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Abstract

Machine learning often experiences distribution shifts between training and testing.
We introduce a simple objective whose optima are exactly all representations on
which risk minimizers are guaranteed to be robust to Bayes-preserving shifts, e.g.,
covariate shifts. Our objective has two components. First, a representation must
remain discriminative, i.e., some predictor must be able to minimize the source
and target risk. Second, the representation’s support should be invariant across
source and target. We make this practical by designing self-supervised methods
that only use unlabelled data and augmentations. Our objectives achieve SOTA on
DomainBed, and give insights into the robustness of recent methods, e.g., CLIP.

1 Introduction

It is hard to build machine learning (ML) systems that are robust to distribution shifts between a
source (train) and target (test) domain. One promising approach to DG is to learn representations
from which predictors trained on source must perform well on target. In practice, however, no current
DG method uniformly outperforms empirical source-risk minimizers (ERM) [22]. Our theoretical
understanding is also lacking: while previous work has studied properties that are or are not sufficient
for robust representations [7, 58, 27], the minimal set of requirements is not yet known.

We introduce the first, simple, objective whose optima are exactly the set of all representations on
which source risk minimizers are guaranteed to generalize across distribution shifts that preserve the
Bayes predictor. Our characterization implies that it is sufficient and necessary that an optimal repre-
sentation: (a) remains discriminative, i.e., there must exist predictors that simultaneously minimize
both source and target risk; and (b) keeps the support of its marginal distribution shift-invariant.

Optimal representations must thus seek discriminative information of targets. Even worse, we prove
that without target knowledge, no representation can uniformly outperform constant representations,
which may explain why DG methods struggle to outperform ERM. We show how to overcome these
challenges using only a large set of unlabeled examples and particular data augmentations that retain
discriminative information but minimal domain-specific information. Text descriptions of images are
such augmentations, as they are informative for many classification tasks, but remove domain-specific
information. With those augmentations, we design practical self-supervised (SSL) objectives for
learning robust representations. Our objectives give insights into CLIP’s robustness [43], and lead to
improved CLIP-based representations that achieve SOTA on DomainBed [22].

2 Problem statement: idealized domain generalization (IDG)
We want to learn representations Z of inputs X that are robust across distribution shifts. Specifically,
we want an encoder pZ |X that ensures that predictors h from representations Z to labels Y , which
are trained on a source Ds ∈ D distribution pX,Y |Ds , will perform well on a target Dt ∈ D
∗Authors contributed equally.
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Figure 1: (Left) IDG optimal representations must have invariant supports while being simultaneously
discriminative on all domains: (center) without discriminativeness, a source-risk minimizer can
mispredict the target, and (right) without support match, some risk minimizer will perform poorly.

distributions pX,Y |Dt . We evaluate h’s performance using expected target risk RDt
h [Y |Z] :=

EpX,Y |Dt [`(Y, f(Z))] with respect to a well behaved loss function `, e.g., log-loss, MSE, or 0-1 loss.

To separate domain generalization from finite sample generalization, we consider an idealized DG
(IDG), where predictors h are selected by minimizing the source population rather than empirical
risk. To give uniform guarantees while reflecting uncertainty over source-target (Ds, Dt) pairs, we
score Z using the expected risk of the worst source minimizer h ∈ H∗Ds := arg minh RDs

h [Y |Z].

Definition. The idealized domain generalization risk (IDG risk) of an encoder pZ |X is the expected
(over domains) worst-case (over source risk minimizers) target risk, i.e.,

RIDG [Y |Z] := EpDs,Dt

[
sup

h∈H∗Ds
RDt
h [Y |Z]

]
(1)

A representation Z∗ is optimal for IDG if it minimizes Eq. (1): pZ∗ |X ∈ arg minpZ |X RIDG [Y |Z].

Interesting DG is clearly only possible when target and source domains are related. We assume that
domains are related by the following generalized covariate shift (GCS), which says that the inputs’
Bayes predictor f∗ = arg minf EpDt [R

Dt
f [Y |X]] is uniquely optimal on all domains.

Assumption (Generalized covariate shift). Domain risk minimizers fd ∈ arg minf [Rd
f [Y |X]] are

equal to the Bayes predictor on their support: fd(x) = f∗(x) for all d, x ∈ supp(pD,X).

For log-loss ` GCS recovers standard covariate shift, i.e., pY | x,d = pY | x. For other losses, GCS
is weaker, e.g., it only requires invariance of most likely labels for 0-1 loss, and of conditional
expectations for MSE. For minor assumptions, formal statements and proofs see Appcs. A and B.

3 Characterizing optimal representations for IDG under covariate shift
IDG risk is useful to evaluate representations but gives few insights into IDG and is impractical to
optimize due to the sup. in Eq. (1). Assuming GCS we can provide a simplified, equivalent objective
that is easier to optimize. The intuition is that under GCS any source risk minimizer will also make
optimal predictions on all target samples x that are in source domain’s support. Thus, optimal
representations for IDG are exactly those that (a) ensure that all domains have the same support in Z ,
and (b) retain GCS from Z without sacrificing the ability to predict Y optimally. See Fig. 1.

Theorem 1. Under our assumptions, an encoder pZ∗ |X is optimal for IDG if and only if it minimizes
the risk R [Y |Z] := infh EpDt

[
RDt
h [Y |Z]

]
while matching the support of Z across domains, i.e.,

pZ∗ |X ∈ arg min
pZ |X

R [Y |Z] s.t. ∀ d ∈ D, supp(pZ | d) = supp(pZ) (2)

Moreover, such encoders exist and their IDG risk is the Bayes risk RIDG [Y |Z∗] = R [Y |X].

Theorem 1 provides an objective to learn representations on which performing risk minimization using
a single domain is as good as performing risk minimization on all domains simultaneously. Other
sufficient objectives have previously been proven or hinted towards [7, 58, 13, 27], e.g., minimizing
the risk while matching the representation’s marginal. To our knowledge, Thm. 1 is nevertheless the
first to identify the necessary and sufficient conditions for optimal representations. This gives better
insights into IDG and provides a framework for deriving all objectives that describe optimal IDG.

Theorem 1 shows that one must know the target domains to learn optimal representations for IDG.
Access to target domain might seem unrealistic, but without it, it is provably impossible to learn useful
representations for IDG. Specifically, the following holds under minor assumptions (see Appx. B.3).
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“A dog with floppy ears.” “A pointy-eared dog.” 

(a) image-text augmentations (b) standard augmentations (c) supervised augmentations

Figure 2: (a) Image-text aug. is (nearly) domain-covering by mapping images across domains to
similar descriptions. (b) Standard aug. is not domain-covering. (c) Supervised aug. uniformly
augments inputs inside their label class irrespective of domains. Arrows denote augmentations.
Bubbles denote inputs that have the same representations by predicting the augmentations.

Proposition 1 (No free lunch for IDG). Let Zds be any representation chosen on source ds. For
every “good” target domain outside the source’s support on which Zds outperforms a constant
representation C ∈ Z , there are many “bad” target domains on which Zds is strictly worse than C.

Proposition 1 may explain why previous DG methods fail to outperform ERM [22]: the knowledge
they have access to is insufficient. So either you access target domain dt and achieve an IDG risk that
matches supervised learning (Thm. 1), or you do not and cannot do better than a constant (Prop. 1).

4 Learning optimal representations with domain-covering augmentations
Thm. 1 requires labels from all domains, which is impractical. We overcome this with self-supervised
learning (SSL) and particular data augmentations pA |X from inputs X to augmentations A. The key
requirement for A is to retain discriminative information about labels Y , i.e., if samples x, x′ ∈ X
have same augmentations pA | x = pA | x′ , then they have the same Bayes predictions f∗(x) = f∗(x′).
With such Bayes-preservingA, one can minimize R [Y |Z] by instead maximizing mutual information
I[A;Z] [15]. However, fully optimizing I[A;Z] is not generally possible under the support constraint
in Eq. (2). This can be addressed by a domain-covering assumption: if for each d ∈ D, there is an input
that is mapped to every augmentation distribution, i.e.,

{
pA | x |x ∈ supp(pX | d)

}
=
{
pA | x |x ∈ X

}
.

Proposition 2. Let pA |X be a domain-covering augmenter. Then any optimal solution pZ∗ |X of the
following objective is optimal for IDG:

pZ∗ |X ∈ arg max
pZ |X

I[A;Z] s.t. ∀ d ∈ D, supp(pZ | d) = supp(pZ) (3)

Proposition 2 shows that we can still learn optimal representations for IDG without labels if we use
right augmentations. But how realistic are those augmentations? Standard image augmentations
like cropping and color jittering are generally Bayes-preserving, but not domain-covering for typical
domains (e.g. sketches and photos), since outputs A are highly correlated with the domain D of the
original input X , as seen in Fig. 2b. A practical choice of A that is nearly domain-covering, is a
mapping from images to text descriptions, as with CLIP [43]. Image-text augmentations have many
advantages: they (i) preserve label information for many downstream tasks; (ii) are close to being
domain-covering, as images from different domains but similar semantics are often mapped to similar
descriptions (Fig. 2a); (iii) are easy to access in practice given their abundance on the internet. This
may explain the incredible robustness of CLIP compared to other SSL methods [11, 24, 21].

We now design practical objectives for optimizing Eq. (3) by using a Lagrangian relaxation and
introducing a domain bottleneck B[Z,D] that enforces support match. Specifically, we convert Eq. (3)
to a unconstrained objective arg minpZ |X H[A |Z] + λB[Z,D] . where H[A |Z] replaces I[A;Z] as
H[A] is a constant w.r.t. pZ |X . A valid B[Z,D] ensures that minimizing B[Z,D] while maximizing
I[A;Z] enforces the support constraint which we will introduce later. We discuss variational bounds
for the objective that can be efficiently estimated from samples and optimized with SGD [9]. For
simplicity, we use a deterministic encoder eϕ : X → Z . Detailed derivations are in Appx. C.

For the first term, we use an upper bound on H[A |Z] ≤ EpA,Z [− log q(A |Z)], where q is the
contrastive variational distribution as InfoNCE [40] that is standard in SSL. Specifically, for a sample
X , we obtain a collection A :={A+, A−1 , . . . , A

−
n} of one positive augmentation A+ sampled from

pA |X and n negatives A−i sampled from pA. InfoNCE then constructs q(A |Z) using a critic sψ to
score how likely each A′ ∈ A is to be positive, see Line 6 of Algorithm 1.

For the second term B[Z,D] , we introduce a novel contrastive adversarial domain (CAD) bottleneck
and discuss more choices in Appx. C. Our CAD bottleneck aims to minimize I[Z;D], which enforces
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Table 1: As suggested by our theory, it is im-
portant to (i) enforce support match with bottle-
necks; (ii) use domain-covering augmentations;
(iii) get access to target domain data for IDG.

Setup Log likelihood

R [Y |Z] Base −5.1± 0.3
CAD −0.7± 0.1

H[A |Z]
CAD −0.8± 0.2

with Std. Aug. −7.5± 0.2
with only Src. −4.2± 0.2

Table 2: Finetuning CLIP with our CAD bottle-
neck achieves SOTA on DomainBed. Avg. acc.
over PACS, OfficeHome, VLCS, DomainNet.

Algorithm Avg. target acc.

ERM 68.0 ± 0.3
DomainBed SOTA 69.3 ± 0.2

CLIP S 72.4 ± 0.2
CLIP S + Base 72.5 ± 0.3
CLIP S + CAD 73.8 ± 0.3

CLIP L 76.8 ± 0.4
CLIP L + CAD 77.6 ± 0.4

support match using a KL divergence. Dropping constants w.r.t. Z we thus aim to maximize H[D |Z].
Domain-adversarial neural network [DANN, 17] does so by ensuring that a domain classifier qφ
cannot predict D from Z, i.e., it maximizes EpD,Z [− log qφ(D |Z)] ≥ H[D |Z] w.r.t. encoder ϕ but
minimizes it w.r.t. φ. However, it maximizes an upper bound on the desired term and suffers from
unstable adversarial training.

Algorithm 1 CAD objective
Require: eϕ, sψ, D,X, n
1: Z ← eϕ(X)

2: A+ ← sample(pA |X)

3:
{
(D−i , X

−
i , A

−
i )

}n

i=1

i.i.d.←−− sample(pD,X,A)

4: X,A←{X} ∪
{
X−i

}n

i=1
,{A+} ∪

{
A−i

}n

i=1

5: XD ←{X} ∪
{
X−i |D

−
i = D, i ∈ [n]

}
6: Laug ← − log

exp sψ(A+,Z)∑
A′∈A exp sψ(A′,Z)

. H[A |Z]

7: Lsupp ← log
∑
X′∈XD

exp eϕ(X′)TZ∑
X′′∈X exp eϕ(X′′)TZ

. I[Z;D]

8: return LCAD = Laug + λLsupp

To overcome these issues, we construct q(D |Z)
without introducing additional parameters and
with a bound that is tight with enough samples.
We include the full derivation in Appx. C.3 and
briefly present the algorithm here. Given a sample
X with domain D and n tuples{(D−i , X−i )}ni=1
i.i.d. sampled from pD,X , we first obtain a vari-
ational distribution q(X |Z) as InfoNCE using
a non-parametric critic eϕ(X)TZ tied with eϕ.
Then we collect those inputs XD associated with
the current domain D, and sum q(X ′ |Z) over
X ′ ∈ XD to compute q(D |Z). See Algorithm 1
for details. In Appx. C.4, we derive a conditional
variation of CAD that minimizes I[Z;D |Y ], which can be used when labels Y are available. In
Appx. C.2, we also introduce an entropy bottleneck that minimizes H[Z], which does not require
domain labels D that are rarely accessible in SSL.

