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Abstract

Labeled datasets for agriculture are extremely spatially im-
balanced. When developing algorithms for data-sparse re-
gions, a previously explored approach is to use transfer learn-
ing from data-rich regions. While standard transfer learning
approaches typically leverage only direct inputs and outputs,
geospatial imagery and agricultural data is rich in metadata
that can inform transfer learning algorithms, such as the spa-
tial coordinates of data-points. We build on previous work
exploring use of meta-learning to crop type mapping in data-
sparse regions and introduce task-informed meta-learning
(TIML), an augmentation to model-agnostic meta-learning
which takes advantage of this metadata. We apply TIML
to the CropHarvest dataset, a global dataset of agricultural
class labels paired with remote sensing data. In addition, we
introduce the concept of forgetfulness when training meta-
learning models on many similar tasks to mitigate memoriza-
tion of training tasks. We find that TIML significantly im-
proves average performance across the CropHarvest evalua-
tion tasks compared to a range of benchmark models, mea-
sured using AUC ROC and F1 scores.

Introduction

The global food system both drives the climate crisis—
contributing to 26% of global greenhouse gas emissions
(Ritchie|[2019)—and is vulnerable to it, with every 1% in-
crease in temperature lowering yields by 2.28% (Ozdemir
2021). Crop maps, which spatially identify where crops are
being grown, provide vital information for mitigating and
adapting to the effects of climate change, for example by
assessing food security, more rapidly responding to food
crises, and increasing productive land without sacrificing
carbon sinks such as forests.

Certain parts of the world collect plentiful field-level agri-
cultural data, but many regions are extremely data-sparse.
We investigate transfer learning from data-rich areas to im-
prove performance in data-sparse areas, building on the
meta-learning approach described in Rullwurm et al.| (2020)
and Tseng et al| (2021alb). Meta-learning aims to learn a
model - from a number of training tasks - which can quickly
learn a new task from a small amount of new data. To
construct these tasks, we split a dataset with global cover-
age into multiple geographically and semantically defined
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tasks. A meta-learning model is trained on a subset of
these tasks (using model-agnostic meta-learning, or MAML
(Finn, Abbeel, and Levine|[2017)), before being evaluated
on the remaining tasks. In this work, we consider the meta-
information captured in each task (such as the geography
being covered by a task, or the specific classes being clas-
sified) and how this might be passed to the meta-learning
model to improve performance.

We summarize the main contributions of this paper below:

* We introduce Task-Informed Meta-Learning (TIML), an
algorithm designed to augment model-agnostic meta-
learning with task-metadata.

* We apply TIML to crop type classification and demon-
strate it works well across a wide range of agroecologies
and crops, outperforming other methods on both AUC
ROC and F1 score.

* In particular, we highlight TIML’s ability to learn from
very few positive labels and to perform well on tasks
where other transfer-learned models do poorly.

Related Work

In applications of machine learning to remote sensing data,
there have been numerous efforts to learn from data-rich ar-
eas and transfer the resulting model to data-sparse regions
or less well represented classes, including meta-learning
(Rubwurm et al.|2020; Tseng et al.|2021alb), transfer learn-
ing (Wang et al.[2018} Tong et al.[2020) and multitask learn-
ing (Kerner et al|[2020). However, these approaches often
fail to capture important meta-data and expert knowledge
about the data-sparse tasks of focus, such as their geographic
location relative to the pre-training data or the crop types be-
ing classified. In this work, we consider the additional meta-
data inherent to agricultural classification tasks, such as the
spatial relations between tasks, and how this can inform the
model’s predictions. This builds on previous work that has
investigated shifting the distribution of the meta-model with
respect to the task being considered (Vuorio et al. 2019
Triantafillou et al.|2021). However, we consider the special
case where there is task-specific metadata that stays static
for each task and can be used to condition the model.
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Figure 1: Example 1km X lkm satellite images of the eval-
uation regions, demonstrating the variety in field sizes and
agro-ecologies being evaluated. (Images were obtained from
Google Earth Pro basemaps comprised primarily of high res-
olution Maxar images, and are reproduced with permission
from (Tseng et al.|[2021b))

Data

We use the CropHarvest dataset (Tseng et al.2021b) to
train the model. This dataset consists of 90,480 datapoints
with the associated satellite pixel time-series for each point.
Of these datapoints, 30,899 (34.2%) contain multi-class
agricultural labels; the remaining datapoints contain binary
“crop” or “non-crop” labels. Each datapoint is accompa-
nied by a pixel time-series from 4 remote sensing products:
Sentinel-2 L1C optical observations, Sentinel 1 synethic
aperture radar, ERAS climatology data, and topography
from a Digital Elevation Model (DEM), representing 1 year
of data at monthly timesteps.

