
LoRO: Real-Time on-Device Secure Inference for
LLMs via TEE-Based Low Rank Obfuscation

Gaojian Xiong, Yu Sun∗, Jianhua Liu, Jian Cui, Jianwei Liu
School of Cyber Science and Technology, Beihang University, China

{xionggaojian, sunyv, jason_hua, cuijianw, liujianwei}@buaa.edu.cn

Abstract

While Large Language Models (LLMs) have gained remarkable success, they are
consistently at risk of being stolen when deployed on untrusted edge devices. As a
solution, TEE-based secure inference has been proposed to protect valuable model
property. However, we identify a statistical vulnerability in existing protection
methods, and furtherly compromise their security guarantees by proposed Model
Stealing Attack with Prior. To eliminate this vulnerability, LoRO is presented in
this paper, which leverages dense mask to completely obfuscate parameters. LoRO
includes two innovations: (1) Low Rank Mask, which uses low-rank factors to gen-
erate dense masks efficiently. The computing complexity in TEE is hence reduced
by an exponential amount to achieve inference speed up, while providing robust
model confidentiality. (2) Factors Multiplexing, which reuses several cornerstone
factors to generate masks for all layers. Compared to one-mask-per-layer, the
secure memory requirement is reduced from GB-level to tens of MB, hence avoid-
ing the hundred-fold latency introduced by secure memory paging. Experimental
results indicate that LoRO achieve a 0.94×Model Stealing (MS) accuracy, while
SOTA methods presents 3.37× at least. The averaged inference latency of LoRO is
only 1.49×, compared to the 112× of TEE-shielded inference. Moreover, LoRO
results no accuracy loss, and requires no re-training and structure modification.
LoRO can solve the concerns regarding model thefts on edge devices in an efficient
and secure manner, facilitating the wide edge application of LLMs.

1 Introduction

Large Language Models have demonstrated considerable ability in various domains [1]. However, the
predominant cloud-based deployment exposes critical limitations: users have to tolerate additional
network latency and upload their private data. In domains requiring real-time responsiveness and
private data protection, e.g. autonomous driving [2] and personal smart agent [3], there is growing
demand to deploy LLMs on user’s edge devices with accelerators [4, 5]. Alarmingly, on-device
models are usually white-box vulnerable to be stolen [6, 7]. Since LLMs are extremely expensive to
train, it is expected that users can benefit from edge inference in an efficient but black-box manner,
i.e. enjoy high-quality and fast inference with no knowledge about private parameters.

Trusted Execution Environment (TEE)-based secure inference [8, 9, 10, 11, 12, 13, 14] have been
proposed to safeguard valuable on-device models against theft. Advanced TEE-based methods
obfuscate and offload model parameters to Rich Execution Environment (REE) for acceleration
using GPUs. The de-obfuscation keys are shielded in TEE to restore the inference results accurately.
Compared to cryptograph-based secure inference that relies on Homomorphic Encryption [15]
or Multi-Party Computation [16], TEE-based methods offer more practical solutions due to their
real-time performance [9, 11, 14] and elimination of network bandwidth occupation.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1: Model Stealing Accuracy (↓) against proposed LoRO and SOTA TEE-based secure inference
methods. The averaged accuracy of each defense relative to black-box is reported in the last row. The
best performance is in green, and the worst is in red.

Model Model Size Dataset No-Shield TLG[14] ShadowNet[11] Magnitude[9] SOTER[10] Ours Black-Box

ViT Base Food101 81.57% 81.51% 71.90% 80.05% 75.52% 16.05% 10.28%
CIFAR100 89.86% 89.67% 79.27% 87.28% 88.30% 15.03% 14.57%

RoBERTa Base

SQuAD 81.84% 47.44% 34.04% 50.32% 45.51% 6.35% 7.01%
MRPC 87.99% 69.39% 70.01% 86.88% 82.06% 31.61% 33.90%
SST-2 93.58% 90.86% 87.78% 91.42% 93.20% 73.43% 69.45%
MNLI 85.33% 84.25% 82.84% 79.43% 84.00% 45.18% 44.02%

BART Large

SQuAD 83.15% 49.21% 37.32% 49.84% 42.79% 10.50% 7.36%
MRPC 87.01% 75.93% 68.89% 79.96% 82.11% 31.61% 31.84%
SST-2 95.30% 90.90% 88.53% 91.05% 94.57% 67.99% 68.50%
MNLI 88.15% 86.05% 79.50% 81.62% 85.49% 49.90% 49.96%

Qwen2
1.5B SQuAD 68.45% 29.33% 21.22% 26.86% 24.05% 5.07% 11.20%
3B GSM8K 70.96% 40.13% 28.27% 34.15% 32.83% 1.70% 5.85%
7B Spider 17.99% 13.55% 10.15% 10.34% 9.69% 2.32% 2.50%

LLaMA3
1.5B SQuAD 59.20% 30.62% 23.53% 28.72% 26.80% 7.90% 9.73%
3B GSM8K 53.12% 14.57% 12.31% 11.68% 12.47% 1.56% 2.31%
8B Spider 34.62% 12.97% 10.70% 9.15% 11.94% 3.90% 3.82%

Average 7.03× 4.12× 3.37× 3.85× 3.75× 0.94× 1.00×

Nevertheless, we identify a fundamental statistical vulnerability in the state-of-the-art protection
methods, and undermine their security guarantees. As shown in Figure 2, since LLMs typically
undergo retraining from public available pretrained models, there remains a statistical similarity in
parameters or intermediate results [13]. Regretfully, current protection schemes fail to effectively
conceal this inherent correlation. Based on this vulnerability, we propose a Model Stealing attack with
Prior knowledge (MSP), which enables adversary to approximate the de-obfuscate keys using public
prior knowledge, and recover private parameters through minimal fine-tuning. As demonstrated in
Table 1, our MSP attack can achieve a high accuracy near original model, indicating that LLMs
protected by existing methods could still be stolen. The details of MSP is introduced in Section 4.

To address aforementioned problem, we present LoRO (Low-Rank-Obfuscation), an efficient secure
inference framework. To eliminate statistical vulnerability, dense masks are leveraged to completely
obfuscate private parameters. But two challenges are raised by dense mask: (C1) high computing
complexity in TEE and (C2) GB-level secure memory requirement, which can cause unacceptable
hundred-fold latency. To solve (C1), Low Rank Mask is designed to reduce the computing complex-
ity significantly. We employ low-rank factors to randomly generate dense masks, which reduces
complexity from O(n3) of full matrix multiplication to O(n2), enabling real-time inference with-
out compromising security. To solve (C2), Factor Multiplexing is designed to optimize the secure
memory requirement. Factor Multiplexing generates dense masks through efficient random linear
combinations of several cornerstone factors. This optimizes one-mask-per-layer to only several
cornerstone factors. For 7B models, the secure memory can be reduced from 1.02 GB to only 26 MB.

