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ABSTRACT

Federated learning often suffers from slow and unstable convergence due to het-
erogeneous characteristics of participating client datasets. Such a tendency is ag-
gravated when the client participation ratio is low since the information collected
from the clients is prone to have large variations. To tackle this challenge, we
propose a novel federated learning framework, which improves the consistency
across clients and facilitates the convergence of the server model. This is achieved
by making the server broadcast a global model with a gradient acceleration. By
adopting the strategy, the proposed algorithm conveys the projective global up-
date information to participants effectively with no extra communication cost, and
relieves the clients from storing the previous models. We also regularize local
updates by aligning each of the client with the overshot global model to reduce
bias and improve the stability of our algorithm. We perform comprehensive em-
pirical studies on real data under various settings and demonstrate remarkable
performance gains of the proposed method in terms of accuracy and communi-
cation efficiency compared to the state-of-the-art methods, especially with low
client participation rates. We will release our code to facilitate and disseminate
our work.

1 INTRODUCTION

Federated learning (McMahan et al., 2017) is a large-scale machine learning framework that learns
a shared model in a central server through collaboration with a large number of remote clients with
separate datasets. This decentralized learning concept allows federated learning to achieve the basic
level of data privacy since the server does not observe training data directly. On the other hand,
remote clients such as mobile or IoT devices have limited communication bandwidths, and federated
learning algorithms are particularly sensitive to communication costs.

A baseline algorithm of federated learning, FedAvg (McMahan et al., 2017) updates a subset of
its client models based on a gradient descent method using their local data and then uploads the
resulting models to the server for computing the global model parameters via model averaging. As
discussed extensively on the convergence of FedAvg (Stich, 2019; Yu et al., 2019; Wang & Joshi,
2021; Stich & Karimireddy, 2019; Basu et al., 2020), multiple local updates conducted before server-
side aggregation provide theoretical support and practical benefit of federated learning by reducing
communication cost greatly.

Despite the initial success, federated learning faces two key challenges: high heterogeneity in train-
ing data distributed over clients and limited participation rates of clients. Several studies (Zhao
et al., 2018; Karimireddy et al., 2020) have shown that multiple local updates in the clients with
non-i.i.d (independent and identically distributed) data lead to client model drift, in other words,
diverging updates in the individual clients. Such a phenomenon introduces the high variance issue
in the FedAvg step for global model updates, which hampers the convergence to the optimal average
loss over all clients (Li et al., 2020; Wang et al., 2019b; Khaled et al., 2019; Li et al., 2019b; Hsieh
et al., 2020; Wang et al., 2020). The challenge related to client model drift is exacerbated when the
client participation rate per communication round is low, due to unstable client device operations
and limited communication channels.

To properly address the client heterogeneity issue, we propose a novel optimization algorithm for
federated learning, Federated averaging with Accelerated Client Gradient (FedACG), which conveys
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the momentum of the global gradient to clients and enables the momentum to be incorporated into
the local updates in the individual clients. Specifically, we introduce an extra-gradient step on the
global model via the global momentum, which allows each client performs its local gradient step
along the future gradient. This approach turns out to be effective for reducing the gap between global
and local losses. Contrary to the existing methods that require to send additional bits to communicate
the momentum, FedACG transmits the global model integrated with the momentum in the form of
a single message and saves the cost for communication. In addition, FedACG adds a regularization
term in the objective function of clients to make the local gradients more consistent across clients.

Although there have been a growing number of works that handle the client heterogeneity in fed-
erated learning, FedACG has the following major advantages. Unlike existing approaches focusing
on server-level optimization (Reddi et al., 2021; Wang et al., 2019a; Hsu et al., 2019) or client-level
optimization (Xu et al., 2021; Acar et al., 2021; Karimireddy et al., 2020; Li et al., 2021; 2020;
Zhang et al., 2020; Karimireddy et al., 2021; Li et al., 2019a; Liang et al., 2019), FedACG incorpo-
rates the momentum based on the global gradient information for client-side updates. This strategy
allows the proposed algorithm to achieve the same level of task-specific performance with fewer
communication rounds. Moreover, while most of existing methods have additional requirements
compared to FedAvg including full participation (Liang et al., 2019; Zhang et al., 2020; Khanduri
et al., 2021), additional communication bandwidth (Xu et al., 2021; Karimireddy et al., 2020; Zhu
et al., 2021; Karimireddy et al., 2021; Li et al., 2019a; Das et al., 2020; Gao et al., 2022), and mem-
ory budgets in clients to store local states or variables (Acar et al., 2021; Karimireddy et al., 2020; Li
et al., 2021; Gao et al., 2022), FedACG is completely free from any additional communication and
memory overhead, which ensures the compatibility with large-scale and low-participation federated
learning problems. The main contributions of this paper are summarized as follows.

• We propose a communication-efficient federated optimization algorithm that deals with
client heterogeneity effectively. The proposed approach employs the global momentum for
the acceleration of client gradients to facilitate the optimization of local models.

• We also revise the objective function of clients, which augments a regularization term to the
local gradient direction, which further aligns the gradients of server and individual clients.

• We show that the proposed approach does not require any additional communication cost
and memory overhead, which is desirable for the real-world settings of federated learning.

• We demonstrate outstanding performance of our optimization technique in terms of com-
munication efficiency and robustness to client heterogeneity, especially when the participa-
tion ratio is low.

2 RELATED WORK

Federated learning was first introduced in McMahan et al. (2017), which formulates the problem
and provides the FedAvg algorithm as a solution for its key challenges such as non-iid client data,
massively distributed clients, and partial participation of clients. Many works explore the negative
influence of heterogeneity in federated learning empirically (Zhao et al., 2018) and derive conver-
gence rates depending on the level of heterogeneity (Li et al., 2020; Wang et al., 2019b; Khaled
et al., 2019; Li et al., 2019b; Hsieh et al., 2020; Wang et al., 2020).

There exists a long line of research for client-side optimization to prevent the divergence of clients
from the global model. FedProx (Li et al., 2020) penalizes the difference between the server and
client parameters, while FedDyn (Acar et al., 2021) and FedPD (Zhang et al., 2020) use cumu-
lative gradients of each client to dynamically regularize local update. FedDC (Gao et al., 2022)
introduces the auxiliary drift variables for each client to reduce the impact of the local drift on the
global objective. There is another line of works which adopt variance reduction techniques in client
update to eliminate inconsistent update across clients. SCAFFOLD (Karimireddy et al., 2020) and
Mime (Karimireddy et al., 2021) employ control variates for local updates while FedDANE (Li
et al., 2019a) and FedCM (Xu et al., 2021) add a gradient correction term based on the server gra-
dient. FedPA (Al-Shedivat et al., 2021) de-bias client updates by estimating the global posterior
on the client side. On the other hand, some approaches adopt a contrastive loss (Li et al., 2021),
knowledge distillation (Kim et al., 2022), or a generative model (Zhu et al., 2021) to ensure the
similarity of the representations between the global model and local networks. FedSAM (Qu et al.,
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Algorithm 1 FedACG
Input: β, λ, initial server model θ0, number of clients N , number of communication rounds T ,

local learning rate η
Initialize the global momentum, m0 = 0.
for each round t = 1, 2, . . . , T do

Sample a subset of clients St ⊆ {1, . . . , N}.
Server sends θt−1 + λmt−1 to initialize local models for all clients i ∈ St.
for each client i ∈ St, in parallel do

Set θti = argmin
θ
Li(θ) + β

2 ‖θ − (θt−1 + λmt−1)‖2

Client sends θti back to the server.
end
In server:
θt =

∑
i∈St

ωiθ
t
i

mt = θt − θt−1
end
Return θt

2022) and ASAM (Caldarola et al., 2022) apply SAM (Foret et al., 2021) as a client-side optimizer
for reducing the gap between global and local losses. However, most of these methods require full
participation (Zhang et al., 2020; Khanduri et al., 2021), additional communication cost (Xu et al.,
2021; Karimireddy et al., 2020; Zhu et al., 2021; Karimireddy et al., 2021; Li et al., 2019a; Das
et al., 2020; Gao et al., 2022), or extra client storage (Acar et al., 2021; Karimireddy et al., 2020; Li
et al., 2021; Gao et al., 2022), which can be problematic in realistic federated learning tasks.

Server-side optimization techniques also have been explored for the stability and speedup of conver-
gence. These approaches adopt a momentum SGD (Hsu et al., 2019), or an adaptive gradient-descent
method (Reddi et al., 2021; Caldarola et al., 2022), while FedDF (Lin et al., 2020) utilizes the aver-
aged representations of local models on proxy data for aggregation. STEM (Khanduri et al., 2021)
and FedGLOMO (Das et al., 2020) apply STORM algorithm (Cutkosky & Orabona, 2019) to both
server-level and client-level SGD procedures for reducing high variance in server model update.