The CropHarvest dataset is additionally accompanied by
3 evaluation tasks which test the ability of a pre-trained
model to learn from a small number of in-distribution dat-
apoints in a variety of agroecologies. Satellite imagery from
each test task is shown in Figure [I] highlighting the variety
of agroecologies covered in the test tasks. We describe each
task and the accompanying training data below:

Togo crop vs. non-crop: Classifying pixels containing
crops from those which do not, in Togo. The training set
consists of 1,319 datapoints and the test set consists of 306
datapoints - 106 (35%) positive and 200 (65%) negative -
sampled from random points within the country.

The two other evaluation tasks consist of classifying a
specific crop. Thus, “rest” below refers to all other crop and
non-crop classes. For both tasks, entire polygons delineating
a field (as opposed to single pixels) were collected, allow-
ing evaluation across the polygons. However, during training
only the polygon centroids were used.

Kenya maize vs. rest: The training set consists of 1,345
imbalanced samples (266 positive and 1,079 negative sam-
ples). The test set consisted of 45 polygons ultimately
yielded 575 (64%) positive and 323 (36%) negative pixels.

Brazil coffee vs. rest: The training set consists of 794
imbalanced samples (21 positive and 773 negative samples).
The test set consisted of 66 polygons, which yielded 174,026
(25%) positive and 508,533 (75 %) negative pixels.

Methods

We focus on a specific meta-learning method, Model-
Agnostic Meta-Learning (MAML) (Finn, Abbeel, and

Levine|2017). MAML learns set of model weights 6 which
are close to the optimal weights for a variety of different
task, allowing the optimal weights for a specific task to be
reached with little data and/or few gradient steps. These ini-
tial weights 6 are updated by finetuning them on a training
task (inner loop training), yielding updated weights 6. A
gradient for € is then computed with respect to the loss of
the updated model, Ly (requiring Hessian vector-products).
This gradient is then used to update 8 (outer loop training).

MAML with the CropHarvest dataset

As with the CropHarvest benchmarks, we defined tasks spa-
tially using bounding boxes for countries drawn by Natural
Earth (Patterson and Kelso)). Tasks consist of binary classi-
fication of pixels as either crop vs. non-crop or a specific
crop-type vs. rest. This yielded 525 tasks, which were split
into training and validation tasks, from which the model
could learn. The 3 evaluation tasks described previously
were withheld from the initial training. Then for each eval-
uation task, we fine-tuned the model on that task’s training
data before evaluating the model on that task’s test data.

Task-Informed Meta-Learning

We build on the original model-agnostic meta-learning
(Finn, Abbeel, and Levine|2017)) algorithm, considering the
case where there is additional task-specific information that
could inform the model, such as the spatial relationships be-
tween tasks. Information such as the spatial coordinates of a
task (which we represented as the central coordinates of the
task-country) remains static for all datapoints in the task, so
is not useful to differentiate positive and negative instances.
However, it may be useful to condition the model prior to
inner loop training.

Algorithm 1: Task-Informed Meta-Learning

Require: p(7): Distribution over tasks
Require: a, 3: step size hyperparameters
randomly initialize meta model 6,,,, task encoder 6,
while not done do
Sample batch of tasks 7; ~ p(7") with task informa-

tion t;

for all 7;,¢; do

Generate task embeddings p; = f(t;;6.)

8: Evaluate Vo, L7, (fo,,, i) with respect to K ex-

amples
9: Compute adapted meta parameters with gradient

descent: G;n,- — Om — N, L1,(fo,,: 14i)
10: Update 0,,, < 6,,, — ﬁngzTin(T)ﬁTi (fe‘/m. , ,ui)
11: Update 8. < 0,, — Vg, ET,-Np(T)[’Ti (fein s m)

AR S

A

We introduce Task-Informed Meta-Learning (TIML) (Al-
gorithm |I[), which modulates the hidden vectors in the meta-
model based on embeddings calculated using task informa-
tion. We use feature-wise linear modulation, or FiLM (Perez
et al.[[2018)), to modulate the hidden vectors. These embed-
dings are updated in the outer loop of the MAML training
procedure.



For the CropHarvest dataset, task information is encoded
in a 13-dimensional vector. Three dimensions are used
to encode spatial information, consisting of latitude and
longitude transformed to [cos(lat) x cos(lon), cos(lat) x
sin(lon), sin(lat)]. This transforms the spatial information
from spherical to cartesian coordinates, ensuring trans-
formed values at the extreme longitudes are close to each
other. The remaining 10 dimensions are used to commu-
nicate the type of task the model is being asked to learn.
This consists of a one-hot encoding of crop categories from
the UN Food and Agriculture Organization (FAO) indica-
tive crop classification (fao|[2020), with an additional class
for non-crop. For crop vs. non-crop tasks, all crop type cat-
egories contain the value %, for n crop type categories.