5 Experiments
We aim to empirically verify our theoretical results and investigate our proposed SSL objectives in
practical DG. See Appcs. E and F for experimental details and additional results.

Optimal representations for worst-case IDG We validated our theory in an idealized DG setup
on PACS [34]. Specifically, we (i) trained encoders on all PACS data, i.e., all domains, labels, and
both train/test data; (ii) set a source Ds and target Dt; (iii) selected worst-case predictors h by
minimizing source risk but maximizing target risk (see [14]); (iv) repeated the last 2 steps over all
source-target pairs and averaged each h’s negative target risk (log likelihood). Results are in Table 1.

How important is support match? Representations trained with CAD (2nd row) signifi-
cantly outperform those trained without bottleneck (Base, 1st row) thus supporting Thm. 1.
Can we learn optimal representations without labels? For domain-covering augmentations, minimiz-
ing the SSL H[A |Z] (3rd row) performs similarly to the supervised R [Y |Z] thus supporting Prop. 2.
Are standard augmentations sufficient? Representations trained with CAD and standard augmen-
tations perform poorly (4th row). This shows the importance of domain-covering augmentations.
How important is target knowledge? Excluding the target domain from the encoder’s training
significantly decreases performance (5th row compared to 3rd row), which supports Prop. 1.

Approximating optimal representations with pretrained SSL In practice, we can learn IDG
optimal representations by performing SSL using a large source of unlabelled inputs X and domain-
covering augmentationsA. This is nearly how CLIP was pretrained (SSL with 400M image-text pairs)
except it did not include a domain bottleneck. Here, we exploit CLIP to learn robust representations,
by: (i) freezing the pretrained CLIP and adding an MLP on top of it; (ii) training the MLP with
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our CAD bottleneck and R [Y |Z] on available data. We used the DomainBed benchmark and its
protocol [22]. Due to space limit, we only report average target accuracy over PACS [34], VLCS [16],
OfficeHome [54], and DomainNet [41] datasets and include as baselines ‘ERM’ and ‘DomainBed
SOTA’, which is the best baseline on each dataset. Results are in Table 2.

Can we approx. optimal representations using CLIP? Fine-tuning a large (ViT-B/32) CLIP with our
CAD achieves SOTA on DomainBed (7th vs 2nd row). In particular, CLIP L’s performance on PACS
(94.7%) is close to the 96.7% estimated performance for optimal representations (see Appx. F.2).
Are gains due to architectural differences? DomainBed’s baseline use smaller ResNet50 models.
Finetuning a smaller ResNet50 (CLIP S) still outperforms baselines (5th vs 2nd row). Our theory
does not constrain the encoder and so we expect larger encoders to be better (6th vs 5th row).
How important is our bottleneck? Finetuning CLIP S with our CAD bottleneck outperforms finetuning
without bottlenecks and CLIP S without finetuning (5th vs 4th and 3rd row).
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A Preliminaries

A.1 Notation

For the most part, we will assume that all spaces are discrete probability spaces. A full list of
assumptions is found at Appx. A.3.

General The image of a set A ⊆ X under a function f : X → Y is denoted f→(A) =
{f(x) |x ∈ A}. The pre-image is denoted f←(B) ={x ∈ X | f(x) ∈ B} for B ⊆ Y .

Probability Random variables (r.v.) are denoted by uppercase letters (e.g., X), and their sam-
ple space and realizations are denoted by the corresponding calligraphic (e.g., X ) and lowercase
letters (e.g., x) respectively. The probability mass function (pmf) of a random variable X is
denoted as pX . We use capital P instead of p to denote the measure under p. The support
supp(pX) of a discrete distribution is the set of all points x ∈ X with positive probability, i.e.,
supp(pX) = {x ∈ X | pX(x) > 0}. The space of all probability distributions on X is denoted
P(X ) =

{
pX | pX(x) ≥ 0 and

∑
x∈X pX(x) = 1

}
.

When it is necessary to be explicit, we will denote ‘X is distributed as pX ’ using the notation
X d∼ pX . Expectations are written as: EpX [f(X)], independence of two r.v. as ·⊥⊥·, conditional
independence as ·⊥⊥ · | ·.
For jointly distributed random variables (X,Y ) taking value in (t.v.i.) X × Y , the conditional
distribution is denoted as pY |X : Y × X → [0, 1]. For convenience, let pY | x = pY |X( · |x) be the
conditional distribution of Y given x. All random variables are independently distributed, unless an
explicit joint distribution or coupling is given.

A.2 Definitions

We are interested in prediction problems with domain shift. There are three random variables: the
target domain Dt, the input X , the label Y . They have the following joint distribution:

(Dt, X, Y ) d∼ pDt · pX,Y |Dt (4)
where we drop the arguments of the probability densities for clarity. We make a variety of convenience
assumptions on these random variables (Assumption 6). Crucially, we will be making the Bayes
invariance assumption on pDt,X,Y that can be thought of as a generalized covariate shift assumption
(Assumption 4).

We will be studying the effect of changing the representation of the data. This is done by “encoding”
X into a representation Z using a conditional distribution pZ |X .

Definition 1 (Encoder). An encoder is a conditional distribution pZ |X : Z × X → [0, 1] from the
input space X to the representation space Z .

The data together with the representation has the following joint:
(Dt, X, Y, Z) d∼ pDt · pX,Y |Dt · pZ |X (5)

The key thing to notice here is that Z is conditionally independent of Y,Dt given X . In particular,
the same encoder is used across all domains.

A.2.1 Risk minimization

Our ultimate goal is to predict Y from the representation Z of X in a manner that is robust to changes
in the domain.

We formalize this in the standard way by making predictions γ ∈ Γ in a space of predictions or
actions. For example the prediction space may be the set of all possible labels Γ = Y , in which case
we would be predicting deterministic labels. Or we may predict a distribution over labels, in which
case the prediction space would be the set of all probability distributions on Y , i.e. Γ = P(Y).

A predictor is a function mapping inputs to predictions, i.e., f : X → Γ, or representations to
predictions, i.e., h : Z → Γ. For example, f may be a neural network that takes as input a sample x
and outputs a vector of logits that parameterize a softmax distribution over finitely many labels.

9



We select predictors according to the risk defined via a loss function ` : Y × Γ→ R≥0 ∪ {∞}:
Rf [Y |X] := EpX,Y [`(Y, f(X))] . (6)

In particular, we are interested in the Bayes (minimum) risk over all predictors:

R [Y |X] := inf
f

Rf [Y |X] , (7)

We denote the set of all optimal predictors from X as

F∗ :={f | Rf [Y |X] = R [Y |X]} (8)

Similarly, we define the risk Rh [Y |Z], the Bayes risk R [Y |Z], and the set of optimal predictors

H∗Z :={h | Rh [Y |Z] = R [Y |Z]} (9)

from Z, all of which vary as a function of the encoder pZ |X . Note, in the main body of the paper,
we omitted the subscript Z fromH∗Z for clarity, but we will keep it in the Appendices. We assume
that together our loss and prediction space always admit optima (Item 2 of Assumption 2), and thus
F∗,H∗Z are always non-empty.

We will be assuming that the risk admits unique optimal prediction when predicting from X (Item 3
of Assumption 2). Thus it makes sense to define the following:

Definition 2 (The Bayes predictor). The Bayes predictor f∗ : X → Γ is the unique predictor that is
optimal for all x ∈ X :

f∗(x) = arg min
γ∈Γ

EpY | x [`(Y, γ)] (10)

Definition 3 (The Bayes image). The image of all the inputs under the Bayes predictor will be
denoted as Γ∗ = f∗→(X ) and called the Bayes image.

Note that F∗ becomes a singleton {f∗}, but it is not necessarily the case forH∗Z since we will not be
making any uniqueness assumption on optimal prediction from Z.

A.2.2 Domain generalization

We are interested in controlling the risk in a domain generalization setting, and so we define the
domain-conditional risk,

Rd
f [Y |X] := EpX,Y | d [`(Y, f(X))] . (11)

Rd [Y |X] ,F∗d are defined as Eqs. (7) and (8), respectively, but with respect to Rd
f . Similarly, define

the Bayes image for domain d as

Γ∗d := f∗→
(
supp(pX | d)

)
. (12)

We also define domain-conditional quantities for prediction from a representation Z. The most
important term which we will be investigating is an idealization of the domain generalization worst-
case risk.

Definition 4 (IDG risk). Given an encoder pZ |X and a distribution pDt,Ds over a target domain Dt

and source domain Ds, the idealized domain generalization worst-case risk, IDG risk for short, is the
expected worst-case target risk taken over source minimizers, i.e.,

RIDG [Y |Z] := EpDt,Ds

[
sup

h∈H∗Z,Ds
RDt
h [Y |Z]

]
(13)

Note that the IDG risk is well-defined becauseH∗Z,Ds is non-empty by Assumption 2. The desired
optimal representations, are then those that minimize the IDG risk.

Definition 5 (Optimal representations for IDG). An encoder pZ∗ |X is optimal for idealized domain
generalization if and only if it minimizes the IDG risk, i.e.,

RIDG [Y |Z∗] = inf
pZ |X

RIDG [Y |Z] (14)
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A.3 Assumptions

We make a the following assumptions throughout the paper. All these assumptions should hold for
practical settings.

Assumption 1 (Convenience: discrete probability spaces). All data spaces (D,X ,Y,Z,A) are
discrete spaces. Because the distributions of X,Y,D are fixed, we assume for convenience that
supp(pX) = X , supp(pY ) = Y , and supp(pDt) = D.

Assumption 1 is a convenience assumption to avoid measure theory for the sake of clarity. It always
holds in practice due to finiteness of computers, i.e., all spaces will be finite but arbitrarily large. We
believe that our claims can nevertheless be generalized to typical continuous spaces with some minor
technical assumptions.

Assumption 2 (Properness of our losses). We assume that our risk always admits optimal predictions:

1. |Γ| > 1.

2. For all pΥ ∈ P(Y), there exists γ∗ ∈ Γ, such that

EpΥ
[`(Υ, γ∗)] ≤ EpΥ

[`(Υ, γ)] ∀ γ ∈ Γ. (15)

3. For all x ∈ X , there exist γ∗ ∈ Γ, such that

EpY | x [`(Y, γ∗)] < EpY | x [`(Y, γ)] ∀ γ 6= γ∗. (16)

Note that for log-loss `(y, γ) = − log γ(y) and finite Y , these assumptions are satisfied if Γ = P(Y)
where the optimal prediction for Item 3 is γ∗ = pY | x by strict properness [18]. If we consider the 0-1
loss (reverse accuracy) `(y, γ) = 1−1[y = γ] with Γ = Y and a finite label space where the optimal
prediction for Item 3 is γ∗ = arg maxy∈Y pY | x(y), this assumption is mostly satisfied, except we
assume that pY | x has a unique mode.

Assumption 2 serves two purposes: Item 2 ensures that for any representation the optimal predictors
from Z exists such that the IDG risk is well-defined as in Def. 5; Item 3 ensures a unique Bayes
predictor from X , which simplifies the analysis and is satisfied by common losses as described above.

Assumption 3 (Cardinalities). We assume that

|Z| ≥ |Γ∗| ≥ 2 (17)

Assumption 3 is very weak and ensures that optimal representations always exists (Prop. 3).

Assumption 4 (Generalized covariate shift). The Bayes predictor is optimal for all domains. I.e., for
all (x, d) ∈ supp(pX,Dt), γ ∈ Γ such that γ 6= f∗(x), we have

EpY | x,d [`(Y, f∗(x))] < EpY | x,d [`(Y, γ)] . (18)

For example, in the case of strictly proper scoring rules, e.g. log loss, covariate shift pY |X,D = pY |X
is equivalent to the invariance of the Bayes predictor. For the 0-1 loss, this is guaranteed by invariance
of the most likely label. For MSE it is guaranteed by the invariance of the expected label. In the latter
two cases, Assumption 4 is less stringent than the typical covariate shift assumption.

Assumption 4 is the core assumption for our theoretical results. It ensures that source and target
domains are related in a useful way that can be utilized by the representation.

Assumption 5 (Constant Bayes image). The Bayes image is invariant across domains, i.e., for all
d ∈ D,

Γ∗d = Γ∗. (19)
For the case of 0-1 loss, this simply means that the label set for all domains is the same, which is
trivial. For log-loss, this means that the set of possible conditional distributions Γ∗d = {pY | x |x ∈
supp(pX | d)} is the same across domains.
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Assumption 5 is crucial to be able to learn. Without it, in the extreme case, one could set each domain
to be all examples associated with a single element from the label set (or the Bayes image set) in
which case it is impossible to generalize across different domains. Assumption 5 is also necessary to
guarantee the existence of optimal representations as in Prop. 3.