Meanwhile, another set of works aims to decrease the communication cost per round by compress-
ing the model transmitted. FedPAQ (Reisizadeh et al., 2020), FedCAMS (Wang et al., 2022) and
FedCOMGATE (Haddadpour et al., 2021) quantize the communicated message by using low bit
precision, while FedPara (Nam et al., 2022) use low-rank Hadamard product to reparameterize the
model’s weights. These works are orthogonal to our approach, so they can be readily combined with
our proposed method.

3 METHOD

In the federated learning setting, there are N clients that optimize their local models based on the
corresponding private datasets as well as a central server that broadcasts the global model and then
aggregates messages from the clients. Let Li(θ) := E(x,y)∼Di

[`i((x, y); θ)] be the loss function of
the ith ∈ {1, . . . , N} client with a local dataset denoted by Di. Then, our goal is to train a model
that minimizes the average loss of all clients as follows:

min
θ

{
L(θ) :=

N∑
i=1

ωiLi(θ)

}
, (1)

where θ is the parameter of the global model and ωi is the normalized weight of the ith client
proportional to the size of the local dataset. We focus on the non-i.i.d data setting, where local
datasets have heterogeneous distributions. Note that the communication of training data between
clients and the central server is strictly prohibited in principle due to privacy.

3.1 FEDACG

To reduce the inconsistency between the local models and the consequent divergence of the global
one, we incorporate the global momentum into local models for guiding local updates.
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Figure 1: An illustration of the proposed accelerated client gradient method. We first partially
update the global model in the direction of the global momentum (orange) and then aggregate local
updates (gray), resulting in the server model in the next round (blue). Through this anticipatory
update, we make the individual local updates aligned with the global gradient and achieve speed-up
of convergence.

Overall framework Each round of FedAGC starts from the server. In the tth communication
round, the server computes its momentum mt−1 := θt−1 − θt−2, and broadcasts the accelerated
global model θt−1 + λmt−1 as a single message to the active client set St ⊆ {1, . . . , N}, where
λ ∈ (0, 1] controls the importance of the global momentum. Each participating client optimizes its
local model from the momentum-integrated initialization. The objective of each client is to minimize
the sum of its empirical loss on the local data and a penalty from the difference between the local
online model and the accelerated global model, which is given by

min
θti

{
Fi(θti) := Li(θti) +

β

2
‖θti − (θt−1 + λmt−1)‖2

}
, (2)

where β controls the balance between the two terms. Each client uploads their trained model θti
to the server, and then the server constructs the next server model θt via a simple aggregation, i.e.,
θt =

∑
i∈St ωiθ

t
i . Algorithm 1 presents the procedure of FedACG.

Accelerated client gradient The main idea of this work, accelerated client gradient, is to lever-
age the global momentum and allow clients to look ahead the landscape of the global loss. The
momentum mt serves as an approximate gradient of the global loss since it maintains past global
updates even in partial participating setting. Let the local update of each participating client be
∆t
i = θti − (θt−1 + λmt−1). Then, mt is defined recursively with an exponential decay factor λ as

mt = θt − θt−1 =
[
∆t + (θt−1 + λmt−1)

]
− θt−1 = ∆t + λmt−1, (3)

where ∆t =
∑
i∈St

ωi∆
t
i denotes the expected local updates of all participating clients in the current

round t.

As illustrated in Figure 1, FedACG makes an anticipatory update by integrating λmt−1 to the pre-
vious global model θt−1. This strategy allows the updates of each client to be aligned with the
trajectory of the global gradients, which improves consistency of local updates in FedACG. Our
approach has a similar motivation with meta-learning (Finn et al., 2017), where a meta-learner iden-
tifies the optimal point to facilitate the optimization of all target tasks.

Regularization with momentum-integrated model In addition to the initial acceleration for local
training, the second term of our local objective function in Eq. (2) takes the advantage of the global
gradient information to reduce the variations of client-specific gradients, ∆t

i. This regularization
term enforces the local model not to deviate from the accelerated point, preventing each client from
falling into biased local minima.

3.2 DISCUSSION

While our formulation has something in common with the existing works that also address client het-
erogeneity by employing global gradient information for the local update, FedACG has the following
major advantages. First, contrary to Karimireddy et al. (2020); Xu et al. (2021); Gao et al. (2022),
the server and clients only communicate model parameters without imposing additional network
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overhead for transmitting gradients and other information; the server broadcasts (θt−1 + λmt−1)
as a single message and each client sends θti,K to the server. This is a critical benefit because the
increase in communication cost challenges many realistic federated learning applications involving
clients with limited network bandwidths. Second, FedACG is robust to the low participation rate of
clients and allows new-arriving clients to join the training process immediately without a warmup
phase because, unlike Karimireddy et al. (2020), Acar et al. (2021), Li et al. (2021), and Gao et al.
(2022), the clients are supposed to neither store their local states nor use them for model updates.

3.3 CONVERGENCE ANALYSIS OF FEDACG

We now present the theoretical convergence rate of FedACG. We first state two assumptions for
the local loss functions `i(θ), which are commonly used in several previous works on federated
optimization (Karimireddy et al., 2020; Reddi et al., 2021; Xu et al., 2021; Acar et al., 2021). First,
the local function `i(·) is assumed to be L-smooth for all i ∈ {1, . . . , N}, i.e.,

‖∇`i(x)−∇`i(y)‖ ≤ L‖x− y‖ ∀x, y. (4)

Second, if we additionally assume the convexity of the functions {`i(·)}Ni=1, we have

∀x, 1

2LN

N∑
i=1

‖∇`i(x)−∇`i(x∗)‖2 ≤ `(x)− `(x∗) and (5)

∀x, y, z, 〈∇`i(x), z − y〉 ≤ −`i(z) + `i(y) +
L

2
‖z − x‖2, (6)

where `(x) = 1
N

∑N
i=1 `i(x) and ∇`(x∗) = 0. Based on the above assumptions, we derive the

following asymptotic convergence bound of FedACG. Note that we make no further assumptions
such as a form of bounded variance and gradients used in Karimireddy et al. (2020), Reddi et al.
(2021), and Xu et al. (2021).

Theorem 1. Assuming the convexity and L-smoothness of {`i(·)}Ni=1, for 1
2 < λ < 1, Algorithm 1

satisfies

E

[
`

(
1

T

T∑
t=1

θt−1

)
− ` (θ∗)

]
≤
√
λ(1− λ)

T

(
L
∥∥θ0 − θ∗∥∥2 +

1

LN

N∑
i=1

∥∥∇`i (θ0i )∥∥2),
where θ∗ = argmin

θ
`(θ) and θt = 1

|St|
∑
i∈St

θti .

Theorem 1 implies that, for convex and smooth local functions, the global objective function is

expected to converge at a rate of O
(√

λ(1−λ)
T

)
. This rate is the empirical loss averaged over all

devices. It further implies a higher value of λ improves the convergence rate under the convex
setting, which will be empirically verified in our experiments. Please, refer to the supplementary
document for the full proof.

4 EXPERIMENTS

This section presents empirical evaluations of FedACG and competing federated learning methods,
to highlight the robustness to data heterogeneity of the proposed method in terms of performance
and communication-efficiency.

4.1 EXPERIMENTAL SETUP

Datasets and baselines We conduct a set of experiments on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and Tiny-ImageNet1 (Le & Yang, 2015) with various data
heterogeneity levels and participation rates. Note that Tiny-ImageNet (200 classes with 10, 000
samples) is more natural and realistic compared to the simple datasets, such as MNIST and CIFAR,

1https://www.kaggle.com/c/tiny-imagenet
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Table 1: Comparisons of FedACG with baselines on CIFAR-10, CIFAR-100 and Tiny-ImageNet
for two different federated learning settings. For a moderate-scale experiment (a), the number of
clients and participation rate, are set to 100, and 5%, respectively, while a large-scale experiment
(b) has 500 clients with 2% participation rate. The Dirichlet parameter is commonly set to 0.3.
Accuracy at target round and the communication round to reach target test accuracy is based on
running exponential moving average with parameter 0.9. The arrows indicate whether higher (↑) or
lower (↓) is better. The best performance in each column is denoted in bold. FedCM† and FedDC‡
require 1.5× and 2× communication cost for each communication round, respectively.

