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ABSTRACT

Despite the empirical success of cooperative multi-agent reinforcement learning
algorithms in recent years, the theoretical understandings, especially for algo-
rithms under the centralized training with decentralized execution (CTDE) frame-
work, are still lacking. Interestingly, existing algorithms sometimes fail to handle
some seemingly simple tasks. Motivated by these failed cases, this paper pro-
poses multi-agent optimistic soft Q-learning (MAOSQL), a new co-MARL algo-
rithm with a global convergence guarantee. The design of MAOSQL includes
an optimistic local Q-function and a softmax local policy, which naturally leads
to a different objective from existing algorithms. We show that optimizing this
objective gives near-optimal policies with a tractable error bound, and MAOSQL
provably converges to the global optima with properly chosen hyper-parameters.
Further, we show that MAOSQL can be easily modified for deep reinforcement
learning, MAOSDQN. We evaluate MAOSDQN in didactic environments where
value decomposition methods or policy gradient methods fail, as well as level-
based foraging, a popular MARL benchmark. The results confirm our theoretical
analysis and indicate the potential of our proposed method to deal with more com-
plicated problems.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (co-MARL) deals with systems in which multi-
ple agents collectively learn local policies to maximize a global objective by interacting within a
common environment. There are many real-world applications of co-MARL, including traffic light
systems (Wiering et al.| (2000)), power networks (Wang et al.| (2021)), autonomous vehicles (Cortes
et al.|(2004)), video games (Vinyals et al.[(2019)), etc.

A popular framework for solving co-MARL problems is centralized training with decentralized
execution (CTDE) (Kraemer & Banerjee (2016))). This framework exploits the fact that a co-MARL
problem can be converted to a single-agent RL problem by learning the optimal policy at a central
entity while restricting the learned policy to be distributed such that agents can make independent
decisions during execution. Following this framework, both value decomposition methods (Sunehag
et al.| (2017); Rashid et al.| (2018)) and policy gradient methods (Foerster et al.| (2018); |Yu et al.
(2022)) have had empirical success in recent years. However, these algorithms fail to converge to
a global optimal optimum in some simple environments because of miscoordination and relative
overgeneralization (Wei & Luke| (2016)).

In this paper, we develop a co-MARL algorithm with global convergence guarantees by overcoming
miscoordination and relative overgeneration. We show that each MARL algorithm defines a pro-
jection from the joint action space to each local action space, which can be specified by defining
local value functions and the relations between local value functions and local policies. Based on
this observation, we propose multi-agent optimistic soft Q-learning (MAOSQL) by defining such a
projection. Its local value function is optimistic about cooperating agents, and the way it determines
local policy resembles that of soft Q-learning. This definition naturally leads to a different objective
from existing algorithms, which can be viewed as an extension of traditional value functions. We
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prove that optimizing this objective gives a near-optimal policy with a tractable error bound, and
MAOSQL provably converges to a global optimum with properly chosen hyper-parameters.

Further, we show that MAOSQL can be easily modified for deep reinforcement learning, MAOS-
DQN, by using a centralized critic network to approximate global Q-function and decentralized
actor networks to maintain the approximated local Q-functions for each agent. We evaluate this
actor-critic style algorithm in tensor game, matrix game and level-based foraging. The former two
environments aim to show that MAOSDQN can avoid miscoordination and relative overgeneraliza-
tion, respectively. Results in the last environment indicate the potential of our proposed method to
deal with more complex problems.

2 PRELIMINARIES

2.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING PROBLEM

In this paper, we consider the infinite-horizon fully observable cooperative multi-agent reinforce-
ment learning, which can be modeled as a Markov decision process G = (N, S, A, P,p,r,7).
Here, N is the number of agents, S the state space is visible to all agents, A = { A"}, is the
action space where A" is the action space of agentn, P : S x A — A(S) is the transition function,
p € A(S) is the initial state distribution, r : & x A — [0, 1] is the reward function shared by all
agents, and y € (0, 1) is the discount factor.

Given a policy 7 : S — A(A), the value function and action-value function under 7 are defined as

, Vi(p) = E [V7(s)]

s~p

V™(s) = E > (s, ar)
so=s,at~7(-|s¢) —0
st41~P(-|st,ar)

@) =r(sa)ty B V)

The goal of the agents is to optimize V™ (p). Let 7* = argmax V™ (p) and V* = V™ . According

to[Bellman & Dreyfus| (1959), 7* simultaneously maximizes V™ (s) forall s € S.

2.2 DISTRIBUTED POLICIES AND LOCAL VALUE FUNCTIONS

We say that a policy 7 is a distributed policy (or a localized policy) if and only if there exists

{7+ 8§ = A(A™)}N_,, such that 7(als) = Hi:[:l " (a™]s),Vs,a, i.e. agents make decisions
based on the state only, independently of other agents’ decisions. In many MARL scenarios where

there is no central controller, the joint policy must be distributed.

