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Abstract

Large Language Models (LLMs) are capable of answering many software related questions
and supporting developers by generating code snippets. These capabilities originate from
training on massive amounts of data from the Internet, including information from Stack
Overflow. This raises the question whether answers to software related questions are sim-
ply memorized from the training data, which might raise problems as this often requires
attribution (e.g., CC-BY license), sharing with a similar license (e.g., GPL licenses) or may
even be prohibited (proprietary license). To study this, we compare responses to questions
from Stack Overflow for questions that were known during LLM pre-training and questions
that were not included in the pre-training data. We then calculate the overlap both with
answers marked as accepted on Stack Overflow as well as other texts we can find on the
internet. We further explore the impact of the popularity of programming languages, the
complexity of the prompts used, and the randomization of the text generation process on
the memorization of answers to Stack Overflow. We find that many generated answers are
to some degree collages of memorized content and that this does not dependent on whether
the questions were seen during training or not. However, many of the memorized snippets
are common phrases or code and, therefore, not copyrightable. Still, we also have clear
evidence that copyright violation happens and is likely when LLMs are used at large scales.

1 Introduction

A common criticism of generative Large Language Models (LLMs), such as ChatGPT,® Gemini,? and Claude®
is that they are stochastic parrots (Bender_ef—all, 2021). This means that they recombine existing texts
based on inferred probabilities. Thus, under the stochastic parrot hypothesis, the LLMs generate collages
in a probabilistic manner. When we consider the training procedures of such models, which are aimed at
predicting the probability of the next token given an already existing text (prompt) (Radford et all, 2019)
such a postulate makes sense. However, because the models learn probabilities of individual tokens, it is not
clear if this really leads to a recombination of longer text fragments as well, if such fragments are re-used
exactly as is, if they are modified (e.g., replacement of synonyms), or if the generated texts deviate more
from the source training material. Moreover, while such a hypothesis is easier to argue for when the prompts
are similar or equal to the training data, it is unclear what happens when we work with prompts that were
not seen during training. Further, such models are not only trained to predict next tokens, but also post-
trained to align their outputs with human preferences (Ouyang et all, 2022). To gain a better understanding
regarding these aspects, our research is guided by the following research question: To which degree are texts
generated by LLMs collages of the training data?

Within this study, we investigate this aspect of LLMs by considering data from the developer question and
answer site Stack Overflow.? Thus, we study our research question with respect to data from the software
engineering domain and for the task of answering open-ended questions. These answers generally require
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longer, semantically coherent text and expressions. Since Stack Overflow is part of many corpora for the
training of LLMs (e.g. the Pile (Gao et all, D020)), we assume that the question/answer pairs from Stack
Overflow prior to the cutoff date for the creation of the training data are known. Vice versa, we can safely
assume that question/answer pairs that were generated after the publication of the LLM are not used for
training. We utilize this to create sample corpora of questions that were known and not known during
training, along with their respective answers on Stack Overflow. Questions from the sample corpora are used
as LLM-prompts. We then analyze the subsequence overlap of the LLM response with the true answers.
In addition, we search for matching subsequences in a large, recent Web-Crawl (Granitzer_ef all (2023)) to
identify potential training data re-use outside of the Stack Overflow corpora. Studying these overlaps helps
us to understand if generated texts are collages, where the data for the collages might have been sourced
from, and if this effect is similar for questions seen during training and unknown questions. It also allows
to study potentially arising copyright issues, particularly missing attributions. Our research will improve
our understanding of how longer texts are related to the underlying training data, which has implications
on the capabilities of an LLM to answer questions outside the scope of its training data as well as possible
issues with copyright. This is not only relevant for the foundational research for the advancement of LLMs,
but should also help us better understand the legal risks resulting from the capability of memorization that
affect both text generation,® as well as image generation in bi-modal models.?

Our results indicate that memorization of common phrases and code is common and that outputs are
typically, at least to some degree a collage of such memorized content, that is likely not protected by
copyright. Importantly, this is the case for both questions seen during training and new questions. Only a
small amount of memorized content was long enough and non-common, though we also found clear evidence
of memorization that is likely violating copyright. This raises concerns when LLMs are used at large scales.

Disclaimer: This paper does not provide legal advice, but rather only a scientific analysis of data with
respect to memorization and possible copyright concerns.

2 Related Work

The previous work can be divided into three areas: plagiarism, privacy and security, and direct measurement
of memorization. The first perspective on memorization is to consider plagiarism. Plagiarism is similar
to memorizing content, especially when this is considered based on automated plagiarism checkers. Such
plagiarism checkers are able to compare documents to an existing database of literature and determine
passages that are textually equal or similar. de Wynter et all (2023) use plagiarism detection to investigate
LLM outputs regarding discourse and memorization of a diverse set of LLMs, e.g., ChatGPT, Bloom (Scad
ef-all, 2023), and Galactica ([Laylor et all, 2022). They find that up to 80% of outputs contain plagiarized
content, but also that this can be reduced by adopting prompts that specifically tell the model to avoid
memorized content. Lee_ef all (2023) investigate types of plagiarism with pre-trained and fine-tuned models
using GPT-2 (Radford et all, 2019) and different fine-tuned GPT versions, e.g., PatentGPT.? They find that
GPT-2 plagiarized from OpenWebText (Gokaslan & Coherl, 2019) and that the fine-tuning has an impact
on plagiarism of pre-training data: when the fine-tuning data overlaps with the pre-training data, this
may reinforce memorization, while new fine-tuning data can reduce the memorization of pre-training data.
Mueller_et all (2024) show that the number of potential copyright infringements varies greatly depending on
the model, with bigger models generally producing more copyrighted texts.

In the second area, the authors come from a privacy and security perspective and investigate reproduction
of private or security sensitive content. Huang et all (2023) investigate reproduction of secret information
in neural code models. They found that they can extract valid cloud credentials via autocomplete from
Github Copilot® and Amazon CodeWhisperer.? Liikasef all (2023) investigate the reproduction of Personal
Identifiable Information (PII) from GPT-2. The authors propose attacks and mitigations for PII extraction
and evaluate them on GPT-2. They show that GPT-2 can reveal PII, demonstrating the model’s capability
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for memorization. More recently, Nasr_ef all (2023) explore extraction of training data from aligned models
via a novel divergence attack on open source models and ChatGPT. They show that they are able to extract
training data at a high rate.