Experiments are conducted on Intel SGX and Arm TrustZone platforms to evaluate proposed LoRO,
focusing on three aspects: (1) For model confidentiality, LoRO effectively defends against Model
Stealing (MS) attacks with near black-box performance (0.94×), outperforming existing methods
that exhibit 3.37× at least. (2) For inference efficiency, LoRO’s lightweight design maintains only a
1.49× inference latency on average (compared to REE inference), achieving significant improvement
over existing approaches the reaches 112× at least. (3) For model accuracy, LoRO introduce zero
accuracy loss. Moreover, no training effort and architecture modification is required.

Proposed LoRO effectively protect edge-deployed LLMs as black-box model, while providing real-
time and accurate inference service. Moreover, LoRO is plug-and-play without modifying the model
structure or retraining. We believe that LoRO can solve the concerns regarding model thefts on edge
devices, and facilitate the wide application of LLMs.

The code for implementing LoRO is available in https://github.com/D1aoBoomm/LoRO. Our contri-
butions could be summarized as follows:

• We reveal a statistical vulnerability in existing TEE-based secure inference methods. Based
on this, we propose Model Stealing attack with prior, which empirically demonstrates the
SOTA methods inadequately deliver their security guarantee when protecting LLMs.

2

https://github.com/D1aoBoomm/LoRO

Table 2: Representative methods of TEE-based secure inference compatible with LLMs. means
no access to REE, means only part of parameters is accelerated by REE, and means full
acceleration.

Category Method REE
Acceleration

No Retraining
Requirement

No Architecture
Modification

Resistance to
MSP attacks

Obfuscation
Scheme

Full Shielding MLCapsule None
Penetralium None

Partial Shielding AegisDNN None
TEESlice None

De-Obfuscation
Shielding

Magnitude Additive
SOTER Multiplicative

ShadowNet Add & Mul
NNSplitter Additive

TLG Permutation
LoRO Additive

• We present LoRO, a TEE-based efficient secure inference framework, which consists of two
components: (1) Low Rank Mask to shield valuable LLMs from thefts, while providing real-
time and accurate inference performance on edge. (2) Factor Multiplexing to eliminate the
intensive secure memory requirement of protecting LLMs, which avoids the hundred-fold
latency introduced by frequent secure memory paging.

• Experiments on both Intel SGX and ARM TrustZone demonstrate that MS attack accuracy
is reduced to black-box level (0.94×) from existing 3.37×. Moreover, LoRO introduces
only 1.49× inference latency, compared to the 112× of TEE-shielded inference. Notably,
LoRO introduces no accuracy loss, and requires no re-training or architecture modification.

2 Related Work

2.1 Trusted Execution Environment

Trusted Execution Environments (TEEs) employ memory isolation to ensure the confidentiality and
integrity of application inside. Prominent edge TEE implementations include Intel SGX [17] and
Arm TrustZone [18]. However, edge TEEs are originally designed for small critical tasks, e.g. key
exchange. They typically equip with limited computational resources and secure memory capacities
restricted to 128 MB. Deploying LLMs within TEEs induces excessive secure memory paging, which
necessitates additional cryptographic operations to maintain data security. Consequently, inference
latency could escalate by hundred-fold [19, 20, 21], which is unacceptable to users.

2.2 TEE-based Secure Inference

TEE-Based Secure Inference aims to protect edge-deployed valuable models from being stolen.
Advanced methods leverage TEE to safeguard critical neural network components, e.g. selective
parameter subsets and de-obfuscation keys. The computation-intensive major parameters [11, 22] are
offloaded to REE, enabling access to hardware accelerators (GPU/NPUs) for accelerations. Without
the secret parts in TEE, adversary can only access the model with performance degraded to nearly
random guessing. Compared to cryptographic-based approaches, TEE-based solutions demonstrate
superior practicality by reducing the inference latency and eliminating the network occupation. As
shown in Table 2, existing methods can be categorized as follows:

Full shielding. Some research focus on shielding the whole inference process in TEE. As a typical
method, MLCapsule [23] decrypts model layer-by-layer in TEE to avoid secure memory paging.
Similarly, Penetralium [20] breaks down the models in parts by a novel adaptive decomposition
algorithm, achieving efficient memory allocation. Such methods protect all parameters in TEE,
preventing any possible privacy leakage. However, the absence of REE acceleration would result in
hundred-fold inference latency, rendering they impractical for real-time tasks.

Partial shielding. To facilitate REE acceleration, several studies [24, 25, 26] have proposed partial
model shielding strategies. For example, AegisDNN [27] designs a dynamic programming algorithm

3

Model Manufacturer

Edge TEEEdge REE

Private
Dataset Clusters LLM

…
Model
Secret

Offload

Deploy

Obfuscated
Model

(a) Edge Deployment Scenario (b) Pipeline of Model Stealing with Prior

Additive
Mask

Permutation

Multiplicative
Noise

Obfuscated

Public

Hungarian
Algorithm

Similarity
Matrix

Key:

Small
Dataset

Obfuscated
Model

Gradients
Anomoly
Location

Selectively
Fine-Tune

Obfuscated

Public
Full

Fine-Tune

Small
Dataset

Key
Estimate

Key:

Partially
Recovered

Model

Model De-Obfuscation Knockoff

Figure 1: (a) Edge Deployment Scenario (b) Pipeline of proposed Model Stealing attack with Prior.

to identify and protect only the most critical layers. Likewise, TEESlice [13] suggests to freeze
the backbone, confining all privacy in shielded model slices. These approaches achieve a security-
efficiency balance in small models, but face severe latency delay in LLMs.

De-obfuscation shielding. Recent studies have increasingly focused on parameter obfuscation
methods. The parameters are obfuscated and offloaded to REE for acceleration [12, 28]. Subse-
quently, intermediate results are de-obfuscated in TEE using shielded keys. According to obfuscation
mechanism, current methods can be classified into three categories: permutation [14], additive mask
[9, 11, 12] and multiplicative noise [10, 11]. Since the major computation (commonly over 95% [11])
is offloaded to REE, obfuscation-based solutions provide remarkable inference efficiency.

We introduce the protection mechanism of each methods, and analyze their vulnerability in Section 4.

3 Threat Model

Edge environment. As shown in Figure 1 (a), we consider an edge environment, where edge
devices are equipped with TEE and accelerators. The TEE is considered absolutely secure, preventing
any data leakage and integrity compromising. Side channel attacks [29, 30], which could cause
privacy leakage in TEE, is not considered in this study.

Adversary. The adversaries try to achieve a surrogate model that exhibits similar performance to
the edge-deployed LLMs. These adversaries possess powerful capabilities, controlling the entire
environment external to the TEE, including the operating system and hardware. They are also
well-versed in artificial intelligence. To enhance MS attacks, adversaries can deduce the complete
model architecture from information available in the REE and utilize publicly available models from
the Internet. A small dataset (about 10% size of training set) is held by adversaries to launch attacks.