A co-MARL problem can be viewed as a single-agent RL problem, with the constraint that the
policy has to be distributed. From a centralized point of view, MARL algorithms are projecting the
single-agent RL problem onto each agent’s point of view. Interestingly, for most existing methods,
this projection can be decomposed into two steps. The first step is to calculate the local Q-function
from the global Q-function, and the second step is to determine the local policy based on the local
Q-function. Here are some examples. Directly applying vanilla Q-learning on MARL problems
(Lauer & Riedmiller| (2000)) by regarding all agents as one is equivalent to taking the maximum of
the global Q-function over other agents’ actions to be the local Q-function. Independent Q-learning
(Tan| (1993)), which regards other agents as part of the environment, is equivalent to taking the
expectation of the global Q-function over other agents’ behavior policy to be the local Q-function.
Value decomposition methods (Sunehag et al. (2017); |[Rashid et al.| (2018} |2020); Son et al.| (2019));
Wang et al| (2020a))) are learning an approximated projection of the Q-function that satisfies the
Individual-Global-Max principle (Son et al.|(2019)). All the algorithms above adopt a greedy policy
according to the local Q-functions. Policy gradient methods (Lowe et al.| (2017); Foerster et al.
(2018); Yu et al.| (2022)) perform gradient updates on policy parameters according to the policy
gradient theorem (Sutton et al.| (1999)). The gradients can be written in terms of the expectation of
the global Q-function over other agents’ current policy. See appendix [A]for a detailed derivation.
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Algorithm Local Q-function Local Policy
QL Q" (s,a™) = max,-» Q(s,a) 7" (-|s) = arg max,» Q (s,a™)
IQL Q"(s,a™) = Eopnmsr Q(s,a) 7" (-|s) = argmax,. Q" (s, a™)
VD Q(s,a) = MIX({Q"(S a™)};s,a) 7w (+|s) = argmax,» Q" (s,a™)
PG | Q"(s,a") =B, Q" (s,a)  golfhs = fodre (s)Q0" (s, an)
MAOSQL | Q"(s,a") =  logEy-nrc-n e®20)  77(a"|s) = %

Table 1: Summary of the definition of local value functions and relation between policy and local
value functions in some MARL algorithms

2.3 Two ISSUES OF A DISTRIBUTED POLICY

The set of distributed policies is a very small subset of the set of all joint policies. For example,
consider a system with NV agents and each agent has m actions to choose from, then the DoF (degree
of freedom) of the joint policy class is m” — 1, while it is only N (m — 1) when being restricted to
distributed policies. Therefore, the projection from global to local may lead to the loss of optimality,
resulting in failures of existing algorithms on seemingly simple tasks. It has been observed that
this failure is due to the following two issues (Wei & Luke| (2016)): miscoordination and relative
overgeneralization.

2.3.1 MISCOORDINATION

The problem of miscoordination arises when the underlying MDP has symmetric actions, while
the projection cannot break this symmetry. Consider a single-state 2-agent game where each
agent has 2 actions (labeled as 1,2). Agents are awarded 1 if and only if they take dif-
ferent actions from each other’s. For Q-learning and value decomposition methods, we have
Ql(s,1) = Q%s,2),Q%(s,1) = Q?(s,2) at convergence by definition, so joint action pairs
(1,1),(2,2),(1,2), (2,1) are all optimal actions given by the local policy, but only the latter two are
real optimal actions. Although for value-based methods, this problem can be alleviated by random-
ization when deep neural networks are involved, the problem persists in slightly more complicated
environments (See Section [4.1)).

2.3.2 RELATIVE OVERGENERALIZATION

The problem of relative overgeneralization, also being referred to as centralized-decentralized mis-
match (Wang et al.[(2020b))), arises when the optimal joint action is risky in the sense that the return
would be very low if some of the collaborating agents do not take the appropriate actions.

Consider a single-state 2-agent matrix game where each agent has 3 actions (labeled as 1,2,3). The
reward matrix R is as shown in Table@], where R;; is the reward when agent 1 takes action ¢ and agent
2 takes action j. The optimal joint policy for the two agents is to perform action 3 simultaneously.

a2

1

(== ST NS
(@]l NS \O RN O]
WO O] W

3

Table 2: Rewards of the single-state 2-agent matrix game. Optimal action is highlighted.

Policy gradient methods always fail to converge to the globally optimal solution even with exact
gradients and sufficient policy parameters. If we simulate a gradient ascend algorithm starting from
a uniform initial policy, then we will see that Q'(s,1) = Q'(s,2) = Q?(s,1) = Q?(s,2) = 4/3,
while Q!(s,3) = Q?(s,3) = 1. So the algorithm continues to decrease the probability of choosing
action 3 and finally converges to the sub-optimal policy of choosing only action 1 and 2.

Among value decomposition methods, VDN (Sunehag et al.| (2017)) and QMIX (Rashid et al.
(2018))) fail in this case due to the limited expressiveness of the mixing function. Note that as long as
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the maximum of the approximated global Q function matches that of the real one, the algorithm can
give an optimal policy. Therefore, WQMIX (Rashid et al.| (2020)) tries to distinguish the important
joint actions and give them higher weights in the loss function, while other works like QTRAN (Son
et al.[(2019)) and QPLEX (Wang et al.| (2020a)) try to extend the expressiveness. However, there is
no theoretical guarantee that these methods can resolve this issue.