The final area is concerned with direct estimation of memorization in models and its impact on how the
models work. Riderman_ef all (2023) built a framework for comparing LLMs trained on the same data. The
authors also evaluate memorization and find that a Poisson point process is a good approximation for the
occurrence of memorized sequences over the process of training. Kandpal et al] (2022) explore the effect of
duplication on memorization of training data. They show that duplicated data is memorized more effectively,
demonstrating a need for deduplication of the training dataset as a measure to prevent memorization. Rabin
efall (2023) investigate the effects of noise and memorization in neural code models. They found that
memorization is common in code models and that both correct but also noisy information is memorized.
Carliniefall (2023) quantify boundaries for the amount of memorization. The authors find that memorization
scales log-linear with model size. This makes it important to study larger models as the authors largest model
consists of 7B parameters. Similarly, Kiyomaru et all (2024) show that memorization occurs more frequently
with larger models, increasing prompt length and higher text frequency in the training data. However, they
also discover that texts that are not part of later training steps are reproduced less often, even if they appear
frequently in the training data. Wang et all (2025) investigate how the task type affects memorization,
showing that knowledge-intensive tasks exhibit the largest memorization effect. Schwarzschild et all (2024)
propose an algorithm for prompt-optimization which they use to assess memorization in the context of
unlearning methods, demonstrating that models trained on the employed methods can still reproduce large
parts of the supposedly unlearned data. While the above literature is focused on GPT-style models (Radford
efall, 01Y), Zeng et all (P024) considered sequence-to-sequence models based on the T5 architecture (Ratfel
ef_all, 2020). They found that memorization is also common in sequence-to-sequence models, but also that
multi-task fine-tuning reduces memorization.

While the prior work provides strong results regarding memorization, our work completes our understanding
regarding two crucial, not yet studied issues. First, we specifically distinguish between memorization of
training data, when we consider questions that were also part of the training and memorized content that
is re-used for questions that are not directly observed during training. This allows us to understand to
which degree memorization can happen in arbitrary tasks, even those that are not directly in the training.
Second, we manually validate not only if memorization happens, but also if memorized fragments may be
copyrightable. While some works, e.g., Mueller_ef all (2024) did a similar analysis, this was on fairly long
texts (at least 160 characters) and only for a task where they specifically asked to reproduce content. Instead,
our analysis allows us to understand to which degree memorization occurs naturally in generated texts, as
well as whether the memorization is rather just for common phrases and code versus actual protected content
that has a certain level of originality.

2.1 Research Hypothesis

As described above, we want to understand the use of collages within generated texts as a means to study
memorization. We use syntactic similarity observed through sequences of tokens that overlap between
generated texts and reference as means to study collages. Further details on how this is measured are
described later in Section B=. Based on the literature we discussed above, we derive the following concrete
hypothesis that we want to test within this study.

H1 LLM-generated answers to Stack Overflow questions are syntactically more similar to accepted human
answers for questions observed during the pre-training of models in comparison to new questions.

H2 LLM-generated answers for popular programming languages are syntactically further away from the
training data than for niche languages.

H3 Complex prompts following the style of questions in the training data increase the syntactic answer
similarity to the training data and the amount of memorization within generated answers.

H4 Generation of content without randomness increases that amount of memorized outputs.
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Hypothesis H1 is based on the common observation from the literature that LLMs are in general capable of
memorization. Consequently, for out-of-distribution questions, i.e., questions not contained in the training
data, the overlap of generated answers with answers in the training data should be smaller than for questions
from the training. Importantly, if this prediction turns out to be false, this would in turn imply that all
contents that LLMs generate are equally similar to the training data, regardless of whether the prompts were
observed during training or not. Hypothesis H2 is based on observations from the literature regarding the
impact of duplication (Kandpal et all, 2022). These indicate that a larger diversity in data leads to lower
memorization. Consequently, assuming that the diversity of the training data is higher for popular languages,
the syntactic overlap with the training data should also be higher. Hypothesis H3 is derived from the work
by de Wynter et al] (2023), who found that the choice of a prompt impacts the amount of plagiarism and can
be also used to reduce it. Vice versa, it should also be possible to use the prompts to trigger plagiarism, by
requiring the LLMs to write in a certain style. Hypothesis H4 follows from the technical aspects of the text
generation process. If a response to a prompt is indeed memorized, this memorized content should have the
highest probability given a prompt. The role of randomization of the next token based on the distribution
from training is then to allow the model to deviate from the memorized content.

3 Methods

We now describe our research method in detail, i.e., the subjects, variables, how we execute the study to
collect the required data, as well as the analysis of the collected data. Notably, we design our study protocol
in a manner that does not require direct access to the training data. While concrete knowledge about the
training process would be beneficial, this is unfortunately unrealistic for the recent generation of LLMs,
where the training process has become a business secret. To still be able to study such models, we instead
design our protocol around reasonable assumptions on the data used during the training process.

3.1 Subjects

The subjects of our study are two-fold: generative LLMs and Stack Overflow posts. The main subjects of
our study are generative LLMs. We study these models by analyzing their outputs with respect to content
from Stack Overflow.

To determine which LLMs we use as subjects, we define the inclusion criteria (see Table @ in the appendix).
The criteria have the goal to enable the evaluation of state-of-the-art models and at the same time enable
us to guarantee that we can be reasonably sure that a) Stack Overflow posts were likely part of the training
or b) Stack Overflow posts were not influenced by information provided by a LLM, posts where users did
not use an LLM either in writing the question or for formulating an answer. Based on these criteria, we
cannot consider the latest generation of models like ChatGPT 4, Gemini, or Llama 2 (Touvron ef-all, 2023)
and newer, because the cutoff date for their training data is after the public release of ChatGPT. Overall,
only two LLMs meet these criteria: ChatGPT 3.5 Turbo, ™ which is an instruction fine-tuned version of
GPT-3 Brown ef all (2020) and Vicuna™, which is an instruction-fine-tuned version of Llama Tonvron ef all
(2023). We decided to rather use the publicly available Vicuna model for our study, to facilitate future
replication of our work. An additional concern with the use of GPT-3.5 Turbo would be updates that
OpenAl has done since the release, that possibly extended the training data cutoff date. Such concerns do
not exist with Vicuna.

