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Abstract

In crystal structures, retrieving properties following synthesis is a time-consuming
process. As crystal synthesis is often followed by a crystallinity assessment through
the calculation of its powder x-ray diffraction (PXRD) pattern, this information
(alongside its precursors) can be leveraged to directly predict the properties of
these structures. To address this, we developed XRayPro, a model specifically
tailored for metal-organic frameworks (MOFs), which can not only directly predict
material properties, but also incorporates a recommendation system to suggest new
applications - all done with only a PXRD and the MOF precursors. Additionally,
self-supervised learning was done against a crystal graph convolutional neural
network (CGCNN) to pretrain our multimodal model, leading to a significant
improvement in the data efficiency of our model and enhancing its ability to
learn chemistry-reliant and quantum-chemical properties. Our multimodal model
not only predicts geometric, chemistry-reliant, and quantum-chemical properties,
but the recommendation system has also shown potential in discovering new
applications for certain MOFs, particularly in carbon capture and methane storage.

1 Introduction

Metal-organic frameworks (MOFs) are pivotal in material discovery because of their extensive surface
area, porosity, and tunability. The traditional workflow from MOF synthesis to property analysis
involves several intricate steps. Initially, MOFs are characterized using powder X-ray diffraction
(PXRD) to assess crystallinity, followed by computational modeling and refinement for structure
files such as CIF, which are then cleaned and added to databases like CoRE-MOF 2019 [1]. These
procedures are complex and slow down the rapid discovery of MOF applications.

Previous studies have used PXRD for lattice analysis and microstructural characterization. However,
PXRD struggles with predicting properties that depend on chemical interactions, such as low-pressure
gas uptake [2, 3, 4, 5, 6, 7, 8, 9]. Recent advances like MOFormer and MOFTransformer have
partially addressed these issues by incorporating precursors and atom-based embeddings to improve
property prediction, although each has limitations regarding the immediacy of data post-synthesis
and the scope of property prediction [10, 11].

We propose a multimodal model, XRayPro, that uses both PXRD patterns and molecular precursors
(metal nodes and SMILES of linkers) to predict MOF properties and suggest applications directly.
This model leverages the strengths of both inputs to provide a comprehensive understanding of the
chemistry of MOFs, enhancing prediction accuracy with less computational complexity. XRayPro
also incorporates self-supervised learning with CGCNN to enhance its efficiency, particularly in
predicting chemistry-dependent properties such as low-pressure carbon dioxide uptake [12].
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2 Results and Discussion

There are two primary areas of focus: model evaluation on a variety of properties (geometric,
chemistry-reliant and quantum-chemical) and the evaluation of the built-in recommendation system
to discover new application of MOFs previously synthesized. Furthermore, the data efficiency of the
model will be discussed for a chemistry-reliant property - especially at low data regimes.

2.1 Model

As we are working with two different representations (numerical for PXRD and text for SMILES),
there are two channels for the model: a convolutional neural network (CNN) and a transformer.
The CNN, inspired by the work done by Chitturi et al. (2021) [13], can fully embed the PXRD. To
successfully return an embedding of the precursors text string, an encoder and tokenizer were built on
top of a transformer model (inspired by Cao et al. (2022))[10, 14]. Further details of the model can
be found in the appendix. The embeddings coming out of the CNN and transformer are concatenated
and fed into a projector, in which Barlow-Twin [15, 16] self-supervised learning is done between our
model and a crystal graph convolutional neural network (CGCNN) [12] in an attempt to learn the
chemistry composition and the local environments of the MOF structure better.
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Figure 1: Overview of model architecture, recommendation system, and self-supervised pretraining
method described above.

2.2 Regression results

For a comprehensive evaluation of our model, the geometry-reliant properties (gas uptake at high
pressure - HP, accessible surface area, crystal density), chemistry-reliant properties (carbon dioxide
uptake at low pressure - LP) and quantum-chemical (band gap) were predicted using our model.
Data for these properties are extracted from CoRE-2019, QMOF and hMOF databases.[17, 18, 19, 1,
20, 21] Figure 2 showcases the model performance on ranking materials based on these properties
(with the reported Spearman Rank Correlation Coefficient – SRCC), alongside comparisons to a
descriptor-based model [17], a transformer-based model that accepts precursors only [10] and a
crystal graph convolutional neural network (CGCNN).[12]

Our model demonstrates strong performance across both geometric and chemistry-related properties.
Notably, it outperforms the CGCNN and models only accepting precursors for geometric property
predictions and performs similarly for chemistry-reliant property predictions. This improvement
stems from incorporating PXRD data, which captures the MOF’s global structure, unlike CGCNN’s
local focus or precursor-based chemistry insights. Our model also approaches the descriptor-based
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model’s performance on properties such as hydrogen capacity and xenon uptake at HP, though
the descriptor model excels in surface area and density due to using these descriptors as inputs.
For chemistry-driven and quantum-chemical properties, our model remains competitive with other
approaches.

Figure 2: Summary of regression results (for our model, XRayPro, that accepts PXRD + precursors)
and comparisons made to a descriptor-based ML model, a state-of-the-art transformer model accepting
only precursors and a crystal graph convolutional neural network (CGCNN).[17, 10, 22, 12] This
was evaluated across geometric, chemistry-reliant and quantum-chemical properties across multiple
databases such as CoRE-2019, QMOF and hMOF.[1, 19, 21, 17] These values are all Spearman Rank
Correlation Coefficient (SRCC).

2.3 Limitations

There are aspects to our work that need to be addressed. While the chemistry-reliant property
predictions for BW20K, ARABG and QMOF were acceptable, predicting this for CoRE-2019 was
proven to be challenging. While the reason for this has not been confirmed, one possible reason can
be due to the large diversity of metal chemistry - CoRE has underrepresented metals such as Sr which
have very different electrochemical properties such as a larger atomic radius and weaker affinity for
carbon dioxide molecules in comparison to a metal node that is represented well in the database like
Zn. Furthermore, while the precursors give some information about the metal and organic chemistry,
it does not give a good amount of information about the local environment of the MOF - which was
somewhat mitigated through pretraining against a CGCNN. However, that is outside the scope of the
work.

3 Conclusion

Our multimodal model is able to predict geometry, chemistry-reliant and quantum chemical properties
with just a PXRD pattern and the precursors. Through pretraining via the self-supervised pipeline
against a CGCNN, the model also has a deeper understanding of the local environment of the MOF,
which is crucial for the chemistry-reliant properties that the PXRD and precursors are unable to
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showcase sufficiently alone. The key takeaway is that this model enables researchers to bypass the
labor-intensive steps of MOF synthesis and property calculations by directly predicting properties
and generating comprehensive recommendations using only a PXRD and its precursors. This
advancement promises to accelerate both material discovery and material application discovery,
offering a cost-effective and efficient tool for the field.

References
[1] Yongchul G. Chung et al. “Advances, Updates, and Analytics for the Computation-Ready, Ex-

perimental Metal–Organic Framework Database: CoRE MOF 2019”. In: Journal of Chemical

Engineering Data 64.12 (2019), pp. 5985–5998. DOI: 10.1021/acs.jced.9b00835.
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