3  ALGORITHM DESIGN

3.1 MULTI-AGENT OPTIMISTIC SOFT VALUE FUNCTIONS

To address the two issues, we focus on designing a projection of the global Q-function (denoted as Q)
onto local Q-function (denoted as Q), together with a mapping from local Q-functions to distributed
policy, such that (1) they can break the symmetry between actions and (2) they can distinguish the
optimal joint action even if it is risky. Therefore, we propose to enforce Q to be the softmax of Q
over other agents and use the energy-based policy 7 (Haarnoja et al.[(2017)).

1 ]
Q% (s,a") = = logEq-n cn [eﬂms,a)}

8
(00" (s,a")

S €0Q(5:0™)

Here o, 5 € R, are hyper-parameters and ( is an arbitrary policy such that {(a|s) > 0,Vs,a.
Intuitively, ¢ can break the symmetry between actions, and § indicates the optimistic level of an
agent about other agents. A large S encourages agents to choose high-return yet risky actions.

w3 (a"]s) =

The following lemma shows that the given policy is optimal in the sense that it maximizes a regu-
larized expected return.

Lemma 1. Define

An n 1 n(,n
Jo s, ZEanwﬂn [ (s,a™) — alogw (a"|s)

then ﬁ(lgN maximizes Jg \(7) forall s € S.

The proof of the lemma can be found in Appendix [B]

Note that JQ( )(w) can be viewed as an evaluation of state-value with an entropy regularization
term

’ A 1
VI"(s) =Eannmn [Q?(& a") — —logn"(a"|s)
N
1
¥V
so given 7 and ¢, we can define a Bellman operator 7, .. on Q. When it causes no confusion, we

denote it as 7 ¢ for simplicity.
7;,{@(8, a) = 7”(8, a) + PYES/NP(ﬂs,a) [Vgﬂ-(sl)}

Lemma 2. 7 ¢ is a y-contraction.

According to Lemma [2] we can formally define the multi-agent optimistic soft (action-)value func-
tions and optimal policies:

Q?a,@g) uniquely solves 7;,5,,“4@ = Q
Tp.0) = arg max Q?a,ﬂ,o

o AT (0, B,0)
Q) = Qap.d)
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According to Lemma 71—2((1, .0) = T

. Axn _ 1 BQ*Q, o(s,a)
Ot .o, WHETE QL 5 ) = 5108 Egnngon |€7(020 }

As « approaches infinity, the entropy regularization term approaches 0 and hence the policy ap-
proaches a deterministic one. In this case, we use the subscript (+00, 3, ¢). If 8 approaches infinity,
then softmax goes to max and ¢ has no impact, so we simplify the subscript to be (a, +00) in this
case. If « and 3 both approach infinity, then this definition is just equivalent to the original defini-
tion of value functions (subscripted by (400, +00)), so it can be viewed as an extension of value
functions.

3.2  OPTIMIZING THE OPTIMISTIC SOFT VALUE FUNCTIONS

Algorithm 1 Multi-Agent Optimistic Soft Value Iteration (MAOSVI)
Initialize: Qp : S x A — {O } GV S = A(ABN)
fort=0,1,--- ;T —1do

Q?(s’ am") < %log Eqnmgon [eﬂQt(s,a)}
V7 (s) ¢ L log 30, 0@ o)

- S

Vi(s) < 5 2oy Vi'(5)

Qi1(s,a) < 7(5,a) + YEgwp()s,a) [Vi(s')]
end for

» T—

To find the optimal policy 7r(*a 8,c) OF equivalently, the optimal Q-function Q’("a gy @ straightfor-

ward idea is to alternate between policy update and policy evaluation. In particular, if we perform
exactly one evaluation step between two policy update steps, then in the evaluation step we have
= 7}@, which implies

N A 1
VI (s) =Eqnnsn [Q”(s, a) — = log ﬁ”(a”|s)]

=Egn~sn [Qn(s,a )—— < Q logZeaQ '(s,a’™ >‘|

1 An n
=1 E aQ"(s,a™)
« o8 c

am™

Therefore, we obtain Algorithm E] that resembles Value Iteration Algorithm.
Theorem 1. (Convergence of MAOSVI) QT converges to Q* asT — oo.

The following theorem shows that optimizing the optimistic soft value functions gives a policy that
is close to the optimal policy of the original problem.

Theorem 2. (Near Optimality of Optimistic Soft Policies)
1. Assume that m(, 5 . is unique, and let z = minsegc< ’(k_'_oo 5.0(5) | 5), then

=, A log\A| log Y IOE;
HQ(+oo,+oo) Q(a,ﬁ,C)ng( T )1 - O( B )

2. Let A = mingegs (Qz*+w7+oo)(s,az*+oo,+oo)(s)) MaXagar . (s) Q(_H)o ooy (850

and A" = minses (Qi‘m,ﬁ,o(s’aam 8,0(8)) = maxaim 500 >Q<+oo 5.0 (5:a )
<

2ylog | A] (1+7)log 1 (a,6,0) oL
I‘f o > aA—)A7’ /8 > W, then we have Q (400, +00) _Q(
( 2 )
[A]A=7N 37 A" 210g\A| log 1 N log L
< e 4 + ) L =0(L+285).