Design goal. The goal of model manufacturer is to protect the edge-deployed LLMs from thefts,
while providing fast and accurate inference service to users. To achieve this goal, the following
objectives should be met simultaneously:

• Model Confidentiality: Without authorization to TEE, adversaries cannot obtain the param-
eters of deployed LLMs through MS attacks or analysis attacks. The ideal situation is that
models are protected as black-box.

• Inference Efficiency: Inference latency of deployed models should be reduced as possible.
The ideal situation is that inference latency is comparable to that in REE.

• Model Accuracy: The model accuracy should be maintained to provide high-quality service.
The ideal situation is that no loss in accuracy is introduced.

4

(a) TLG. (b) Magnitude. (c) Proposed LoRO.

Figure 2: T-SNE visualization of parameters on representative methods. Each point represents the a
column vector from weight matrix. Number in (a),(c) indicates the cosine similarities , and line in
(b),(c) means the shift distance of obfuscated parameters.

4 Model Stealing Attack with Prior

In this section, we introduce how MSP is designed in detail. For each methods category, we first
analyze the potential risk, and then introduce our attack pipeline. Finally, we experimentally evaluate
our attack performance. The overall pipeline of MSP attack is depicted in Figure 1 (b).

4.1 Permutation Methods.

Risk analysis. This approach leverages permutation to obfuscate model parameters [14]. Given
a permutation matrix π, in which elements are ∈ {0, 1} and ππT = I , the input x and parameters
W of linear layer are obfuscated as follows: x′ = xπ,W ′ = πTW . Although the parameters are
obfuscated, the output y is still accurate, since y = x′W ′ = xππTW = xW .

However, a significant drawback of this approach lies in the shared obfuscation key between in-
termediate results and model parameters. Once adversaries successfully restore the intermediate
results, they can directly recover the plain-text model parameters. Furthermore, permutation-based
obfuscation fails to conceal the statistical distribution of columns in the intermediate results. As
shown in Figure 2 (a), adversaries can exploit the high distribution similarity between private and
public models to estimate π, and then de-obfuscate model without training effort.

Attack pipeline. Based on the risk analyzed above, we first estimate the permutation key based on
the intermediate results distribution. Specifically, we formulate the attack as an optimal matching
problem for maximal similarity of intermediate results columns. First, a batch of input xr is randomly
chosen, and sent to both public pretrained model layer Wp and obfuscated layer W ′ to get batched
output yp = xrWp and y′ = xrW

′. Given the columns of intermediate results, a similarity matrix
S is computed over the columns of y and y′ as follows:

S = [sij = cosine_similarity(yi, y′j) | 0 ≤ i, j ≤ columns− 1], (1)

where yi and y′i represent the i-th column of y and y′ respectively, which is averaged across the batch.
Then, based on S, we leverage Hungarian Algorithm [31] to resolve the optimal column matching.
The permutation key π can be nearly perfectly recovered, and utilized to de-obfuscate parameters.
Finally, we perform a fine-tuning using the limited dataset, to correct potential minor mismatches.

4.2 Additive Mask Methods.

Risk analysis. These methods apply additive mask r on parameters as: W ′ = W + r, and apply
One-Time-Pad (OTP) o on input: x′ = x+ o. The results y is de-obfuscated in TEE as:

y = x′W ′︸ ︷︷ ︸
REE

− xr︸︷︷︸
TEE

− (oW + or)︸ ︷︷ ︸
Pre-Computed

= xW,
(2)

where xW ′ is accelerated in REE, xr is securely computed in TEE, and oW +or is pre-computed and
stored. Notably, xr holds the same heavyweight complexity with xW , which results in unacceptable
latency in TEE. To overcome this, existing methods leverage sparse mask rs to downgrade the

5

complexity. For instance, Magnitude [9] only obfuscate 1% largest weights, and NNSplitter [12]
selects extremely sparse parameters to protect by reinforcement learning.

However, under the constraint of mask sparsity, only limited number of parameters are obfuscated.
To reduce the model accuracy to random guessing, the magnitude of changes in the obfuscated
parameters is significantly large [28, 32]. Based on this insight, we observe a gradient anomaly
phenomenon: compared to the normal counterparts in the same layer, obfuscated parameters exhibit
substantially larger gradient values on the training data. As shown in Figure 2 (b), obfuscated
parameters can be easily located, and then selectively fine-tuned for recovery.

Attack pipeline. Based on the identified gradient anomaly phenomenon, we initially localize the
obfuscated parameters. By iterating through the attacker’s small dataset, we identify the top 5%
of parameters with the largest averaged gradient as obfuscated parameters. Subsequently, these
identified parameters are set to be trainable, while the remaining parameters are frozen, enabling
selective fine-tuning. Empirical observations reveal that the localization accuracy is not entirely
precise, as a small subset of obfuscated parameters still exhibits minimal variation. Consequently, a
few additional rounds of full fine-tuning are ultimately required.

4.3 Multiplicative Noise.

Risk analysis. These methods apply multiplicative factor to obfuscate parameters. For instance,
SOTER [10] obfuscate a layer using one factor µ: W ′ = µW , and de-obfuscate the results as:
y = µ−1xW ′ = xW . Similarly, ShadowNet [11] applies one factor for each columns.

However, as indicated in [13], multiplicative noise struggles to conceal the statistical distribution of
parameters. The value of applied factor have significant impact on the variance of parameters. As a
result, the adversary can leverage the variance of public models to estimate the applied factor, and
then de-obfuscate the parameters.

Attack pipeline. Given the variance var(W) of public models, and the variance var(W ′), we
follow [13] tofirst estimate multiplicative noise as: µ′ =

√
var(W ′)/var(W). Then we de-obfuscate

parameters using µ′, and fine-tune the model with adversary’s small dataset.

4.4 Attack Results

As demonstrated in Table 1, we conduct experimental evaluations regarding the attack performance of
proposed MSP. To estimate the strongest adversary, the highest result in five individual experiments
are reported. Notably, the MS accuracy against existing methods reaches an average of 3.37× to
4.12×, even comparable to the original model in some scenarios, indicating that current approaches
fail to safeguard high-value LLMs from thefts.

5 TEE-Based Low Rank Obfuscation

In this section, we introduce LoRO in detail. As shown in Figure 3, it consists of two components:
Factor Multiplexing to reuse the cornerstone factors in deployment stage, and Low Rank Mask to
safeguard the valuable LLM from thefts in inference stage. These two components are described
respectively as follows, and we provide persuade code in Appendix E.