Assumption 6 (Domain joint). pDt,Ds is any distribution such that supp(pDt,Ds) = D ×D.

In a simplified scenario, one could define the source Ds and target Dt as i.i.d. r.v. from pDt , where
pDt,Ds = pDt · pDs = pDt · pDt and Assumption 6 is trivially satisfied.

B Proofs

B.1 Lemmas for general losses

An important result that we will be using is the generalized data processing inequality of Bayes risk
[56, 15]. We include it here for completeness.

Lemma 1 (Generalized DPI [56, 15]). Let Z −X − Y be a Markov chain of random variables. For
any loss function `,

R [Y |X] ≤ R [Y |Z] . (20)

For the case of strictly proper losses (Assumption 2) we can go one step further.

Lemma 2. Let Z −X − Y be a Markov chain of random variables. Then, under Assumptions 1
and 2 we have that

R [Y |Z] = R [Y |X] ⇐⇒ ∀h∗ ∈ H∗Z ,∀(x, z) ∈ supp(pX,Z), h∗(z) = f∗(x). (21)

Proof. Suppose that for all h∗ ∈ H∗Z we have h∗(z) = f∗(x) on the support of pX,Z . Then,
R [Y |X] = EpX,Y [`(Y, f∗(X))] (22)

= EpX,Y pZ |X [`(Y, f∗(X))] (23)

= EpX,Y pZ |X [`(Y, h∗(Z))] (24)

= EpZ,Y [`(Y, h∗(Z))] (25)

= R [Y |Z] . (26)
Now suppose there exists a h∗ ∈ H∗Z and a pair (x′, z′) ∈ supp(pX,Z) such that h∗(z′) 6= f∗(x′).
Then

R [Y |Z] (27)
= EpX,ZpY |X [`(Y, h∗(Z))] (28)

= pX,Z(x′, z′)EpY | x′ [`(Y, h
∗(z′))] +

∑
(x,z)6=(x′,z′)

pX,Z(x, z)EpY | x [`(Y, h∗(z))] (29)

≥ pX,Z(x′, z′)EpY | x′ [`(Y, h
∗(z′))] +

∑
(x,z)6=(x′,z′)

pX,Z(x, z)EpY | x [`(Y, f∗(x))] (30)

> pX,Z(x′, z′)EpY | x′ [`(Y, f
∗(x′))] +

∑
(x,z)6=(x′,z′)

pX,Z(x, z)EpY | x [`(Y, f∗(x))] (31)

= R [Y |X] (32)
Eq. (30) follows by Item 3 of Assumption 2 along with the definition of f∗. Eq. (31) follows by Item 3
of Assumption 2 and the fact that h∗(z′) 6= f∗(x′). This completes the proof, because Lemma 1
prevents R [Y |Z] < R [Y |X].

B.2 Proof of Theorem 2

First we will show that the desired representation exists by taking all inputs for which the Bayes
predictor predicts similarly and “bucketing” them to the same representation. This is a direct extension
of the example from Dubois et al.’s (2020) Proposition 6, to the case of proper losses.

12



Proposition 3 (Existence of optimal representations). Under Assumptions 1 to 5, there exists an
encoder pZ∗ |X that is optimal for IDG, i.e.,

pZ∗ |X ∈ arg min
pZ |X

R [Y |Z] s.t. ∀ d ∈ D, supp(pZ | d) = supp(pZ). (33)

Moreover, we have that
R [Y |X] = R [Y |Z∗] . (34)

Proof. Because we assume arbitrary encoders pZ |X , the essence of this construction is simple: we
embed the Bayes image into Z . Indeed, let φ : Γ∗ → Z be any one-to-one function, which exists due
to Assumption 3 (here we use deterministic one-to-one function for simplicity, the construction can
be easily extended to stochastic case). Then let Z∗ = φ(f∗(X)). We now verify the properties of
pZ∗ |X .

1. Z∗ satisfies R [Y |X] = R [Y |Z∗]. Indeed,

R [Y |X] = EpX,Y [`(Y, f∗(X))] (35)

= EpX,Y pZ∗ |X [`(Y, f∗(X))] (36)

= EpZ∗,Y
[
`(Y, φ−1(Z∗))

]
(37)

≥ R [Y |Z∗] . (38)

Eq. (37) is by our construction of Z∗ and Eq. (38) is by the definition of the Bayes risk.
Due to the data processing inequality of Bayes risk (Lemma 1) we also have R [Y |X] ≤
R [Y |Z∗], from which we conclude that R [Y |X] = R [Y |Z∗] and that Eq. (34) holds.

2. Recall that Γ∗ = f∗→(X ) and Γ∗d = f∗→
(
supp(pX | d)

)
. Now let us compute the desired

support for all d ∈ D:

supp(pZ∗ | d) = φ→(Γ∗d) (39)

= φ→(Γ∗) (40)
= supp(pZ∗). (41)

Eq. (40) is by Assumption 5.

Because R [Y |X] is the minimum achievable risk by any encoder regardless of constraint (this is by
Lemma 1), this implies that pZ∗ |X is an optimal encoder for IDG.

The following lemma essentially says that when R [Y |Z] is minimized, then the optimal predictors
for each domain all agree on the intersection of their support.

Lemma 3. Let pZ |X be an encoder such that R [Y |Z] = R [Y |X]. Under Assumptions 1 and 2,
we have that for all z ∈ supp(pZ), there exists γ∗ ∈ Γ such that

EpY | z [`(Y, γ
∗)] < EpY | z [`(Y, γ)] ∀ γ 6= γ∗. (42)

In other words, the restriction of any h∗ ∈ H∗Z to supp(pZ) is unique. If, in addition, Assumption 4
holds, then for all (z, d) ∈ supp(pZ,Dt), γ ∈ Γ such that γ 6= h∗(z),

EpY | z,d [`(Y, h∗(z)] < EpY | z,d [`(Y, γ)] . (43)

In other words, the restriction of any h ∈ H∗Z,d to supp(pZ | d) is unique and equal to h∗.

Proof. For the first result, let z ∈ supp(pZ) and consider x ∈ supp(pX | z). By Lemma 2, it must be
the case that f∗ is constant on supp(pX | z). Thus, we can pick γ∗ = f∗(x). Now, let γ 6= γ∗. We
have that,

EpY | z [`(Y, γ
∗)] = EpX | zpY |X [`(Y, γ∗)] (44)

= EpX | zpY |X [`(Y, f∗(X))] (45)

< EpX | zpY |X [`(Y, γ)] (46)
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= EpY | z [`(Y, γ)] . (47)
Eq. (44) is due to the conditional independence of Y and Z given X . Eq. (46) is due to Assumption 2
and the definition of the Bayes predictor. Let h∗ : supp(pZ) → Γ be the unique Bayes predictor
from Z.

Now, for the second result, note that
R [Y |X] = Rf∗ [Y |X] (48)

=
∑
d∈D

pDt(d) Rd
f∗ [Y |X] (49)

=
∑
d∈D

pDt(d) Rd [Y |X] , Assumption 4 (50)

and
R [Y |Z] = Rh∗ [Y |Z] (51)

=
∑
d∈D

pDt(d) Rd
h∗ [Y |Z] (52)

≥
∑
d∈D

pDt(d) Rd [Y |Z] , (53)

where Eq. (53) is due to the definition of (domain-conditional) Bayes risk. Then

R [Y |Z]− R [Y |X] ≥
∑
d∈D

pDt(d)
(

Rd [Y |Z]− Rd [Y |X]
)

(54)

≥ 0. Lemma 1 conditioned on d
(55)

Thus, any encoder that achieves R [Y |Z] = R [Y |X] also satisfies Rd [Y |Z] = Rd [Y |X] for
all d ∈ D since we assume that supp(pDt) = D in Assumption 1. Now, let d ∈ D. An argument
analogous to Lemma 2 gives us,

∀h ∈ H∗Z,d,∀(x, z) ∈ supp(pX,Z | d), h(z) = f∗(x) = h∗(z). (56)

Eq. (56) is derived from Rd [Y |Z] = Rd [Y |X] using Assumption 4 in place of Item 3 of As-
sumption 2 for a specific domain d. Let z ∈ supp(pZ | d) and γ ∈ Γ such that γ 6= h∗(z). Since
supp(pX | z,d) ⊆ supp(pX | z), f∗ is a constant on supp(pX | z,d) and equal to h∗. Now, as above,
we have that

EpY | z,d [`(Y, h∗(z))] = EpX | z,dpY |X,d [`(Y, h∗(z))] (57)

= EpX | z,dpY |X,d [`(Y, f∗(X))] (58)

< EpX | z,dpY |X,d [`(Y, γ)] (59)

= EpY | z,d [`(Y, γ)] . (60)
Eq. (59) is due to Assumption 4.

Corollary 1. Let pZ |X be an encoder such that R [Y |Z] = R [Y |X]. Under Assumptions 1, 2
and 4 we have thatH∗Z ⊆ H∗Z,d for all d ∈ D and that for all ds, dt ∈ D

inf
h∈H∗Z,ds

Rdt
h [Y |Z] = Rdt [Y |Z] (61)

Proof. H∗Z ⊆ H∗Z,d is immediate from Lemma 3. Now, we have that Rdt
h [Y |Z] ≥ Rdt [Y |Z]. So,

the result follows by taking any h ∈ H∗Z ⊆ H∗Z,ds in the inf of Eq. (61).

Theorem 2 (Characterizing optimal representations for IDG). Under Assumptions 1 to 6, an encoder
pZ |X is optimal for idealized domain generalization if and only if it minimizes the Bayes risk while
matching the support of pZ | d and pZ for all d ∈ D, i.e.,

pZ |X ∈ arg min
pZ |X

R [Y |Z] (62)

s.t. ∀ d ∈ D, supp(pZ | d) = supp(pZ) (63)
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Proof. The IDG risk is lower bounded by R [Y |X]:

RIDG [Y |Z] ≥ EpDs,Dt

[
inf

h∈H∗Z,Ds
RDt
h [Y |Z]

]
(64)

≥ EpDs,Dt
[
RDt [Y |Z]

]
(65)

≥ EpDs,Dt
[
RDt [Y |X]

]
Lemma 1 (66)

= R [Y |X] Assumption 4 (67)
We will now show that this lower bound is achieved by an encoder if and only if it satisfies Eqs. (62)
and (63), which exist by Prop. 3.

Sufficiency (⇐= ): Let pZ |X be an encoder that satisfies Eqs. (62) and (63). Note that R [Y |Z] =
R [Y |X] by Prop. 3. Let h∗ ∈ H∗Z , then we have the following IDG risk

RIDG [Y |Z] (68)

= EpDs,Dt

[
sup

h∈H∗Z,Ds
EpZ,Y |Dt [`(Y, h(Z))]

]
(69)

= EpDs,Dt

[
sup

h∈H∗Z,Ds
EpZ,Y |Dt [`(Y, h

∗(Z))]

]
Lemma 3 under matching support (70)

= EpDt
[
EpZ,Y |Dt [`(Y, h

∗(Z))]
]

constant w.r.t Ds (71)

= R [Y |Z] = R [Y |X] (72)

Necessity ( =⇒ ): If the IDG risk is R [Y |X], then it must be the case that
R [Y |Z] = R [Y |X] (73)

sup
h∈H∗Z,ds

Rdt
h [Y |Z] = Rdt [Y |Z] ∀(ds, dt) ∈ supp(pDs,Dt) (74)

We will prove by contrapositive that Eq. (74) implies support match (Eq. (63)). Suppose that the
support match does not hold. Since supp(pZ) = ∪d∈Dsupp(pZ | d) and supp(pDs,Dt) = D × D
(Assumption 6), there must exist (ds, dt) ∈ supp(pDs,Dt) such that supp(pZ | ds) 6= supp(pZ | ds).

Define the set S = supp(pZ | ds) ∩ supp(pZ | dt) and S̄ = supp(pZ | dt) \ supp(pZ | ds), let ρ =
PZ | dt(S), and let h∗ ∈ H∗Z . Then,

sup
h∈H∗Z,ds

Rdt
h [Y |Z] (75)

= sup
h∈H∗Z,ds

ρEpY,Z |S,dt [`(Y, h(Z))] + (1− ρ)EpY,Z | S̄,dt [`(Y, h(Z))] (76)

= sup
h∈H∗Z,ds

ρEpY,Z |S,dt [`(Y, h
∗(Z))] + (1− ρ)EpY,Z | S̄,dt [`(Y, h(Z))] Lem. 3 (77)

= ρEpY,Z |S,dt [`(Y, h
∗(Z))] + (1− ρ) sup

h∈H∗Z,ds
EpY,Z | S̄,dt [`(Y, h(Z))] (78)

= Rdt [Y |Z] + (1− ρ) sup
h∈H∗Z,ds

EpY,Z | S̄,dt [`(Y, h(Z))− `(Y, h∗(Z))] (79)

> Rdt [Y |Z] Lem. 3 (80)
Eq. (80) uses the following reasoning. 1− ρ > 0 due to support mismatch. For any h ∈ H∗Z,ds such
that h 6= h∗ on S̄ (such an h exists by Item 1 of Assumption 2), we have that

EpY,Z | S̄,dt [`(Y, h(Z))− `(Y, h∗(Z))] > 0 (81)
by Lemma 3.

