems in terms of relative textual improve-
ment. The comparison of reference-based GEC
metrics is shown in Table 6.

6.2 Reference-less Metrics
To avoid the prerequisite of references for GEC
evaluation, recent works focus on scoring GEC
systems without human-annotated references. In-
spired by quality estimation in neural machine
translation, Napoles et al. (2016) propose three
Grammaticality-Based Metrics (GBMs), which are
calculated by a benchmark GEC system or a pre-
trained ridge regression model. Asano et al. (2017)
extend GBMs by introducing three assessment
criteria for Grammaticality, Fluency and Mean-
ing preservation (GFM). SOME (Yoshimura et al.,
2020) further improves GFM by optimizing each
Grammaticality, Fluency and Meaning preservation
metric to more closely correlate with human judge-
ments. Scribendi Score (Islam and Magnani, 2021)
overcomes the limitations of SOME, requiring nei-
ther a benchmark GEC system nor fine-tuning. IM-
PARA (Maeda et al., 2022) comprises a quality
estimator (QE) and similarity estimator (SE) based
on BERT (Devlin et al., 2019), which evaluate the
quality of GEC output and semantic similarity of
two sentences, respectively.

Although recent reference-less metrics may be
highly consistent with human judgments, they al-
ways suffer from the lack of interpretability and
robustness (Bryant et al., 2022), which are crucial
factors for GEC evaluation. Additionally, evalu-
ating GEC systems by leveraging pre-trained or
fine-tuned language models could pose potential
risks. Efficiency of reference-less metrics that rely
on language models is also critical if they are used
for GEC benchmarks.

6.3 Meta Evaluation Methods
It is intractable to determine the best GEC metric.
A reasonable GEC metric should take into account
multiple factors, including correlation with human
judgments, interpretability and efficiency. Inspired
by WMT human evaluation campaigns (Callison-
Burch et al., 2008), 13 system outputs (includ-

ing the unchanged source) from the CoNLL-2014
shared task (Ng et al., 2014) were ranked based on
human rankings collected by two ranking methods:
Expected Wins (EW) and TrueSkill (TS) (Grund-
kiewicz et al., 2015). Sakaguchi et al. (2016) col-
lected 8 (2× 2× 2) annotations (minimal and flu-
ency, expert and non-expert, with two corrections
each), revealing that GEC metrics work differently
across reference sets. Napoles et al. (2019) ex-
plored how GEC metrics operate in new domains
(formal and informal writing by native English
speakers). They constructed a multi-reference GEC
test set called GMEG-Data and a new ensemble
metric GMEG-Metric.

7 Conclusion

This paper proposes CLEME, a reference-based
GEC metric that aim to provide unbiased F0.5

scores for multi-reference evaluation. We explore
evaluating GEC systems based on either the correc-
tion dependence assumption or the correction inde-
pendence assumption. Several possible approaches
can be suggested to further improve CLEME. For
example, developing (1) a GEC metric that adap-
tively combines dependent and independent as-
sumptions, and (2) a weighting strategy by utilizing
the knowledge of pre-trained model. In the future,
we would like to develop CLEME for all languages
and admonstrate the effectiveness of CLEME on
other languages. It is also worthwhile to explore
accuracy-based metrics.

Limitations

Although CLEME can be extended to other lan-
guages, we have not tested its effectiveness in
any language other than English. Furthermore,
all the reference sets used in our experiments are
based on the CoNLL-2014 shared task, a second-
language dataset. To demonstrate the robustness of
our approaches, further experiments on evaluation
datasets with multiple text domains are required.
We believe that introducing the correction indepen-
dence assumption perspective into GEC datasets of
other languages and domains could lead to more
in-depth analysis and exploration.

While recent PLM-based metrics have shown
superior correlations compared to reference-based
metrics, including ours on some reference sets, our
approach enables the evaluation of GEC systems
in an interpretable manner, which is a significant
advantage over reference-less metrics. We leave the



exploration of incorporating the PLM’s knowledge
into CLEME for future work.
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A Statistics of Reference Sets

Table 7 presents the statistics of all reference sets in-
volved in our experiments, including In-Corrected-
Chunk (ICC) ratio, Unchanged-Chunk (IUC) ratio
and Cross-Chunk (CC) ratio. It is worth noting
that all reference sets exhibit a low CC ratio with
varying ICC and IUC ratios, indicating the ratio-
nality and feasibility of evaluating GEC systems
following the correction independence assumption.