Our second set of subjects are posts collected from Stack Overflow. We use the inclusion criteria depicted
in Table B. These inclusion criteria are designed to select pairs of questions and accepted answers in a
manner that ensures a certain level of quality by requiring positive votes. Further, we collect only posts with
certain tags to only include posts related to pre-defined programming languages. We use the Tiobe ranking
of popularity of programming languages based on Web search data from 2020™ to determine programming
languages that are popular and those that are less popular, in the following referred to as popular and niche
programming languages. This selection assumes that programming languages that are more often searched

10 https://platform.openai.com/docs/models/gpt-3-5-turbo
https://1msys.org/blog/2023-03-30-vicuna/
12 https://web.archive.org/web/20201231062825/https://www.tiobe.com/tiobe-index/
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Date range Popular languages Niche languages

01/2020-12/2020 P20 with 157,558 question/answer pairs N20 with 5,939 question/answer pairs
09/2022-11/2022 P22 with 32,148 question/answer pairs ~ N22 with 1,323 question/answer pairs

Table 1: Identifiers and amount of posts retrieved for the different subsets of posts from Stack Overflow.

for by developers also receive more attention on Stack Overflow and that there are also more resources for
such languages on the internet in general. We use the Top-10 programming languages from the Tiobe index
as popular languages and ranks 51-100 to define niche programming languages. For each of these languages,
we determine the related tags on Stack Overflow and then create subsets with all posts that contain one of
the tags. Table B lists the tags we identified for this filtering. The selection of these subsets enables us to
study the possible impact of the amount of information available on a topic on memorization.

For both subsets, we collect posts from 2020 as well as from June to November 2022. The data from 2020
was almost certainly part of the training of the models we used. The data from 2022 is too recent for the
LLMs we study and, thus, was not used for their training of the foundation model, i.e., Llama. A risk that
this data was used for the instruction tuning of the initial version of ChatGPT can also be ruled out, since
this was done using hand-written responses by a dedicated team (Ouyang et all, 2022). The post-training
of Vicuna has happened after the release of ChatGPT and is based on ChatGPT conversations collected in
the ShareGPT™ data.

Overall, this means we collect the four sets of Stack Overflow posts depicted in Table M and use these to
evaluate how similar the answers to these questions generated by Vicuna are to the existing answers, as well
as other information from the internet.

3.2 Variables

Since our goal is to understand to which degree the answers are collages from the training data, we define
variables to measure the similarity between the generated answers by the LLMs and the other data sources.
In this comparison, we are only interested in the syntactic similarity, not in the semantic similarity. Thus,
we do not care about meaning, but rather only about the words and the combinations that were used. In
terms of memorization, this means we only consider exact memorization. We conduct two such comparisons.

First, we compare the answer from the LLMs to the accepted answer given on Stack Overflow. To formally
define this, we refer to a generated answer as X9 = (2", ..., 29°") and to a reference answer from Stack
Overflow as X% = (27, ..., }%,) such that zJ",i = 1,...,m and 23°,j = 1,...,m’ are the sequences of tokens
of the generated answer/solution. Thus, we compare the token streams of the LLM answer and the Stack
Overflow answer. We compare these token streams using metrics from the ROUGE suite for measuring text
similarity Linl (2004). ROUGE metrics directly look at the overlap between subsequences between two texts,
which is exactly what we are interested in with our syntactic comparison. A large overlap would be an
indication for collages. Concretely, we use two variants of ROUGE. The first variant is ROUGE-N, which is
defined as

> gramy, e xaen CountMatches(gramy,, X*°)

> gram, e xgen CountMatches(grams,, X9¢)

ROUGE-N(n) = (1)
where gram,, € X9 are all n-grams from X9¢* and CountM atches is a function that counts how often an
n-gram match occurs in a sequence of tokens. Thus, we count how many of the n-grams from the generated
texts appear in a reference answer from Stack Overflow.

Additionally, we compute
LCS(X9en, X580
Rlcs = ( m ) (2)

where LC'S computes the longest common subsequence between two texts. This metric is not directly
available within ROUGE, but rather one of the components used to compute ROUGE-L, which would also

13 https://sharegpt.com/
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use m’ to normalize the overlap, i.e., the length of the reference solution. However, since we are only
interested in whether text from the reference is used in the generated answer and not if all text from the
reference appears in the generated answer, using only Rj.s gives more reliable data, in case the generated
answers are shorter than the reference answers.

Since training data for LLMs is not limited to Stack Overflow, but is rather sourced from large Web crawls
like Common Crawl,™ it is also possible that the generated answers are collages of other texts from the
training. While the training data is mostly based on data that can be searched for on the internet (with the
possible exception of the book corpora used), the data set is neither fully specified nor publicly available.
Consequently, we cannot search for overlaps between the generated answers and the training data directly.
Instead, we simply use a Web search for exact matches to understand to which degree we have an overlap
with data possibly seen during training. We take the pattern from ROUGE-N and define

> gram, e xoen HasWebMatch(gram,, )

WEB-ROUGE-N(n) = lgram,, € X9n|

(3)

where HasWebMatch is defined as whether there is an exact match for an n-gram with a Web search where
we restrict the time to search hits older than the cutoff date for the pre-training. Specifically, we use 55
datasets from the OpenWebSearch project Granitzer et all (2023)™ from February to April 2024 for this
purpose, summing up to a total size of 3.3 TB. Since we are interested in English Stack Overflow posts, we only
considered the English part of the OWS data, roughly 1.3TB. Overall, the datasets contain crawls from 4.1M
different hosts and 195M unique URLs. The data is publicly available under https://openwebindex.eu.

