Low Rank Gradients and Where to Find Them

Rishi Sonthalia*

Department of Mathematics Boston College rishi.sonthalia@bc.edu

Michael Murray

Department of Mathematics Bath University mjm253@bath.ac.uk

Guido Montúfar

Mathematics and Statistics & Data Science University of California, Los Angeles montufar@math.ucla.edu

Abstract

This paper investigates low-rank structure in the gradients of the training loss for two-layer neural networks while relaxing the usual isotropy assumptions on the training data and parameters. We consider a spiked data model in which the bulk can be anisotropic and ill-conditioned, we do not require independent data and weight matrices and we also analyze both the mean-field and neural-tangent-kernel scalings. We show that the gradient with respect to the input weights is approximately low rank and is dominated by two rank-one terms: one aligned with the bulk data-residue, and another aligned with the rank one spike in the input data. We characterize how properties of the training data, the scaling regime and the activation function govern the balance between these two components. Additionally, we also demonstrate that standard regularizers, such as weight decay, input noise and Jacobian penalties, also selectively modulate these components. Experiments on synthetic and real data corroborate our theoretical predictions.

1 Introduction

Feature learning is a critical driver behind the success of deep learning. Despite this, a theoretical characterization of it remains elusive. In order to drive understanding, a line of research [3, 12–14, 28, 45] has emerged studying two-layer networks whose inner weights are trained or updated via one step of gradient descent. In this context, feature learning can be characterized through the emergence of a low-rank structure in the network weights. In particular, when the weights of many of the neurons align in a predominant direction, the matrix of weights becomes approximately low rank. Moreover, Ba et al. [3] proved that a ridge estimator trained on such features can outperform random feature models and other kernel methods. However, these prior investigations require idealized conditions, for example isotropic data or weights, which diverge from real-world scenarios where data typically exhibits anisotropy or an ill-conditioned covariance. In addition, the effects of regularization in this context have also been underexplored.

This paper addresses two questions: 1) how do low-rank gradient phenomena arise and behave under more general conditions of anisotropy and ill-conditioning? and 2) what impact do common regularizers have on feature learning in this context? Our analysis accommodates spiked data with an anisotropic ill-conditioned bulk. This allows us to explore the effect of the size of the data spike, controlled by a parameter $\nu \geq 0$, as well as spectral decay profiles of the bulk, controlled by a parameter $\alpha \geq 0$. Our central finding is that the gradient of the inner-layer weights is generically well approximated by a **rank-two matrix**. This structure arises from the interplay of two primary rank-one components: S_1 , driven by the input bulk and target residue, and S_2 , driven by the leading

^{*}Corresponding Author

eigenvector of the data covariance. The relative prominence of these components, and consequently the direction of feature learning, is determined by the interplay of data properties, the scale of the network parametrization, the choice of loss and activation function as well as the use of regularization. We corroborate our theoretical findings with experiments on both synthetic data (Sections 3, 3.2 and 4) and real data (MNIST, CIFAR-10 embeddings).² A summary of our key contributions is:

- **Generalized Theory of Low-Rank Gradients:** We provide a theoretical framework (Section 3, Theorems 3.1 and 3.2) characterizing the low-rank structure of the gradient under significantly relaxed assumptions on data and weight matrices (anisotropy, ill-conditioning; Section 2).
- **Identification of a Dominant Rank-Two Structure:** We show (Theorems 3.1 and 3.2) that the gradient is often better approximated by a rank-two matrix than the rank-one structures identified in prior specialized settings. We provide conditions under which each of these components dominates.
- Modulation by Activation Function and Regularization: We show how activation functions and common regularizers selectively modulate the components of the gradient. We reveal that ReLU can suppress the contribution from the residue S_1 (Section 3.2), while input noise and a Jacobian penalty can promote the residue component and data spike component (Section 4) respectively.
- Mean Field (MF) versus Neural Tangent Kernel (NTK) scaling: We demonstrate differences in dominant spike alignments, $S_1 \sim X_B^T y$ in MF vs. $S_1 \sim X_B^T r$ in NTK, at initialization (Section 3) and the subsequent impact during training.