B Hyperparameters

The hyperparameters of our proposed CLEME con-
sist of scale factors α and thresholds. We tune the
hyperparameters on CoNLL-2014 and keep them
on the other reference sets to demonstrate the adapt-
ability of our method. The hyperparameters of
CLEME are listed in Table 8.

C Evaluate by Accuracy

Conventional reference-based metrics such as Max-
Match (M2) and ERRANT are unable to calcu-
late accuracy because they do not define True
Negatives (TNs) 6. In order to implement the
computation of accuracy, CLEME defines TNs
as hypothesis unchanged chunks that match the
chunks of references. Similar to F0.5, accu-
racy can be computed based on correction de-
pendence or independence assumptions in both
corpus- and sentence-level, resulting in four new
variants: 1) CLEME-dependent-acc, 2) CLEME-
independent-acc, 3) SentCLEME-dependent-
acc, and 4) SentCLEME-independent-acc.
6An exception is I-measure (Felice and Briscoe, 2015), which
adopts an extended version of the Writer-Annotation-System
evaluation scheme (Chodorow et al., 2012).
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Item CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

# Sents (Length) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0) 1,312 (23.0)
# Refs (Length) 2,624 (22.8) 13,120 (22.9) 2,624 (23.2) 2,624 (22.8) 2,624 (23.0) 2,624 (22.2)
# Edits (Length) 5,937 (1.0) 36,677 (1.0) 4,500 (1.0) 8,373 (1.1) 4,964 (0.9) 11,033 (1.2)
# Unchanged Chunks (Length) 11,174 (4.8) 93,496 (2.5) 8,887 (6.3) 12,823 (3.8) 10,748 (5.1) 14,086 (2.9)
# Corrected/Dummy Chunks (Length) 4,994 (1.3) 26,948 (2.4) 3,963 (1.2) 6,305 (1.7) 4,221 (1.2) 6,892 (2.6)
ICC (Number) 51.05% (3,031) 90.66% (33,251) 62.47% (2,811) 52.69% (4,412) 43.84% (2,176) 43.32% (4,780)
IUC (Number) 45.61% (2,708) 7.74% (2,837) 36.6% (1,647) 42.51% (3,559) 54.3% (2,698) 48.92% (5,397)
CC (Number) 3.34% (198) 1.61% (589) 0.93% (42) 4.8% (402) 1.81% (90) 7.76% (856)

Table 7: Statistics of CoNLL-2014 (Ng et al., 2014), BN-10GEC (Bryant and Ng, 2015) and SN-8GEC (Sakaguchi
et al., 2016) reference sets. We use ERRANT (Bryant et al., 2017) for edit extraction.

Configuration CLEME-dependent(-acc) CLEME-independent(-acc) SentCLEME-dependent(-acc) SentCLEME-independent(-acc)
Scale factor of TPs α1 2 2 10 10
Scale factor of FPs α2 2 2 10 10
Scale factor of FNs α3 2 2 - -
Scale factor of TNs α4 - - - -
Threshold of TPs (0.75, 1.25) (0.75, 1.25) (1.00, 10.00) (2.50, 10.00)
Threshold of FPs (0.75, 1.25) (0.75, 1.25) (0.25, 10.00) (0.25, 1.00)
Threshold of FNs (0.75, 1.25) (0.75, 1.25) (1.00, 1.00) (1.00, 1.00)
Threshold of TNs (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00)

Table 8: Hyperparameter values used in our experiments.

The results of human correlations are reported in
Table 9. Accuracy-based metrics perform very dif-
ferently at the corpus- and sentence-level, which is
similar to the findings (Napoles et al., 2016, 2019).
Surprisingly, two accuracy-based corpus-level met-
rics, i.e., CLEME-dependent-acc and CLEME-
independent-acc, result in negative correlations
on all reference sets. However, their sentence-
level variants, i.e., SentCLEME-dependent-acc and
SentCLEME-independent-acc, perform well and
achieve the highest correlations on some reference
sets. Regarding the disparity between the perfor-
mance of accuracy-based metrics and F0.5-based
metrics at the sentence level, one notable differ-
ence is their stability or robustness on reference
sets with varying numbers of references and an-
notation styles. F0.5-based metrics are more ro-
bust to different reference sets, where SentCLEME-
(in)dependent achieves comparable correlations
with the best metric on all reference sets. However,
the performance of accuracy-based metrics lags far
behind other metrics on some reference sets (BN-
10GEC, E-Minimal and NE-Fluency). A deeper
investigation into this phenomenon is needed to un-
derstand the instability of accuracy-based metrics.
We leave the exploration and further analysis of
accuracy-based metric for future work.