For ROUGE-N(n) and WEB-ROUGE-N(n), we need to specify the length of the n-grams we want to consider
for the memorization. The literature on plagiarism detection suggests four words for precise plagiarism
detection based on n-grams (Barron-Cederio & Rossd, 2009). Considering the rule of thumb that a token
is roughly % of a word,™ we should use 4 - % = 5.33 grams, which we round up to n = 6. Thus, we

consider information to be memorized when we have six subsequent tokens overlapping between the generated
sequence and the accepted answer for ROUGE-N(n), respectively, the Web corpus for WEB-ROUGE-N(n).

3.3 Data collection

We use a data dump from Stack Overflow™ to collect the posts according to the criteria defined in Section B
Once we have all data available, we generate answers for each question with Vicuna. We use two different
prompts to answer these questions (see Table @ in the Appendix). With the simple prompt, we just ask the
question directly without changing anything or providing any instructions to the LLM. This way, we get a
“natural” reaction from the LLM that is not guided by us. With the second prompt, we try to bias the
output in a direction, that makes a collage more likely, by first structuring the information in the same way it
is available on Stack Overflow and then also asking for an answer in this style. The idea is that this prompt
increases the likelihood that a generated answer is indeed a collage from Stack Overflow, because that is what
we are actively looking for. We use two different temperatures to generate the answers. The temperature is
a parameter that influences the randomness of the generated text by modifying the probability of sampling
tokens. First, we set the temperature of the models to zero. This means that we avoid randomness and
creativity in the outputs and just use the most likely next token all the time without sampling. Our rationale
is that this increases the pressure on the model to create collages, because the randomness is part of what
allows the model to generate new content. Next, we set the temperature to one. With a temperature of one,
we sample according to the distribution of the next token determined by the LLM. This means that there
is more randomness in the generation of the answers which could decrease the use of collages or mean that
combined sentence fragments become shorter. Overall, this means we have 16 different sets of of results, i.e.,
the combinations of four subsets of Stack Overflow posts, i.e., P20, N20, P22, and N22; and four answers
from the LLMs for each post with different prompts and temperatures. When presenting, analyzing, and

14 https://commoncrawl.org/
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discussing results, we identify these by a triple of year and programming language, prompt, and temperature,
e.g., (P20, simple, low).

3.4 Statistical analysis

We compute the Rjcs, ROUGE-N(n) and WEB-ROUGE-N(n) for n = 6 as defined in Section B2 for all 16
data sets with different combinations of Stack Overflow posts, prompts, and temperature. For each approach,
we report the mean value, as well as a 95% confidence interval for the mean value. We compute the confidence
intervals in a non-parametric manner using bootstrap sampling Efron (1979). We use a Bonferroni-corrected
significance level of o = % ~ 0.001 to compute these intervals to account for the multiple tests. We do not
conduct additional statistical tests, but rather use the confidence intervals to determine significance. Hence,
we conclude that results are significantly different with a confidence level of 95%, if their confidence intervals

results do not overlap.

We analyze our hypothesis based on the results of our study and the expected observations in our data they
predict.

o H1 predicts that the overlaps in text we compute for the data from 2020 should be larger than for
the data from 2022, as the questions from 2020 were part of the training data. In our data, this
means that we fix the prompt, and temperature, and then compare the P20 to the P22 data and
the N20 to the N22 data. We expect that the overlap for P20/N20 is larger than for P22/N22.

e H2 predicts that the overlaps for niche languages are larger than for popular languages. In our
data, this means that we fix the year, prompt, and temperature and compare the results for popular
languages to niche languages. We expect that the overlap for N20/N22 is larger than for P20/P22.

o H3 predicts that a complex prompt can increase memorization. In our data, this means that when
we fix the year, popularity, and temperature, we expect that the overlap is larger for the complex
prompt than for the simple prompt.

e H4 predicts that less randomness means more memorization. In our data, this means that we fix
the year, popularity, and prompt. We expect that the overlap for the low temperature is larger than
for a higher temperature.

For all of the above, we carefully analyze the difference between ROUGE—N (n) and WEB—ROUGE—N (n)
to understand from where information may have been memorized and to which degree generated language
deviates from language on Stack Overflow and the internet in general.

3.5 Qualitative analysis of overlaps

While collages indicate that text fragments were memorized, this does not automatically imply that they
would be copyrightable, as this requires a certain level of originality. For example, a common phrase like “our
research is peer-reviewed” is sufficiently long to assume that this wording might have been memorized, but
this would not be original and, therefore, copyrightable. To understand not only if we observe memorization,
but also what is memorized, we conduct a qualitative analysis of the collages. Since our total corpus of data
is too large for a full analysis over all languages, prompts, and years, we use sampling to collect a suitable
subset for our qualitative analysis. We control for the length of the n-grams and the occurrence frequency
during the sampling.

e The length of the n-gram. Short sequences with few tokens are less likely to meet the threshold
for originality and are more likely to be randomly occurring. We consider short sequences at the
threshold of what we consider collages (6-10 tokens), longer phrases (11-20 tokens) and longer texts
(21+ tokens) as subgroups for the qualitative analysis.

e Occurrence frequency. How often a phrase is found in the Web corpus may be related to its originality,
i.e., low frequency texts might be more original than high-frequency texts. However, high-frequency
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could still be original, e.g., the texts of license agreements. We distinguish if n-grams are found only
once in the web corpus (unique), multiple times but less than the median in the corpus (2-4 times)
and more often than the median (4 times).

For each combination of n-gram length and occurrence frequency, we sample 40 sequences, i.e., 3-3-40 = 360
sequences of tokens that were generated by the LLM and found in the Web corpus.

Each sequence is independently annotated by two of the authors using deductive coding. The codes were
defined as “common code”, “ common phrase”, “copyrightable code”, and “copyrightable phrase”. Thus,
the annotators were asked to determine if the n-gram is a code-snippet or some other phrase and to judge
whether they believe this is original and, therefore, possibly copyrightable. Optionally, the annotators could
provide a comment to explain their judgment. We report the confusion matrix of the agreements, as well as
Cohen’s k (Cohen, 1960) as measure for the reliability of the annotations.