1.1 Related work

Low rank gradients in two layer networks: For a Mean Field (MF) like regime, prior work has shown that the gradient is approximately rank one [3, 13], which results in an alignment between the leading eigenvector of the hidden feature kernel with the target [45]. Dandi et al. [14] showed that to learn k directions, as opposed to a single direction, we need high sample complexity $(n = \Omega(d^k))$. Under an NTK scaling Moniri et al. [28] showed that a learning rate which grows with the sample size introduces multiple rank-one components in the hidden feature kernel. However, these results rely on well-conditioned input data and weight matrices. To ameliorate this issue a number of works have also incorporated ill-conditioning via a spiked covariance models $(\mathcal{N}(0, I + n^{\nu}qq^T))$ with single-index targets $(\sigma_*(\langle \beta_*, x \rangle))$ [4, 29]. , Ba et al. [4] found dominant rank-one gradients aligned with the data spike q (if aligned with the target β_* and $\nu > 1/2$), enabling efficient learning, whereas Mousavi-Hosseini et al. [29] showed that gradient flow might yield weights nearly orthogonal to q, even under seemingly favorable conditions ($\nu = 1, \beta_* = q$). Our work continues this line of research, providing results for more general anisotropic and ill-conditioned data and weight matrices as well the effects of regularization.

Understanding the spectral evolution of the network's weight and features matrices, particularly the 'bulk' components beyond dominant spikes, remains challenging. While significant progress has been made in characterizing spectra at initialization [1, 6, 16, 19, 30, 32, 34, 44] and after a single step of gradient descent [12], the dynamics over longer timescales are complex.

Convergence to low-rank weights: While our analysis focuses on the *gradient updates* that drive learning, related studies investigate the implicit bias of gradient-based optimization towards low-rank solutions [17, 21, 27, 33, 41]. Our findings complement this body of work by characterizing the generically dominant *rank-two* structure within the gradient updates themselves, providing insight into the mechanisms potentially driving this convergence.

2 Setup and Assumptions

In this section, we provide the technical details required for analysis. A summary of notation and discussion of examples of when the assumptions hold can be found in Table 1 and Appendix B. We consider shallow networks with d input dimensions, m hidden neurons, and n training data points.

Assumption 1 (Proportional scaling). Let $\psi_1, \psi_2 \in \mathbb{R}_{>0}$ be fixed constants. We consider m, n as functions of d such that $n/d \to \psi_1 < 1$ and $m/d \to \psi_2$ as $d \to \infty$.

Data: We consider random input data $x_i \in \mathbb{R}^d$ for $i \in [n]$, sampled i.i.d. These are stored row-wise in a matrix $X \in \mathbb{R}^{n \times d}$. For each x_i , the corresponding label is $y_i \in \mathbb{R}$, and labels stored as $y \in \mathbb{R}^n$.

²All code is available at the anonymous Github repository: https://github.com/rsonthal/Low-Rank-Gradient

Assumption 2 (Input features distribution). Let $\hat{\Sigma} \in \mathbb{R}^{d \times d}$ for which there exists an $\alpha \geq 0$ such that the k-th eigenvalue satisfies $\lambda_k(\hat{\Sigma}) = k^{-\alpha}$ for $k = 1, \ldots, d$. Let $q \in \mathbb{S}^{d-1}$ and define $\zeta = n^{\nu}$ for some $\nu \geq 0$. We assume each input data point x_i is sampled i.i.d. from a multivariate Gaussian distribution $N(0, \Sigma)$, where the full covariance $\Sigma \in \mathbb{R}^{d \times d}$ is given by $\Sigma = \hat{\Sigma} + \zeta^2 q q^T$.