Note that we only assume the uniqueness of 77( 40, 8.0) but not the uniqueness of 77( +o0,400)° This

assumption is realistic because we can break the symmetry between actions by assigning different
¢(-|s) on symmetric actions.
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3.3 TRAINING DEEP Q-NETWORKS

Algorithm 2 Multi-Agent Optimistic Soft Q-Learning (MAOSQL)
Initialize: Q)N : S x AUN - {0, ﬁ}
fort=0,1,--- ,T—1do
‘A/;n 1 IOgZ aQt s,a™)

7 (a"s) exp( (Qr(s,am) = Vi(9)))
Gi(als) « 5 + (1 - e)fe(als)

Qusa(s,a) ¢ 7(s,0) + 1By [+ TN, V' ()]
Q4 (s,a™) 5l0gE, .z [e'BQHl(s’a)}

end for
Vi L ~log ) ,n Q7 (s:a™)

#(a"[s)  exp (o (Q(s,a™) — V7 (5)) )

Algorithm 3 Multi-Agent Optimistic Soft Deep Q-Learning (MAOSDQN)
Initialize: 6,v, o, 5
Y=y
D+ 0
forr=0,1,2,--- do
Initialize sg ~ p(+)
fort=0,1,2,--- /T —1do
Take action a} according to some behavior policy
Observe 74, S¢41
D < DU{(st; a¢,re, 5¢41) }
w.p. 1 —~, sample s;11 ~ p(-)
end for
for each gradient step do
0+ 60— 779V9LQ~(9)
b = =y (VuLo(®) + Vi Lestra(¥))
=i+ (1=
end for
end for

In this section, we extend the algorithm with deep neural networks. The extension uses a neural net-
work to approximate the global Q table and our method allows us to put the joint action to the input
of the neural network, while vanilla DQN requires the output dimension of the neural network to be
the size of the joint action space. According to Theorem [2| choosing a ( that is similar to the real

1
optimal policy will give a better result by increasing z, and hence reducing the 10% = term. There-

fore, we propose to use epsilon-decentralized-softmax policy, i.e. (;(als) = T (1 — e)7(als),
which upper-bounds that term by ensuring at least some probability of choosing any actions, and
gradually reduces it during the training process according to the current policy. We also show that
using this epsilon-decentralized-softmax ( instead of a fixed one preserves the convergence guaran-
tee by slightly strengthening the condition on « and 8 (Algorithm 2| and Theorem [3). Note that

¢;(+|s) can be a non-distributed policy, but we can still abuse the notation of {; ™ (a~"|s) by defining

G (as) = o Gilals).

Theorem 3. ( Convergeme of MAOSQL) If B > 2 ) , then W%N converges to TN as T — oo,

such that 2N optimizes Q™, the unique solution of Bellman equation 7;7462 =Q for some (.
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In Algorithm I 2l "(s,-) serves as the softmax-parameters of the policy, and V"( ) serves as the
partition function. Hence if the action space is discrete, we can approximate Q and Q with neural

networks, say Qg and Qw , respectively, which gives an actor-critic-style algorithm(Algorithm ,
Multi-Agent Optimistic Soft Deep Q-Learning (MAOSDQN).

We use TD-loss to train Qg:

1 A a s,a
L5 (9) =E(s,a,r5)~D 3 (Qg(s a) —r— 'y— Z IOgZe Q5 ))

and the following loss to train sz

Gl eﬁ@e<s,a>)2

N
La() =E oo
o) aN%j ; 2359( BT <sa">)

which ensures that

N
1 An s.a® A s An n
vaQ(w) =E.p [N Z (eBQW(‘ at) _ eﬂQe(‘ ,a)) Vwa(s,a )]
n=1

a~Cy

Here D is the replay buffer, 1) is the target network, (g denotes the epsilon-softmax policy induced
by le,, and sg(-) means stop gradient.

Empirically, to avoid overestimation on Q, we need an extra loss for

2

Leztra () = [max (Qw(s a*™) — Qo(s,a*), 0)}

where a* = argmax, Q(s, a*) is composed of a*" = arg max,_., Q™ (s, a™).

4 EXPERIMENTS

In this section, we use numerical experiments to show that our proposed algorithms can resolve the
two issues, miscoordination and relative overgeneralization, as well as the empirical performance
of MAOSDQN on more complicated environments. We choose sota MAPG methods: MAA2C
(Papoudakis et al.| (2020)) and MAPPO (Yu et al.| (2022))), and the popular value-based method
QMIX (Rashid et al.|(2018))) as baselines for comparison.

4.1 TENSOR GAME

This is a single-state game with n agents, each has m available actions and only one of them is the
target actions. Rewards depend on the number of agents that take the target actions. In particular,
we set n = m = 3 and the rewards are as shown in TableE} To avoid an infinite loop, we set the
horizon to be 10.

In this game, the maximum reward is achieved when there are exactly two of the agents taking the
target action, hence there are 3 symmetric optimal joint actions. We use this example to demonstrate
the miscoordinate issue.