As a corollary from the proof strategy we directly have that the optimal DG risk is simply R [Y |X].
This means that using the optimal encoder one can actually perform just as well by training on the
source as if you were to directly train on the target using the raw data.

Corollary 2 (Optimal IDG Risk). Under Assumptions 1 to 6, infpZ |X RIDG [Y |Z] = R [Y |X].
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B.3 Impossibility results

As a direct corollary of Thm. 2 we know that it is impossible to learn an optimal representation
without knowledge or assumptions on the target domain. We can actually prove the following much
stronger negative result, which essentially states that it is impossible to find a useful representation
without having some information about the target domain. Specifically, we prove that if there exists a
non-trivial target domain on which the representation is advantageous then there exists an infinite
amount of target domains on which it is disadvantageous compared to predicting from a constant.

For clarity, we will focus on the proof for the standard accuracy (0-1 loss) which is much shorter
and simpler to understand, but note that we can generalize the proof to all losses with the right
assumptions.

The key is that outside of the source domain, the label distribution is unconstrained because general-
ized covariate shift has no effect. In other words, for any domain which gives some probability mass
on an example that has not been seen during training, then all possible labels for that example gives
a valid domain. Furthermore, if there exists one domain on which the representation is good, then
one can construct a domain on which the representation is bad simply by labelling this point as the
constant prediction.

Proposition 4 (No free lunch learning representations for DG). Let ` be the 0-1 loss with prediction
space Γ = Y . Let Rep : P(X ,Y)→ P(Z|X ) be any algorithm for choosing an encoder pZ |X from
the data distribution pX,Y , C be any constant r.v. that t.v.i. Z , and pX,Y | ds be any desired source
distribution such that

• there is a unique constant prediction γC = arg miny∈Y EpY | ds [`(Y, y)],

• and |X \ supp(pX | ds)| > 1.

Let pZds |X := Rep(pX,Y | ds) be the chosen source encoder. If there exists a target domain pX,Y | dgt
such that

• (Non-trivial support) ∅ 6= supp(pX | dgt ) ⊆ X \ supp(pX | ds);

• (Satisfies Bayes image invariance) Γ∗
dgt

= Y , i.e., there is at least one example for every
possible label;

• (Source encoder is useful) pZds |X performs better than a constant representation,

sup
h∈H∗Zds ,ds

R
dgt
h [Y |Zds ] < sup

h∈H∗C,ds
R
dgt
h [Y |C] , (82)

Then there exist multiple target domains dbt such that pZds |X underperforms a constant encoder,

sup
h∈H∗Zds ,ds

R
dbt
h [Y |Zds ] > sup

h∈H∗C,ds
R
dbt
h [Y |C] . (83)

Proof. Let h∗ ∈ H∗Zds ,ds be any source Bayes predictor corresponding to our encoder. Partition Z
according to whether h∗ predicts like the constant or not:

ZC :={z ∈ Z |h∗(z) = γC} Z 6=C := Z \ ZC . (84)

We know by assumption that dgt is s.t.

sup
h∈H∗Zds ,ds

R
dgt
h [Y |Zds ] < sup

h∈H∗C,ds
R
dgt
h [Y |C] , (85)

which is clearly only possible if
PZds | dgt (Z 6=C) > 0. (86)

In other words, there exists some input x6=C ∈ X \ supp(pX | ds) that will get represented outside of
the constant region, i.e.,

PZds | x 6=C (Z 6=C) > 0. (87)
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We will now construct the desired bad domain dbt by giving nearly all mass to this x 6=C , specifically,
let pX | dbt (x 6=C) = 1 − δ for some 0 < δ < 1. We assign this example to the constant label, i.e.,
pY | x 6=C ,dbt (γC) = 1. The rest of the target domain mass δ is distributed as with the source domain,
i.e., pX,Y | dbt (x, y) = δ · pX,Y | ds(x, y) for all x, y ∈ supp(pX,Y | ds). Importantly, the constructed
domain dbt is valid. Indeed, the Bayes image is the same as the source’s (Assumption 5), because
we removed no prediction γ from the source’s Bayes image (δ > 0). We added no new prediction γ,
because f∗(x 6=C) = γC ∈ Y which must already have been in Γ∗ due to the validity of dgt .

Now let us compute the desired risk for that “bad” domain and show that the desired encoder performs
worse than a constant encoder.

sup
h∈H∗Zds ,ds

R
dbt
h [Y |Zds ] (88)

= sup
h∈H∗Zds ,ds

(1− δ)EpZds | x 6=C [1− 1[γC = h(Zds)]] + δRds
h [Y |Zds ] (89)

≥ (1− δ)(1− PZds | x6=C (ZC)) (90)

= (1− δ)PZds | x 6=C (Z 6=C) (91)

In contrast, it is easy to show that suph∈H∗C,ds
R
dbt
h [Y |C] ≤ δ because the constant predictor would

be perfect for x 6=C . So any choice of 0 < δ <
PZds | x6=C

(Z 6=C)

1+PZds | x 6=C
(Z 6=C) , would satisfy Eq. (83). We

conclude the proof by noting that there are infinitely many such choices of δ, and any choice of those
would result in a different valid bad domain dbt .

Note that representations can often be much worse than using a constant r.v. Specifically, if an
encoder pZ |X maps an x outside of the source support then there exists an infinite number of target
domains where that representation is the worst possible representation.

Proposition 5 (Worst representation). Let Rep, pY,X | ds , pZds |X , ` be as in Prop. 1, and ε > 0. If
there exists an example xb ∈ X \ supp(pX | ds) that is mapped outside of the source support, i.e.,
supp(pZds | xb) ∩ supp(pZ | ds) = ∅, then there exist many target domains pX,Y | dt s.t. pZds |X is ε
close to the worst possible loss, i.e.,

sup
h∈H∗Zds ,ds

Rdt
h [Y |Zds ] ≥ 1− ε. (92)

Proof. By assumption there exists an xb whose support is outside the source support. Then similarly
to Prop. 1 we construct a bad target domain dt by giving nearly all mass to that example pX | dt(xb) =
1 − δ where δ > 0 and assign with probability 1 to some label that is in the source Bayes image,
i.e., pY | xb,dt(γb) = 1 for some γb ∈ Γ∗ds . The rest of the target domain mass δ is distributed as in
Prop. 1 to the source inputs. As in Prop. 1, such a target domain dt satisfies our assumptions. Now let
us compute the risk for that dt and show that the desired encoder performs arbitrarily bad.

sup
h∈H∗Zds ,ds

Rdt
h [Y |Zds ] (93)

= sup
h∈H∗Zds ,ds

(1− δ)EpZds | xb [1− 1[γb = h(Zds)]] + δRds
h [Y |Zds ] Eq. (89) (94)

≥ sup
h∈H∗Zds ,ds

(1− δ)EpZds | xb [1− 1[γb = h(Zds)]] (95)

= 1− δ (96)

Eq. (96) uses the fact that H∗Zds ,ds is unconstrained outside of the source support and that by
assumption supp(pZds | xb)∩ supp(pZds | ds) = ∅. To achieve the sup 1− δ it then suffices to predict
an γ 6= γb ∈ Γ. We thus see that Eq. (92) holds for dt as long as 0 < δ < ε. We conclude the
proof by noting that there is an infinite possible choices of δ each of which give rise to a bad target
domain.
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B.4 Augmentations

Prop. 2 shows that the optimal representations for IDG can be learned with augmentations in a
self-supervised fashion. Here, we provide formal definitions, assumptions, and proofs.

Definition 6 (Augmenter). An augmenter is a conditional distribution pA |X : A×X → [0, 1] from
the input space X to an augmentation spaceA. For example, in CLIP X is the space of images andA
is the space of text. In standard SSL, A is typically the same as X (e.g., both X and A are the space
of images).

Definition 7 (Augmentation conditional set). Given an augmenter pA |X , define the augmentation
conditional set as the set of conditionals of A given X:

P∗(A |X) :=
{
pA | x |x ∈ X

}
(97)

Similarly, we can define the augmentation conditional set for domain d:

P∗d (A |X) :=
{
pA | x |x ∈ supp(pX | d)

}
(98)

These sets are clearly countable. Note that the augmentation conditional set can be seen as a special
case of the Bayes image (Def. 3) if we view the augmentation A as the label and consider the log-loss
where the conditional distribution is the Bayes optimal predictor due to its strict properness [18].

Assumption 7 (Finite augmentation entropy). We consider the augmenter pA |X such that the entropy
of the augmentation A is finite, i.e., H[A] <∞.

Assumption 8 (Cardinalities). We assume that

|Z| ≥ |P∗(A |X)| (99)

This is a similar assumption as Assumption 3, which ensures the existence of optimal representations.

Assumption 9 (Domain-covering augmentation). We assume that the augmentation A is domain-
covering, i.e., the augmentation conditional set is invariant across domains,

P∗d (A |X) = P∗(A |X), ∀d ∈ D (100)

This assumption is generalized from the constant Bayes image assumption (Assumption 5), which
guarantees the existence of optimal representations.

Domain-covering augmentations essentially ensures that each augmentation conditional pA | x ∈
P∗(A |X) is seen at least once in all domains. If we introduce an equivalence relation ∼ as x ∼ x′
iff pA | x = pA | x′ and the equivalence class [x] := {x′ ∈ X |x′ ∼ x}. Under this relation, it is
easy to see that the above assumption is satisfied if and only if, for all possible equivalence classes
[x] ∈{[x′] |x′ ∈ X}, we have that [x] has intersections with all domains:

[x] ∩ supp(pX | d) 6= ∅, ∀d ∈ D (101)

Not all augmentations are domain-covering. In particular, the standard image augmentations used
by typical SSL models like SimCLR are not domain-covering, but the text-image augmentations of
CLIP nearly are, as discussed in the main body (Sec. 4).

Assumption 10 (Bayes-preserving augmentation). We assume that the augmentation A is Bayes-
preserving, i.e., ∀x, x′ ∈ X ,

pA | x = pA | x′ =⇒ f∗(x) = f∗(x′). (102)

Under the notion of equivalence relation in Assumption 9, this means that for each equivalence class
[x], all x′ ∈ [x] have the same Bayes prediction. Note that most augmentations used in practice like
standard image augmentations are Bayes-preserving.

Next, we show that under the above assumptions, we can learn optimal representations by maximizing
the mutual information I[A;Z] (in the case of log-loss `) under the support match constraint. We use
log-loss simply because it is typically the loss used for training in practice. Note that the learned
representations are optimal for any strict proper losses.
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Proposition 6 (Optimal encoders without labels). Let pA |X be an augmenter. Under Assumptions 1
to 10, any encoder pZ |X such that

pZ |X ∈ arg max
pZ |X

I[A;Z] (103)

s.t. ∀ d ∈ D, supp(pZ | d) = supp(pZ) (104)

is optimal for idealized domain generalization.

Proof. The support match constraint Eq. (104) is equivalent to the support match constraint Eq. (63).
Thus, Prop. 3 and Thm. 2 state that we only need to prove that maximizing the mutual information of
A and Z under the support constraint implies that

R [Y |Z] = R [Y |X] . (105)

We will prove this by constructing an optimal predictor h∗.

Since H[A] <∞ (Assumption 7) we have that

arg max
pZ |X

I[A;Z] = arg min
pZ |X

H[A |Z] . (106)

Note the fact that the conditional entropy is the Bayes risk under the log-loss [18], i.e., H[A |Z] =
R [A |Z]. By construction, A satisfies covariate shift w.r.t. X (thus Bayes invariant) sinceA−X−D
forms a Markov chain. Together with Assumptions 1 and 7 to 9, it means that the optimization
problem in Eqs. (103) and (104) satisfies the assumptions of Prop. 3, with A in place of Y . Thus, an
optimal encoder satisfies R [A |Z] = R [A |X], which leads to

H[A |Z] = H[A |X] . (107)

By Assumption 7, we can invoke Lemma 2 with the fact that A−X − Z forms a Markove chain to
show that for all (x, z) ∈ supp(pX,Z)

pA | z = pA | x, (108)

as the conditional distributions are the Bayes optimal predictors due to strict properness of log-loss.