Assumption 2 models a bulk component via $\hat{\Sigma}$ and a spike component via q (magnitude ζ) and allows general forms of ill-conditioning with $\lambda_d(\hat{\Sigma}) \to 0$ if $\alpha > 0$, and $\lambda_1(\Sigma) \to \infty$ if $\nu > 0$. This generalizes typical data distribution assumptions like isotropic Gaussian ($\Sigma = I_d$) or uniform on a sphere [3, 14, 28, 31, 45], anisotropic data with a bounded condition number [15, 18], divergent largest eigenvalue and bounded smallest eigenvalue [4, 22, 24, 29, 40], or bounded largest eigenvalue and decaying smallest eigenvalue [5, 8, 43].

Network: We consider a two-layer neural network with input-output map $f: \mathbb{R}^d \to \mathbb{R}$ defined as

$$f(x) = \gamma_m a^T \sigma(Wx) \in \mathbb{R}. \tag{1}$$

Here, $W = [w_1, \dots, w_m]^T \in \mathbb{R}^{m \times d}$ is the matrix of inner (first-layer) weights, $w_j \in \mathbb{R}^d$ is the weight vector for the j-th hidden neuron and $a \in \mathbb{R}^m$ is the vector of outer (second-layer) weights. The activation function $\sigma : \mathbb{R} \to \mathbb{R}$ is applied element-wise to the preactivations Wx. The parameter $\gamma_m \in \mathbb{R}_{>0}$ is a non-trainable scaling constant that depends on the network width m.

Assumption 3 (Network parameters). We assume the following for W, a and γ_m :

- 1. Outer weights: Elements a_j are sampled i.i.d. from Uniform($\{-1,1\}$).
- 2. Inner weights: Rows w_i of W have unit length, $w_i \in \mathbb{S}^{d-1}$.
- 3. Scaling parameter: $\gamma_m = \Theta(1/\sqrt{m})$ (NTK scaling) or $\gamma_m = \Theta(1/m)$ (MF scaling).

The assumption on a is standard. The assumption on W (unit-norm rows) relaxes typical literature requirements (e.g., isotropic Gaussian or uniformly spherical w_j). This allows modeling anisotropic weights, possibly dependent on X, to analyze updates throughout training, not just at initialization. The scaling parameter γ_m defines two common regimes: NTK ($\gamma_m \sim 1/\sqrt{m}$) [2, 20, 23, 25], associated with lazy training where inner weights vary little [10, 25], and MF ($\gamma_m \sim 1/m$), associated with feature learning [9, 26, 36, 39]. These scalings yield different initial output variances ($\mathrm{Var}(f(x)) = \Theta(1)$ in NTK vs. o(1) in MF), impacting dynamics.

Assumption 4 (Activation function). *The activation function* $\sigma : \mathbb{R} \to \mathbb{R}$ *satisfies:*

- 1. **Smoothness:** σ' and σ'' , first and second derivatives of σ , exist almost everywhere on \mathbb{R} .
- 2. **Lipschitzness:** σ and σ' are L-Lipschitz for some constant L > 0.
- 3. Non-trivial expected derivative: For $x \sim N(0, \Sigma)$ (per Assumption 2) and W (per Assumption 3), let $\mu_j = \mathbb{E}_x[\sigma'(w_j^T x)]$ (expectation over x for a given w_j). We assume $\mu_j = \Omega(1)$ for all j. Let $\mu = [\mu_1, \dots, \mu_m]^T$. We define $\sigma'_{\perp}(Wx)_j = \sigma'(w_j^T x) \mu_j$.

Common activation functions, such as Sigmoid, Tanh, ELU [11], Swish [35], Softplus, satisfy the *Smoothness* and *Lipschitzness*. We note that the derivative of ReLU is not Lipschitz. The condition $\mu_j = \Omega(1)$ (non-vanishing expected derivative) is satisfied by ELU, Swish, and Softplus generically, and for Sigmoid and Tanh as long as $w_j^T \Sigma w_j = O(1)$. See Section B.1 for more details.