(a) Moderate-scale: 5% participation, 100 clients

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Acc. (%, ↑) Rounds (↓) Acc. (%, ↑) Rounds (↓) Acc. (%, ↑) Rounds (↓)
500R 1000R 81% 85% 500R 1000R 47% 55% 500R 1000R 35% 38%

FedAvg (McMahan et al., 2017) 74.36 82.53 840 1000+ 41.88 47.83 924 1000+ 33.94 35.37 645 1000+
FedProx (Li et al., 2020) 73.70 82.68 826 1000+ 42.43 48.32 881 1000+ 34.14 35.53 613 1000+
FedAvgM (Hsu et al., 2019) 80.56 85.48 519 828 46.98 53.29 515 1000+ 36.32 38.51 416 829
FedADAM (Reddi et al., 2021) 72.33 81.73 908 1000+ 44.80 52.48 691 1000+ 33.22 38.91 658 945
FedDyn (Acar et al., 2021) 84.82 88.10 392 646 48.38 55.79 424 883 37.35 41.18 344 573
MOON (Li et al., 2021) 83.32 86.30 371 686 53.15 58.37 284 640 36.62 40.33 410 627
FedCM† (Xu et al., 2021) 78.92 83.71 624 1000+ 52.44 58.06 293 747 31.61 37.87 694 1000+
FedDC‡ (Gao et al., 2022) 86.52 87.47 323 519 54.25 59.01 333 553 40.32 45.51 340 403
FedACG (ours) 85.13 89.10 319 450 55.79 62.51 260 409 42.26 46.31 226 331

(b) Large-scale: 2% participation, 500 clients

Method
CIFAR-10 CIFAR-100 Tiny-ImageNet

Acc. (%, ↑) Rounds (↓) Acc. (%, ↑) Rounds (↓) Acc. (%, ↑) Rounds (↓)
500R 1000R 73% 77% 500R 1000R 36% 40% 500R 1000R 24% 30%

FedAvg (McMahan et al., 2017) 58.74 71.45 1000+ 1000+ 30.16 38.11 842 1000+ 23.63 29.48 523 1000+
FedProx (Li et al., 2020) 57.88 70.75 1000+ 1000+ 29.28 36.16 966 1000+ 25.45 31.71 445 799
FedAvgM (Hsu et al., 2019) 65.85 77.49 753 959 31.80 40.54 724 955 26.75 33.26 386 687
FedADAM (Reddi et al., 2021) 61.53 69.94 1000+ 1000+ 24.40 30.83 1000+ 1000+ 21.88 28.08 648 1000+
FedDyn (Acar et al., 2021) 65.49 77.92 732 936 31.58 41.01 691 927 24.35 29.54 483 1000+
MOON (Li et al., 2021) 69.15 78.06 617 872 33.51 42.41 601 828 26.69 31.81 382 741
FedCM† (Xu et al., 2021) 69.27 76.57 742 1000+ 27.23 38.79 872 1000+ 19.41 24.09 975 1000+
FedDC‡ (Gao et al., 2022) 71.86 83.49 518 686 34.64 45.93 569 741 25.72 28.92 420 1000+
FedACG (ours) 73.61 82.80 484 605 35.68 48.40 505 616 31.47 38.48 246 447

used for evaluation of many previous methods (McMahan et al., 2017; Karimireddy et al., 2020). We
generate IID data split by randomly assigning training data to individual clients without replacement.
For the non-IID data, we simulate the data heterogeneity by sampling the label ratios from a Dirichlet
distribution with.a symmetric parameter {0.3, 0.6}, following Hsu et al. (2019). We keep the training
data balanced, so each client holds the same amount of data.

We compare our method, FedACG, with several state-of-the-art federated learning techniques,
which include FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), FedAvgM (Hsu et al.,
2019), FedADAM (Reddi et al., 2021), FedDyn (Acar et al., 2021), FedCM (Xu et al., 2021),
MOON (Li et al., 2021), FedDC (Gao et al., 2022). We adopt a standard ResNet-18 (He et al.,
2016) as backbone network for all benchmarks, but we replace batch normalization by group nor-
malization as suggested in Hsieh et al. (2020).

Evaluation metrics To evaluate the generalization performance of the methods on the global dis-
tribution, we use the entire test set in the CIFAR-10, CIFAR-100, and Tiny-ImageNet. Since both
the speed of learning as well as the final performance are important quantities for federated learning,
we measure: (i) the performance attained at a specified number of rounds, and (ii) the number of
rounds needed for an algorithm to attain the desired level of target accuracy, following Al-Shedivat
et al. (2021). For the selection of target accuracies, we first choose the median of all methods at
round 1000 and another representative value lower than the median. For methods that could not
achieve aimed accuracy within the maximum communication round, we append the communication
round with a + sign.
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Table 2: Effect of low participation rate, 1% over 500 clients with Dirichlet (0.3) split, for FedACG
and the baselines on CIFAR-10 and CIFAR-100. Accuracy at the target round and the communi-
cation round to reach target test accuracy are based on running exponential moving average with
parameter 0.9. The arrows indicate whether higher (↑) or lower (↓) is better. FedCM† and FedDC‡
require 1.5× and 2× communication cost for each communication round, respectively.

Method
CIFAR-10 CIFAR-100

accuracy (%, ↑ ) rounds (#, ↓) accuracy (%, ↑) rounds (#, ↓)
500R 1000R 64% 68% 500R 1000R 30% 35%

FedAvg (McMahan et al., 2017) 54.71 68.96 792 949 26.94 35.69 636 950
FedProx (Li et al., 2020) 55.18 69.80 773 919 26.92 35.41 648 963
FedAvgM (Hsu et al., 2019) 57.82 71.12 669 812 29.29 39.36 530 755
FedADAM (Reddi et al., 2021) 47.97 55.11 1000+ 1000+ 17.72 23.92 1000+ 1000+
FedDyn (Acar et al., 2021) 54.86 70.78 713 858 27.86 36.31 595 896
MOON (Li et al., 2021) 64.55 73.89 491 645 28.29 36.37 567 886
FedCM† (Xu et al., 2021) 49.21 60.38 1000+ 1000+ 16.32 22.59 1000+ 1000+
FedDC‡ (Gao et al., 2022) 60.56 75.06 610 681 29.14 38.84 519 789
FedACG (ours) 63.70 76.45 497 618 31.74 45.18 458 581

Implementation details We use PyTorch (Paszke et al., 2019) to implement FedACG and the
other baselines. We follow Acar et al. (2021); Xu et al. (2021) for evaluation protocol. For local
update, we use the SGD optimizer with a learning rate 0.1 for all approaches on the three bench-
marks. We apply exponential decay on the local learning rate, and the decay parameter is selected
from {1.0, 0.998, 0.995}. We apply no momentum for local SGD, but apply weight decay of 0.001
to prevent overfitting. We also use gradient clipping to increase the stability of the algorithms. The
number of local training epochs over each client update is set to 5, and the batch size is set so that the
total iteration for local updates is set to 50 for all experiments. We set the global learning rate as 1
for all methods except for FedADAM which is set to 0.01. We list the details of the hyperparameters
specific to FedACG and the compared algorithms in Appendix B.

4.2 MAIN RESULTS

Evaluation with standard federated learning scenarios We first present the performance of
the proposed approach, FedACG, on CIFAR-10, CIFAR-100, and Tiny-ImageNet in the scenarios
by varying the number of clients, data heterogeneity, and participation rate. Our experiment has
been performed on two different settings; one is with a moderate-scale, which involves 100 devices
with 5% participation rate per round, and the other is with a large number of clients, 500 with 2%
participation rate. Note that the number of clients in the large-scale setting is 5 times more than the
moderate-scale experiment, which reduces the number of examples per client by 80%.

Table 1a demonstrates that FedACG improves accuracy and convergence speed significantly and
consistently compared with other federated learning methods in most cases. This is partly because
FedACG enables each client to look ahead the global update and aligns the local model updates with
the global gradient trajectory. Note that FedCM and FedDC require 1.5× and 2× communication
costs for each communication round respectively since they communicate the current model and the
associated gradient information per round, while others only require model parameters.

For the large-scale setting, Table 1b illustrates the outstanding performance of FedACG on CIFAR-
10, CIFAR-100, and Tiny-ImageNet, except for the accuracy at 1K rounds on CIFAR-10. One
noticeable thing is that the overall performance is lower than the case with a moderate number of
clients. This is because the number of training data for each client decreases and each client suffers
more from the heterogeneous data distribution. Nevertheless, we observe that FedACG outperforms
other methods consistently in most cases; the accuracy gap between FedACG and its strongest com-
petitor becomes larger in these more challenging scenarios. The results from the large-scale exper-
iments informs the robustness of FedACG to the heterogeneity and limited participation of clients.
We present more comprehensive results for the convergence of FedACG in Appendix D.1.

Effect of low participation rate Partial participation is a critical challenge to slow down the con-
vergence of the global model in federated learning. To verify the robustness to the low participation
rate of clients, we perform experiments when the total number of clients is 500 and the participation
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Table 3: Results on CIFAR-100 when client set changes dynamically: we sample 250 clients out of
500 clients as a candidate clients set at every 100 rounds over 10 stages on Dirichlet (0.3) split. 10
clients out of the sampled client set participate for the local training for each communication round.
FedDC† requires 2× communication cost for each communication round.