Now, define the following equivalence relation on X ,

x ∼ x′ ⇐⇒ pA | x = pA | x′ . (109)

Because the number of equivalence classes under ∼ is countable, there exists a maximal invariant
M : X → N from X to the natural numbers [for our definition of a maximal invariant see Definition
2, 15]. By Assumption 10, f∗ is invariant on the equivalence classes [x] := {x′ ∈ X |x′ ∼ x} for
all x ∈ X . Thus, there exists a function g : N → A such that f∗ = g ◦M [Lemma 5, 15]. Given
z ∈ supp(pZ), we construct h∗ in the following way. Let xz ∈ supp(pX | z) be any input point that
could have led to this representation z and define

h∗(z) = g(M(xz)). (110)

By Eq. (108) we are guaranteed that all x ∈ supp(pX | z) share the same value for f∗ since they are
in the same equivalence class. Thus, by the definition of M we have that

M(xZ) = M(X) for (X,Z) ∼ pX,Z . (111)

Therefore,

Rh∗ [Y |Z] = EpY,Z [`(Y, h∗(Z)] (112)

= EpY |XpX,Z [`(Y, h∗(Z)] (113)

= EpY |XpX,Z [`(Y, g(M(xZ)))] Eq. (110) (114)

= EpY |XpX,Z [`(Y, g(M(X)))] Eq. (111) (115)

= EpY |XpX,Z [`(Y, f∗(X))] = R [Y |X] . (116)
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C Practical objectives

Proposition 6 provides an objective to obtain the desired optimal representations, compared to Thm. 2
it is more practical in that it does not require access to the labels but right augmentations. There are
nevertheless multiple remaining issues for deriving objectives that can be trained with in practice.
Specifically, (i) the support constraint is hard to satisfy in practice; (ii) mutual information I[A;Z]
is hard to estimate from samples [42]; (iii) the objective is constrained which is harder to optimize.
We will now show different objectives and variational bounds of them that do not suffer from these
issues, and could still recover the desired encoders in their optima. In contrast to the proofs of main
theoretical results (previous section), here the derivations will be less formal.

As we have seen in Proposition 6, the optimal representation achieves I[A;Z] = I[A;X], and thus
H[A |Z] = H[A |X] (Eq. (107)). In the following, we will rewrite the objective as the constrained
optimization:

pZ |X ∈ arg min
pZ |X

B[Z,X, Y,D] (117)

s.t. H[A |Z] = H[A |X] (118)

where we introduce the domain bottleneck B[Z,X, Y,D] as the objective for enforcing support
match (which we denote as B[Z,D] in the main body for simplicity). The requirement on the domain
bottleneck objective is that minimizing Eq. (117) under Eq. (118) implies that the support match
constraint holds (and can be achieved by some encoder), which leads to optimal representations for
idealized domain generalization. Different domain bottlenecks will be derived later this section. We
can then use Lagrangian relaxation to get the following unconstrained objectives.

arg min
pZ |X

H[A |Z] + λB[Z,X, Y,D] (119)

The first term can be easily optimized using variational objectives. Throughout the paper, we will
use a contrastive variational upper bound which is based on InfoNCE [40]. Namely, let X :={
X,X−1 , . . . , X

−
n

}
be a sequence of samples where each negative X−i is independently sampled

from the marginal pX . Now let A :=
{
A+, A−1 , . . . , A

−
n

}
be the sequence of augmented examples

that come from independently augmenting each X ∈ X using the augmenter pA |X . In particular, the
augmented positive A+ has the marginal pA |X while the negatives A−i follow the marginal pA. Let
Z be the representation of X by passing it through the encoder pϕ := pZ |X parameterized by ϕ and
sψ the critic function parametrized by ψ used to score which A′ ∈ A is the positive augmentation.
Then we have a variational distribution of pA |Z :

qψ,A(A |Z) :=
exp sψ(A,Z)∑

A′∈A exp sψ(A′, Z)
(120)

which leads to the following variational bound:

H[A |Z] = EpX,Z
[
− log pA |Z(A |Z)

]
≤ EpA,X,Z [− log qψ,A(A+ |Z)] (121)

with equality if the variational families sψ, pϕ are unconstrained and and we use infinite samples
(n → ∞). Typically the critic is separable, i.e., sψ(A,Z) := gψ(A)Thψ(Z). As discussed in the
main body, it can be tied with pϕ when A = X .

In the following we focus on the second term B[Z,X, Y,D] and discuss several choices.

C.1 Mutual information bottleneck B[Z,X, Y,D] = I[Z;X]

The first bottleneck we consider is so called mutual information (MI) bottleneck B[Z,X, Y,D] =
I[Z;X], which was introduced by Tishby et al. [53] to achieve a tradeoff between the predictive
power and the complexity of representations. Intuitively, it tries to remove all information of Z that
is not needed for maximizing I[Z;A]. In particular, using the fact that Z −X −D forms a Markov
chain and the chain rule of MI, we have I[Z;X] = I[Z;X,D] = I[Z;D] + I[Z;X |D]. Thus, it
not only minimizes I[Z;D], i.e., matches the representations’ distribution across domains, but also
minimizes I[Z;X |D], i.e., matches the representations’ distribution inside domains.
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Why The key to show is that minimizing Eq. (117), i.e., arg minpZ |X I[Z;X] under I[A;Z] =

I[A;X], implies the support match constraint. This can be seen as a specific subcase of Dubois
et al.’s (2021) Corollary 15 with A in place of Y and M(X) induced by pA |X as in the proof of
Prop. 6. From the corollary, we know that minpZ |X I[Z;X] = H[M(X)] which can be achieved
by any Z s.t. pZ | x = pZ | x′ ⇐⇒ M(x) = M(x′). With the assumption of domain-covering
augmentations (Assumption 9), we have that the set of maximal invariant {M(x) |x ∈ supp(pX | d)}
is invariant across domains. Then we directly have supp(pZ | d) = ∪x∈supp(pX | d)supp(pZ | x) =

∪x∈supp(pX)supp(pZ | x) = supp(pZ), where we use the fact that x within the same equivalence
class has the the same pZ | x.

How Essentially, we can use any variational upper bound of mutual information. We consider the
one used by Variational Information Bottelenck [1], i.e.,

I[Z;X] = EpX,Z
[
log

pϕ(X |Z)

pZ(Z)

]
(122)

= EpX,Z
[
log

pϕ(X |Z)

qθ(Z)

]
−DKL[pZ(Z)‖qθ(Z)] (123)

≤ EpX,Z
[
log

pϕ(X |Z)

qθ(Z)

]
(124)

= EpX [DKL[pϕ(Z |X)‖qθ(Z)]] (125)

where a variational distribution qθ is used to approximate pZ and is jointly optimized with pϕ to
minimize the bound. The approximation gap of the bound is DKL[pZ(Z)‖qθ(Z)]. Then the final loss
becomes

LMI(ψ,ϕ, θ) := EpX,A,Z
[
− log

exp sψ(A+, Z)∑
A′∈A exp sψ(A′, Z)

+ λDKL[pϕ(Z |X)‖qθ(Z)]

]
(126)

which recovers the optimal encoder in the case of unconstrained variational families for pϕ, qθ, sψ,
infinite samples |A|, and any λ > 1 [15].

C.2 Entropy bottleneck B[Z,X, Y,D] = H[Z]

The entropy (Ent) bottleneck introduced in the main body is a special case of the MI bottleneck,
where the encoder is a deterministic mapping, i.e., pϕ(Z |x) is a dirac delta function for all x ∈ X
and we denote by eϕ(x) the deterministic encoder s.t. pϕ(eϕ(x) |x) = 1.

Why In the deterministic case, the MI bottleneck becomes the entropy bottleneck because I[X;Z] =
H[Z]− H[Z |X] = H[Z], where we use the fact that H[Z |X] = 0. Importantly, considering only
deterministic encoders does not constrain our ability to learning optimal encoders. Indeed, just as
with the MI bottleneck optimizing the objective with the entropy bottleneck under I[A;Z] = I[A;X]
will recover encoders s.t. eϕ(x′) = eϕ(x) ⇐⇒ M(x) = M(x′), which also satisfies the support
match constraint as discussed before.

How Using the same derivation as the MI bottleneck, we can derive the variational upper bound on
entropy

H[Z] ≤ EpZ [− log qθ(Z)] (127)

which is the standard variational bound used in neural compression [3, 52]. Putting all together, we
have

LEnt(ψ, θ, ϕ) := EpX,A,Z
[
− log

exp sψ(A+, Z)∑
A′∈A exp sψ(A′, Z)

− λ log qθ(Z)

]
(128)

which also recovers the optimal encoder with unconstrained variational families, infinite samples,
and λ > 1 as with the MI bottleneck. The detialed algorithm is provided in Algorithm 2. Note that
the discreteness of Z could lead to difficulty of gradient-based optimization, and we follow Ballé
et al. [3] to add uniform noise to Z as a differentiable substitute for rounding during training. In our
experiments, we will mostly use the Ent bottleneck instead of the MI bottleneck to avoid introducing
stochastic encoders.
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Algorithm 2 Ent objective

Require: eϕ, sψ, qθ, X, n
1: Z ← eϕ(X)
2: A+ ← sample(pA |X)

3: {(X−i , A−i )}ni=1

i.i.d.←−− sample(pX,A)
4: A←{A+} ∪{A−i }

n
i=1

5: Laug ← − log
exp sψ(A+,Z)∑
A′∈A exp sψ(A′,Z) . H[A |Z]

6: Lsupp ← − log qθ(Z) . H[Z]
7: return LEnt = Laug + λLsupp

C.3 Contrastive adversarial domain bottleneck B[Z,X, Y,D] = I[Z;D]

The previous two bottlenecks require to remove the information of Z (about X) as much as pos-
sible, which seems to be unnecessary since our ultimate goal is to match the support of Z across
domains. Now we introduce a bottleneck B[Z,X, Y,D] = I[Z;D] which we only seek to remove
the information of Z about the domain D. This is very related to the work on invariant representation
learning for domain generalization/adaptation [e.g., 17, 35]. We derive a new variational bound called
the contrastive adversarial domain (CAD) bottleneck that is more stable to train and leads to better
empirical performance. For simplicity we consider the deterministic encoder eϕ(x) as with the main
body.

Why Similar to the previous analysis, we aim to show that arg minpZ |X I[Z;D] under I[A;Z] =

I[A;X] leads to the support match constraint. Using Eq. (111) we have I[Z;D] = I[Z,M(XZ);D] =
I[Z,M(X);D] = I[M(X);D] + I[Z;D |M(X)] where the last equality uses the chain rule of
mutual information. Due to the non-negativity of (conditional) mutual information, we have that
the minimum of I[Z;D] under I[A;Z] = I[A;X] is I[M(X);D]. Then we show the minimum is
achievable by constructing the same optimal encoder eϕ(X) as the Ent bottleneck which clearly
satisfies I[Z;D |M(X)] = 0. It is then easy to show that the support match constraint has to hold
when I[Z;D |M(X)] = 0 by contrapositive. Indeed, suppose that the support constraint does not
hold then it must be true that I[Z;D |M(X)] > 0 and so the encoder cannot be optimal.

How The typical way of minimizing I[Z;D] is to derive the variational bound as

I[Z;D] = H[D]−H[D |Z] (129)

= (const)− EpD,Z
[
− log pD |Z(D |Z)

]
(130)

≥ (const)− EpD,Z [− log qφ(D |Z)] (131)

where a variational distribution (or domain classifier) qφ is used to approximate pD |Z and jointly
trained to maximize the bound. This recovers the domain-adversarial training method as introduced
in Ganin et al. [17]. However, this has two potential issues: 1) it gives a lower bound instead of the
desired upper bound on I[Z;D]; 2) it requires adversarial training which is not stable [20, 30].

We propose the contrastive adversarial domain (CAD) bottleneck, which is based on the above explicit
version but uses a variational distribution qφ(D |Z) that is tied with other parts of the model, thus
no need to learn a domain classifier. Specifically, as with Eq. (120), we first introduce a contrastive
variational distribution qϕ,X(X |Z) of pX |Z as:

qϕ,X(X |Z) :=
exp sϕ(X,Z)∑

X′∈X exp sϕ(X ′, Z)
(132)

where sϕ(X,Z) := eϕ(X)TZ is tied with the encoder eϕ. Since pD |Z can be rewritten as
EpX |Z

[
pD |X

]
using the fact that D −X − Z forms a Markov chain, we obtain can the following

variational distribution:
qϕ,X(D |Z) = Eqϕ,X

[
pD |X(D |X)

]
(133)

which recovers pD |Z when qϕ,X = pX |Z . This is the case where sϕ(X,Z) ∝ log pX,Z(X,Z)
and infinite samples n → ∞. Note that pD |X is still not available, we can use a count estimate
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p̂D,X in practice. In particular, we obtain a collection D by taking each X ′ ∈ X and independently
sampling D′ from pD |X′ to get D :={D,D−1 , . . . , D−n}. In other words, (D,X) and (D−i , X

−
i ) for

i ∈ [n] :={1, . . . , n} are all i.i.d. sampled from pD,X . Then we use a count estimate

p̂D,X(d |x) =
I (X = x,D = d) +

∑n
i=1 I (X−i = x,D−i = d)

I (X = x) +
∑n
i=1 I (X−i = x)

(134)

which is an accurate estimate with infinite samples. This leads to our final variational distribution:

qϕ,X,D(D |Z) =
∑
X′∈X

qϕ,X(X ′ |Z)p̂D,X(D |X ′) (135)

Putting all together we get that the final loss:

LCAD(ϕ,ψ) := EpD,X,A.Z

[
− log qψ,A(A+ |Z) + λ log

( ∑
X′∈X

qϕ,X(X ′ |Z)p̂D,X(D |X ′)
)]

.

(136)
In practice, p̂D,X(D |X) is typically a dirac delta function since it is rare to have the same samples
in a batch. Thus, in Eq. (135) we only need to sum qϕ,X(X ′ |Z) over those associated with the same
domain label D as X , which reduces Eq. (136) to

LCAD(ϕ,ψ) := EpD,X,A,Z

[
− log qψ,A(A+ |Z) + λ log

( ∑
X′∈XD

qϕ,X(X ′ |Z)

)]
. (137)

with a detailed algorithm in Algorithm 1. Note that it is easy to generalize Algorithm 1 to parallel
computation within a batch of samples. Indeed, for each sample in the batch, we can view all other
samples in the batch as negatives and compute the loss efficiently in parallel.