D Detailed Analysis

Table 10 reports the detailed evaluation results of
13 systems on CoNLL-2014. The reason behind the
lower TP and FP counts of CLEME as compared

to ERRANT is attributed to the chunk partition
process, where overlapping edits are merged into
chunks. It is worth noting that the FN counts of
CLEME are significantly lower than those of ER-
RANT because of their distinct definition. While
ERRANT considers FNs as the edits of references
that are not identical to hypotheses, CLEME de-
fines them as the corrected/dummy chunks of ref-
erences that do not exactly match the chunks of
hypotheses. We believe that the definition of ER-
RANT could be problematic, as it has a tendency to
overestimate the FN counts of GEC systems. This
may result in an underestimated Recall rate in turn.

-dependent v.s. -independent. Comparing the
Precision and Recall of (Sent)CLEME-independent
to those of (Sent)CLEME-dependent, it is observed
that the former has a slightly higher value. This
is because (Sent)CLEME-independent has the po-
tential to overestimate the performance of GEC
systems, whereas (Sent)CLEME-dependent could
result in underestimating the same. It is noteworthy
that both metrics provide an upper bound and lower
bound for GEC performance, respectively.

Corpus-level v.s. Sentence-level. The precision,
recall, and F0.5 scores of sentence-level metrics are
considerably higher than those of corpus-level vari-
ants. There might be several factors contributing
to this difference, but one possible explanation is
that precision and recall values get affected by a
limited number of challenging samples that contain
numerous corrected/dummy chunks.



Metric CoNLL-2014 BN-10GEC E-Minimal E-Fluency NE-Minimal NE-Fluency

EW TS EW TS EW TS EW TS EW TS EW TS

M2 γ 0.623 0.672 0.547 0.610 0.597 0.650 0.590 0.659 0.575 0.634 0.582 0.649
ρ 0.687 0.720 0.648 0.692 0.654 0.703 0.654 0.709 0.577 0.648 0.648 0.703

GLEU γ 0.701 0.750 0.678 0.761 0.533 0.513 0.693 0.771 -0.044 -0.113 0.674 0.767
ρ 0.467 0.555 0.754 0.806 0.577 0.511 0.710 0.757 -0.005 -0.055 0.725 0.819

ERRANT γ 0.642 0.688 0.586 0.644 0.578 0.631 0.594 0.663 0.585 0.637 0.597 0.659
ρ 0.659 0.698 0.637 0.698 0.742 0.786 0.720 0.775 0.747 0.797 0.753 0.797

CLEME-dependent (Ours)
γ 0.648 0.691 0.602 0.656 0.594 0.644 0.589 0.654 0.595 0.643 0.612 0.673
ρ 0.709 0.742 0.692 0.747 0.797 0.813 0.714 0.775 0.786 0.835 0.720 0.791

CLEME-independent (Ours)
γ 0.649 0.691 0.609 0.659 0.593 0.643 0.587 0.653 0.601 0.647 0.611 0.672
ρ 0.709 0.731 0.692 0.747 0.791 0.802 0.731 0.791 0.797 0.841 0.714 0.786

CLEME-dependent-acc (Ours)
γ -0.261 -0.342 -0.288 -0.371 -0.222 -0.313 -0.216 -0.302 -0.370 -0.453 -0.430 -0.513
ρ -0.407 -0.478 -0.445 -0.516 -0.335 -0.423 -0.347 -0.437 -0.429 -0.516 -0.473 -0.555

CLEME-independent-acc (Ours)
γ -0.175 -0.262 -0.206 -0.284 -0.195 -0.283 -0.105 -0.189 -0.335 -0.420 -0.328 -0.412
ρ -0.176 -0.264 -0.341 -0.418 -0.291 -0.379 -0.132 -0.231 -0.429 -0.516 -0.451 -0.522

SentM2 γ 0.871 0.864 0.567 0.646 0.805♣ 0.836♣ 0.655 0.732 0.729♣ 0.785♣ 0.621 0.699
ρ 0.731 0.758 0.593 0.648 0.806♣ 0.845♣ 0.731 0.764 0.797♣ 0.846♣ 0.632 0.687

SentGLEU γ 0.784 0.828 0.756 0.826 0.742♣ 0.773♣ 0.785 0.846 0.723♣ 0.762♣ 0.778 0.848
ρ 0.720 0.775 0.769 0.824 0.764♣ 0.797♣ 0.791 0.846 0.764♣ 0.830♣ 0.768 0.846