Method CIFAR-100
Acc. (%, ↑) Rounds ( ↓)

500R 1000R 30% 38%
FedAvg (McMahan et al., 2017) 28.61 35.87 577 1000+
FedDyn (Acar et al., 2021) 29.45 38.47 517 941
MOON (Li et al., 2021) 30.88 39.57 430 852
FedDC† (Gao et al., 2022) 31.35 36.82 469 1000+
FedACG (ours) 32.70 41.51 376 769

Table 4: Contribution of individual components in FedACG at 1000th rounds on CIFAR-10 and
CIFAR-100 with 2% participation and 500 clients.

Accelerated gradient (λ) Regularization term (β) CIFAR-10 CIFAR-100
71.45 38.11

X 70.75 36.16
X 82.20 46.80
X X 82.80 48.40

rate is as low as 1%. The numbers of local epochs and iterations are set to 5 and 50, respectively.
This setting makes each client have very few training examples and increases client heterogeneity
significantly. Table 2 again shows that FedACG has the best performance for most cases. Note
that the performance gap between FedACG and the second-best method, FedDC, becomes larger
than when the participation rate is 2%: from -0.69%p to 1.39%p on CIFAR-10 and from 2.47%p to
6.34%p on CIFAR-100 at round 1000. This is partly because the local states managed by FedDC are
susceptible to get stale quickly in this scenario, making its convergence require extra iterations. In
contrast, our method does not rely on the past information stored in local devices and is not affected
by this issue.

Evaluation on dynamic client set Since FedACG is free from the requirements of storing local
model history for local updates, it is conceptually better-suited for the scenarios in the presence of
newly participating clients. In order to validate the property, we conduct an experiment on CIFAR-
100 with 500 clients for Dirichlet(0.3) splits. We sample 250 clients at every 100 rounds as a candi-
date client set, and then 10 randomly sampled clients (4% of clients) participate in the local training
for each communication round. Table 3 shows that FedACG outperforms FedAvg and FedDyn.
Note that FedDyn is worse than FedAvg since the client model has trouble with its heterogeneity
and divergence because new clients have no or non-informative local states.

4.3 ABLATION STUDY

Contribution of individual components Table 4 presents the contribution of individual compo-
nents in the experiment on CIFAR-10 for the large-scale federated learning setting. We observe
that the accelerated client gradient for local training has more critical impact on accuracy with 1000
rounds. Note that the proposed regularization term in local loss function shows larger performance
gain when used with the accelerated client gradient, while employing the regularization term only
do not necessarily achieve performance gains in CIFAR-10 and CIFAR-100.

Ablation study for hyperparameters Table 5 presents the accuracy of FedACG for Dirichlet(0.3)
and IID splits by varying the value of λ and β, which control the momentum integration of the server
model and the weight of the proximal term, respectively. As shown in the table 5a, the low values of
λ do not work well, supporting the benefit of the proposed accelerated client gradient strategy, while
Table 5b shows that the accuracy is stable with respect to β.
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Table 5: Ablation study of FedACG to the weights of the two hyperparameters, λ (a) and β (b), with
respect to the accuracy at 1000th rounds on CIFAR-10 in 2% participation and 500 clients.

(a) Sensitivity of FedACG to λ

λ 0 0.25 0.5 0.75 0.85 0.95
Dir(0.3) 70.75 73.93 79.14 81.32 82.80 78.25

IID 72.20 74.29 80.52 85.52 86.83 84.37

(b) Sensitivity of FedACG to β

β 0.001 0.01 0.1 1
Dir(0.3) 82.10 82.80 82.32 82.44

IID 86.54 86.83 86.72 85.92

Table 6: Results on the realistic federated learning datasets which contain feature skewness and data
imbalance between the clients. FedCM† and FedDC‡ require 1.5× and 2× communication cost for
each communication round, respectively.

Method
FEMNIST CelebA

Acc. (%, ↑) Rounds (↓) Acc. (%, ↑) Rounds (↓)
500R 78% 500R 88%

FedAvg (McMahan et al., 2017) 78.38 328 89.92 134
FedProx (Li et al., 2020) 78.34 328 89.90 132
FedAvgM (Hsu et al., 2019) 78.37 256 89.85 113
FedADAM (Reddi et al., 2021) 75.96 500+ 87.00 500+
FedDyn (Acar et al., 2021) 79.80 227 89.74 126
MOON (Li et al., 2021) 78.33 336 87.95 500+
FedCM† (Xu et al., 2021) 72.79 500+ 88.89 222
FedDC‡ (Gao et al., 2022) 80.11 149 88.97 126
FedACG (ours) 80.61 169 90.09 108

4.4 EXPERIMENTS ON REALISTIC DATASETS

We conducted experiments on additional realistic datasets, FEMNIST and CelebA in LEAF (Caldas
et al., 2019), which includes other non-iid scenarios such as feature skewness and data imbalance be-
tween clients. For the experiment, the number of clients is set to 2000 with data split following Cal-
das et al. (2019), and 10 randomly sampled clients participate the training for each communication
round. We use simple CNN with group normalization with the number of layers two for FEMNIST
and four for CelebA, respectively. Table 6 presents that FedACG also outperforms other baselines
on both datasets for most cases, which supports our claim about the strength of FedACG on dataset
heterogeneity. Table 6 presents that FedACG also outperforms other baselines on both datasets for
most cases, which supports our claim about the strength of FedACG on dataset heterogeneity. Note
that, while FedACG requires 20 more communication rounds than FedDC to reach a target accuracy
on FEMNIST, it sends 1.76× less parameters than FedDC.

5 CONCLUSION

This paper tackles a realistic federated learning scenario, where a large number of clients with het-
erogeneous data and limited participation constraints hurt the convergence and performance of the
model. To address this problem, we proposed a novel federated learning framework, which nat-
urally aggregates previous global gradient information and incorporates it to guide client updates.
The proposed algorithm transmits the global gradient information to clients without additional com-
munication cost by simply adding the global information to the current model when broadcasting
it to clients. We showed that the proposed method is desirable with the realistic federated learning
scenarios since it does not require any constraints such as communication or memory overhead. We
demonstrate the effectiveness of the proposed method in terms of robustness and communication-
efficiency in the presence of client heterogeneity through extensive evaluation on multiple bench-
marks.

Ethics statement We propose a communication-efficient federated learning framework which
handles non-i.i.d data distribution over remote clients. Without access to the raw data stored in re-
mote devices, the proposed method gets the basic level of privacy. Also, unlike centralized training
which suffers from dataset bias and unfairness problems since collected data reflects the perspec-
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tive of the person who collects the data, it opens the way to learn real data distribution instead of
collected data distribution.

Reproducibility statement We present the procedure of our proposed method in Algorithm 1, and
the implementation details in Section 4.1. We also present algorithm-dependent hyperparameters
in Appendix B. We have submitted the code and will make it publicly available.
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A CONVERGENCE OF FEDACG

We now present the theoretical convergence rate of FedACG. We first state few assumptions for
the local loss functions `i(θ), which are commonly used in several previous works on federated
optimization (Karimireddy et al., 2020; Reddi et al., 2021; Xu et al., 2021). First, the local function
Li(·) is assumed to be L-smooth for all i ∈ {1, . . . , N}, i.e.,

‖∇Li(x)−∇Li(y)‖ ≤ L‖x− y‖ ∀x, y. (7)

if local functions {Li(·)}Ni=1 are convex, we additionally have

∀x, 1

2LN

N∑
i=1

‖∇Li(x)−∇Li(x∗)‖2 ≤ L(x)− L(x∗) and (8)

∀x, y, z, 〈∇Li(x), z − y〉 ≤ −Li(z) + Li(y) +
L

2
‖z − x‖2, (9)

where L(x) = 1
N

∑N
i=1 Li(x) and ∇L(x∗) = 0. Second, we assume the local loss functions

Li(x) have bounded variance, i.e., EDi
‖∇`i(x) − ∇Li(x)‖ < σ2, and bounded gradients i.e.,

‖Li(x)‖2 < G, for all x. Based on the above assumptions, we derive the following asymptotic
convergence bound of FedACG.

A.1 NON-CONVEX ANALYSIS

Theorem 1. (Convergence of FedACG) Suppose that local functions {fi}Ni=1 are non-convex and

L-smooth. Let zt = θt + λ
1−λm

t for any 0 ≤ λ < 1. Then, by setting η = min
{

1−λ
2LK ,

C√
t+1

}
,

FedACG satisfies,

min
k=0,...,t

E
∥∥∇F (θt + λmt

)∥∥2 ≤ 2 (F (z0)−F∗) (1− λ)

t+ 1
max

{
2LK

1− λ
,

√
t+ 1

C

}
+

C√
t+ 1

B′′,

(10)
where B′′ = 1

(1−λ)K

{(
(1 + L2K4

3 )(1 − λ) + λ4LK2

2(1−λ)2 + (1 + 4N
|St|(N−1) (1 −

|St|
N ))(LK2 +

Lλ4K2

2(1−λ)2 )
)
G2 + LK2

2

(
2 + λ4

(1−λ2)

)
σ2
}

.
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Proof. We start the proof from the result in Lemma 1,

E[F(zt+1)−F(zt+1)] ≤ −BE[‖∇F(θt + λmt)‖2] +B′,

whereB = ηK
1−λ

(
1− ηLK

1−λ

)
, andB′ = η2

2(1−λ)2

{(
(1+ L2K4

3 )(1−λ)+ λ4LK2

2(1−λ)2 +(1+ 4N
|St|(N−1) (1−

|St|
N ))(LK2 + Lλ4K2

2(1−λ)2 )
)
G2 + LK2

2

(
2 + λ4

(1−λ2)

)
σ2
}

, respectively.