C.4 Conditional CAD B[Z,X, Y,D] = I[Z;D |Y ]

The analysis of the CAD bottleneck also implies that we can minimize the conditional mutual
information I[Z;D |M(X)] if we have access to M(X). However, since M(X) is typically not
available in practice, we consider the special case where M(X) = Y . In particular, this is the
case where the labels are available and the supervised augmentations are used (see Fig. 2c). This
reduces the bottleneck to B[Z,X, Y,D] = I[Z;D |Y ] which is related to the conditional version of
the domain-adversarial neural network [36]. In practice, minimizing I[Z;D |Y ] could be easier for
optimization than I[Z;D], as it does not require to remove the information that D has about Y . In
the following, we derive the conditional CAD (C2AD) bottleneck using a similar idea as CAD.

How In this case, we want to minimize

I[Z;D |Y ] = H[D |Y ]−H[D |Z, Y ] (138)
= (const)−H[D |Z, Y ] (139)
≥ (const)− EpD,Z,Y [− log q(D |Z, Y )] (140)

where q(D |Z, Y ) is a variational distribution of pD |Z,Y . Similar to the unconditional case, we
also aim to use a non-parametric approximation that is tied with other parts of the model, and we
obtain it using the fact pD |Z,Y = EpX |Z,Y

[
pD |X

]
. Specifically, let Y :={Y, Y −1 , . . . , Y −n } be the

collection of labels obtained by independently sampling the label from pY |X′ for each X ′ ∈ X. We
collect samples associated with the label Y , i.e., XY :={X} ∪{X−i |Y −i = Y, i ∈ [n]} and obtain a
variational distribution of pX |Z,Y :

qϕ,X,Y(X |Z, Y ) :=
exp sϕ(X,Z)∑

X′∈XY
exp sϕ(X ′, Z)

(141)

where we use the same critic sϕ(X,Z) := eϕ(X)TZ that is tied with the encoder eϕ as before, but
only take softmax over those samples with the same label Y . For the term pD |X , we use the same
count estimate p̂D,X in Eq. (134). Then we obtain the variational distribution of pD |Z,Y :

qϕ,X,D,Y(D |Z, Y ) =
∑

X′∈XY

qϕ,X,Y(X ′ |Z, Y )p̂D,X(D |X ′) (142)
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Putting all together we get that the final loss:

LC2AD(ϕ,ψ) := EpD,X,A,Y,Z

[
− log qψ,A(A+ |Z) + λ log

( ∑
X′∈XY

qϕ,X,Y(X ′ |Z, Y )p̂D,X(D |X ′)
)]

.

(143)
Again, since in practice p̂D,X(D |X) is typically a dirac delta function, the summation in Eq. (142)
can be done only over those associated with the same label Y and the same domain label D as X . In
particular, we collect samples XY,D :={X} ∪{X−i |Y −i = Y,D−i = D, i ∈ [n]} and obtained the
simplified loss:

LC2AD(ϕ,ψ) := EpD,X,A,Y,Z

− log qψ,A(A+ |Z) + λ log

 ∑
X′∈XY,D

qϕ,X,Y(X ′ |Z, Y )

 . (144)

A detailed algorithm is in Algorithm 3.

Algorithm 3 conditional CAD (C2AD) objective
Require: eϕ, sψ, D,X, Y, n
1: Z ← eϕ(X)
2: A+ ← sample(pA |X)

3:
{
(D−i , X

−
i , A

−
i , Y

−
i )

}n

i=1

i.i.d.←−− sample(pD,X,A,Y )

4: X,A←{X} ∪
{
X−i

}n

i=1
,{A+} ∪

{
A−i

}n

i=1

5: XY ←{X} ∪
{
X−i |Y

−
i = Y, i ∈ [n]

}
6: XY,D ←{X} ∪

{
X−i |Y

−
i = Y,D−i = D, i ∈ [n]

}
7: Laug ← − log

exp sψ(A+,Z)∑
A′∈A exp sψ(A′,Z)

. H[A |Z]

8: Lsupp ← log

∑
X′∈XY,D

exp eϕ(X′)TZ∑
X′′∈XY

exp eϕ(X′′)TZ
. I[Z;D |Y ]

9: return LC2AD = Laug + λLsupp

D Related work

Provably robust representations Z under covariate shift. Ben-David et al. [7] bounds the target
risk using source risk and a divergence between source and target distributions. They do not consider
representation learning, but in our setting, this implies that matching the marginal of Z while
minimizing R [Y |Z] is sufficient for optimality. Ben-David et al. [8] suggests that R [Y |Z] is not
sufficient, and Zhao et al. [58] also prove that one should minimize the joint R [Y |Z] instead of
the source Rds [Y |Z] risk. Similarly, des Combes et al. [13] shows that matching the conditional
pY |Z,d = pY |Z is sufficient. Johansson et al. [27] take this further by proving that matching only
the support of Z is also sufficient. Our work distinguishes itself from those and other related work
on three key aspects: (i) We are the first to provide the set of necessary and sufficient conditions
for robust representations; (ii) We prove that one can learn optimal Z∗ with SSL using only large
samples of inputs X and domain-covering augmentations A. (iii) We consider a general DG setting
which deals with a less stringent generalized covariate shift and works for all standard losses and Y
in ML. Still, our work is more specific than others, as we consider idealized DG and unrestricted
predictorsH. Our theory could be combined with Dubois et al.’s [2020], who provide conditions for
optimal generalization from finite samples and constrainedH in supervised learning.

Practical objectives for DG. The most popular DG methods aim to learn domain-invariant rep-
resentation by minimizing various divergernces between the conditionals pZ | d and marginals pZ
[37, 17, 49, 38, 35, 47, 39]. Others propose matching the conditional pZ | y,d across domains instead
[19, 36, 50]. These regularizers would all be valid domain bottlenecks B[Z,D] . Another line of
work aims at learning Z with invariant predictors pY | z,d across domains [e.g., 2, 31, 33]. However,
none of these methods outperform ERM with fair model selections [22].
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Figure 3: Sweeping the sample weight using CE-Base and SupCon-Base. We selected 10−5 which
seemed to be reasonble for both cases.

E Experimental Details

E.1 Scientific: exploring optimal representations for worst-case DG

In both the scientific setting and the following bridge setting, we consider rather unrealistic setups
for verifying our theory where we have access to labels from all domains. We can choose to directly
minimize the risk R [Y |Z] with the cross-entropy loss (denoted as CE henceafter), or minimize
H[A |Z] (i.e., maximize I[A;Z]) with supervised augmentations as in Fig. 2c detailed below.

Implementation of supervised augmentations When using supervised augmentations, for each
sample we obtain its augmentations from within its label class across all domains. A constrastive
loss with such augmentations will essentially reduce to the supervised contrast loss [SupCon, 28]. In
particular, for a single sample in a batch, all samples in the batch with the same labels can be used as
the positives (could come from the same domain or different domains) and others as the negatives. In
Khosla et al. [28], two variants of SupCon loss were introduced for solving the issue of multi-positives
depending on whether the summation over multi-positives was located inside (SupCon-In, Eq. (3) in
Khosla et al. [28]) or outside (SupCon-Out, Eq. (2) in Khosla et al. [28]) the log. Though Khosla
et al. [28] chose SupCon-Out because it worked better than SupCon-In, we hypothesized that this
is because SupCon-Out has an implicit bottleneck effect. Intuitively, SupCon-Out upper bounds
SupCon-In and achieves its optima only if the logits with positive samples are all the same by Jensen’s
inequality, which may encourage positive samples from different domains to get clustered. Since this
might confound with the effect of our bottlenecks, we chose to use SupCon-In though it performed
slightly worse in out initial experiments. For the implementation of SupCon, we followed Khosla
et al. [28] except that no projection was used. Specifically, the temperature was set to 0.1, and
normalization was applied when computing the logits.

In the scientific setting, we tried to simulate our theory to the greatest extent. In particular, we had
two special considerations as detailed below:

Eliminating empirical generalization As our theory focuses on the idealized domain generaliza-
tion that assumes access to population distribution, we considered the setup where the empirical
generalization was eliminated. Specifically, we treated the dataset as the population distribution and
used the same dataset for training the encoder and training/evaluating the predictor. The ResNet-18
encoder was trained to 300 epochs without any regularization, using the Adam optimizer [29] with
a learning rate of 5e-5, a batch size of 192 (48 for each domain), and a cosine learning rate decay
schedule.

Worst-case approximation To approximate the worst-case source predictor, we included the target
data with randomly assigned wrong labels to the training set for training the source predictor. The
target data samples were down-weighted with a sample weight that maximizes the target risk while
keeping the source risk close to optima (which is 0). We selected the sample weight by sweeping
over [10−10, 1] with a logarithmic scale using CE-Base and SupCon-Base, as shown in Fig. 3. As the
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sample weight increases, the target log likelihood (neg. risk) first decreases and then increases. We
hypothesized that the increasing trend was due to that the source performance was already not optimal
(though not visible from the figure), thus we selected the weight close to the turning point and 10−5

seemed to be reasonable for both CE-Base and SupCon-Base. Although we did not adaptively select
the sample weight for each setup due to the computational cost, the pre-specified sample turned out to
be reasonable for all other losses and different lambda combinations. Furthermore, we also removed
regularization when training the linear classifier and initialized the linear weight i.i.d. from N (0, 1).

Next, we provide other experimental details for reproducibility:

Implementation of standard augmentations We followed SimCLR [11] for implementing stan-
dard image augmentations. For a fair comparison between the cases when using standard augmen-
tations (SimCLR) and supervised augmentations (SupCon), we kept the total batch size the same
and also used the same configurations for computing the SupCon loss, i.e., temperature set to 0.1, no
projection, and normalization applied.

Details of Fig. 4c In Fig. 4c, we considered different choices of augmentations. The ‘Standard‘
augmentation implementation is described above (Appx. E.1). The ‘Supervised’ augmentation was
essentially implemented using the SupCon loss as described in Appx. E.1. For other augmentations
considered, we implemented them by dropout inter-domain supervised augmentations in SupCon.
Specifically, for each sample in the batch, we randomly masked the samples from different domains
(i.e., both inter-domain positives and negatives) i.i.d. with the specified dropout probability, while
samples within the same domain were always kept. ‘IntraDom’ and ‘ApproxDC’ correspond to
dropout probability 1 and 0.9, respectively. ‘SingleDom’ were implemented by dropout all inter-
domain samples with probability 1 except for a fixed domain (the ‘A’ domain of PACS in our
case).

E.2 Bridge: understanding how to learn optimal representations in practice

In the bridge setting (see Appx. F.2), we aimed to bridge the gap between our theoretical setup to the
practical setup. The main differences from the scientific setups are that the empirical generalization
gap is considered and the average-case source predictor is used, as detailed below:

Incorporating empirical generalization In practice, empirical-generalization gap should also be
considered besides the source-target generalization gap. Thus, we randomly split the PACS dataset
to 80% training and 20% validation splits for each domain. The training splits were used to train
both the encoder and the source predictor, and the validation splits were used for encoder and source
predictor selection as well as evaluation on target domains. We used the ResNet-50 model as the
encoder and initialized it from ImageNet pretrained model. The encoder was trained to a maximum
of 50 epochs with a 1e-5 weight decay, using the Adam optimizer [29] with a learning rate of 5e-5, a
batch size of 112 (28 for each domain), and a cosine learning rate decay schedule.

Using average-case source predictor Instead of approximating the worst-case source predictor in
the scientific setting, we considered the average-case2 source predictor which is closer to the common
practice. Specifically, we freezed the encoder and trained a SVM classifier with L2 regularization on
the source training split. The regularization parameter was tuned over {1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1,
1e2, 1e3} with the source validation accuracy.

Next, we provide other experimental details for reproducibility:

Selection of λ For all different setups considered in bridge settings, the CAD bottleneck was used
and the λ was tuned over {1e-3, 1e-2, 1e-1, 1, 1e1} independently for each.

Staggered training setup We first trained model without any bottlenecks (i.e., with CE-Base) in
the same way as described before. Then we freezed the trained model, added a 1-layer MLP with
hidden size 1024 on top, and trained the model with CE-CAD using the same optimization procedure.

2Here we have a slight abuse use of the phrase ‘average-case’ to distinguish from the ‘worst-case’ that we
use in the scientific setting. In fact, the source predictor could be close to the ‘best-case’ since the max-margin
classifier (SVM) was used.
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E.3 Approximating optimal representations with pretrained SSL

Datasets We used non-MNIST datasets on DomainBed that were non-synthetic, including VLCS
[16], PACS [34], OfficeHome [54], TerraIncognita [6], and DomainNet [41]. For each dataset, we
split it to 80%/20% training/validation set according to DomainBed.