Parameter update via GD: Let $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ be a function which measures the loss between a label and a prediction. With f defined as per Equation 1, we define the loss given a dataset $(X,y)=(x_i,y_i)_{i\in [n]}$ with respect to the inner-layer weights W as $L(W)=\frac{1}{n}\sum_{i=1}^n \ell(f(x_i),y_i)+\lambda R(W)$. R denotes a regularization function (e.g., the 2-norm $R(W)=\|W\|_F^2$), and $\lambda\in\mathbb{R}_{\geq 0}$ is the regularization parameter. We consider an update to W arising from one step of GD, $W\leftarrow W-\eta\nabla_W L(f(X),y)$, where $\eta>0$ denotes the step size. We define the *residue* vector as

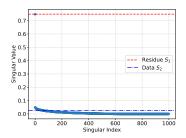
$$r = \left[\frac{\partial \ell(f(x_1), y_1)}{\partial f(x_1)}, \dots, \frac{\partial \ell(f(x_n), y_n)}{\partial f(x_n)} \right]^T \in \mathbb{R}^n.$$
 (2)

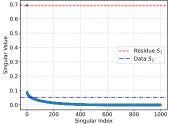
To motivate this terminology, consider that for the Mean Squared Error (MSE) loss, r corresponds to the vector of residues $[f(x_i)-y_i]_i$. More generally, for many losses r can typically be interpreted as the component of the targets not captured by the predictions of the model (see Section B.2).

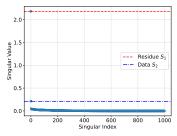
Proposition 2.1 (Gradient of the loss). *If Assumption 4 holds and R is differentiable, then*

$$G := \nabla_{W^T} L = \gamma_m X^T \left[(ra^T) \circ \sigma'(XW^T) \right] + \lambda \nabla_{W^T} R(W) \in \mathbb{R}^{d \times m}$$

exists for almost every W in $\mathbb{R}^{m \times d}$.







- (a) Tanh, BCE, $\nu = \frac{1}{8}$, isotropic W.
- **(b)** Swish, Hinge, $\nu = \frac{3}{8}$, non-isotropic W.
- (c) Softplus, BCE, $\nu = \frac{3}{8}$, non isotropic W.

Figure 1: Singular value distribution of the gradient G for varying activation, loss and ν and weight distribution. Red, and blue lines show the singular value of S_1 , and S_2 respectively. In (a) the rows of W are i.i.d. uniformly random on the unit sphere, we denote this $W=W_S$. In (b) and (c) then $W=W_S+n^{-1/4}\mathbf{1}q^T$, where W is then normalized. The following parameters are constant across all experiments: $\alpha=0$, $\gamma_m=\frac{1}{\sqrt{m}}$ (NTK) n=750, d=1000, m=1250. The targets y are given by a triple index model, see Appendix C. For $\nu<0.25$, a single residue-aligned spike is seen for both isotropic and non-isotropic W. For $\nu\in[0.25,0.5)$, the gradient is approximately rank two.

For our results to hold we require the following technical assumption on the residues.

Assumption 5 (Residue concentration). *Under the proportional scaling regime (Assumption 1), with probability* 1 - o(1) *over the training data* (X, y)*, the residue r satisfies*

$$\frac{\|r\|_{\infty}}{\|r\|_2} = O\left(\frac{\log n}{\sqrt{n}}\right).$$

We emphasize that Assumption 5 is a mild condition: it ensures that no single component of the residue vector disproportionately dominates its overall ℓ_2 norm. Such a condition typically holds if the residues r_i are i.i.d. subgaussian random variables. See Appendix B.3 for more discussion.