Number of agents taking the target action | 0 1 2 3
Rewards 06| 00| 10]05

Table 3: Rewards of the Tensor Game

As shown in Figure [l MAOSDQN and policy gradient methods resolve the miscoordination issue,
but QMIX fails and falls into a suboptimal policy. This result justifies our analysis in Section[2.3.1}
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Figure 1: Training curves Figure 2: Training curves Figure 3: Training curves
in Tensor Game in single-state Matrix Game in 3-state Matrix Game
$1 S2 S3
2 2 2
o 12|03 i 12| 3 o 2
1 06| 0 0 1 06| 0 | 06 1 03|03 0
0 |04)|04 2 0 1.0 O 2 03|03 0
3 0 [04]|04 3 06| 0 |06 3 0 0 |04
Table 4: Rewards of the 3-state 2-agent matrix game. Optimal actions are highlighted.
S1 52 53
2 2 2
o “lr 23 " “lr 23 i “lr 23
1 S1 S1 S1 1 S1 S9 S1 1 S1 S1 S3
S1 S3 S92 2 S92 S3 S92 2 S1 S1 S3
3 s1 | 82 | s3 3 s1 | s2 | s1 3 S3 | 83 | So

Table 5: Transition of the 3-state 2-agent matrix game. Optimal actions are highlighted.

4.2 MATRIX GAME

We consider a single-state version (shown in Table @) and a 3-state version (shown in Table [Z_f] and
Table[5). In the 3-state version, the state is initialized randomly with uniform probability. To avoid
an infinite loop, we set the horizon to be 10.

As shown in Figure 2] and Figure 3] only MAOSDQN converges to the optimal policy, while other
algorithms fall into local optima. These results justify our analysis in Section[2.3.2}

4.3 LEVEL-BASED FORAGING

izz;Ret“m Means Algorithm |\ A2C  MAPPO QMIX MAOSDQN(ours)
5x5-2p-1fc 0.738 0840 1.000 1,000
8x8-2p-2f-c 0.919 0837  1.000 1.000
10x10-3p-5f 0.985 0945  0.407 0.168
10x10-3p-1f-pe 0.535 0.639 0518 0.492
12x12-6p-1f-pe 0.780 0726  0.020 0.331

Table 6: Level-based foraging tasks and results. Tasks are specified as “{height}x{width}-
{num_agents }p-{num_foods }f(-c)(-pe)”, where ’c” means that any food can only be collected if
all agents attempt to load it, ”pe” means that agents are penalized if they try to load a food but failed.

In level-based Foraging (LBF) (Albrecht & Ramamoorthy| (2015))), agents are required to collect
food in a grid world. Agents and foods are assigned levels, such that a food item can be collected
if and only if the sum of levels of the adjacent agents trying to collect it is greater or equal to the
food’s level. The full information of positions and levels of food and agents is visible to any agent.
Each agent’s action set includes moving in 4 directions and loading food. LBF allows a variety of
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specific tasks with flexible map size, number of agents, number of foods, observability, cooperation
setting, etc.

As shown in Table 6} MAOSDQN performs very well in relatively easier tasks. Its performance in
harder tasks is still competitive.

5 RELATED WORK

The study of cooperative multi-agent reinforcement learning and its underlying structure, multi-
agent Markov decision processes or team Markov games, dates back to the last century (Yoshikawa
(1978); |Ho| (1980); Boutilier| (1996))). This area has attracted great attention from the community in
recent years due to advances in single-agent RL (Mnih et al.| (2013} |2016); |Schulman et al.|(2017)).
Conventional learning frameworks include independent learners and joint-action learners (Claus &
Boutilier (1998)), but the former suffers from non-stationarity (Tanl (1993)) while the latter does
not apply to many scenarios due to partial observability or scalability issues. Hence, centralized
training with decentralized execution (CTDE) has been widely adopted since its proposal (Kraemer,
& Banerjee| (2016)); [ILowe et al.|(2017)). Following this framework, there are mainly two series of
algorithms, value decomposition methods (Sunehag et al| (2017); |[Rashid et al.| (2018} [2020); |Son
et al.| (2019); Wang et al.| (2020a)) and policy gradient methods (Lowe et al.| (2017); [Foerster et al.
(2018);|Yu et al.|(2022)), achieving competitive performance in practice.

Though empirically successful, unlike single-agent RL, the theoretical foundations of MARL, es-
pecially the CTDE framework, are relatively lacking. What’s worse, the community seems to focus
more on the convergence to Nash equilibrium in general-sum games (Hu & Wellman| (1998 [2003);
Littman/(2001ab))), leaving the results for cooperative settings as a corollary in special cases. How-
ever, as shown by |Yongacoglu et al.| (2021}, a sub-optimal equilibrium can be arbitrarily worse than
the optimal equilibrium. Here we only list some results for cooperative MARL. For joint action
learners, Team Q-learning (Littman| (2001b)) establishes the convergence to the optimal Q-function
in general cases and the convergence to the optimal policy if the optima is assumed to be unique,
optimal adaptive learning (OAL) (Wang & Sandholml (2002)) is the first algorithm with provable
convergence to the optimal policy. For independent learners, distributed Q-learning (Lauer & Ried-
miller| (2000)) can be shown to converge in deterministic environments, Yongacoglu et al.| (2021)
provides an algorithm that converges to optimal equilibrium policy with high probability. [Zhang
et al.| (2021) provides a more inclusive overview of MARL theories and algorithms.