4 Results

In the following, we present the results of our work. To facilitate replication, all data and code used to obtain
these results are available online: BLINDED

4.1 Overview of the metric distributions

Figure 0 shows the distribution of variables for each of the subgroups. The mean values, incl. confidence
intervals can be found in Table B. Our first observation is that for all plots, the difference between the
data from 2020 and 2022 is very small. While we will look at this in greater detail later when studying the
hypothesis, the broad trends regarding the syntactic overlaps are, apparently, independent from whether the
data was seen during training.

In general, the 6-gram overlap between the actual answers and the generated answers measured with
ROUGE-N(6) is very low and, on average not more than 3.8% in any subgroup of our data. Similarly,
answers are typically not fully memorized with a mean Ry cg of at most 19% of the whole answer. However,
looking at the distributions depicted in the violin plots, both distributions have long tails, indicating that
while rare, stronger memorization does happen. When looking at the overlap of the generated answers and
content found on the internet, we observe that the average WEB-ROUGE-N(6) is between 10.6% and 17.5%
for the respective subgroup. This is significantly higher than for ROUGE(6), i.e., a notable part of the texts
that are likely not random can be found as is on the internet. Whether this text was part of training is
something we cannot answer due to a lack of access to the training data, but observing exact overlaps of six
tokens with that ratio is unlikely to be an artifact of our evaluation. Still, this is a strong indication that
generated texts are, at least partially, indeed collages of the training data.

Exact memorization of answers is rare but seems to happen in data seen during pre-training. In-
terestingly, we also observe very similar syntactic memorization patterns for answers not seen during
pre-training. Furthermore, all generated texts have a notable overlap with text available on the internet,
indicating that answers are also, at least partly, borrowed from other sources.

4.2 Evaluation of Hypothesis

In the following, we will look at these result with respect to our hypothesis in detail. This analysis is based
on Table B that summarizes the differences between relevant subgroups for the hypotheses H1-H4.

H1: LLM-generated answers to Stack Overflow questions are syntactically more similar to ac-
cepted human answers for questions observed during the pre-training of models in comparison
to new questions. Our results indicate that there are significant differences for popular programming
languages. For the niche languages, we do not observe any significant differences. However, contrary to our
expectation, the direction is that the overlap between the generated and actual answers is higher for the P22



Under review as submission to TMLR

1.00

2 0.751
& 0.50 1
=}

no: 0.25 1

0.00

1.00

0.75 1
0
S 0.50 A
o

0.25 1

0.00

WEB — ROUGE
o —
5 o

<
o

a) Simple prompt

1.00
ZI 0.75 -
8 0.50 4
3
& 0.251
" " 0.00
Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1
1.00
0.75 -
0
S 0.50
o
0.25 -
" " 0.00
Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1
1.01
w
S
=]
Q
5 J =05
i
N
4 B 00 B
Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1

b) Complex prompt

Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1
Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1
Niche Popular Niche Popular
Temp.=0 Temp.=0 Temp.=1 Temp.=1

Figure 1: Distribution of the scores for all configurations. The violins are split by year.

Set Year Complexity Diff. ROUGE-N(6) Ryics WEB-ROUGE-N(6)
M CI ‘ M CI M CI

simple low 0.020 [0.018, 0.022] | 0.173 [0.170, 0.175] | 0.119 [0.117, 0.121]

20 simple high | 0.018 [0.016, 0.020] | 0.167 [0.165, 0.170] | 0.114 [0.111, 0.116]
complex low 0.020 [0.018, 0.022] | 0.165 [0.162, 0.168] | 0.106 [0.104, 0.107]

N complex high | 0.018 [0.016, 0.020] | 0.158 [0.155, 0.161] | 0.107 [0.106, 0.109]
simple low 0.021 [0.017, 0.025] | 0.176 [0.170, 0.182] | 0.117 [0.112, 0.121]

929 simple high | 0.019 [0.015, 0.023] | 0.168 [0.162, 0.174] | 0.112 [0.108, 0.116]
complex low | 0.020 [0.017,0.024] | 0.166 [0.161, 0.172] | 0.105  [0.101, 0.109]

complex high | 0.020 [0.016, 0.024] | 0.162 [0.156, 0.167] | 0.102  [0.098, 0.106]

simple low | 0.034 [0.033,0.034] | 0.186 [0.185, 0.187] | 0.171  [0.170, 0.171]

20 simple high | 0.030 [0.030, 0.031] | 0.179 [0.179, 0.180] | 0.164 [0.164, 0.165]
complex low | 0.033 [0.032,0.033] | 0.177 [0.176, 0.177] | 0.159  [0.158, 0.159]

P complex high | 0.029 [0.029, 0.030] | 0.169 [0.168, 0.170] | 0.154 [0.154, 0.155]
simple low 0.038 [0.037, 0.039] | 0.192 [0.191, 0.195] | 0.166 [0.165, 0.167]

y,  simple high | 0.034 [0.033,0.036] | 0.185 [0.184, 0.187] | 0.161  [0.159, 0.162]
complex low | 0.036 [0.035,0.038] | 0.182 [0.181, 0.184] | 0.156  [0.155, 0.157]

complex high | 0.033 [0.032, 0.034] | 0.174 [0.172, 0.176] | 0.152  [0.151, 0.153]

Table 2: Mean values (M) and confidence intervals (CI) for each metric and each subgroup within our data.

data than for the P20 data, i.e., the generated answers are more similar to answers not seen during training.
This is consistent across all three metrics.

We reject H1 and even observe a slight opposite trend indicating that the newer, unseen data is syntac-

tically closer to the LLM output than data that was part of the pre-training.

H2: LLM-generated answers for popular programming languages are syntactically further

away from the training data than for niche languages.