5.1 Low Rank Mask

Efficiency-Confidentiality dilemma. Edge TEEs face significant resource constraints, particularly
when protecting high-complexity computations, which can introduce a hundred-fold increase in
inference latency [8, 20]. Consequently, the core of TEE-based secure inference lies in maximizing
inference efficiency while maintaining model confidentiality. On the one hand, full shielding methods
can provide robust security, but the unacceptable latency renders them impractical. On the other
hand, while existing methods offer substantial efficiency improvements, they fail to fully obscure the
statistical distribution (as detailed in Section 4). This compromise from confidentiality to efficiency
significantly increase the risk of model theft, leading them vulnerable to proposed MSP attack. Hence,
it’s challenge to achieve robust confidentiality in an efficient way.

6

Scaled
Dot

Product
Attention

OTP Keys

Permutation Keys

Offload

+

+

+

+Cornerstone
Factors

Low-Rank
Mask

Pre-Computed

…

Result
Restore

Result
Restore

Result
Restore

Activation

OTP

Result
Restore

Permuta
-tion

Add&
Norm

OTP

Add&
Norm

Edge TEE Edge REE
Lightweight

Operation in TEE
Shielded Secrets

Heavyweight
Inference in REE

Accelerator Adversary

(a) Deployment Stage

Only Obfuscated Parameters

(b) Inference Stage

Factors
Multiplexing

…

OTP

Figure 3: Illustration of proposed LoRO, which incorporates two stages: (a) Deployment Stage: to
pre-computing keys and obfuscate parameters in TEE. (b) Inference Stage: inference with obfuscated
parameters in REE and restore the results in TEE.

Our solution. To address the dilemma introduced above, our solution is to obfuscate parameters
using dense additive mask, which can fully obscure the statistical distribution and provide high
security [11, 13]. As shown in Figure 3, we focus on protecting parameters of linear layer. LoRO is
compatible to popular LLMs since they are almost based linear layers. Given the dense mask D, the
parameter W is obfuscated as W ′ = W +D. The inference results y is described as follows:

y = xW ′︸︷︷︸
REE

− xD︸︷︷︸
TEE

= xW.
(3)

However, one main limitation is that the dense mask is too heavyweight to be shielded. Given the
shape [n× n] of W , dense mask holds a high computation complexity of O(n3). This is same with
full shielding methods, which could result in an unacceptable latency in TEE. To tackle this problem
and achieve real-time efficiency, our key insight is to generate dense mask using low-rank factors.
Given two low-rank factors Bn×d, Ad×n and generated dense mask D = BA, the inference results
are re-formulated as follows:

y = xW ′︸︷︷︸
REE

−xBA︸ ︷︷ ︸
TEE

= xW.
(4)

In conclusion, proposed methods address the efficiency-confidentiality dilemma in following aspects.
For efficiency, the complexity in TEE is reduced from complex O(n3) to O(n2 × d) = O(n2), where
d≪ n. Hence, inference efficiency is significantly improved. For confidentiality, each elements in
W are obfuscated randomly. As shown in Figure 2 (c), since statistical distribution are fully obscured,
adversaries cannot access W without obtaining shielded D.

Intermediate results protection. To protect masks from analysis attacks, the intermediate results
should also be protected. For the input x and of a linear layer, OTP o is employed as: x′ = x+ o.
Same to Equation 2, the applied noise can be accurately removed. Specifically, for the scaled dot
production of attention module [33], since OTP is not applicable [34] (as detailed in Appendix D, we
leverage permutation matrix π to protect intermediate results as follows:

Q′ = πQ,K ′ = πK, V ′ = πV, y′ = softmax

(
Q′K ′T
√
k

)
V ′ = πsoftmax

(
QKT

√
k

)
V, (5)

where k is the hyper-parameter that has been set in model training stage. To accommodate model
variants, the potential RoPE [35] and other activation function is computed in TEE. Then the result
is restored in TEE as: y = πT y′. Notably, since our secret D is independent from π, the risk we
discovered in TLG (detailed in Section 4) is avoided. Due to page limitation, more details of design
and hyper-parameters can be found in Appendix A.

7

5.2 Factor Multiplexing

Limited secure memory challenge. Edge TEEs are constrained by limited secure memory, typically
capped at 128 MB [17, 36]. However, to shield a pair of low-rank factors per layer for 7B LLMs, the
secure memory could reach approximately 1.02 GB. The introduced memory paging issue leads to a
unacceptable increase in inference latency and potential security risk [37], severely compromising
the practicality. Hence, a critical challenge lies in efficiently protecting low-rank factors within such
restricted secure memory.

Our solution. Factor Multiplexing is proposed to address this challenge. Our insight lies in the
random combination of several limited low-rank factors, which enables reusing factors to save
secure memory. Instead of preparing a pair of factors per layer, we randomly choose from corner-
stone factors and generate dense mask. As shown in Figure 3 (a), given a cornerstone factors set
{A1, ..., An, B1, ...Bn}, a small set S ⊆ {A1, ..., An} × {B1, ...Bn} is randomly chosen,where the
|S| = m. Then a mask D is generated as follows:

D =
∑

(Ai,Bj)∈P

αBjAi, (6)

where α is the random weight. In this way, only the cornerstone factors are required in memory,
instead of the heavyweight one mask per layer. In real-time scenario, m is set to two for best
efficiency, and the low computation complexity is maintained. Moreover, Factor Multiplexing enables
updating the obfuscated parameters using new masks periodically. The secure memory requirement
of one-mask-per-layer and Factor Multiplexing is reported in Appendix B.

6 Experiments

In this section, LoRO is evaluated experimentally. According to design goal (in Section 3), we aim to
answer the following questions:

RQ1: How is the defense effectiveness of LoRO? (in Section 6.2)
RQ2: What is the inference speed of LoRO compared to existing methods? (in Section 6.3)
RQ3: What is the model accuracy of LoRO compared to original models? (in Section 6.4)

6.1 Experiment Setup.

Benchmarks. Proposed LoRO is evaluated on several famous benchmarks, including SQuAD
(reading comprehension) [38], GSM8k (mathematics) [39], Spider (code generation) [40] and repre-
sentative standard GLUE [41]. The accuracy is reported as metric. For generation tasks, only exact
matched answer is considered correct. We also evaluate LoRO on Computer Vision tasks, including
CIFAR100 [42] and Food101 [43].

Models. Representative models of various scales and structure are selected, including RoBERTa
[44, 45], BART [46], ViT [47] Qwen [48] and LLaMA [49, 50].

Hardware devices. Experiments regarding model confidentiality and accuracy are conducted on a
server equipped with two NVIDIA RTX 4090 GPUs. Inference efficiency are evaluated on two TEE
platforms. For TrustZone, NVIDIA Jetson Orin NX board equipped with 6-core ARM Cortex-A78AE
CPU and 1024-core NVIDIA Ampere architecture GPU is employed, and OP-TEE [51] is leveraged
as TEE OS. For Intel SGX, a laptop equipped with Intel Core I9-10885H CPU and Quadro T2000
GPU is adopted, and Gramine-SGX [52] is the basic TEE OS.

Due to page limitation, more details and experiments can be found in Appendix A and B.