By summing the above inequalities for t = 0, . . . , t and by noting that λ < 1−λ
LK ,

B

t∑
k=0

E‖∇F(θt + λmt)‖2 ≤ E[F(z0)−F(zt+1)] + (t+ 1)B′

≤ E[F(z0)−F∗] + (t+ 1)B′.

Then

min
k=0,...,t

E
∥∥∇F (θt + λmt

)∥∥2 ≤ f (z0)− f∗
(t+ 1)B

+
B′

B
(11)

Assume η ≤ 1−λ
2LK , then B ≥ ηK

2(1−λ) . Then

min
k=0,...,t

E
∥∥∇F (θt + λmt

)∥∥2 ≤ 2 (F (z0)−F∗) (1− λ)

ηK(t+ 1)
+

2(1− λ)

ηK
B′. (12)

Noting that η = min
{

1−λ
2LK ,

C√
t+1

}
, we can have

min
k=0,...,t

E
∥∥∇F (θt + λmt

)∥∥2 ≤ 2 (F (z0)−F∗) (1− λ)

t+ 1
max

{
2LK

1− λ
,

√
t+ 1

C

}
+

C√
t+ 1

B′′,

(13)
where B′′ = 1

(1−λ)K

{(
(1 + L2K4

3 )(1 − λ) + λ4LK2

2(1−λ)2 + (1 + 4N
|St|(N−1) (1 −

|St|
N ))(LK2 +

Lλ4K2

2(1−λ)2 )
)
G2+LK2

2

(
2+ λ4

(1−λ2)

)
σ2
}

. We then complete the proof by noting that z0 = θ0+λm0.

Lemma 1. For proving Theorem 1, we first prove the key Lemma below. Let zt = θt + λ
1−λm

t,

∆t
i = θti − (θt−1 + λmt−1) =

∑K−1
k=0 −η∇fi(θti,k), δt = 1

N

∑
i∈[N ]

∑K−1
k=0 −η∇Fi(θti,k), and

et = ∆t − δt. FedACG satisfies for any t ≥ 0 and 0 ≤ λ < 1,

E [f (zk+1)− f (zk)] ≤ −BE
[
‖∇f (xk)‖2

]
+B′,

whereB = ηK
1−λ

(
1− ηLK

1−λ

)
andB′ = η2

2(1−λ)2

{(
(1+ L2K4

3 )(1−λ)+ λ4LK2

2(1−λ)2 +(1+ 4N
|St|(N−1) (1−

|St|
N ))(LK2 + Lλ4K2

2(1−λ)2 )
)
G2 + LK2

2

(
2 + λ4

(1−λ2)

)
σ2
}
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Proof.

F(zt+1) ≤ F(zt) + 〈∇F(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2

= F(zt) +
1

1− λ
〈∇F(zt),∆t+1〉+

L

2(1− λ)2
‖∆t+1‖2

= F(zt) +
1

1− λ
〈∇F(zt), (et+1 + δt+1) + ηK∇F(θt + λmt)− ηK∇F(θt + λmt)〉

+
L

2(1− λ)2
‖et+1 + δt+1‖2

= F(zt) +
1

1− λ
〈∇F(zt), et+1〉+

1

1− λ
〈∇F(zt), (δt+1 + ηK∇F(θt + λmt))〉

− ηK

1− λ
〈∇F(zt),∇F(θt + λmt〉+

L

2(1− λ)2
‖et+1 + δt+1‖2

= F(zt) +
1

1− λ
〈∇F(zt), et+1〉+

1

1− λ
〈∇F(zt), δt + ηK∇F(θt + λmt)〉

− ηK

1− λ
〈∇F(zt)−∇F(θt + λmt),∇F(θt + λmt)〉 − ηK

1− λ
‖∇F(θt + λmt)‖2

+
L

2(1− λ)2
‖et+1 + δt+1‖2

First inequality comes from the L-smoothness of the loss function F . By taking expectation on both
sides, we get following equation.

E(F(zt+1)−F(zt)) ≤ 1

1− λ
E[〈∇F(zt), δt + ηK∇F(θt + λmt)〉]

− ηK

1− λ
E[〈∇F(zt)−∇F(θt + λmt),∇F(θt + λmt)〉]

− ηK

1− λ
E[‖∇F(θt + λmt)‖2] +

L

2(1− λ)2
E[‖et+1 + δt+1‖2]

≤ 1

2(1− λ)
{E[‖η∇F(zt)‖2]︸ ︷︷ ︸

I∗

+E[‖1

η
(δt + ηK∇F(θt + λmt))‖2︸ ︷︷ ︸

II∗

}

+
1

4L
E[‖∇F(zt)−∇F(θt + λmt)‖2]︸ ︷︷ ︸

III∗

+
L

2(1− λ)2
(E[‖et+1‖2]︸ ︷︷ ︸

IV∗

+E[‖δt+1‖2]︸ ︷︷ ︸
V∗

)

+ {L(
Kη

1− λ
)2 − Kη

1− λ
}E[‖∇F(θt + λmt)‖2]

First line holds because E[et+1] = 0. Second inequality comes from the Lemma 5. Now we have to
find the upper bound of five terms depicted in the last inequality. I∗’s upper bound is,

I∗ = η2E[‖ 1

N

∑
i∈[N ]

∇Fi(zt)‖2] ≤ η2G2

The upper bound of II∗, III∗, and IV∗ are handled in Lemma 2, Lemma 3, and Lemma 4, respectively.
V∗’s upper bound is,

V∗ = E[‖ 1

N

∑
i∈[N ]

K−1∑
k=0

−η∇Fi(θti,k)‖2] ≤ η2K

N

∑
i∈[N ]

K−1∑
k=0

E[‖∇Fi(θti,k)‖2] ≤ η2K2G2

Substituting upper bound for five items yields the desired result.

Lemma 2. E[‖ 1η (δt + ηK∇F(θt + λmt))‖2] in the proof of Lemma 6 has following bound.

E[‖1

η
(δt + ηK∇F(θt + λmt))‖2] ≤ η2L2K4G2

3
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Proof.

E[‖1

η
(δt + ηK∇F(θt + λmt))‖2} = E[‖1

η
(δt + ηK∇F(θt + λmt))‖2

= E[‖ 1

N

∑
i∈[N ]

K−1∑
k=0

{−∇Fi(θti,k) +∇Fi(θt + λmt))}‖2

≤ K

N

∑
i∈[N ]

K−1∑
k=0

E[‖{−∇Fi(θti,k) +∇Fi(θt + λmt))}‖2

≤ L2K

N

∑
i∈[N ]

K−1∑
k=0

E[‖θti,k − θti,0‖2

=
L2K

N

∑
i∈[N ]

K−1∑
k=0

E[‖
k−1∑
τ=0

−η∇Fi(θti,k)‖2

≤ η2L2K

N

∑
i∈[N ]

K−1∑
k=0

k

k−1∑
τ=0

E[‖∇Fi(θti,k)‖2

≤ η2L2K

N

∑
i∈[N ]

K−1∑
k=0

k2G2

≤ η2L2K4G2

3
Inequality in the third and sixth line comes from Jensen’s inequality. Inequality in the fourth line
is derived by the smoothness of the objective function. Inequality in the seventh line use bounded
gradient assumption.

Lemma 3. E‖∇F(zt) − ∇F(θt + λmt)‖2 in the proof of Lemma 6 has the following bound for
any 0 ≤ λ < 1,

E‖∇F(zt)−∇F(θt + λmt)‖2 ≤
η2λ4L2K2G2

{
1 + 4N

|St|(N−1)

(
1− |St|N

)}
+ η2λ4L2K2σ2

(1− λ)4

Proof.