Our analysis also depends on the alignment between the residue r and specific structural components of the input data X. From Assumption 2 we have the following decomposition of the input features,

$$X = X_B + X_S = X_B + \zeta z q^T \in \mathbb{R}^{n \times d}, \tag{3}$$

where X_B has rows sampled i.i.d. from $\mathcal{N}(0,\hat{\Sigma}), z \sim \mathcal{N}(0,I)$, and q is a unit vector. We note that for sufficiently large ζ , z is approximately the principal eigenvector of XX^T . One of the inputs to our analysis will be the degree of alignment between the residue vector r and the spike component z of the input data. The projection of the residue r onto the principal eigenvector of XX^T is a natural statistic of interest and has been considered in prior works [20, 38]. In Appendix B.4 we provide β estimates for 192 scenarios.

Assumption 6 (Residue alignment). With probability 1 - o(1), $\left| \frac{1}{\sqrt{n} \|r\|_2} z^T r \right| = \Theta(d^{-\beta/2})$.

3 Spiked Data Leads to a Low-Rank Gradient

In this section we analyze the role of spiked data in shaping the gradient with no explicit regularization, $\lambda=0$. We demonstrate that for a spiked data covariance the gradient G is either approximately rank one or rank two, depending primarily on the size of the spike. To demonstrate this we define the following three rank-one matrices:

Residue Spike:
$$S_1 := \frac{\gamma_m}{n} (X_B^\top r) (a \circ \mu)^\top$$
, Data Spike: $S_2 := \frac{\gamma_m \zeta}{n} q \left[z^\top \left((ra^\top) \circ \sigma'_\perp (XW^\top) \right) \right]$, Interpolant: $S_{12} := \gamma_m \zeta \frac{z^\top r}{n} q (a \circ \mu)^\top$.

We remark that S_1 is studied in [3] and S_2 is analogous to the gradient update in [4]. The matrix S_{12} interpolates between the two: in particular, S_{12} and S_1 have the same right singular vector and S_{12} and S_2 have the same left singular vector. Hence $S_1 + S_{12}$ and $S_{12} + S_2$ are both rank one.

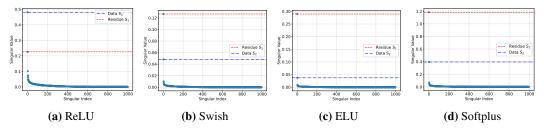


Figure 2: ReLU suppresses the residue spike (S_1) compared to smooth activations. Fixed parameters: $\nu = 1/8$, $\alpha = 5/9$, n = 750, d = 1000, and m = 1250.

3.1 Small-to-Moderate Spike ($\nu \in [0, 0.5)$): C^2 Activations

The key contribution of this section is Theorem 3.1, which characterizes the approximate low rank structure of the gradient for small-to-moderate spike sizes. We also note that Theorem 3.1 generalizes [3, Proposition 2] by covering a broader range of covariance structures, loss functions and initialization scalings³. In the small spike setting, $\nu \in [0, 1/4)$, the gradient is approximately rank one and aligns with the residue plus interpolant $S_1 + S_{12}$. By contrast, in the moderate spike setting, $\nu \in [1/4, 1/2)$, the gradient becomes rank two. We empirically verify these our theoretical results (Figures 1) across a range of activation and loss functions under the NTK scaling.

Theorem 3.1 (Gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and W are independent, and σ is a C^2 function. Define $E = G - S_1 - S_{12} - S_2$. Then, for all $\nu, \alpha \in \mathbb{R}_{>0}$,

$$\frac{\|G - S_1 - S_{12}\|_2}{\sqrt{m}\gamma_m \|r\|_{\infty}} = O\left(\|W\|_2 n^{2\nu - \frac{1}{2}}\right), \quad \frac{\|G - S_1 - S_{12} - S_2\|_2}{\sqrt{m}\gamma_m \|r\|_{\infty}} = O\left(\|W\|_2 n^{\nu - \frac{1}{2}}\right) \tag{4}$$

with probability 1 - o(1) as $d, n, m \to \infty$. Moreover, if $\nu < \frac{1}{2}$ then with the same probability