6.2 Model Confidentiality

As shown in Table 1, we report the MSP accuracy against LoRO and various defense methods. The
significantly high MS accuracy (3.75× to 4.12×) demonstrate the vulnerability of current defense

8

RoBERTa-B BART-L Qwen2-3B LLaMA3.2-3B Qwen2-7B LLaMA3.2-8B
100

101

102

La
te

nc
y

(L
og

 S
ca

le
)

54
.08

×
95

.17
× 23

0.9
3×

25
8.3

7×

32
1.5

8×

35
8.6

0×

14
.42

× 39
.80

× 11
8.6

5×

13
6.9

7×

17
0.2

9×

17
1.8

4×

12
.60

× 37
.27

× 11
9.5

6×

14
2.1

2×

17
5.9

0×

19
5.2

8×

23
.77

× 50
.01

× 15
1.1

0×

17
2.4

8×

20
6.3

0×

21
0.0

8×

1.1
2×

1.1
8×

1.2
9×

1.3
8×

1.6
4×

1.7
7×

1 ×

MLCapsule
Seardab

DarkneTz
SOTER

Ours

Figure 4: Inference latency of various methods in SGX environment. All results are normalized to
REE inference latency (red line, 1×). We depict in log10 scale for better visualization.

RoBERTa-B BART-L Qwen2-3B LLaMA3.2-3B Qwen2-7B LLaMA3.2-8B
100

101

102

La
te

nc
y

(L
og

 S
ca

le
)

69
.32

×
10

1.2
0× 24

3.8
6×

28
7.5

1×
48

5.7
5×

49
8.3

2×

18
.51

× 42
.31

× 12
6.0

2×

14
2.7

6×
18

0.9
0×

18
2.7

5×

16
.85

× 43
.44

× 16
7.3

5×

16
9.4

3×

20
3.9

7×

20
7.3

9×

23
.77

× 53
.13

× 17
2.8

9×

18
0.0

1×

21
7.2

0×

22
9.6

2×

1.2
4×

1.3
1×

1.5
5×

1.6
5×

1.8
2×

1.9
0×

1 ×

MLCapsule
Seardab

DarkneTz
SOTER

Ours

Figure 5: Inference latency of various methods on TrustZone environment. All results are normalized
to REE inference latency (red line, 1×). We depict in log10 scale for better visualization.

approaches to our proposed MSP attack. Notably, adversary can achieve near-complete recovery
in several scenarios. In contrast, LoRO maintains a robust defense performance of only 0.94×,
comparable to the 1.00× baseline in black-box settings. These results indicate that LoRO provides
effective protection on LLMs against MS attempts.

Answer to RQ1: Proposed LoRO effectively downgrades private LLMs to black-box, pro-
viding robust security to valuable intellectual property protection.

6.3 Inference Efficiency

Experiments are conducted on popular TEEs to evaluate the inference efficiency of LoRO, including
Intel SGX and ARM TrustZone. As depicted in Figure 4 and Figure 5, proposed LoRO introduces
only 1.49× latency on average, compared to the 112.10× to 250.39× of existing methods. This
demonstrates that our methods provides real-time inference and is practical for real-world application.
Notably, as shown in table 6, with the raise of model scale, the computing complexity in TEE is
significantly increased due to larger intermediate size, resulting a higher latency.

Answer to RQ2: Compared to the averaged 112.10× of existing methods, proposed LoRO
introduces only 1.49× latency, achieving real-time inference efficiency.

6.4 Model Accuracy

As shown in Table 3, we report the model accuracy of original model, proposed LoRO method and
the obfuscated model exposed in REE. Only a 0.01% drop is observed in BART on MRPC, which
is caused by float precision error. It is demonstrated that the high accuracy of original model is
maintained. Moreover, the obfuscated model is completely downgraded to random guessing level.

Answer to RQ3: Proposed LoRO introduces no accuracy loss, maintaining the high model
accuracy. The obfuscated model exposed in REE is downgraded to unusable.

9

Table 3: Model accuracy of original model (Ori.), LoRO and obfuscated model in REE (Obf.).

SQuAD MRPC SST-2 MNLI GSM8K Spider

RoBERTa
Ori. 81.84% 87.99% 93.58% 85.33% - -

LoRO (↑) 81.84% 87.99% 93.58% 85.33% - -
Obf. (↓) 0.64% 31.61% 50.91% 35.45% - -

BART
Ori. 83.15% 87.01% 95.30% 88.15% - -

LoRO (↑) 83.15% 87.00% 95.30% 88.15% - -
Obf. (↓) 0.76% 31.60% 49.08% 35.45% - -

Qwen2
Ori. 48.45% - - - 70.96% 17.99%

LoRO (↑) 48.45% - - - 70.96% 17.99%
Obf. (↓) 0.00% - - - 0.00% 0.00%

LLaMA3
Ori. 49.20% - - - 53.12% 34.62%

LoRO (↑) 49.20% - - - 53.12% 34.62%
Obf. (↓) 0.00% - - - 0.00% 0.00%

7 Discussion

Side channel Attacks. Side channel attacks [29, 30] can cause leakage from TEE potentially.
Fortunately, our LoRO is compatible with existing advanced defense schemes [53, 54] to mitigate
such attacks. Hence, defending against side channel attacks is considered a sole research domain
regarding TEE security, and is out of our scope.

Trusted GPU. Some advanced GPU provides Confidential Computing [55, 56]. Nevertheless, the
substantial cost of GPUs with confidential computing (CC) capabilities presents a significant barrier to
their widespread adoption in edge computing environments. More affordable alternatives, including
Intel Software SGX or ARM TrustZone integrated with dedicated AI acceleration hardware, are
expected to remain the predominant solution for edge devices in the foreseeable future. Consequently,
our investigation into secure inference for edge computing systems does not currently incorporate
Trusted GPUs within its scope.

8 Conclusion

In this paper, we first identify a statistical vulnerability in existing TEE-based secure inference
methods, and break their security by designed Model Stealing attack with Prior. To protect on-device
LLMs, LoRO is proposed, which incorporates two components: (1) Low Rank Mask to completely
obfuscate model parameters, while achieving fast inference via lightweight low-rank computing
in TEE. Moreover, no accuracy loss is introduced, and no retraining and model modification is
required. (2) Factor Multiplexing to significantly reduce the secure memory requirement, avoiding
additional latency introduced by secure memory paging. Proposed LoRO downgrade on-device LLMs
to black-box level (0.94×MS accuracy), while providing real-time inference service (only 1.49×
latency, compared to the 112× of existing SOTA). LoRO can solve the concern regarding theft on
untrusted edge devices, hence greatly facilitating the wide adoption of LLMs.

9 Acknowledgement

We would express our gratitude to all anonymous reviewers and chairs for their valuable dedication.
This research is supported by the Young Scientists Fund of Natural Science Foundation of Hangzhou
(2025SZRJJ1400) and the CCF-Phytium Fund (CCF-Phytium 202306).