Our results provide a strong indication for
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Comparison ROUGE-N(6) Rrcs WEB-ROUGE-N(6)
H1 (P20, simple, low) vs. (P22, simple, low) -0.004 -0.006 -0.005
(P20, simple, high) vs. (P22, simple, high) -0.004 -0.006 -0.003
(P20, complex, low) vs. (P22, complex, low) -0.003 -0.005 -
(P20, complex, high) vs. (P22, complex, high) -0.004 -0.005 -0.002
(N20, simple, low) vs. (N22, simple, low) - - -
(N20, simple, high) vs. (N22, simple, high) - - -
(N20, complex, low) vs. (N22, complex, low) - - -
(N20, complex, high) vs. (N22, complex, high) - - -
H2 (N20, simple, low) vs. (P20, simple, low) -0.014 -0.013 -0.062
(N20, simple, high) vs. (P20, simple, high) -0.012 -0.012 -0.050
(N20, complex, low) vs. (P20, complex, low) -0.013 -0.012 -0.053
(N20, complex, high) vs. (P20, complex, high) -0.009 -0.011 -0.047
(N22, simple, low) vs. (P22, simple, low) -0.017 -0.016 -0.049
(N22, simple, high) vs. (P22, simple, high) -0.015 -0.017 -0.049
(N22, complex, low) vs. (P22, complex, low) -0.016 -0.016 -0.051
(N22, complex, high) vs. (P22, complex, high) -0.013 -0.012 -0.050
H3 (P20, simple, low) vs. (P20, complex, low) - +0.009 +0.012
(P22, simple, low) vs. (P22, complex, low) - +0.010 +0.010
(N20, simple, low) vs. (N20, complex, low) - +0.008 +0.013
(N22, simple, low) vs. (N22, complex, low) - - +0.012
(P20, simple, high) vs. (P20, complex, high) - +0.010 +0.010
(P22, simple, high) vs. (P22, complex, high) - +0.011 +0.009
(N20, simple, high) vs. (N20, complex, high) - —+0.009 +0.007
(N22, simple, high) vs. (N22, complex, high) - - +0.010
H4 (P20, simple, low) vs. (P20, simple, high) +0.004 +0.007 -+0.007
(P22, simple, low) vs. (P22, simple, high) +0.004 +0.007 +0.005
(N20, simple, low) vs. (N20, simple, high) - - +0.005
(N22, simple, low) vs. (N22, simple, high) - - -
(P20, complex, low) vs. (P20, complex, high) +0.004 +0.008 +0.005
(P22, complex, low) vs. (P22, complex, high) +0.003 +0.008 +0.004
(N20, complex, low) vs. (N20, complex, high) - +0.007 -
(N22, complex, low) vs. (N22, complex, high) - - -

Table 3: Difference of mean values between subgroups. Results are only reported if the confidence intervals,
as reported in in Table B, are not overlapping. The groups are arranged such that the hypothesis predicts
that the first-mentioned group has a higher mean value which should yield a positive value. Negative values
are contradicting our hypothesis.

the opposite, i.e., that the memorization of content for popular languages is significantly higher than for
niche languages. This is consistent across all subpopulations and all three metrics. For ROUGE-N(6), the
difference is between 0.9% and 1.7%. While these numbers seem small, recall that the highest average we
observed for ROUGE-N(6) was only 3.8%, which makes the difference a statistically large effect, although
low in absolute terms. For Rjcg, we observe differences between 1.1% and 1.7%. While consistent, the effect
is a lot weaker than for ROUGE-N(6), because the average of Rycg are higher. The strongest difference can
be observed for WEB-ROUGE(6), where the increase is between 4.7% and 6.2%.

We reject H1 and observe the opposite, i.e., that memorization is more common for popular languages,
which indicates that data diversity does not hinder memorization. We hypothesize that this might mean
that topic prevalence is the dominant factor for memorization, i.e., topics that are frequently occuring

are more likely to be memorized, regardless of the data diversity.

10
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H3: Complex prompts following the style of questions in the training data increase the syntac-
tic answer similarity to the training data and the amount of memorization within generated
answers. Our results provide a weak signal that this might be the case. While we observe no significant
difference in ROUGE-N(6), we see small increases in Rypcg between 0.8% and 1.1% for all data subpopula-
tions, except those with the N22 data. WEB-ROUGE-N(6) also slightly increases with values between 0.7%
and 1.3%. This indicates that the complex prompt slightly shifts the distribution of the output to create
syntactically slightly longer common subsequences with the actual answers, but also to use more n-grams
that can also be found on the internet in general. Both happen without significantly increasing the overlap
of the n-grams with the actual answer.

Our results for this hypothesis are inconclusive. We find hints towards complex prompts increasing the
ratio of memorized outputs, but the signal is weak and inconsistent across metrics.

H4: Generation of content without randomness increases the amount of memorized outputs.
Our results show a consistent, but small increase in memorization for the popular languages. For niche
languages, this can only be observed for Rjpcg with the N20 data and the complex prompt. When we
combine this data with the insights from H2 that show that memorization is stronger for popular languages,
we find that our hypothesis is partially confirmed.

We accept our hypothesis for the popular language for which we find a consistent but small increase in
all metrics, and reject it for the niche languages. We hypothesize that this means that low randomness
can only increase memorization that is sufficiently strong, which only applies to the popular languages
in our data, based on our results for H2.

4.3 Qualitative insights into memorized data

For this analysis, we only considered data for which we observed the largest overlap with the actual answers
based on the results for the hypotheses above. Thus, we selected data from popular projects (H2) from 2022
(H1) and a low temperature (H4). We decided to label data for both the simple and the complex prompt,
because the results for H3 are inconclusive. According to the commonly used criteria by McHugh (2012),
the agreement between both raters is moderate, i.e., k € [0.6,0.8). A detailed look at the disagreements
revealed that this is driven by different interpretations of corner case regarding what constitutes code. Rater
A typically judged corner cases (e.g., Markdown table headers) as phrases, rater B judged such fragments
as code.

The fragments we find as is on the internet are, from our perspective, mostly not copyrightable: we ob-
served aspects like import statements, standard layout parameters, calls to functions with generic names
and parameters, or phrase like “follow these steps”. However, we also found six data points for which one
of the raters deemed that this might be sufficient for copyright protection (see Table B in the appendix).
We scrutinized these data points further to find their possible sources and understand if they indeed violate
copyright. Two samples seem to be strong candidates for copyright violations. The first is a definition that is
quoted from Wikipedia. The second is the text of an error message from the Spring framework. Definitions
are protected by copyright,™ for error messages it depends on the use case, e.g., when reporting an error it
is fair use, however, when designing own products re-use may be a violation.™ Another snippet is an API
call from a product documentation, which means that this likely does not violate copyright and would be
fair use.® Two other snippets are part of the formatting information, once of a table, once of a Web site.
Such formatting information is typically not copyrightable.” Finally, we also have one case, where the text
we considered memorized from training data was instead only copied from the question, i.e., a false positive
for memorization. Overall, the most conservative reading of these findings is that there is only on clear
copyright violation out of 720 samples we checked.