We used a task encoder to learn the embeddings. This en-
coder consists of linear blocks, where each block contains a
linear layer with a GeLU activation (Hendrycks and Gimpel
2016) and Dropout (Srivastava et al.|2014). The task infor-
mation was encoded into a hidden-task vector. Independent
blocks were then used to generate an embedding for each
hidden vector in the classifier to be modulated. Due to the
limited number of country-FAO category combinations, we
additionally applied Gaussian noise to the task information
when training the model.

Forgetful Meta-Learning

Since the CropHarvest dataset is global and tasks are geo-
graphically defined, the training data for the meta-learning
model are divided into many discrete tasks (525). How-
ever, these tasks are not semantically or geographically well
distributed. A significant fraction of the tasks are crop vs.
non-crop tasks, reflecting the large number of binary crop
vs. non-crop datapoints in the dataset (65.8% of all instances
only have crop vs. non-crop labels). Crop-type tasks are also
geographically concentrated in countries in which crop-type
labels (as opposed to crop vs. non-crop labels) were col-
lected. Finally, multiple tasks can contain similar datapoints,
as positive instances for one task could be part of the neg-
ative class for a different task in the same geography. We
therefore hypothesize that the model can memorize many
similar tasks, to the detriment of its ability to learn more dif-
ficult or rarer tasks, thus hurting generalization performance
for the fine-tuning tasks.

Although complex meta-learning methods exist designed
to optimize for performance on highly challenging tasks (Ja-
mal and Q1}2019; (Collins, Mokhtari, and Shakkottai|2020),
we take advantage of the large number of similar tasks in
the CropHarvest dataset to introduce a very simple method
to prevent memorization of certain tasks: removing training
tasks the model has memorized. We define memorization as
achieving an average AUC ROC of more than 0.95 on the
training data over 20 consecutive epochs. Since during train-
ing each task is sampled to have a balanced number of posi-
tive and negative examples, this AUC ROC is calculated on
a balanced dataset. We call this method “forgetfulness.”

Experiments

We evaluated TIML by training it on the CropHarvest
dataset and fine-tuning it on the evaluation tasks, as was

done for the benchmark results released with the dataset in
Tseng et al.|(2021b). MAML (and by extension, TIML) can
be applied using any neural network architecture. We used
the same base classifier, a 1-layer LSTM model followed
by a linear classifier, and same hyperparameters as in the
CropHarvest benchmarks.

Ablations

To understand the effects of different components TIML on
overall model performance, we run 3 ablations of TIML:

* No forgetfulness: A TIML model trained without forget-
fulness; no tasks are removed in the training loop

* No encoder: A TIML model with no encoder. The
task information is instead appended to every raw input
timestep, and passed directly to the classifier.

* No task information or encoder: No task information
passed to the model at all. This model is effectively a
normal MAML model, trained with forgetfulness.

Baselines

We compared the TIML architecture to 4 baselines. As with
TIML, we finetuned these models on each benchmark task’s
training data and then evaluated them on the task’s test data:

* MAML: A model-agnostic meta-learning classifier with-
out the task information.

* Crop pre-training: A classifier pre-trained to classify all
data as crop or non-crop.

* No pre-training: A randomly initialized classifier, which
is not pre-trained on the global CropHarvest dataset but
instead is trained directly on the test task training data.

For these LSTM-based classifiers (as for TIML and its ab-
lations), we fine-tuned the models on the test tasks for 250
gradient steps with batches containing 10 positive and 10
negative examples (as in|Tseng et al.|(2021b)).

In addition, we trained a Random Forest baseline, imple-
mented using scikit-learn (Pedregosa et al.|2011) with the
default hyperparameters.

Results & Discussion

Model results for TIML, its ablations and all baseline mod-
els are shown in Table [I] We report the AUC ROC score
and the F1 score calculated using a threshold of 0.5. Over-
all, TIML is the best performing algorithm on the CropHar-
vest dataset, achieving the highest F1 scores and AUC ROC
scores when averaged across all tasks. TIML is consistently
among the best performing algorithms when considering
specific tasks, and in particular is the only transfer-learning
model able to outperform a randomly-initialized model in
the Brazil task when measured by the F1 score. We note
the very small number of positive datapoints (26) in the
Brazil task, and the comparative weakness of other transfer-
learning models on this task.