The lack of theoretical foundations makes existing algorithms vulnerable to some specifically de-
signed environments where miscoordination or relative overgeneralization is triggered. There are
also empirical methods for dealing with these issues (Bowling & Veloso| (2002); [Matignon et al.
(2007); |We1 & Luke|(2016)); |Yang et al. (2020)). As miscoordination can be alleviated by random-
ness, deep RL researchers have paid more attention to relative overgeneralization recently (Wei et al.
(2018)); Wang et al.|(2020b); Jiang & Amato (2021)). However, none of them provide rigorous proof
of the effectiveness of their proposed methods in general cases.

The idea of using softmax to replace max in Bellman operators was previously used by |Asadi &
Littman| (2017), (Gan et al.| (2021) and |Pan et al.| (2019). The idea of softmax policy, or equiva-
lently, adding entropy regularization to the learning objective, has been studied and proved effective
in single-agent RL both empirically and theoretically (Haarnoja et al.| (2017; [2018azb)); Mei et al.
(2020)).

6 CONCLUSIONS AND FUTURE WORK

This paper presented MAOSQL, a new co-MARL algorithm with a global convergence guaran-
tee. MAOSQL addresses the challenges of miscoordination and relative overgeneralization by using
softmax local Q-function and softmax local policy, which differ from most existing methods. We
provide a rigorous proof of convergence and near-optimality of our proposed algorithm and learning
objective. Empirical results of MAOSDQN justify our theoretical analysis and show the potential
of this method to deal with more complicated problems. We leave the problem of how to further
improve the performance of MAOSDQN in complex environments for future work.
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A  MULTI-AGENT POLICY GRADIENTS

Given a policy m, the (discounted) state visible distribution is defined as

di,(s) = (L =) > A'Pr(s; = s|lso,m,P), dj(s) = E [dF,(5)]

=0 so~p

When the policy parmeterization is differentiable, policy gradient theorem Sutton et al.|(1999) allows
us to express the gradients of the value functions over parameters in terms of action-value functions
and gradients of policy parameterization:

V™ (p) 1 E Z Omg(als) Q™ (s, a)

99 1 g 90

acA
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This theorem can be easily extended to multi-agent settings. Assume that agent n’s policy is param-
eterized by 6™, let Q™" (s,a™) = Eq-n~n—n [@™ (8, a)], then we have

ovrp) 1 Omg(als) r,
agn 1—7MEQLA gon 2 (5:0)
1 oy (a"[s) rom
=1 SN]EEH L%" Ggn @ (5,an)

B OMITTED PROOFS IN SECTION 3

Lemma 1. Define

N
1 An n 1 n(.n
Tos,)(™) =77 D_ Baneurn [Q (s,0") — ~logn"(a |s)]
n=1

then Wé maximizes J (m) forall s € S.

Proof. Construct the Lagrangian function as

N
Leo(m,A) = T (M) + Y A (an(a”|s)—1>
n=1

amn

m i (Q”(s a") ~  logn"(a"]s) + ;) + A =

= 7"(a"|s) o exp {aQn(S,an)}

1:N

Hence, er maximizes Jg () forall s € S. O

Lemma 2. T  is a y-contraction.

Proof. Assume that HQ1 QQH = €0, 50 Q1(s,a) < Qs(s,a) + €y, Vs, a.

N

1

TrcQi(s,a) =r(s,a) +v E ~
¢t s'~P(-|s,a) NZ

a/ "~ (n

1 5 (s o 1
— BQ1(sa")| _ — oS
{5 log E {e ] 5 logn™(a""|s )H

a ~TT 6 a’' ™"

N
1 1 A o
=rlsa)+7E anzlamwn Glose™ E [oP2ate'e )} ~log"(a"|s)

N -
1 1 5 (s a 1
— - B(Qz2(s",a")+e0) | _ = /" s
Sr(s,a)qt'ylg, E E log E {e 2 “} Oélog7r (a""|s )H

a’'m~mhn a’—™n

=760 +7(s,0) +7E

N -
1 1 A o 1
= —1 |:ﬁQ2(S ,a )} | nyo Iy 1
T(Sva)‘F’YIS@ E E €0+ﬁ og E |e ; logm (a'"|s")
ﬂ }

1< 1 - 1
E |: log ,]En [eﬁQ2(s ,a )] _ a logwn(a’"\s’) ‘|

N a'm~mm
n=1

= TrcQ2(s,a) + veo

Similarly, 7, ¢Q1(s,a) > Tr.cQa(s,a) — e

Therefore,

TrcQ1 — ngH <~ HQ1 QQH Tx.¢ is a y-contraction. O
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Theorem 1. (Convergence of MAOSVI)
QT converges to Q* as T — oo.

ca QP (s.a™)

Proof. Let 7il'(a™|s) = S @™
a/n v

. Define T:Q(s,a) = max, Tr :Q(s,a).

arg max T, cQ(s, a)

YA 1 n
Z]Ea/wNﬂ-n |: IOg]Ea/ —nan |: BQ(S @ ):| - 710gﬂ—n(a’/ |S/)]]>
«

nl

—arg max (r(s a) +vEy

1 5 1
=argmax — Z Eqnnn {5 logEg—n¢—n [eﬂ@(s@)} — Zlog ﬂ_n(ans):|
o

m(-|s) n=1

=1ty (According to Lemma [T
Therefore, 7Z~Qt = ’7}”_<Qt.