10

References
[1] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen,

Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language
models. ACM transactions on intelligent systems and technology, 15(3):1–45, 2024.

[2] Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi Yan. Llm4drive: A survey of large
language models for autonomous driving. arXiv preprint arXiv:2311.01043, 2023.

[3] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

[4] Tianxiang Tan and Guohong Cao. Deep learning on mobile devices through neural process-
ing units and edge computing. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pages 1209–1218. IEEE, 2022.

[5] Yu Sun, Jianhua Liu, Gaojian Xiong, Qinglin Song, Jianwei Liu, Gang Wang, and Rui Wang.
Towards trusted 6g mobile edge computing: A secure batch large language models deployment
framework. IEEE Transactions on Mobile Computing, 2025.

[6] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your weight (s): A large-scale
study on insufficient machine learning model protection in mobile apps. In 30th USENIX
security symposium (USENIX security 21), pages 1955–1972, 2021.

[7] Pengcheng Ren, Chaoshun Zuo, Xiaofeng Liu, Wenrui Diao, Qingchuan Zhao, and Shanqing
Guo. Demistify: Identifying on-device machine learning models stealing and reuse vulnera-
bilities in mobile apps. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, pages 1–13, 2024.

[8] Yu Sun, Gaojian Xiong, Jianhua Liu, Zheng Liu, and Jian Cui. Tsqp: Safeguarding real-time
inference for quantization neural networks on edge devices. In 2025 IEEE Symposium on
Security and Privacy (SP), pages 1–1. IEEE Computer Society, 2024.

[9] Jiahui Hou, Huiqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang Li. Model
protection: Real-time privacy-preserving inference service for model privacy at the edge. IEEE
Transactions on Dependable and Secure Computing, 19(6):4270–4284, 2021.

[10] Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao,
Sen Wang, Li Chen, Xiapu Luo, et al. {SOTER}: Guarding black-box inference for general
neural networks at the edge. In 2022 USENIX Annual Technical Conference (USENIX ATC 22),
pages 723–738, 2022.

[11] Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh
Jha. Shadownet: A secure and efficient on-device model inference system for convolutional
neural networks. In 2023 IEEE Symposium on Security and Privacy (SP), pages 1596–1612.
IEEE, 2023.

[12] Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution
for dnn model via automated weight obfuscation. In International Conference on Machine
Learning, pages 42614–42624. PMLR, 2023.

[13] Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and
Xiangqun Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for
on-device ml. In 2024 IEEE Symposium on Security and Privacy (SP), pages 3327–3345. IEEE,
2024.

[14] Qinfeng Li, Zhiqiang Shen, Zhenghan Qin, Yangfan Xie, Xuhong Zhang, Tianyu Du, Sheng
Cheng, Xun Wang, and Jianwei Yin. Translinkguard: Safeguarding transformer models against
model stealing in edge deployment. In Proceedings of the 32nd ACM International Conference
on Multimedia, pages 3479–3488, 2024.

11

[15] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.

[16] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 325–342,
2020.

[17] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, 2016.

[18] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive survey. ACM
computing surveys (CSUR), 51(6):1–36, 2019.

[19] Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Zomaya, and Minyi Guo.
Efficient and secure deep learning inference in trusted processor enabled edge clouds. IEEE
Transactions on Parallel and Distributed Systems, 33(12):4311–4325, 2022.

[20] Mengda Yang, Wenzhe Yi, Juan Wang, Hongxin Hu, Xiaoyang Xu, and Ziang Li. Penetral-
ium: Privacy-preserving and memory-efficient neural network inference at the edge. Future
Generation Computer Systems, 156:30–41, 2024.

[21] Yu Sun, Gaojian Xiong, Xiao Liu, and Yan Li. A survey on trusted execution environment
based secure inference. Netinfo Security, 24(12):1799–1818, 2024.

[22] Yu Sun, Gaojian Xiong, Xianxun Yao, Kailang Ma, and Jian Cui. Gi-pip: Do we require
impractical auxiliary dataset for gradient inversion attacks? In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4675–
4679. IEEE, 2024.

[23] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin, Michael
Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of machine learning as a
service. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 3300–3309, 2021.

[24] Alexander Schlögl and Rainer Böhme. ennclave: Offline inference with model confidentiality.
In Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security, pages 93–104,
2020.

[25] Tarek Elgamal and Klara Nahrstedt. Serdab: An iot framework for partitioning neural networks
computation across multiple enclaves. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID), pages 519–528. IEEE, 2020.

[26] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias Leontiadis,
Andrea Cavallaro, and Hamed Haddadi. Darknetz: towards model privacy at the edge using
trusted execution environments. In Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, pages 161–174, 2020.

[27] Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim. Aegisdnn:
Dependable and timely execution of dnn tasks with sgx. In 2021 IEEE Real-Time Systems
Symposium (RTSS), pages 68–81. IEEE, 2021.

[28] Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
cover: A secure, efficient and scalable inference framework for on-device model protection
based on tees. In Forty-first International Conference on Machine Learning, 2024.

[29] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published attacks
on intel sgx. arXiv preprint arXiv:2006.13598, 2020.

[30] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying microarchitectural timing
leaks in rudimentary cpu interrupt logic. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 178–195, 2018.

12

[31] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[32] Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang Fan, and
Chaitali Chakrabarti. Defending bit-flip attack through dnn weight reconstruction. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[34] Ding Li, Ziqi Zhang, Mengyu Yao, Yifeng Cai, Yao Guo, and Xiangqun Chen. Teeslice:
Protecting sensitive neural network models in trusted execution environments when attackers
have pre-trained models. ACM Transactions on Software Engineering and Methodology, 2024.

[35] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[36] Wei Zheng, Ying Wu, Xiaoxue Wu, Chen Feng, Yulei Sui, Xiapu Luo, and Yajin Zhou. A
survey of intel sgx and its applications. Frontiers of Computer Science, 15:1–15, 2021.

[37] Yunkai Bai, Peinan Li, Yubiao Huang, Shiwen Wang, Xingbin Wang, Dan Meng, and Rui
Hou. Secpaging: Secure enclave paging with hardware-enforced protection against controlled-
channel attacks. In Proceedings of the 61st ACM/IEEE Design Automation Conference, pages
1–6, 2024.

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[39] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

[40] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

[41] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[42] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[43] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In European Conference on Computer Vision, 2014.

[44] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
page 2. Minneapolis, Minnesota, 2019.

[45] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[46] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[47] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[48] Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuan-
jun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. arXiv preprint
arXiv:2407.10759, 2024.

13

[49] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 9, 2021.

[50] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[51] Linaro. Op-tee trusted os. https://github.com/OP-TEE/optee_os, 2024.

[52] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-SGX}: A practical library {OS} for
unmodified applications on {SGX}. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 645–658, 2017.