SSL-based models & Training For all models based on pretrained SSL models (either CLIP-based
or DINO-based) with staggered training in this experiment, we freezed the pretrained SSL model
and added on top a 1-layer MLP with hidden size 1024, and residual connection. We used CLIP
ResNet-50 (CLIP S) to obtain the best possible fair comparison with baselines from DomainBed,
and CLIP ViT-B/32 (CLIP L) to achieve the best results. Note that the ResNet-50 model of CLIP
S was modified as described in Radford et al. [43] and contained 38M parameters (more than 23M
of the original CLIP). The model was trained to 300 epochs for DomainNet and 50 epochs on other
datasets (an epoch is defined as a single pass over the smallest domain according to DomainBed). No
data augmentation was used and the temperature for scaling the logits in CAD was fixed to 0.05. We
used the Adam optimizer with a 1e-5 weight dacay, and a cosine learning rate decay schedule. The
hyperparameter search space is:

• Learning rate: discrete set {1e-4, 3e-4, 1e-3, 3e-3}

• Batch size: discrete set {128, 256, 512} for DomainNet and OfficeHome, and {64, 128,
256} for other datasets

• MLP dropout: discrete set {0., 0.1, 0.5}

• Learning rate warmup: discrete set {True, False}

End-to-end models & Training In Table 4, we also included an end-to-end trained model without
any pretrained SSL models. We used exactly the same model architecture (the original ResNet-
50, initialized from ImageNet pretrained model), training procedure and evaluation protocal as
baselines on DomainBed. Importantly, the linear classifier was jointly trained with the encoder, and
no refitting was applied. The model was trained to a maximum of 5000 steps on each dataset, and
data augmentations were applied. The Adam optimizer was used without any particular learning
rate schedule. The hyperparameter search space is (same as DomainBed except we added the
temperature):

• Learning rate: log-uniform over [1e-5, 1e-3.5]

• Batch size: log-uniform over [8, 64] for DomainNet, and [8, 25.5] for other datasets

• MLP dropout: discrete set {0., 0.1, 0.5}

• Weight decay: log-uniform over [1e-6, 1e-2]

• Temperature: discrete set {0.05, 0.1}

Linear Probe Evaluation In all the experiments except for the end-to-end training setup, we
always followed the procedure of two-stage training, where we first trained the encoder with specified
objectives, and then refit the classifier. For datasets except DomainNet, we fitted the SVM classifier
and tuned the regularization parameter over {1e-4, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3} with source
validation selection. Since DomainNet was too large and SVM cannot fit it efficiently, we used the
logistic regression classifier which was trained with a batch size 512, the Adam optimizer with a
learning rate 5e-4 and early stopping. Note that an alternative was to just use the linear head fitted
when training the representor (as we used CE loss with source labels), and we found this could work
better than refitting since the classifier was less overfitted to the source domain. However, we didn’t
do that since we wanted to stick to the representation learning protocol with two-stage training. We
did that in our end-to-end training setup since we wanted it to be compeletely comparable to baselines
on DomainBed (which did not do refitting).

Selection of λ In our experiments, we treated λ as a special hyperparamter. For each model, we
selected λ on the PACS dataset, and then used the same λ value for all other datasets, because our
bottleneck was fairly robust to the choice of λ. The λ values chosen for SSL-based models (i.e., CLIP
S, CLIP L, DINO) and end-to-end ResNet-50 were 1e-1 and 1e-5, respectively.
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E.4 Towards generic robust representations with SSL

Model We used the CLIP L model (i.e., CLIP ViT-B/32) with an additional network on top for
staggered training. The additional network were two blocks of 2-layer MLP, each with hidden size
2048, pre-activation batch normalization, residual connection, and dropout probability 0.1. Note that
the original CLIP L model was frozen and only the additional network was trained.

Dataset We used the LAION-400M dataset which contained 400 million image-text pairs for
training. Though the dataset might not be as clean as the original CLIP training data (as evidenced
by our experimental results), it was the largest publicly available image-text-pair dataset that we
could get access to. As we froze the CLIP L model and only did staggered training, we used the 1TB
preprocessed embeddings provided by LAION-400M3. No further preprocessing was applied.

Training We used the image-text contrastive loss as introduced in Radford et al. [43] for training
model. The temperature was learnable which was initialized as 0.07 and clipped with a minimum
0.01. The model was trained for 1 epoch using the Adam optimizer with a batch size of 16384 and a
cosine learning rate decay schedule. The learning rate was tuned over the set {3e-5, 1e-4, 3e-4, 1e-3,
3e-3, 1e-2} and the λ value for the Ent bottleneck was tuned over {1e-3, 1e-2, 1e-1, 1, 1e1}.

Evaluation For the evaluation on the ImageNet-related datasets, we followed a similar procedure in
Radford et al. [43], where a linear classifier was fitted on ImageNet using the model representations
and evaluated on 7 natural distribution shift datasets. In particular, we fitted a logistic regression
classifier with 1e-5 L2 regularization on ImageNet training set which was trained with a batch size
512, the Adam optimizer with a learning rate 3e-4 and early stopping. Note that this was different
from Radford et al. [43], where a logistic regression classifier was fitted using full-batch data with
decent hyperparameter tuning, due to our computational budget. For evaluation on natural distribution
shift datasets, we followed Taori et al. [51] and used their released testbed4. The evaluation datasets
and their abbreviations used in Table 6 were: ImageNetV2 [IN-V2, 44], ImageNet-Sketch [IN-S, 55],
Youtube-BB [YT-BB, 46], ImageNet-Vid [IN-Vid, 46], ObjectNet [5], ImageNet Adversarial [IN-A,
26], and ImageNet Rendition [IN-R 25].

F Additional Experimental Results

In our experiments, we aimed to: (i) verify our theoretical results in practice; (ii) investigate our
proposed representation learning objectives in practical DG; (iii) take advantage of pretrained SSL
models (in particular, CLIP) to achieve powerful models for DG. Unless stated otherwise, we consider
a two-stage training setup. First, the representation learner (“the representor”) trains an encoder pZ |X
using a specified objective and freezes it. Then, the person performing predictions (“the learner”)
trains her predictor h from Z by minimizing the risk on source data. Finally, the representation Z
and predictor h are evaluated on target data. In all experiments, the learner uses a linear classifier
for h. For the Ent bottleneck, we used Ballé et al.’s (2018) entropy model. For the CAD bottleneck
we used its conditional version whenever labels were available. When a model contains no domain
bottleneck, we label it as “Base”. For experimental details, see Appx. E.

F.1 Scientific: exploring optimal representations for worst-case DG

To validate our theory, we studied optimal representations in a scientific setup that is as close to
our IDG framework as possible with log-loss `. In particular, we used the PACS dataset [34] and
approximated the idealized DG by treating the dataset as the population distribution, i.e., we did not
split datasets into train and test sets. To approximate the worst-case source predictor, we followed
Dubois et al. [14] by incorporating the wrongly labeled target data to the source domain. The
experimental setup goes as follows: (i) the representor trains a ResNet-18 [23] to minimize the
objective on labeled data from all domains; (ii) the learner trains a worst-case source classifier h
on every possible pair of (source, target); (iii) the negative target risk (log likelihood) for each h is
evaluated. We reported the log likelihood averaged over 5 seeds. For more realistic scenarios (i.e.
non-idealized average-case DG) see Appx. F.2 which replicates the following results.

3See https://laion.ai/laion-400-open-dataset/ for details.
4https://github.com/modestyachts/imagenet-testbed
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Figure 4: (a) Adding bottlenecks significantly improves the worst-case DG performance and using
domain-covering (DC) augmentations (H[A |Z]) performs as well as with labels (R [Y |Z]). (b) In-
creasing the domain bottleneck weight λ will improve target performance until it decreases source
performance. (c) DC augmentations are crucial but approx. DC aug. might be also be sufficient.

Do our domain bottlenecks improve worst-case DG? In Fig. 4a, we compare IDG performance
of representations trained with (Ent, CAD) and without (Base) domain bottlenecks. We see that
both bottlenecks significantly improve the worst-case DG, and nearly achieve the source-domain
performance (0 log likelihood). This shows the importance of support match (Thm. 2) and the
effectiveness of our bottlenecks to enforce it. In Appx. F.2, we show that bottlenecks also helps in
practical scenarios, i.e., non-idealized average-case DG evaluated with accuracy (95.9%→ 96.7%).

What is the effect of λ? Fig. 4b shows the effect of the bottleneck weight λ on the worst-case
target and source performance. We see that increasing λ will decrease the DG gap. As a result the
target performance improves until λ ≈ 102, where source performance starts to decrease.

What if the representor has access to domain-covering augmentations instead of labels? In
Sec. 4, we provide a contrastive objective for using augmentations. To show the effectiveness of the
objective, we compared minimizing H[A |Z] using Eq. (121) to standard supervised risk minimization
R [Y |Z]. We ensured domain coverage by using supervised augmentations (Fig. 2c). The 1st and 2nd

row of Fig. 4a show that our objective performs similarly to direct label prediction.

How important is the choice of augmentations? Prop. 2 shows that domain-covering (DC) aug-
mentations are sufficient for achieving IDG, but it does not give necessary conditions. Here we
investigate the effect of using our loss with different choices of augmentations. Specifically, we
used LCAD with five augmentations. The first two are DC. ‘Supervised’: augment inputs inside the
label class across all domains as in Fig. 2c; ‘SingleDom’: augment inputs to same label samples
from a fixed domain. The second two are not DC. ‘Standard’: standard SSL augmentations [11]
as in Fig. 2b; ‘IntraDom’: augment inputs to same label and same domain samples. Finally, we
consider ‘ApproxDC’, which is approximately DC by augmenting 10% of the time with ‘Supervised‘
and 90% of the time with ‘IntraDom‘. Fig. 4c shows that the non-DC augmentations give terrible
results compared to DC. Interestingly, ‘ApproxDC’ also performs very well, which suggests that
approximately DC augmentations might be sufficient to learn optimal representations in practice.

What if the representor does not have access to target domains? Prop. 1 shows that DG without
access to target domains is generally impossible. We empirically verified this by excluding a
predefined target dt domain from the representor’s training set, i.e., LCAD is optimized on 3 of the 4
domains. The learner then trains a predictor h on each source. We finally evaluate each h on the target
domain dt, and average over choices of dt. The resulting worst-case log likelihood was −4.2± 0.2,
which is significantly worse than when the representor had access to all domains (−0.8± 0.2).

What’s the effect of λ for different objectives on the worst-case DG performance? In Fig. 5,
the worst-case target log likelihood versus λ values for different objectives is shown. We found that
Ent is much more sensitive to the choice of λ than CAD, which was part of the reason why we used
the latter in most of our experiments. Note that for SupCon-Ent with small λ values, it was worse
than SupCon-Base because of the discretization introduced by the Ent bottleneck, which we verified
by observing that setting λ = 0 lead to similar results.
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Figure 5: The worst-case DG performance of Ent bottleneck is more sensitive to λ than CAD

F.2 Bridge: understanding how to learn optimal representations in practice

The scientific setup is closer to our theory than what we do in practice in that worst-case predictor
was considered and empirical generalization gap was ignored. Here we bridged these gaps with a
more practical setup. In particular, we split the PACS dataset to training and validation splits for each
domain and considered the setting: the representor trains the encoder on all-domain training splits
with a validation loss selection; the learner trains the SVM predictor (average-case) on the source
training split which is selected over the source validation split, and evaluates on the validation splits
of other target domains. The target validation accuracy averaged over all (source, target) setups was
reported. For simplicity, we will use CE to denote the objective with the cross-entropy loss that uses
labels to minimize R [Y |Z], and SupCon for the contrastive loss that uses supervised augmentations
to minimize H[A |Z]. We will use CAD in following experiments unless otherwise specified (chosen
with initial experiments). Details in Appx. E.2.

Table 3: We repeated most empirical analysis (in the scientific setting) in the more practical bridge
setting and observed similar results.

Setup Avg. target acc.
CE-Base 95.9 ± 0.5
CE-CAD 96.7 ± 0.2
CE-CAD (partial domains) 82.6 ± 0.5

CE-CAD (staggered) 96.5 ± 0.0

SupCon-CAD 96.7 ± 0.4
SupCon-CAD (SingleDom) 96.7 ± 0.3
SupCon-CAD (ApproxDC) 96.6 ± 0.3
SupCon-CAD (IntraDom) 96.2 ± 0.7
SimCLR-CAD 61.7 ± 0.8

Does domain bottleneck improve the average-case DG performance? Though our theory fo-
cuses on the worst-case DG, we empirically showed that adding bottlenecks to enforce support match
can also improve the average-case DG performance by comparing CE-Base and CE-CAD in Table 3.

What if the representor only has access to source domains? Similar to what we did in the
scientific setting, we considered the setup where one single domain is specified as the target domain
and excluded from the training set of the representor and used for evaluation with source predictors
trained on other domains. This is denoted as CE+CAD (partial domains) in Table 3, which is much
worse then CE-CAD. This shows the necessity of getting access to target domain information for DG.

What if the representor only has access to domain-covering augmentations? In Table 3, we
also compared SupCon-CAD which used supervised augmentations through the labels with CE-
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CAD and they achieved the same performance. This shows that the representor can still learn good
representations without labels but only domain-covering augmentations in practice.