E‖∇F(zt)−∇F(θt + λmt)‖2 ≤ L2E‖ λ2

1− λ
mt‖2 =

λ4L2

(1− λ)2
E‖mt‖2

=
λ4L2

(1− λ)2
E‖

t∑
k=0

λt−k∆k‖2,

where the first inequality comes from the L-smoothness of the global loss function F , while the last
equation comes from the unrolling the recursion of the momentum mt, i.e., mt =

∑t
k=0 λ

t−k∆k.
Let Γt =

∑t
k=0 λ

k = 1−λt

1−λ . For 0 ≤ λ < 1, Γt ≤ 1
1−λ .Then

λ4L2

(1− λ)2
E‖

t∑
k=0

λt−k∆k‖2 =
λ4L2

(1− λ)2
Γ2
t‖

1

Γt

t∑
k=1

λt−k∆k‖2

≤ λ4L2

(1− λ)2
Γt

t∑
k=1

λt−kE‖∆k‖2 =
λ4L2

(1− λ)2
Γ2
tE‖∆t‖2

=
η2λ4L2K2G2

{
1 + 4N

|St|(N−1)

(
1− |St|N

)}
+ η2λ4L2K2σ2

(1− λ)4
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Lemma 4. E‖e‖2 in the proof of Lemma 6 has the following bound,

E‖et‖2 ≤ η2K2σ2 +
4η2NK2

(N − 1)|St|
(1− |St|

N
)G2

Proof. We have E‖et‖2 = E‖∆t − δt‖. Note that:

E‖∆t − δt‖2 = E‖∆t +
η

|St|
∑
i∈St

K−1∑
k=0

∇Fi(θti,k)− η

|St|
∑
i∈St

K−1∑
k=0

∇Fi(θti,k) +
η

N

∑
i∈[N ]

K−1∑
k=0

∇Fi(θti,k)‖2

= E‖ η

|St|
∑
i∈St

K−1∑
k=0

∇fi(θti,k)−∇Fi(θti,k)‖2 + E‖ η

|St|
∑
i∈St

K−1∑
k=0

∇Fi(θti,k)− δt‖2

≤ η2

|St|
∑
i∈St

K−1∑
k=0

E‖∇fi(θti,k)−∇Fi(θti,k)‖2 + E‖ η

|St|
∑
i∈St

K−1∑
k=0

∇Fi(θti,k)− δt‖2

= η2K2σ2 + E‖ η

|St|
∑
i∈St

K−1∑
k=0

∇Fi(θti,k)− δt‖2︸ ︷︷ ︸
(A)

In (A), we take expectation with respect to Sk and total clients N . For that, we use Lemma 4
of Reisizadeh et al. (2020). Specifically, using Eq. (59) in Reisizadeh et al. (2020), we get:

(A) ≤ η2

|St|2
( |St|
N
− |St|(|St| − 1)

N(N − 1)

) ∑
i∈[N ]

E‖
K−1∑
k=0

∇Fi(θti,k)− δt

η
‖2

≤ η2

|St|2
( |St|
N
− |St|(|St| − 1)

N(N − 1)

)(
2
∑
i∈[N ]

E‖
K−1∑
k=0

∇Fi(θ)‖2 +
2

N

∑
i∈[N ]

E‖
K−1∑
k=0

∇Fi(θti,k)‖2
)

≤ 4η2

|St|2
( |St|
N
− |St|(|St| − 1)

N(N − 1)

) ∑
i∈[N ]

E‖
K−1∑
k=0

∇Fi(θti,k)‖2

≤ 4η2

|St|2
( |St|
N
− |St|(|St| − 1)

N(N − 1)

)
NK2G2

This gives us the desired result.

Lemma 5. (Relaxed triangle inequality). For any a > 0, ‖v1 + v2‖2 ≤ (1 + a) ‖v1‖2 +(
1 + 1

a

)
‖v2‖2

Proof. This lemma holds because when we organize the formulas on the right, we get 0 ≤
‖av1 − v2

a ‖
2.

A.2 CONVEX ANALYSIS

Theorem 2. Suppose that local functions {`i}Ni=1 are convex and L-smooth. Then, for 1
2 < λ < 1

and L
1−λ ≤ β, FedACG satisfies,

E

[
`

(
1

T

T∑
t=1

θt−1

)
− ` (θ∗)

]
≤ 1

T

(
β(1− λ)

∥∥θ0 − θ∗∥∥2 +
λ

β

( 1

N

N∑
i=1

∥∥∇`i (θ0i )∥∥2 ))
= O

(
1

T

)
where θ∗ = argmin

θ
`(θ), θt = 1

|St|
∑
i∈St

θti .
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If β = L
√

λ
1−λ , we get the statement in Theorem 1 in the main paper. We utilize similar approaches

as in SCAFFOLD (Karimireddy et al., 2020) and FedDyn (Acar et al., 2021) analysis throughout
the proof. We define momentum mt = θt − θt−1, and a set of variables for the analysis. Following
analysis in FedDyn (Acar et al., 2021), we first define virtual variable {θ̃ti} as,

θ̃ti = argmin
θ

`i(θ) +
β

2
‖θ − (θt−1 + λmt−1)‖2. (14)

θt consists of the locally trained models from participating devices. We express the server model as
active device average and its relation with accelerated model as,

θt =
1

|St|
∑
i∈St

θti ; θt = γt − λmt. (15)

We also define εt which calculate difference between local models and the average of device models
from previous round as,

εt =
1

N

∑
i∈{1,...,N}

E‖θ̃ti − θt−1‖2. (16)

If models converge to θ∗, εt will be 0. After these definitions, Theorem 2 can be seen as a direct
consequence of the following Lemma,
Lemma 6. For convex and L-smooth {fi}Ni=1 functions, if 1

2 < λ < 1 and L
1−λ ≤ β, FedACG

satisfies
E‖θt − θ∗‖2 + κεt ≤ E‖θt−1 − θ∗‖2 + κεt−1 − κ0E

[
`(θt−1)− `(θ∗)

]
where θ∗ = argmin

θ
f(θ), κ = 4βλ2(L−β−βλ)

(β2−4L2−4β2λ2)(1−λ) , κ0 = 2
β(1−λ)

(
4L(L−β−λβ)
β2−4L2−4β2λ2 − 1

)
.

Lemma 6 can be telescoped in the following way,
κ0E

[
`(θt−1)− `(θ∗)

]
≤
(
E‖θt−1 − θ∗‖2 + κεt−1

)
−
(
E‖θt − θ∗‖2 + κεt

)
κ0

T∑
t=1

E
[
`(θt−1)− `(θ∗)

]
≤
(
E‖θ0 − θ∗‖2 + κε0

)
−
(
E‖θT − θ∗‖2 + κεT

)
If 1

2 < λ < 1 and L
1−λ ≤ β, κ0 and κ become positive. Eliminating negative terms on RHS gives,

κ0

T∑
t=1

E
[
`(θt−1)− `(θ∗)

]
≤ E‖θ0 − θ∗‖2 + κε0

Applying Jensen’s inequality on LHS gives,

E

[
`

(
1

T

T∑
t=1

θt−1

)
− `(θ∗)

]
≤ 1

T

1

κ0

(
‖θ0 − θ∗‖2 + κε0

)
= O

(
1

T

)
,

which proves the statement in Theorem 2. Similar to convergence analysis of gradient descent,
‖θt − θ∗‖2 is expressed as ‖θt − θt−1 + θt−1 − θ∗‖2 and expanded in the proof of Lemma 6. To
tackle the extra terms, we state the following Lemmas and corresponding proofs. We first bound
‖θt − θt−1‖2 with the following,
Lemma 7. Suppose that local functions {fi}Ni=1 are convex and L-smooth. Then we can bound the
global model update,

E‖θt − θt−1‖2 ≤ εt (17)

Proof. Note that

E‖θt − θt−1‖2 = E

∥∥∥∥∥ 1

|St|
∑
i∈St

(
θti − θt−1

)∥∥∥∥∥
2

≤ 1

|St|
E

[∑
i∈St

∥∥θti − θt−1∥∥2
]

=
1

|St|
E

[∑
i∈St

∥∥∥θ̃ti − θt−1∥∥∥2
]

=
1

|St|
|St|
N

N∑
i=1

E
∥∥∥θ̃ti − θt−1∥∥∥2

= εt
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where first equality comes from Eq. (15). The following inequality applies Jensen. Remaining
relations are due to θ̃ti = θti if i ∈ St, taking expectation by conditioning on randomness before time
t and definition of εt.

We introduce additional Lemma to further bound ε term in Lemma 7. Before the proof, we first
introduce triangular inequality here.

Lemma 8. ∀{vj}nj=1 ∈ Rd, triangular inequality satisfies

∥∥∥∥∥∥
n∑
j=1

vj

∥∥∥∥∥∥
2

≤ n
n∑
j=1

‖vj‖2.

Proof. With Jensen’s inequality,
∥∥∥ 1
n

∑n
j=1 vj

∥∥∥2 ≤ 1
n

∑n
j=1 ‖vj‖2. Multiplying both sides with n2

gives the inequality.

Lemma 9. For convex and L-smooth {fi}Ni=1 functions, then the updates of FedACG have bounded
drift,

(
1− 4L2

β2

)
εt ≤ 4λ2εt−1 +

8L

β2
E
[
`(θt−1)− `(θ∗)

]
(18)

Proof.