[53] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. {HybCache}: Hybrid {Side-
Channel-Resilient} caches for trusted execution environments. In 29th USENIX Security
Symposium (USENIX Security 20), pages 451–468, 2020.

[54] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. Zerotrace: Oblivious memory
primitives from intel sgx. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018. The Internet Society, 2018.

[55] Yongqin Wang, Rachit Rajat, Jonghyun Lee, Tingting Tang, and Murali Annavaram. Fastrack:
Fast io for secure ml using gpu tees. arXiv preprint arXiv:2410.15240, 2024.

[56] Jianwei Zhu, Hang Yin, Peng Deng, Aline Almeida, and Shunfan Zhou. Confidential computing
on nvidia hopper gpus: A performance benchmark study. arXiv preprint arXiv:2409.03992,
2024.

[57] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes, Emiliano
De Cristofaro, Mario Fritz, and Yang Zhang. {ML-Doctor}: Holistic risk assessment of
inference attacks against machine learning models. In 31st USENIX Security Symposium
(USENIX Security 22), pages 4525–4542, 2022.

[58] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[59] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

[60] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

14

https://github.com/OP-TEE/optee_os

Table 4: Hyper-parameters of knockoff attacks.

RoBERTa BART Qwen2 LLaMA3

Epoch Learning Rate Epoch Learning Rate Epoch Learning Rate Epoch Learning Rate

TLG 1 3e-5 2 3e-5 2 5e-5 2 5e-5
ShadowNet 2 1e-5 3 1e-5 4 1e-5 4 1e-5

SOTER 2 1e-5 3 1e-5 4 1e-5 4 1e-5
Magnitude 3 5e-5 4 1e-5 5 3e-5 5 3e-5

Table 5: Detailed hyper-parameters of LoRO.

RoBERTa BART Qwen2 LLaMA3

Model Size Base Large 1.5B 3B 7B 1.5B 3B 8B
Rank 12 16 24 30 36 24 30 36

A More Details

Attack details. We introduce our attack details here. For each method, the adversary first reason
the model structure from exposed model parts in REE, and get public pretrained model from Internet.

Then, the adversary conducts model de-obfuscation (as shown in Figure 1). In this stage, the batch
size we leveraged to attack permutation methods is 16, and the inputs are randomly selected from
datasets. Notably, we empirically find the batch size can’t be too large, since the averaged intermediate
results would be very similar and difficult to be matched. For additive noise, we iterate all training
data in small dataset to accumulate the gradients. We freeze major parameters, and only 5% largest
parameters are fine-tuned for 2 epoches. For multiplicative noise methods, our methods is as same as
[8, 13], and no other details need to be clarified. The knockoff setting of each method are shown in
Table 4. The ShadowNet is considered as the combination of additive mask and multiplicative noise.
We follow [13] to first remove the mask in REE, and then estimate the multiplicative key.

In the final knockoff stage, we develop our code based on the ML-Doctor [57]. Since model have
been approximately recovered before, and only 10% of dataset are leveraged to conduct attacks, we
only train models with a low learning-rate as 5e-4 in 2 epoches to avoid over-fitting. The results
reported in Table 1 is taken from the best of five individual experiments.

LoRO details. The details and hyper-parameters of LoRO is introduced here. All the random noise
and low-rank factors are randomly sampled from Gaussian Noise. We set the m as 2 to achieve fast
inference speed. According to LoRA [58], if the rank d is able to effectively adapt the model to
specific domain, we thought the d is enough to obfuscate models well. The detailed hyper-parameters
of our experiments is shown in Table 5.

Implementation optimization. For TrustZone, we mainly conduct two optimizations. First, take
inspiration from ShadowNet [11], we design matrix multiplication based on NEON instruction set
to accelerate computation in TEE. This achieves about 3× speed up when the dimension of matrix
is over 768. Second, to reduce the data transfer time between REE and TEE, we allocate a pinned
shared memory between them as data exchange zone. While this may raise inconvenience in coding,
but the transfer latency is significantly reduced. Notably, it is necessary to compile the OP-TEE
with larger secure memory (at least 128MB) since LLMs are significantly large. For methods like
MLCapsule [23], the required memory could reach tens of GB.

Compatibility for small models. Our LoRO is designed to obfuscate the linear parameters (includ-
ing both linear and convolutional layers). Previous work targeting small models [9, 10, 11, 13, 27]
also focuses on protecting linear layers. Hence, proposed LoRO is inherently compatible to small
models, where the linear operations major the parameters and inference computing.

15

Table 6: Latency breakdown of LoRO on Intel SGX.

RoBERTa-B BART-L Qwen2-3B LLaMA3.2-3B Qwen2-7B LLaMA3.2-8B

TEE 45.72% 47.20% 38.71% 29.92% 40.57% 37.82%
REE 37.82% 37.03% 55.62% 56.09% 43.93% 49.20%

Transfer 16.45% 15.76% 15.66% 13.98% 15.50% 12.96%

Table 7: Accuracy of LoRO on MATH.

Model Category MATH

Gemma 9B Ori. 36.63%
Gemma 9B LoRO (↑) 36.62%
Gemma 9B Obf. (↓) 0.00%

Table 8: Accuracy of LoRO on ViT.

Food101 CIFAR100

ViT
Ori. 81.57% 89.86%

LoRO (↑) 81.57% 89.85%
Obf. (↓) 0.99% 1.00%

B More Experiments on LoRO

Latency breakdown. As presented in Table 6, we analyze the latency distribution among TEE,
REE, and data transfer. For smaller LLMs such as RoBERTa-B and BART-L, the computational
efficiency is primarily limited by TEE processing and data transfer latency. However, in larger models
like LLaMA and Qwen, the REE latency becomes dominant due to the high dimension full matrix
computations. This clearly demonstrates the lightweight advantage achieved by LoRO.

Accuracy of LoRO on ViT. We also test the accuracy of LoRO on ViT, as shown in Table 8. Only
a small drop of 0.01% is observed on CIFAR100, which is caused by float error. This demonstrate
the high accuracy of LoRO on vision tasks.

Accuracy of LoRO on MATH. LoRO is also evaluated on a challenging dataset MATH [59]. As
shown in the Table 7, LoRO maintains near-identical accuracy, with the 0.01% drop attributable to
floating-point error. This can be solved in 32-bit models. Crucially, the obfuscated model becomes
unusable (0% accuracy), confirming our method’s robustness to adversary.

Secure memory requirement. As shown in Table 9, we report the secure memory requirement of
preserving secrets in TEE. Compared to one-mask-per-layer paradigm, proposed Factor Multiplexing
effectively reduce the secure memory to MB-level compatible to edge TEE. The high latency and
potential risk introduced by secure memory page is hence avoided.

More latency comparison. As shown in Table 10, LoRO’s latency outperforms most of existing
methods. While TLG performs similarly to LoRO in inference efficiency, TLG cannot provide
black-box security (as demonstrated in Section 6.2). We also notice that MLCapsule suffers critical
slowdowns from the secure paging overhead, and Magnitude is slow since the sparse computation in
TEE is too heavyweight for large scale LLMs.