18See, e.g., https://law.stackexchange.com/questions/102147/can-copy-pasting-a-word-definition-from-a-dictionary-site-cause-a-cc
198ee, e.g., https://law.stackexchange.com/questions/40864/are-computer-generated-error-messages-subject-to-copyright

20see, e.g., https://law.stackexchange.com/questions/73565/using-software-api-documentation-without-copyright-infringement

21 see, e.g., https://aeonlaw.com/copyright-protection-css—and-html
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Assuming a user uses an LLM daily only once to answer a question, this would mean that there would
roughly one copyright violation every two years. While this number seems very low, LLMs may be used
at very large scales. Assume you have a mid-sized company with 100 employees, working 220 days a year,
querying an LLM on average four times a day. This would mean there are 2201804 ~ 122 copyright violations
per year.

Overall, few possibly memorized texts lead to possible copyright violations, meaning that individuals
who sometimes use LLMs have a low risk. However, power users and companies almost certainly, at
least sometimes, generate memorized content that could be protected by copyright.

5 Discussion

Our results confirm prior work that LLMs may memorize contents, even with instruction tuning. While we
did not study the last generation of LLMs, but rather the first generation that used instruction tuning, we
are not aware of any fundamental differences in the training procedure that would imply that our findings
do not hold, i.e., that memorization can still happen. A similarly controlled experiment is, unfortunately,
not possible with newer LLMs, because we cannot ensure that data is neither influenced by LLMs (may be
been generated) or was used for their training.

We believe that the crucial finding from our work is not only that there is still memorization, which is
hardly surprising, nor that this can sometimes lead to outputs that are protected by copyright. Instead, we
believe that the crucial aspect that our work demonstrates is that this happens regardless of whether the
prompt was part of the training data. This is also a key difference to prior work on memorization, e.g., by
Carlini_ef-all (2023) who only demonstrated that the completion of texts that are from the training data
may be memorized or Mueller_ef-all (2024) who directly ask to generated specific content. In contrast, we
specifically tested with prompts that were not part of the training, i.e., questions asked on Stack Overflow
after pre-training was finished. Still, the answers for these questions had often overlap with texts from the
internet and our analysis shows that at least one answer violates copyright.

Moreover, our results indicate that, at least for the Q& A scenario we studied, the degree to which outputs are
memorized does not depend on whether the question was part of pre-training. Indeed, the overlap between
the actual answers and the generated answers was even higher for questions not seen during training. This
strongly hints at the fact that LLMs always generate collages to some degree, regardless of whether the
prompts are known from training or not.

6 Limitations

A clear limitation of our work is that Vicuna, an LLM several years old, was our only study subject. As
discussed above, we chose Vicuna because we wanted a controlled setting in which we knew there was data
that had not been seen during training and had not been influenced by users who posted LLM-generated
content. Consequently, we cannot guarantee that our results will translate to newer model generations. While
it is reasonable to assume that the results will hold for models with a similar architecture and prompting
strategy, it is highly uncertain for multi-hop prompting and reasoning models Tiefall (2025), which have a
slightly different output generation strategy involving the production of a stream of thinking tokens. Despite
the limitations of translating the results to newer architectures, our study paves the way for future research
because we found that memorization in generated content does not depend on whether the questions were
seen during training. Thus, future studies do not require such strong control over when the data was seen
during training, enabling research on newer models. Instead, the focus should be on determining whether
supposedly memorized output was generated by an LLM, which would also reduce legal uncertainties in
LLM usage.

The second clear limitation of our work is that we found only a single clear case of a copyright violation
and one more candidate that depends on the context. This threatens the generalizability of our claim that
power users and companies almost certainly, at least sometimes generate memorized content. However, we
also found three more memorized data points in our sample that are sufficiently unique to be copyrightable,
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they were just from contexts that either allow re-use due to fair-use exemptions of copyright or for textual
data that is in general not copyrightable. Thus, while the cases in which we actually found copyrightable
content were lower, the cases where we found relatively unique, uncommon statements were more with five
hits. Therefore, while we cannot rule out that the cases were we found copyrightable content were outliers
and that they are a lot more uncommon than our data indicates, the existence of other cases that are just
not copyrightable because they fall under exceptions of copyright laws, indicate that this is unlikely.

7 Conclusion

We conducted a controlled experiment in which we studied to which degree generated answers are the same
as actual answers, for both questions seen and unseen during training. We selected our data in such a way
that it is unlikely that any actual answer is Al generated, by selecting a time-frame prior to the release of
ChatGPT. We found that whether questions were seen or not during the training has no strong impact on
the syntactic similarity between the actual and generated answers. In contrast, syntactic similarity was even
slightly higher for unseen questions. We also observed that questions for common topics are more likely to
lead to memorization and that randomization in the text generation processes decreases memorization. For
all questions, we found significant overlap of 6-grams with texts found on the internet, hinting at possible
memorization and manually studied this for 720 possibly memorized snippets. While these were mostly
harmless, e.g., common code like import statements, we also found one clear copyright violation and one
candidate for a copyright violation. Notably, the copyright violation happened in a context where we did
not try to trigger it, e.g., by giving a prompt from a protected source and asking for completion. Instead,
it happened for a Stack Overflow question unseen during training by quoting Wikipedia without reference.
Thus, while most queries to LLMs are likely not violating copyright, even these rare cases add up to a
possibly massive number of copyright violations, considering the scale at which LLMSs are used.