Effects of transfer learning Standard transfer learning
from the global dataset is not guaranteed to confer advan-
tages to the model. In Kenya, all transfer learning models
see significant increases in performance irrespective of the



Table 1: Results for the evaluation tasks. All results are averaged from 10 runs and reported with the accompanying standard
error. We report the area under the receiver operating characteristic curve (AUC ROC) and the F1 score using a threshold of
0.5 to classify a prediction as the positive or negative class. We highlight the first and second best metrics for each task. TIML
achieves the highest F1 score of any model on the Brazil task and the best AUC ROC and F1 scores when averaged across the
3 tasks. We highlight the improvement of TIML relative to other transfer-learning models, suggesting it is better able to model
the diversity in tasks present in the CropHarvest dataset.

Model Kenya Brazil Togo  Mean
Random Forest 0.578 + 0.006 0.941 + 0.004 0.892 +0.001  0.803

No pre-training 0.329 + 0.011 0.898 + 0.010 0.861 +0.002  0.700

8 Crop pre-training 0.694 £+ 0.001 0.820 £ 0.002 0.894 £ 0.000 0.801
& MAML 0.729 £+ 0.001 0.831 + 0.005 0.878 +£0.001  0.843
8 TIML 0.794 £+ 0.003 0.988 £ 0.001 0.890 +0.000 0.890
< no forgetfulness 0.779 £ 0.003 0.877 £ 0.003 0.893 £0.001  0.850
no encoder 0.7124+0.001 0.977 £0.002 0.895 + 0.000 0.862

no task info or encoder 0.690 £ 0.001 0.977 4+ 0.002 0.876 =0.001  0.848
Random Forest 0.559 + 0.003 0.000 £0.000 0.756 4=0.002 0.441

No pre-training 0.782 +0.000 0.764 £+ 0.012 0.720 = 0.005 0.734

o Crop pre-training 0.819 + 0.001 0.619 + 0.005 0.713+0.002 0.613
s MAML 0.828 + 0.001 0.496 + 0.001 0.662 +0.001  0.652
T TIML 0.838 £ 0.000 0.835 4 0.012 0.732 +0.002 0.802
no forgetfulness 0.840 £ 0.000 0.537 £0.002 0.764 £ 0.002 0.724

no encoder 0.840 + 0.000 0.473 £ 0.002 0.691 £0.001  0.691

no task info or encoder 0.837 4+ 0.001 0.473 +0.001 0.645 +£0.002  0.652

transfer learning method. However, this is not the case in
Brazil where first training using MAML or crop pre-training
penalizes the model performance compared to an LSTM
initialized with random weights. We hypothesize this may
be due to the difference in distribution of the Brazil-coffee
tasks relative to the other tasks the models are trained on.
TIML is the only model to see significant general improve-
ments in performance compared to the randomly initial-
ized model, suggesting conditioning the model with prior,
domain-specific information about the tasks can help to
model the diversity of samples in the CropHarvest dataset.

Forgetfulness We compare the effects of training TIML
with and without forgetfulness, and find that forgetfully
significantly boosts performance in Brazil without signifi-
cantly impacting performance on other tasks. This combi-
nation (TIML with forgetfulness) ultimately yields signif-
icantly higher mean F1 and AUC ROC scores when mea-
sured across all tasks. However, training TIML forgetfully
without the task information (TIML with no task informa-
tion or encoder) yields comparable results to the baseline
MAML model trained without forgetfulness. We therefore
hypothesize that task information provides useful context
around which tasks are being kept and forgotten during
training, allowing TIML to learn from more difficult tasks
in the “forgetful” regime without forgetting easier tasks it
has already learned.

Effect of task information Including task information in
the model improves performance, both when it is concate-
nated to the input data and when it is passed to the model
through TIML. However, there are significant differences in

performance depending on how this information is passed
to the model: passing the task information directly to the
classifier (TIML with no encoder) yields no improvement
in F1 score in Brazil relative to the models trained without
task information. TIML achieves the best F1 score for this
task compared to all other models. The encoder architecture
therefore provides a significant boost in performance, yield-
ing the highest mean AUC ROC and F1 scores.

Conclusion

Accurate cropland and crop type maps are important tools in
minimizing the worst effects of climate change, but some re-
gions lack the data to develop these maps, particularly when
targeting specific crops. Global crop data exists, but learn-
ing from this global data to perform well in data-sparse ar-
eas can be challenging. We introduce task-informed meta-
learning (TIML), a method for conditioning the model with
prior information about a specific task. In addition, we in-
troduce the concept of “forgetful” meta-learning, which can
improve meta-learning performance when there are many
similar tasks to learn from. We find TIML enables the model
to learn better features from the global CropHarvest dataset
to perform well in a range of agroecologies and dataset-size
regimes, outperforming a variety of benchmark models.

All code used to train these models is available at
https://github.com/nasaharvest/timll
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