C More experiments on MSP

MSP under low auxiliary data. In Section 3, about 10% of training data is assumed to be held by
the adversary to launch MSP attacks. The 10% data assumption allows us to design defenses robust
against a powerful adversary.

We evaluate the attack performance under low data ratio (1%-10% of SQuAD on Qwen2). As shown
in Table 11, our LoRO consistently surpasses black-box performance even at 1% data volume, while
existing SOTA TLG fails to provide adequate protection. Even under low data ratio conditions, the
proposed MSP poses a serious threat to existing methods.

MSP on CV models. We also evaluate Model Stealing with Prior (MSP) experiments on ViT and
ResNet18. For model prior knowledge, we used model trained on CIFAR10. We did not adapt TLG
to CNNs. As shown in the table 12, MSP remains effective for CV models like ViT and ResNet18.

16

Table 9: Secure memory requirement of Factor Multiplexing and naive one-mask-per-layer.

RoBERTa BART Qwen-7B LLaMA-8B

One-Mask-Per-Layer 232 MB 594 MB 1.02 GB 1.14 GB
Factor Multiplexing 3.84 MB 11.88 MB 26.30 MB 28.28 MB

Table 10: More experiments on latency comparison.

Model MLCapsule SOTER ShadowNet Magnitude TLG LoRO

RoBERTa-B 54.08× 1.34× 2.35× 8.92× 1.10× 1.12×
BART-L 95.17× 1.62× 2.48× 10.33× 1.14× 1.18×

Qwen2-7B 321.58× 2.01× 3.60× 35.84× 1.59× 1.64×
LaMA3.2-8B 358.60× 2.10× 3.75× 37.67× 1.70× 1.77×

D Limitation of OTP on Attention

We analyze why the OTP cannot be applied to secure intermediates of Attention module here. During
forward inference, Attention block requires to compute QKT . When OTP are applied to secure Q
and K as Q′ = Q+ oq,K

′ = K + ok, the multiplication can be formulated as follows:

Q′K ′T = QKT +QoTk + oqK
T + oqo

T
k . (7)

The term oqo
T
k can be pre-computed and removed in a lightweight manner, the term QoTk + oqK

T

must be computed in a real-time manner. Since oq and ok shares the same shape of Q and K, applying
OTP will introduce unacceptable computation in TEE. Due to the limited computational resources in
TEE, this will lead to prohibitive inference latency. This issue is also exists in protecting V .

The TOSEM version of TEESlice [34] suggests that this issue can be solved by using Linear Attention
[60]. But the Linear Attention may have a bit influence on model performance, and is still not widely
adopted in popular LLMs. In this paper, we propose to use permutation to secure the intermediate
results of Attention Block, while the remained parts should be protected by OTP.

E Algorithm Description

For better comprehension, we present the persuade code of deployment stage in Algorithm 1, and the
inference stage in Algorithm 2.

17

Table 11: MSP performance under low auxiliary data.

Dataset Ratio 1% 3% 5% 10% Average

TLG 14.20% 19.78% 24.95% 29.33% 2.92x
LoRO 4.08% 4.22% 4.38% 5.07% 0.63x

Black-Box 4.37% 6.95% 8.40% 11.20% 1.00x

Table 12: MSP performance on Computer Vision models.

Model Dataset TLG SOTER Magnitude ShadowNet Black-Box

ViT-Base CIFAR100 89.67% 88.30% 87.28% 79.27% 14.57%
ViT-Base Food101 81.51% 75.52% 80.05% 71.90% 10.28%
ResNet18 CIFAR100 N/A 67.30% 73.55% 65.42% 14.74%

Algorithm 1: LoRO Deployment Stage.
Input: Original Parameters W
Output: Obfuscated Parameters W ′

1 Key, Secret,W ′ ← [], [], [];
2 B,A← RandomNoise(); ▷ Randomly generate cornerstone low-rank factors
3 i← 0;
4 len = len(W) ;
5 while i < len do
6 α,B_index,A_index = RandomIndex(); ▷ Randomly choose factors
7 W ′[i] = W [i] + αB[B_index[i]]A[A_index[i]]; ▷ Parameters obfuscation
8 Secret[i] = [B[B_index[i]], A[A_index[i]], α];
9 Key[i] =Precompute(Secret[i]); ▷ Precompute de-obfuscation keys.

10 end
11 W ′.to(REE); ▷ Offload obfuscated parameters to REE
12 Secret.to(TEE); ▷ Protect secrets and keys in TEE
13 Key.to(TEE);
14 return W ′;

Algorithm 2: LoRO Inference Stage.
Input: Inference Input x
Output: Inference Output y

1 Key, Secret← TEE_Prepare();
2 W ′ ← REE_Prepare(); ▷ Load in Memory
3 i← 0;
4 len = len(W) ;
5 while i < len do
6 yREE = Inference(W ′[i], x.to(REE); ▷ Inference with obfuscated parameters in REE
7 yTEE = Low_Rank_Inference(Secret[i], x.to(TEE)); ▷ De-obfuscation in TEE
8 x = yREE .to(TEE) + yTEE ; ▷ Result restore in TEE
9 if i == len− 1 then

10 y = x.to(REE); ▷ Return result when finish
11 break;
12 end
13 if next_is_scaled_dot_attention then
14 x = permutation(x,Key[i]); ▷ Intermediate result protection
15 else
16 x = OTP(x,Key[i]); ▷ Intermediate result protection
17 end
18 end
19 return y;

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions have been concluded in the final of Introduction
(Section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitaions have been discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: Our paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included all the required information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]

Justification: Our code is available in https://github.com/D1aoBoomm/LoRO, and all
datasets are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details have been introduced in Section 4, Section 5, Section 6 and
Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Since our work is about model property protection, error bars are hard to
reflect the best ability of adversaries. Instead, we report the highest results in five individual
experiments, which is more meaningful.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://github.com/D1aoBoomm/LoRO
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have included the computing environments in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on protecting model property, and has no negative societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing assets in this work are publicly available for research usage.
The license can all be found in huggingface.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects are involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects are involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

24

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Focusing on LLM models protection, We have not involved LLMs as compo-
nents in our methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Trusted Execution Environment
	TEE-based Secure Inference

	Threat Model
	Model Stealing Attack with Prior
	Permutation Methods.
	Additive Mask Methods.
	Multiplicative Noise.
	Attack Results

	TEE-Based Low Rank Obfuscation
	Low Rank Mask
	Factor Multiplexing

	Experiments
	Experiment Setup.
	Model Confidentiality
	Inference Efficiency
	Model Accuracy

	Discussion
	Conclusion
	Acknowledgement
	More Details
	More Experiments on LoRO
	More experiments on MSP
	Limitation of OTP on Attention
	Algorithm Description