Assume that ‘Ql(s, a) — Qafs, a)‘ = €, Vs, a. According to Lemma T, is a y-contraction,
hence

TrcQ1(s,0) < TrcQa(s,a) + 7o
Taking the maximum for both sides, we have
mﬁxﬁngél(s, a) < max (7;746}2(3, a) + ’760)
= max Tr.cQa(s,a) +veo
ie. Tng(s, a) < 72@2(8, a) + yeo

Similarly, we have T¢Q1(s,a) > T¢Qa(s,a) — ey, so T¢ is a y-contraction, and hence Q7 con-

verges to the unique solution of Bellman equatlon TgQ Q as T — oc. Further, since Vs
uniquely determined by Q, and continuous w.r.t Q;, 7+ also converges to the unique fix point of

the iteration as T' — oo.

For any policy m, if there exists 7’ such that 7 CQ’T > QT then by applying 7 ' to both sides

we have TkHQ’T > Tk CQﬂ and hence T* CQ” > Q™. Let k — oo we have Q™ > Q™, so
is not optlmal Thus, the optimal policy must be the unique fix point of the iteration to which 7p
converges as 1" — oo, and hence Q7 converges to Q* as T' — 0. O

Theorem 2. (Near Optimality of Optimistic Soft Value Functions)

1. Assume that 7, 5 is unique, and let z = mlnseSC( (o080 (8) | s), then

HQ?Jroo,Hm) o QZ‘%@’,C)HOo S (1og\,4| + b ) - — O( 102 )

2. Let A = minses (Q (S a(+oo +oo)(s)) maxagawoo +00) (s) Q (400,+00) $,a )
and A" = minses ( (+00,8,6) (5 0 400,6,0)(8)) = H¥atat, 5.0 (®) Q<+ooﬁ< @ )
2+ log | A| (1+7)log 1 (.8.) )
Ifa > g/"l 5 g > iy)a= then we have HQ (100,400 — Qo +°°)H <
A TN 5 A7 Zlog 4] los L _ oL st
ers 1 +5 ) 2 =0 (R +15)
Proof.
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1 According to the triangle inequality,

|@teerioer = Qaso | <[ Qe = Qlasor |+ [ Qoo = Fiso]|

Ak % _ Nk %
HQ<+oo,za,<) — Qap0) Hm = Hﬁoio,,e,ch,ﬁ,c) — Qap0) Hm
oo
k+1 A k Nk

<> HT+oo,ﬁ,cQ<a,5,c> = Thoo,8.6Qa,8.0) HOO
k=0
oo

k A% A

<> HT“’O’@CQ(&,& 0~ Qla.0) H

k=0

1 A * Nk
1, HTJFOOﬂvCQ(a,B,C) = Ta,8.¢Qa.0) HOO

HQEloo,m) = Qto0,8.0 H = Hngo o0 Q@400,8.0) ~ Qto0,8.0) Hoo

Tht1 A k 9
< Z H toort00@(+00,8,0) = Thoo,+00@(+00,8,0) HOO

k o) 0k
< Z'V HTJrOO,JrooQ(Jroo,ﬁ,C) - Q(+Oo,ﬁ;C)HOO

k=0

1 -, -
1 HT+O<>,+0<>Q(+OO,5,<) ~ Tr00.8.6Q100,8.0) HOO

Note that

‘7—+oo,,8,462?a 3,0(57 a) — 7;,@662&,/3,4)(37 a)‘

~ ]_ An /7 _In
n " a™) — =1 Q8,0 (87a™)
N Z <H;?.},"Q(a,ﬁ,<)(5 at) -~ Og;ﬂe

n=1
1 1 An r I ~
=75 NZ (ak’g (e Qo) —H;gXQ?a,B,<>(s’,a’")>]
n=1
_log|A|
Na

‘T+OO,+OOQ>(¥+OO,B,C)(S’ a) — 7—+oo,,8,<©?+oo B, C)(& a)‘

=y IE; max Q(+oo 8, C) s’ a) Z max — log /%]Ecn eﬂQ?+oo,[3,()(s’7a’)‘|
A 1 * o
<VE [m?‘x Qltoo,p,0)(8'0) = 3 log ze®ma%ar Qlso0,5,0) (5" )}
fylo %
B
N 1 A lo % B lo
i ~ log
2 Since HQ (+00,+00) Q(Jroo,ﬁ 19 H (1 7)5’ the gap of Q (+00,8,¢) between the optimal

joint action and any sub-optimal joint action is at least A — 2(110’5;) i and for any agent, the

gap of Q&_ 00,6,0) between the optimal local action and any sub-optimal local action is at

(14+~)log £

2~ log L log L 1++) lo,
least A — 1282 gz _ A _ (g e
7)

: =8 ~ B =75 - Therefore, when (5 >
is also an optimal policy in the sense of the original value functions.