Broader Impact Statement

The copyright implications of LLM use have huge societal implications and the question if and to which
degree LLMs violate copyright is already the topic of multiple lawsuits. Our work provides an indication
that while generated answers are to some degree collages from the training data, copyright violations are rare
for individual cases but common at scale, independent of whether the prompts are known from the training.
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A Appendix

A.1 Additional details for the data collection

Within this appendix, we provide additional details with respect to our inclusion criteria (Table @ and B),
the tags used to identify the popular and niche programming languages (Table B, and the prompts we used

for generation answers (Table @).

Inclusion criteria for generative
LLMs

Rationale

Instruction fine-tuning was used
Pre-training data older than December

2022

Instruction fine-tuning data publicly
available or older than December 2022

The latest generation of LLMs, starting with Instruct-
GPT (Ouyvang_ et all, 2022) clearly outperforms older LLMs.
ChatGPT was released to the public on Nov 30th, 2022. We
need to ensure that we have a period of time, in which Chat-
GPT was not available yet and where the data was also not
used to pre-train the LLM.

We need to be able to ensure that the fine-tuning data is not
related to the Stack Overflow posts we study.

Table 4: Inclusion criteria for the selection of suitable LLMs for our study.

Inclusion criteria for Stack Over-
flow posts

Rationale

Has accepted answer

Has a positive vote for the question
Has a positive vote for the answer

Has no duplicates and is not a duplicate

Posts without answer are not suitable for our study because we
cannot compare the answers to the output of the LLMs. That
the answer is accepted is in indicator for the correctness of the
answer.

Posts without a positive vote may be unclear questions, which
would not be suitable for our use case.

Posts without a positive vote may be unclear answers, which
would not be suitable for our use case.

Posts with duplicates may introduce noise in our analysis.

Table 5: Inclusion criteria for suitable Stack Overflow posts for our study.
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Subset criteria for Stack Overflow posts

Rationale

Tagged as <c>, <java>, <python>, <c++4>, <c#>, <vb6>,
<vbb6.net>, <javascript>, <php>, <r>, <sql>

Popular programming lan-
guage with huge communities

and a vast number of publicly
available resources beyond
Stack Overflow.

Niche technology with a lim-
ited amount of publicly avail-
able resources.

Tagged as <actionscript>, <applescript>, <autolisp>, <awk>,
<bash>, <bc>, <bourne-shell>, <control-language>, <clojure>, <cof-
feescript>, <common-lisp>, <elixir>, <elm>, <elisp>, <emacs-lisp>,
<erlang>, <f#>, <factor-lang>, <forth>, <genie>, <hacklang>,
<haskell>, <icon-language>, <inform7>, <iolanguage>, <j>, <korn-
shell>, <ladder-logic>, <maple>, <mercury>, <mgqld>, <ocaml>,
<opencl>, <openedge>, <oz>, <pl-i>, <g-lang>, <raku>, <rexx>,
<rpg>, <smalltalk>, <spark-ada>, <spss>, <stata>, <vala>, <vb-
script>, <verilog>

Table 6: Tags used to identify subsets of popular and niche programming languages based on the ranking of
programming languages in the Tiobe Index 2020.

Prompt ID Prompt

Simple [QUESTION]
The following question comes from Stack Overflow and has the following structure:
Title: [TITLE OF THE QUESTION]
Tags: [TAGS OF THE QUESTION]

Complex

Question: [QUESTION]

Provide an answer in the style of Stack Overflow.

Table 7: Prompts used to generate answers for the Stack Overflow questions using the LLMs.

A.2 Details about the qualitative analysis

Figure O reports the confusion matrices of the qualitative labeling conducted by two authors to understand
what the memorized text fragments are. Table B lists examples for outputs that were memorized, but
are common phrases or code and, therefore, not copyrightable. Table B lists the candidates for copyright
violations that we found, including their likely sources, what kind of content we have, and whether this is
possibly protected by copyright.

Memorized output

.amazon.awssdk.http.apache
pd.Series([0, 1, 2, 2, 3, np
); for (var i = 0; i < checkboxes.length; i++) { if (checkboxes]i].name

d on your description, it seems like you're experiencing issues with Du

If you have any further questions or need additional assistance, please don’t hesitate to ask. Good luck
with your

This can lead to a significant increase in the size of the workflow object

Table 8: Examples for memorized outputs that are likely not copyrightable because they are common code
(first three examples) and common phrases (bottom three examples).

18



Under review as submission to TMLR

P22, simple, low - Cohen's k=0.72
300

Common Code 1 0 0

Common phrase - 13 23 0

Rater A
o

Copyrightable code - 1 0 0 0

- 100

o
=
o
o

Copyrightable phrase -

Common Code -
Common phrase -
Copyrightable code -
Copyrightable phrase -

Rater B

200

P22, complex, low - Cohen's k =0.73

Common Code 0

Common phrase - 15 29

Rater A

Copyrightable code - 0 1

o
o

Copyrightable phrase -

Common Code -
Common phrase -

300
2 1

0 200

o

- 100

o
o

Copyrightable code -
Copyrightable phrase -

Rater B

Figure 2: Confusion matrices for the qualitative analysis that compare the judgment of both raters.

Memorized output Likely source Type
a mechanical device for applying pressure to an  Multiple, e.g., https: Definition. Pro-
inked surface rest //en.wikipedia.org/wiki/ tected.
Printing press
expected at least 1 bean which qualifies Many. Common error message Error message. Pro-

as autowire candidate.

of the Spring framework.

tected for some pur-
poses.

do_action (’woocommerce_before_single_
product_summary’

https://wp—kama.com/
plugin/woocommerce/hook/
woocommerce before single |
product summary

API Call. Fair use.

———————————————— Unknown Table header. Typ-
+|id|select_typeltable|partitions|typel ically not  copy-
possible_keys|keylkey_len|ref|rows| rightable.
filtered|Extral+

container {display: grid; Unknown Format. Typically

grid-template-columns:
grid-gap: 10px; background-color:

repeat (4,1fr);
#21

not copyrightable.

class; /*x x Define the model’s default
state. * * Qreturn array */ public
function definition() {return [ ’name’
=> $this->faker->words(3, 7)

Text was also part of the ques-
tion. No memorization.

Table 9: Possibly memorized model outputs deemed as potentially copyrightable by one of the authors.
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