εt =
1

N

N∑
i=1

E‖θ̃ti − θt−1‖2

=
1

N

N∑
i=1

E
∥∥∥∥− 1

β
∇`i(θ̃ti) + λmt−1

∥∥∥∥2

=
1

N

N∑
i=1

E
∥∥∥∥− 1

β
∇`i(θ∗) +

1

β
∇`i(θ∗)−

1

β
∇`i(θt−1) +

1

β
∇`i(θt−1)

− 1

β
∇`i(θ̃ti) + λmt−1

∥∥∥∥2
≤ 4

β2

1

N

N∑
i=1

E‖∇`i(θt−1)−∇`i(θ∗)‖2 +
4

β2

1

N

N∑
i=1

E‖∇`i(θ∗)‖2

+
4

β2

1

N

N∑
i=1

E‖∇`i(θ̃ti)−∇`i(θt−1)‖2 + 4λ2εt−1

≤ 4L2

β2
εt + 4λ2εt−1 +

8L

β2
E
[
`(θt−1)− `(θ∗)

]

where first and second equations come from Eq. (15) and first order condition of Eq. (14). Following
inequalities come from Lemma 8, 7, and convexity.
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Now, let’s express ‖θt − θ∗‖2 term as,

E‖θt − θ∗‖2 = E‖θt−1 − θ∗ + θt − θt−1‖2

= E‖θt−1 − θ∗‖2 + 2E
[〈
θt−1 − θ∗, θt − θt−1

〉]
+ E‖θt − θt−1‖2

≈ E‖θt−1 − θ∗‖2 +
2

(1− λ)βN

N∑
i=1

E
[〈
θt−1 − θ∗,−∇`i(θ̃ti)

〉]
+ E‖θt − θt−1‖2

≤ E‖θt−1 − θ∗‖2 + E‖θt − θt−1‖2

+
2

(1− λ)βN

N∑
i=1

E
[
`i(θ∗)− `i(θt−1) +

L

2
‖θ̃ti − θt−1‖2

]
= E‖θt−1 − θ∗‖2 −

2

(1− λ)β
E
[
`(θt−1)− `(θ∗)

]
+

L

(1− λ)β
εt + E‖θt − θt−1‖2 (19)

where we approximately have E[mt] ≈ − 1
(1−λ)βN

∑N
i=1 E[∇`i (θti)] since global gradient infor-

mation is an exponentially updated with a coefficient λ. Following inequality is due to the quadratic
bound by convexity and L-smoothness of local functions.

Let’s scale Eq. (19) with (1−λ)(β2−4L2−4λ2β2)
β(L−β−βλ) . Note that the coefficient is positive due to the condi-

tion on β and λ. Summing scaled version of Eq. (19) and Lemma 9 gives the statement in Lemma 6.

B HYPERPARAMETER SETTING

For the hyperparameter selection, we assume the scenario that the server can compute the validation
accuracy through communication with clients at the early stages, which is common to all algorithms.

For the experiments on CIFAR-10 and CIFAR-100, we choose 5 as the number of local training
epochs (50 iterations) and 0.1 as the local learning rate. We set the batch size of the local update to
50 and 10 for the 100 and 500 client participation, respectively. The learning rate decay parameter
of each algorithm is selected from {0.995, 0.998, 1} to achieve the best performance. The global
learning rate is set to 1, except for FedAdam, which is tested with 0.01.

For the experiments on Tiny-ImageNet, we match the total local iterations of local updates with
other benchmarks by setting the batch size of local updates as 100 and 20 for the 100 and 500 client
participation, respectively.

As for algorithm-dependent hyperparameters, α in FedCM is selected from {0.1, 0.3, 0.5}, α in
FedDyn is selected from {0.001, 0.01, 0.1}, and α in FedDC is set to 0.01. τ in FedAdam is set to
0.001 while µ in MOON is set to 1. β in FedAvgM is selected from {0.4, 0.6, 0.8}, β in FedProx
and FedACG is selected from {0.1, 0.01, 0.001}, and λ in FedACG is selected from {0.8, 0.85, 0.9}.
We submitted and will release the source code to facilitate the reproduction of our results.

C EVALUATION ON VARIOUS DATA HETEROGENEITY

Tables 7 and 8 show that FedACG matches or outperforms the performance of competitive methods
when data heterogeneity is not severe (Dirichlet 0.6) or absent (IID) on CIFAR-10 in most cases.
Note that, while the compared methods show performance degradation as the participation rate de-
creases, FedACG shows little degradation as the participation rate decreases for both data splits.
This implies that FedACG is more robust for low participation rates than other baselines. This is
partly because low client heterogeneity reduces noise in the momentum of global gradient, which
attributes to the smooth trajectory of global update. Since FedACG effectively incorporates the mo-
mentum for local updates, FedACG is relatively unaffected by the partial participation of federated
learning.
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Table 7: Results with Dirichlet (0.6) data split on CIFAR-10 and CIFAR-100 for two different
federated learning settings. Accuracy at the target round and the communication round to reach
target test accuracy are based on running exponential moving average with parameter 0.9. The
arrows indicate whether higher (↑) or lower (↓) is better. FedCM† and FedDC‡ require 1.5× and 2×
communication cost for each communication round, respectively.

(a) Dirichlet (0.6), 100 clients, 5% participation

Method
CIFAR-10 CIFAR-100

acc. (%, ↑) rounds (↓) acc. (%, ↑) rounds (↓)
500R 1000R 81% 87% 500R 1000R 50% 56%

FedAvg (McMahan et al., 2017) 80.56 85.97 520 1000+ 43.91 49.18 1000+ 1000+
FedProx (Li et al., 2020) 80.39 85.53 524 1000+ 43.15 48.45 1000+ 1000+
FedAvgM (Hsu et al., 2019) 84.65 87.96 355 811 46.66 52.49 735 1000+
FedADAM (Reddi et al., 2021) 80.25 83.52 526 1000+ 45.95 51.63 778 1000+
FedDyn (Acar et al., 2021) 87.23 89.49 310 487 50.51 56.78 488 886
MOON (Li et al., 2021) 84.95 87.99 272 728 55.76 61.42 338 527
FedCM† (Xu et al., 2021) 82.84 86.64 385 1000+ 53.75 60.48 331 468
FedDC‡ (Gao et al., 2022) 88.05 89.58 270 437 56.00 60.58 347 491
FedACG (ours) 87.57 90.56 218 453 58.82 63.88 243 396

(b) Dirichlet (0.6), 500 clients, 2% participation

Method
CIFAR-10 CIFAR-100

acc. (%, ↑) rounds (↓) acc. (%, ↑) rounds (↓)
500R 1000R 69% 80% 500R 1000R 32% 41%

FedAvg (McMahan et al., 2017) 62.79 75.17 671 1000+ 29.41 36.62 648 1000+
FedProx (Li et al., 2020) 62.48 75.10 688 1000+ 29.62 36.70 647 1000+
FedAvgM (Hsu et al., 2019) 69.10 80.26 498 981 32.78 41.93 468 942
FedADAM (Reddi et al., 2021) 68.48 78.92 535 1000+ 37.57 48.29 341 624
FedDyn (Acar et al., 2021) 68.53 80.33 513 983 32.06 43.28 498 917
MOON (Li et al., 2021) 74.29 80.66 368 921 31.64 41.61 515 931
FedCM† (Xu et al., 2021) 71.42 78.94 429 1000+ 26.82 39.78 714 1000+
FedDC‡ (Gao et al., 2022) 77.74 86.32 324 596 34.24 44.69 444 825
FedACG (ours) 78.49 85.28 289 565 39.61 49.70 304 540

D CONVERGENCE PLOT

D.1 EVALUATION ON VARIOUS FEDERATED LEARNING SCENARIOS

Figure 2 to Figure 4 show the convergence of FedACG and the compared algorithms on CIFAR-
10, CIFAR-100, and Tiny-ImageNet for various federated learning settings: varying the number of
total clients, participation rates, data heterogeneity. FedACG continuously matches or exceeds the
performance of the most powerful of our competitors in most learning sections.

Figure 5 shows the convergence plots under massive clients, 1% participation rate setting. The
result shows that FedACG takes the lead in most learning sections, which also demonstrates the
effectiveness of FedACG.

D.2 EVALUATION ON DYNAMIC CLIENT SET

Figure 6 shows a convergence plot when the entire client’s pool changes during training. The result
shows that FedACG outperforms the baselines in most learning sections. Note that FedDyn shows
worse performance than FedAvg in the overall section of learning, and only achieves FedAvg’s
performance at the end. This is partly because it needs to store local states for local training in each
client, which requires a kind of warm-up period for newly participating clients to contain useful
information. In contrast, FedACG, which is free from these restrictions, shows strength in a realistic
federated learning scenario where the pool of the entire clients changes during training.
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Table 8: Results with IID data split on CIFAR-10 and CIFAR-100 for two different federated learn-
ing settings. Accuracy at the target round and the communication round to reach target test accuracy
are based on running exponential moving average with parameter 0.9. The arrows indicate whether
higher (↑) or lower (↓) is better. FedCM† and FedDC‡ require 1.5× and 2× communication cost for
each communication round, respectively.