*

T (+00,8,C)
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: oL sk vlog |A|
Further, since HQ(-S-oo,ﬂ,C) - Q(a_ﬂ@ H HQ(J’_OO 8,¢) Q(a B, g)H = (T—y)Na’ the
gap between an optimal local action and any sub-optimal local action is at least d :=

Al — (2;’_1?31'\“,40‘( Therefore, following 7(,, ; ), the probability that agent n chooses the

optimal local action is at least and the probability of not choosing the optimal

ad
e
ead+|An‘71’

2y
. L _ AICTYN 3L 1A
joint action is bounded by > (1 — W) < Zn L R e

6011 - e’

According to the triangle inequality,
(0,8,0) (00,8,0) % oL o
HQ (o0 0) = Qoo 400) H < HQ<+oo o) T Qa0 Hoo + HQ(a,ﬂ,C) ~ Qoo 40) Hoo

T(a,B,¢) * o 00 Nk Nk
HQ<+oo ooy ~ Q) Hoo = HT+oo,+oo,w*Q<a,6,o —Qlap.0) Hoo

oo

_ k+1 N k %

=> Hﬁooaroom*@(a,,@,c) - T+oo,+oo,w*Q<a,5,<>Hoo
k=0

k Ak Ak
<> HT+<>O>+<>OJT*Q<a,/3,<> — Qa0 HOO

k=0

1 Nk Nk
15 HT+DO7+OOJ*Q(@,/3,<) = Tapmr¢Qa,8.0) Hoo
Note that

’7:%0074-00777* Q?a,ﬁ,()(sv a) - 7;7/37W*7CQ>(koz 3, ()(57 CL)’

El/E [Qaﬁg)s a') }—%Z /n

=

s’ |a'~m* a

N |: *;zﬁ’o(sl,al ) log,ﬂ_*n( I7LS/):|]‘

N
Nk Ak 1 1 *n n
<VE [%%XQ<Q,B,C>(8'»G') ~ B Qs )] -5 E {bg” (a™]s')

@’ ~om* o

2y
YIA[TN 30, A" | ylog | A
(1 —7)exd Na

Combined with 1, we have

2y
iy ~ (1-9)N n 1 1
HQ ooy —Q*+oo,+oo>H < <|A| 2, A" 2os A OgZ> 2

(00, 400) (1 —)exd Na 8 1—7
1 logi
:O - Z
<a 5 )
O

Theorem 3. (Convergence of MAOSQL) If 3 > w then ﬁ%N converges to 2N as T — oo,
such that TN optimizes Q™ the unique solution of Bellman equation ﬁ’CQ = Q for some C.

Proof. Define the Bellman operator on Q as

TQ"(s,a™) = %logErméﬂ [QXP (5 <T(3aa) + 9By

als) = g + (1= e)ilals)
7™ (a"|s) = exp (a (Q”(s, a") — V"(s)))

1 An n
= =1 E aQ"(s,a™)
« o8 ~ c
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Assume that HQl - QQH = €0, 50 Q7' (s,a") < QB(s,a") + €9, Vn, s,a"
then V7' (s) = = log 3 ¢a@F(s:a”)
a

an

1 An(.
< 2] O‘(Q2(saa )+€0)
< og g e

am™

=V3'(s) + €0

Similarly, V;*(s) > V3'(s) — €, s0 HVl — V2H < €.

5 logz exp (

a—"m

log Al

g S @) ||, |A A+ (- )7r1 (a™"]s)
0g —————— | = |log —
G "(a7m]s) |A @ + (1 — )iy "(a"]s)
<llog ™ 1 (a™"s)
3" (a="s)
=l > (@1 (s ) = V7 (5) = Q3 (s,0™) + V3 (5))
n'#n
<2(N — 1)aeg
Therefore,
A NN 2(N - 1o
Tt - T < (S 40 e
Since 8 > Q(N_Wl)o‘, 2N —Da | v < 1, so T is a (M —|—fy) -contraction, QLN converges

to the unique fix point of Bellman equatlon ’TQ Q as T' — oo. Further, since 7 is uniquely

determined by @ and continuous w.r.t Q, 74N also converges to the unique fix point of the iteration
as T — oo.

Note that at convergence, éT is fixed to some (, so the corresponding Q is the fix point of the 7.
According to Theorem Q@ converges to Q™. O

C IMPLEMENTATION DETAILS

Our implementation of MAOSDQN and all experiments are based on EPyMARL (Papoudakis et al.
(2020)). To ensure fair comparison, we adopt the same buffer size, number of network parameters
and optimizer for all algorithms. For the behavior policy of MAOSDQN, we adopt an epsilon-
softmax policy with ¢, linearly anealing from 1.0 to 0.05 within 5000 steps, which is the same as
that in QMIX’s e-greedy behavior policy.

In our early experiments, we found that Reward standardization, Double Q-learning and Dueling Q-
network are essential to stable training, so our final implementation also include these three tricks.

There are 3 important hyper-parameters in MAOSDQN. In Tensor Game and Matrix Game, we set
a =50, 8 = 10, e = 0.05, while in Level-based Foraging, we set & = 20,8 = 1,¢ = 0.5.
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