SentERRANT γ 0.870 0.846 0.885 0.896 0.768♣ 0.803♣ 0.806 0.732 0.710♣ 0.765♣ 0.793 0.847
ρ 0.742 0.747 0.786 0.830 0.775♣ 0.819♣ 0.813 0.764 0.780♣ 0.841♣ 0.830 0.857

SentCLEME-dependent (Ours)
γ 0.876 0.844 0.915 0.913 0.806♣ 0.838♣ 0.849 0.886 0.742♣ 0.795♣ 0.876 0.921
ρ 0.824 0.808 0.835 0.874 0.775♣ 0.819♣ 0.824 0.863 0.797♣ 0.846♣ 0.791 0.846

SentCLEME-independent (Ours)
γ 0.868 0.857 0.855♣ 0.876♣ 0.821♣ 0.856♣ 0.841 0.877 0.782♣ 0.831♣ 0.852 0.896
ρ 0.725 0.758 0.659♣ 0.714♣ 0.775♣ 0.819♣ 0.808 0.846 0.819♣ 0.874♣ 0.762 0.825

SentCLEME-dependent-acc (Ours)
γ 0.828 0.857 0.650 0.719 0.808♣ 0.838♣ 0.679 0.740 0.757♣ 0.811♣ 0.557 0.641
ρ 0.813 0.841 0.682 0.740 0.830♣ 0.852♣ 0.731 0.786 0.853♣ 0.894♣ 0.655 0.702

SentCLEME-independent-acc (Ours)
γ 0.900♣ 0.920♣ 0.604♣ 0.555♣ 0.693♣ 0.637♣ 0.840♣ 0.891♣ 0.791♣ 0.763♣ 0.756♣ 0.822♣

ρ 0.830♣ 0.849♣ 0.363♣ 0.303♣ 0.588♣ 0.544♣ 0.857♣ 0.890♣ 0.654♣ 0.626♣ 0.747♣ 0.819♣

Table 9: Overview of correlations between reference-based metrics and human judgments. We highlight the highest
score in bold and the second-highest score with underlines. ♣ We remove unchanged reference sentences for higher
correlations due to low-quality annotations. Otherwise, negative correlations are possible.

Metric AMU CAMB CUUI IITB INPUT IPN NTHU PKU POST RAC SJTU UFC UMC

ERRANT

TP 483 725 607 28 0 52 409 294 508 319 104 36 311
FP 795 1329 985 65 0 488 991 697 1152 794 261 14 774
FN 1934 1886 1946 2064 2070 2078 1976 2007 1985 2044 2036 2069 2020
P 37.79 35.30 38.13 30.11 100.0 9.63 29.21 29.67 30.60 28.66 28.49 72.00 28.66
R 19.98 27.77 23.78 1.34 0.00 2.44 17.15 12.78 20.38 13.50 4.86 1.71 13.34
F0.5 32.08 33.48 34.02 5.68 0.00 6.06 25.61 23.46 27.81 23.40 14.44 7.81 23.31

CLEME-dependent

TP 314 482 379 17 0 33 266 195 333 203 69 24 213
w/o LW 382 588 471 22 0 39 330 246 412 254 85 32 216

FP 872 1392 1034 72 0 529 975 776 1246 782 292 19 844
w/o LW 815 1303 964 67 0 488 905 709 1144 782 272 18 788

FN 1182 987 1169 1564 1592 1445 1191 1259 1158 1278 1471 1583 1266
w/o LW 1345 1132 1333 1751 1782 1634 1366 1426 1333 1453 1657 1772 1439

TN 6312 6347 6245 6313 6308 6412 6295 6314 6449 6310 6324 6280 6377
P 26.45 25.74 26.81 19.29 100.0 5.85 21.42 20.06 21.07 20.60 19.02 56.40 20.14
R 20.97 32.84 24.48 1.09 0.00 2.22 18.23 13.39 22.31 13.71 4.45 1.52 14.40
F0.5 25.14 26.90 26.31 4.45 0.00 4.41 20.69 18.24 21.31 18.72 11.50 6.85 18.65

SentCLEME-dependent

P 63.05 41.07 57.60 95.27 100.0 67.45 55.17 63.62 53.26 65.05 82.90 98.70 61.78
R 48.87 59.94 51.21 32.37 31.33 36.07 49.71 44.84 50.61 44.57 36.06 32.15 44.43
F0.5 36.24 32.94 37.39 31.51 31.33 23.25 32.24 32.56 33.34 32.37 31.93 32.30 31.46

CLEME-independent

TP 318 488 392 17 0 33 272 196 339 204 69 24 214
w/o LW 388 596 487 22 0 39 338 248 420 255 85 32 262