(a) IID, 100 clients, 5% participation

Method
CIFAR-10 CIFAR-100

acc. (%, ↑) rounds (↓) acc. (%, ↑) rounds (↓)
500R 1000R 82% 89% 500R 1000R 52% 58%

FedAvg (McMahan et al., 2017) 85.28 88.69 372 1000+ 43.96 48.20 1000+ 1000+
FedProx (Li et al., 2020) 84.79 87.99 384 1000+ 43.57 47.75 1000+ 1000+
FedAvgM (Hsu et al., 2019) 87.67 89.96 258 375 47.43 52.83 880 1000+
FedADAM (Reddi et al., 2021) 85.29 87.97 286 1000+ 52.23 57.73 496 1000+
FedDyn (Acar et al., 2021) 89.19 90.70 269 492 50.37 56.88 592 898
MOON (Li et al., 2021) 88.24 89.96 207 628 58.50 64.73 311 484
FedCM† (Xu et al., 2021) 87.38 89.65 182 782 57.10 62.48 266 466
FedDC‡ (Gao et al., 2022) 90.07 90.80 194 425 55.17 61.00 400 633
FedACG (ours) 90.57 92.29 157 354 59.82 64.08 244 342

(b) IID, 500 clients, 2% participation

Method
CIFAR-10 CIFAR-100

acc. (%, ↑) rounds (↓) acc. (%, ↑) rounds (↓)
500R 1000R 75% 83% 500R 1000R 33% 42%

FedAvg (McMahan et al., 2017) 68.70 78.21 652 1000+ 30.71 37.85 664 1000+
FedProx (Li et al., 2020) 68.74 77.96 643 1000+ 30.11 37.13 685 1000+
FedAvgM (Hsu et al., 2019) 74.34 83.64 523 943 33.54 42.55 479 971
FedADAM (Reddi et al., 2021) 75.32 84.01 491 915 38.74 48.94 328 636
FedDyn (Acar et al., 2021) 74.81 84.71 398 823 33.20 42.91 492 936
MOON (Li et al., 2021) 69.86 81.89 586 1000+ 28.82 41.26 649 1000+
FedCM† (Xu et al., 2021) 77.84 83.26 491 959 29.59 42.04 653 991
FedDC‡ (Gao et al., 2022) 80.87 87.53 358 574 33.93 45.80 476 817
FedACG (ours) 80.15 87.47 316 578 41.16 49.10 299 525
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(a) Dirichlet (0.3), 100 clients, 5% participation
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(b) Dirichlet (0.3), 500 clients, 2% participation

0 200 400 600 800 1000
Rounds

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

A
cc

FedACG
FedCM
FedDyn
FedAvgM
FedADAM

FedAvg
FedProx
FedDC
MOON

(c) Dirichlet (0.6), 100 clients, 5% participation
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(d) Dirichlet (0.6), 500 clients, 2% participation
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(e) IID, 100 clients, 5% participation
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(f) IID, 500 clients, 2% participation

Figure 2: The convergence plots of FedACG and the baselines on CIFAR-10 with different federated
learning scenarios.
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(a) Dirichlet (0.3), 100 clients, 5% participation
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(b) Dirichlet (0.3), 500 clients, 2% participation
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(c) Dirichlet (0.6), 100 clients, 5% participation
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(d) Dirichlet (0.6), 500 clients, 2% participation
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(e) IID, 100 clients, 5% participation
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(f) IID, 500 clients, 2% participation

Figure 3: The convergence plots of FedACG and the baselines on CIFAR-100 with different feder-
ated learning scenarios.
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(a) Dirichlet (0.3), 100 clients, 5% participation
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(b) Dirichlet (0.3), 500 clients, 2% participation

Figure 4: The convergence plots of FedACG and the baselines on Tiny-ImageNet with different
federated learning scenarios.
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(a) CIFAR-10
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(b) CIFAR-100

Figure 5: The convergence plots of FedACG and the baselines when participation rate is low (1%)
for 500 clients on CIFAR-10 and CIFAR-100. The Dirichlet parameter is set to 0.3 for the experi-
ments.
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Figure 6: The convergence plots of FedACG, FedAvg, FedDyn, FedDC, and MOON on CIFAR-
100 when the client set changes over dynamically: we sample 250 clients out of 500 clients as a
candidate clients set at every 100 rounds over 10 stages on Dirichlet (0.3) split. 10 clients out of
the sampled client set participate for the local training for each communication round. Dirichlet
parameter is set to 0.3.

24



Under review as a conference paper at ICLR 2023

E DISCUSSION ABOUT THE DIFFERENCE BETWEEN FEDACG AND THE
OTHER METHODS

FedAvgM The unique characteristic of FedACG lies in client accelerated gradient. Although
FedACG and FedAvgM use global momentum in common, FedACG broadcasts the accelerated
global model by adding global momentum to the current global model (θt−1 + λmt−1) while Fe-
dAvgM (Hsu et al., 2020) broadcasts the current global model(θt−1) to each client as the initial point
of the local model. To clarify the novelty of FedACG, we provide two pseudo-codes of FedACG and
FedAvgM with local regularization term in Algorithm 2 and Algorithm 3, respectively. Figure 7 and
Figure 8 also illustrates the server broadcasting and aggregation process of FedACG and FedAvgM,
respectively.

FedProx FedACG is a totally different method from FedProx for three reasons. First, FedACG
utilizes the global momentum for server update as in Algorithm 2. Second, since FedACG uses
client accelerated gradient, the local model’s initial point is different from FedProx. From this,
third, objective function of FedACG regularize the distance not between the local model and the
previous global model (FedProx), but between the local model and the accelerated point.

F EFFECT OF LOCAL REGULARIZATION TERM

Table 9 shows the effect of local regularization term in FedAvg, FedAvgM, and FedACG. Note the
role of the local regularization term is different in FedACG due to the acceleration term (+λmt−1)
included in the message from the global model. We first observe that employing accelerated client
gradient by adding global momentum to the current model plays a critical role for the performance
gain. We also observe the effectiveness of the local regularization term in FedACG; Adding the local
regularization term to the other baselines do not necessarily achieve performance gains in CIFAR-10
and CIFAR-100.

Algorithm 2 FedACG
Input: β, λ, initial server model θ0, number of clients N , number of communication rounds T ,

number of local iterations K, local learning rate η
Initialize global momentum m0 = 0
for each round t = 1, 2, . . . , T do

Sample subset of clients St ⊆ {1, . . . , N}
Server sends θt−1+λmt−1 for all clients i ∈ St
for each client i ∈ St, in parallel do

Initialize local model θti,0 = θt−1+ λmt−1

for each local iteration k = 1, 2, . . . ,K do
Compute mini-batch loss fi(θti,k−1) = Li(θti,k−1) + β

2 ‖θ
t
i,k−1 − (θt−1 + λmt−1)‖2

θti,k = θti,k−1 − η∇fi(θti,k−1)

end
∆t
i = θti,K − (θt−1 + λmt−1)

Client sends ∆t
i back to the server

end
In server:

∆t =
∑
i∈St

ωi∆
t
i

mt = λmt−1 + ∆t

θt = θt−1 +mt

end
Return θt
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Algorithm 3 FedAvgM with local regularization
Input: β, λ, initial server model θ0, number of clients N , number of communication rounds T ,

number of local iterations K, local learning rate η
Initialize global momentum m0 = 0
for each round t = 1, 2, . . . , T do

Sample subset of clients St ⊆ {1, . . . , N}
Server sends θt−1 for all clients i ∈ St
for each client i ∈ St, in parallel do

Initialize local model θti,0 = θt−1

for each local iteration k = 1, 2, . . . ,K do
Compute mini-batch loss fi(θti,k−1) = Li(θti,k−1) + β

2 ‖θ
t
i,k−1 − θt−1‖2

θti,k = θti,k−1 − η∇fi(θti,k−1)

end
∆t
i = θti,K − θt−1

Client sends ∆t
i back to the server

end
In server:

∆t =
∑
i∈St

ωi∆
t
i

mt = λmt−1 + ∆t

θt = θt−1 +mt

end
Return θt

Averaged local updates 
Global momentum

Server update 

Accelerated point at 

Accelerated point at 

Figure 7: An illustration of the FedACG during two communication rounds

Table 9: Effect of local regularization term on different federtaed learning algorithms on CIFAR-10
and CIFAR-100 with 2% participation and 500 clients.

Method Server update
w momentum Accelerated client gradient Local regularization CIFAR-10 CIFAR-100

FedAvg 71.45 38.11
FedProx X 70.75 36.16

FedAvgM X 77.49 40.54
FedAvgM w local reg X X 76.16 41.64
FedACG w/o local reg X X 82.20 46.80

FedACG X X X 82.80 48.40
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Averaged local updates 
Global momentum

Server update 

Figure 8: An illustration of the FedAvgM during two communication rounds
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