Can we use standard augmentations? In Fig. 2, we point out that standard augmentations are not
domain-covering and thus not suitable for SSL with our objectives. We empirically showed this by
using augmentations of SimCLR (see Appx. E.1 for details) with our objectives (SimCLR-CAD). In
Table 3, we indeed observed that using standard augmentations performed much worse than using
desired augmentations (SupCon-CAD).

How do augmentations matter? Besides investigating the ‘Supervised’ augmentations (SupCon-
CAD) and ‘Standard’ augmentations (SimCLR-CAD) above, we also compared other three augmen-
tations as in the scientific section. Specifically, we considered the ‘SingleDom’, ‘IntraDom’, and
‘ApproxDC’ augmentations. As shown in Table 3, SupCon-CAD (SingleDom) and (ApproxDC)
maintained the DG performance but SupCon-CAD (IntraDom) was slightly worse (0.5 accuracy
drop). We assumed the small gap was due to the specific dataset that we used (PACS). We did
the same analysis on VLCS, and SupCon-CAD with ‘Supervised’, ‘SingleDom’, and ‘IntraDom’
augmentations gave 84.7 ± 0.4, 83.2 ± 0.3, and 77.5 ± 2.3, respectively. This shows the importance
of using domain-covering augmentations in practice.

How is end-to-end training compared to staggered training? Since getting access to target
domain data is not practical in practice, we can utilize SSL models pretrained on a very large support
(as we did in practical and realistic settings). However, typical SSL models are trained without any
bottlenecks and we can adopt the staggered training where we freeze the SSL models and train a
small network on top with bottlenecks. To get an idea of how it compares to end-to-end training with
bottlenecks, we considered a staggered version of CE-CAD in our setup. As shown in Table 3, it
performed similarly to CE-CAD.

Do standard augmentations affect source performance? Previously, we showed that using stan-
dard augmentations hurt the DG performance measured by the average target accuracy. It is natural
to ask whether using standard augmentations also hurt the source performance since we should also
be interested in the ‘effective robustness’ [51]. Thus we also reported the average source accuracy of
SupCon-CAD and SimCLR-CAD which were 96.9 ± 0.2 and 90.1 ± 0.2, respectively. The source
performance using standard augmentations was indeed worse, but if we consider the source-target
gap which was 0.2 for SupCon-CAD and 28.4 for SimCLR-CAD, which still verified that the non-
domain-covering standard augmentations were harder to force support match. To be even more
convincing, we did the same analysis on VLCS, and the average source accuracy of SupCon-CAD
and SimCLR-CAD were 86.6 ± 0.1 and 84.6 ± 0.5 which were fairly close, but the average target
accuracy were 84.7 ± 0.4 and 57.5 ± 1.7, respectively.

F.3 Approximating optimal representations with pretrained SSL

In this experiment, we used the standard DomainBed benchmark (with non-MNIST datasets) and
protocol [22]. In particular, we left out a target domain for evaluation and used the union of other
domains for training both the encoder and the classifier. Contrary to our scientific setting, the
representor does not get access to the target domain. All our representations were evaluated by fitting
a linear classifier on source domains with source validation selection. As in DomainBed we selected
the encoder based on ‘oracle selection’ over 10 hyperparameters, and reported the target accuracy
averaged over all choices of targets and 5 random seeds. Details in Appx. E.3.

We included the full result of Table 2 with all baselines on DomainBed as in Table 4. We considered
most representative baselines from DomainBed, most of which considered learning invariant repre-
sentations or optimal classifiers across domains. Specifically, we included IRM [2], GroupDRO [45],
Mixup [57], CORAL [49], MMD [35], DANN [17], CDANN [36], and VREx [31]. We also included
the result pretrained CLIP S model with a zero-shot classifier using text representations (CLIP S Zero
Shot), which demonstrated better DG performance than CLIP S with linear probe. But we observed
that it was outperformed by our CLIP S + CAD.

Can we approximate optimal representations by exploiting pretrained CLIP? The last row in
Table 4 shows that finetuning a large pretrained CLIP model with our CAD achieves SOTA on nearly
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Table 4: Finetuning CLIP with our CAD bottleneck to achieve SOTA performance on DomainBed
with ‘oracle’ selection.

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet
ERM 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1
IRM 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1
GroupDRO 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3
Mixup 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1
CORAL 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1
MMD 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4
DANN 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1
CDANN 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2
VREx 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7

CAD 77.3 ± 0.6 87.8 ± 0.5 67.9 ± 0.7 53.6 ± 1.4 41.7 ± 0.1

DINO + CAD 69.6 ± 0.6 76.1 ± 0.1 56.9 ± 0.5 25.9 ± 1.2 33.6 ± 0.1

CLIP S 81.1 ± 0.5 90.3 ± 0.2 70.6 ± 0.1 29.6 ± 0.8 47.7 ± 0.0
CLIP S (Zero-Shot) 80.9 ± 0.1 91.8 ± 0.1 70.4 ± 0.2 19.1 ± 0.1 46.9 ± 0.0
CLIP S + Base 81.6 ± 0.3 91.1 ± 0.3 70.6 ± 0.4 36.4 ± 0.7 46.7 ± 0.2
CLIP S + CAD 82.2 ± 0.3 92.4 ± 0.3 71.7 ± 0.6 36.1 ± 0.8 48.7 ± 0.1

CLIP L 80.7 ± 0.4 93.7 ± 0.8 79.9 ± 0.1 36.9 ± 0.6 52.8 ± 0.1
CLIP L + CAD 81.4 ± 0.8 94.7 ± 0.4 80.2 ± 0.2 39.7 ± 1.1 54.1 ± 0.1

all DomainBed benchmarks by a very large margin (see 2nd row). Note that the poor performance on
TerraIncognita is likely because CLIP’s dataset did not cover such images (camera traps monitoring
animals). In Appx. F.2, we estimated the non-idealized DG performance of optimal representations
on PACS (with access to all-domain labeled data) to be 96.7%, which is only 2% higher than CLIP L
+ CAD. This suggests that our simple SSL encoder might already be close to optimal.

Are gains due to the architectural differences? DomainBed’s baselines finetuned an ImageNet
[12] pretrained ResNet-50. In contrast, CLIP L pretrained a larger ViT. To decouple gains due to our
objective from architectural gains, we evaluated ResNet-50 pretrained. Table 4 shows that CLIP S
still outperforms DomainBed baselines. Our theory does not constrain the encoder and so we expect
larger encoders to be better. Table 4 shows that CLIP L indeed outperforms CLIP S.

What is the effect of domain bottlenecks? In the last six rows of Table 4, we investigated the
effect of finetuning with our CAD bottleneck. We see that for both CLIP L and CLIP S, it improves
results by around 1 ∼ 2%. These gains are due to the bottleneck, rather than due to the additional
MLP trained on source data as seen by ‘CLIP S + Base’. Note that the raw CLIP S already significantly
outperforms baselines. We hypothesize that this could be because SGD training of neural networks
favors support match, e.g., by minimizing I[X;Z] as suggested by Shwartz-Ziv & Tishby [48].

Which pretrained SSL model to use? Our theory suggests that we can exploit pretrained SSL
models as long as their augmentations are domain-covering and their training set covers desired
domains. We investigated the effect of adapting SSL models that do not satisfy those properties by
finetuning DINO [10], the current SOTA on SSL ImageNet. DINO only pretraiend on ImageNet
using standard augmentations. As a result, Table 4 shows that the finetuned DINO+CAD significantly
underperforms compared to CLIP S and DomainBed baselines.

What is the impact of CLIP pretraining? To ensure that our gains are not only due to a novel
CAD bottleneck, but the synergy between enforcing support constraint and using desired SSL models,
we investigated CAD using the standard DomainBed protocol denoted as CAD in the table. It
shows that CAD on its own performs similarly with DomainBed baselines (see Table 4 for a full
comparison).
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Table 5: Results on DomainBed with ‘source validation’ selection. Source validation selected model
tends to overfit more to the source domain and diminish the effect of bottlenecks.

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet
ERM 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1
IRM 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8
GroupDRO 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2
Mixup 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1
CORAL 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1
MMD 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5
DANN 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1
CDANN 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3
VREx 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9

CAD 77.7 ± 0.1 84.7 ± 1.0 68.5 ± 0.2 47.6 ± 1.7 41.4 ± 0.1

DINO + CAD 68.9 ± 0.9 75.4 ± 0.5 56.4 ± 0.7 23.6 ± 1.2 31.0 ± 2.3

CLIP S 81.1 ± 0.5 90.3 ± 0.2 70.6 ± 0.1 29.6 ± 0.8 47.7 ± 0.0
CLIP S Zero-Shot 80.9 ± 0.1 91.8 ± 0.1 70.4 ± 0.2 19.1 ± 0.1 46.9 ± 0.0
CLIP S + Base 81.0 ± 0.5 90.1 ± 0.3 70.4 ± 0.2 29.0 ± 1.4 44.7 ± 1.5
CLIP S + CAD 81.3 ± 0.3 90.0 ± 0.6 70.5 ± 0.2 29.4 ± 0.3 45.9 ± 2.1

CLIP L 80.7 ± 0.4 93.7 ± 0.8 79.9 ± 0.1 36.9 ± 0.6 52.8 ± 0.1
CLIP L + CE-CAD 80.5 ± 0.5 94.0 ± 0.6 79.8 ± 0.1 37.4 ± 1.2 52.3 ± 1.8

Why ‘oracle’ selection? In the main body, we provided the results with ‘oracle selection’ which
was the closest to our theory among the model selection methods in DomainBed (in the sense that
we needed target domain information to achieve IDG). Here, we also provided results with ‘source
validation’ selection in Table 5. Source validation selection relies on the assumption that source and
target data follow similar distributions [22] thus source and target accuracy are highly correlated,
which is not really true in practice. We found some issues with source validation selection results:

• The selected model with the highest source validation accuracy tends to overfit the source
domain, thus possibly leads to worse performance on the target domain. This can be probed
by the fact that the staggered trained CLIP models (CLIP + Base or CLIP + CAD) were
generally worse than the original CLIP model;

• Selecting model with source validation accuracy tends to diminish the effect of bottlenecks.
This can be seen by the fact that the gap between CLIP + Base and CLIP + CAD of source
validation selection is much smaller than that of oracle selection;

• The source accuracy is not a good indicator of target accuracy thus its result has a larger
variance.

F.4 Towards generic robust representations with SSL

In the previous section, we finetuned CLIP in a task specific fashion by optimizing R [Y |Z] and our
CAD bottleneck. To get generic (task agnostic) robust representations, one should instead directly
use our objectives on a sufficiently large dataset with image-text augmentations. Unfortunately, we
cannot fully train CLIP with our bottlenecks as we do not have access to CLIP’s original dataset and
sufficient compute. In this section, we aim to emulate such training of generic robust representations.

To do so we used LAION-400M [32] which is a public dataset that contains 400M web-crawled
image-text pairs. Due to our computational budget, we again froze the pretrained CLIP L and only
finetuned an additional MLP with our LEnt. We used LEnt as it only requires access to paired image X
and text A but no prior information about domain D. As in CLIP’s paper, we evaluated the learned
representation Z in Taori et al.’s (2020) realistic setting, where a linear classifier h from Z is trained
on ImageNet and tested on 7 natural distribution shift datasets. Details in Appx. E.4.
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Would training CLIP with a bottleneck have improved its robustness? As shown in the last 2
rows of Table 6, finetuning CLIP L on LAION with LEnt (LAION + Ent) outperforms finetuning
without bottleneck (LAION + Base) on all 7 distribution shift datasets. This suggests that directly
training CLIP with our Ent bottleneck would improve the robustness of learned representations. We
hypothesize that the gains could be larger if SSL models trained LEnt end-to-end. In Table 7, we
show similar results on DomainBed, where we followed exactly the same linear evaluation protocal
discussed in Appx. E.3. Note that both models underperform the original CLIP L, likely due to
non-end-to-end training and LAION data with (possibly) lower quality than CLIP’s data.

Table 6: Finetuning CLIP L on LAION with an entropy bottleneck (LAION + Ent) improves its
robustness compared to finetuning without (LAION + Base) on 7 distribution shift datasets. CLIP L
is still better likely due to end-to-end training with higher quality data. IN denotes ImageNet.

IN IN-V2 IN-S YT-BB IN-Vid ObjectNet IN-A IN-R Avg.

CLIP L 75.2 64.2 41.0 58.4 71.6 42.8 27.5 62.9 52.6

LAION + Base 73.8 62.1 37.0 56.9 68.8 41.3 26.0 58.1 50.0
LAION + Ent 74.2 62.7 38.9 58.1 70.1 42.1 26.2 60.8 51.3

Table 7: Finetuning CLIP L on LAION with an entropy bottleneck (LAION + Ent) performs better
on DomainBed than finetuning without (LAION + Base).

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet
CLIP L 80.7 ± 0.4 93.7 ± 0.8 79.9 ± 0.1 36.9 ± 0.6 52.8 ± 0.1

LAION + Base 79.2 ± 0.7 93.4 ± 0.3 77.2 ± 0.5 36.1 ± 0.4 51.2 ± 0.1
LAION+ Ent 80.7 ± 0.4 94.3 ± 0.8 78.2 ± 0.2 36.8 ± 0.4 52.2 ± 0.1
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