FP 864 1382 1016 72 0 529 965 773 1236 781 292 19 843
w/o LW 809 1295 948 67 0 488 897 707 1136 781 272 18 787

FN 928 701 884 1362 1393 1246 937 1022 883 1025 1266 1372 1026
w/o LW 1029 778 984 1497 1530 1382 1045 1129 990 1135 1398 1506 1136

TN 6629 6701 6597 6567 6560 6664 6617 6611 6793 6628 6583 6546 6680
P 26.90 26.11 27.85 19.29 100.0 5.85 22.00 20.23 21.50 20.69 19.02 56.40 20.22
R 25.53 41.06 30.71 1.25 0.00 2.57 22.52 16.10 27.72 16.59 5.14 1.75 17.23
F0.5 26.61 28.16 28.38 4.97 0.00 4.66 22.10 19.24 22.51 19.71 12.35 7.77 19.54

SentCLEME-independent

P 65.36 45.39 60.92 95.27 100.0 67.51 57.44 65.03 56.26 66.65 83.17 98.70 63.36
R 57.20 70.15 60.76 36.87 35.29 40.56 58.08 52.20 59.83 52.14 41.31 36.59 51.94
F0.5 42.00 39.63 43.76 35.49 35.29 25.90 38.13 37.43 39.38 37.04 36.25 36.48 36.59

Table 10: Detailed evaluation results across 13 GEC systems on CoNLL-2014.



Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7

Source If not their family then who else that are willing to do that ?
Ref. 1 If not their family then who else will be willing to do that ?
Ref. 2 If not their family then who else would be willing to do that ?
Ref. 3 If not from your family then who else is willing to do that ?
Ref. 4 If not their family , then who else will be willing to do that ?
Ref. 5 If not their family then who else will be willing to do that ?
Ref. 6 If not their family who else would be willing to do that ?
Ref. 7 If not their family then who else will be willing to do that ?
Ref. 8 If not their family , who else is willing to do that ?
Ref. 9 If family do not help then who else would be willing to do that ?
Ref. 10 If not their family , then who else is willing to do that ?

Table 11: A case of correction independence. We apply chunk partition to the source and all the references.

Chunk 1 Chunk 2 Chunk 3 Chunk 4
Source For not use car .
Ref. 1 Not for use with a car .
Ref. 2 Do not use in the car .
Ref. 3 Car not for use .
Ref. 4 Can not use the car .

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6
Source One person if do n’t have good health that means so many things they could lost .
Ref. 1 If a person does n’t have good health , so many things could be lost .
Ref. 2 If one person does not have good health , that means they could lose so many things .
Ref. 3 If one person does n’t have good health , that means they could lose so many things .
Ref. 4 If one person does n’t have good health , that means so many things they could lost .

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6
Source 今天 听天气预报说 今 天 还有天气 冷。
Ref. 1 听天气预报说 今 天 天气 冷。
Ref. 2 今天 听天气预报说 天 气还会变 冷。
Ref. 3 听天气预报说 今 天 天气还会变 冷。

Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5 Chunk 6 Chunk 7 Chunk 8
Source 所以 我从小到现在在这些快餐 吃饭的机会很少 。 对我来说每 次 饭都很重要。
Ref. 1 所以 我从小到现在在这些快餐 店 吃饭的机会很少 。 对我来说每 顿 饭都很重要。
Ref. 2 所以 我从小到现在在这些快餐 店 吃饭的机会很少 。 对我来说每 次吃 饭都很重要。
Ref. 3 我从小到现在在这些快餐 店 吃饭的机会很少 ，所以 对我来说每 次吃 饭都很重要。
Ref. 4 我从小到现在在这些快餐 店 吃饭的机会很少 ，所以 对我来说每 顿 饭都很重要。

Table 12: More cases of chunk partition. These tables are automatically generated by CLEME. The first two cases
are from JELEG-dev, and the next two cases are from MuCGEC-dev.



E Correction Independence

We introduce the term correction independence
to describe a pair of chunks where the correction
of each chunk is not related to the correction of
the other, as illustrated in Table 11. Specifically,
chunk 2 and chunk 4 are considered correction-
dependent because the correction of chunk 2 family
do from Ref.9 must be matched with the correction
of chunk 4 help then from Ref.9. However, chunk
6 is correction-independent with chunk 2 (or 4)
since the correction of chunk 6 has no impact on
the correction of chunk 2 (or 4).

F More cases

We list more cases in Table 12, which involve
JFLEG (Napoles et al., 2017) for English, and
MuCGEC (Zhang et al., 2022) for Chinese.