$$\frac{\|S_1\|_2}{\|E\|_2} = \Omega\left(\frac{n^{\frac{1}{2}-\nu-\frac{\alpha}{2}}}{\log n\|W\|_2}\right), \qquad \frac{\|S_2\|_2}{\|E\|_2} = \Omega\left(\frac{n^{\nu}}{\log n}\frac{\|(z \circ r)^T \sigma'_{\perp}(XW^T)\|_2}{\|\sigma'_{\perp}(XW^T)\|_2}\right), \tag{5}$$

$$\frac{\|S_{12}\|_2}{\|E\|_2} = \Omega\left(\frac{n^{\frac{1}{2} - \frac{\beta}{2}}}{\log n \|W\|_2}\right), \qquad \Omega(n^{\nu - \frac{\beta}{2}}) \le \frac{\|S_{12}\|_2}{\|S_1\|_2} \le O(n^{\nu - \frac{\beta}{2} + \frac{\alpha}{2}}). \tag{6}$$

Observe that for $\nu<1/4$, if $\|W\|_2\log n=o(n^{\frac{1}{2}-\nu-\frac{\alpha}{2}})$ then G is approximately equal to the rank-one matrix S_1+S_{12} . Further, if $\beta>2\nu+\alpha$ then the gradient is dominated by S_1 and the spike is aligned with the data-residue term $X_B^T r$. However, if $\beta<2\nu$ then the gradient term is dominated by S_{12} , which is aligned with the data spike q. In addition, for $\nu\in[1/4,1/2)$, if $\|W\|_2\log n=o(n^{\frac{1}{2}-\nu-\frac{\alpha}{2}})$ and

$$n^{\nu} = \omega \left(\log n \frac{\|\sigma'_{\perp}(XW^T)\|_2}{\|(z \circ r)^T \sigma'_{\perp}(XW^T)\|_2} \right), \tag{7}$$

then the gradient is approximately the rank-two matrix $S_1 + S_{12} + S_2$. Note this is distinct from prior works [3, 4, 14, 45] where the gradient is only ever approximately rank one.

3.2 Small-to-Moderate Spike: ReLU Activation

Theorem 3.1 requires the activation to be \mathcal{C}^2 . As detailed in the proof, this is needed to establish that $\|\sigma'_{\perp}(XW^T)\|_2 \leq O(\|W\|n^{\nu+\frac{1}{2}})$. Indeed, when $\|W\|_2 = \Theta(1)$ and $\nu < \frac{1}{2}$ we have $\|\sigma'_{\perp}(XW^T)\|_2 = o(n)$, which is key for S_1 to separate from the bulk spectrum. However, ReLU is not \mathcal{C}^2 . To understand, the effect of using ReLU we provide Proposition 3.1.

Proposition 3.1 (ReLU gradient). If $2\nu > 1 - \alpha$, and the row of W are i.i.d. from the unit sphere, then with probability 1 - o(1) we have that $\sigma'_{\perp}(XW^T) = \frac{1}{2}\operatorname{sign}(z_i)\operatorname{sign}(Wq)^T$.

From Proposition 3.1 we see that for ReLU the operator norm of $\sigma'_{\perp}(XW^T)$ is $\Theta(n)$. This is a significant increase compared to the o(n) scaling for \mathcal{C}^2 activations and suggests that the norm of

³The result [3, Proposition 2] requires $\nu = \alpha = 0$, isotropic data and MSE loss with MF scaling.

E and S_2 are larger for ReLU. The increased size of E, S_2 results in the relative suppression of the contribution of S_1 and an enhancement of the contribution of S_2 to the spectrum of the gradient. We empirically verify this phenomenon in Figure 2 where we compare ReLU to its \mathcal{C}^2 activations ELU, Swish, and Softplus. We see that, for ReLU the relative residue contribution (S_1) is significantly smaller when compared with its smooth approximations.

Remark 1 (Convolutional filters inherit the rank-two gradient). A 1D valid convolution with stride 1 and filter $w \in \mathbb{R}^k$ can be written as a two-layer network with a sparse, weight-tied matrix $W \in \mathbb{R}^{m \times d}$ whose nonzeros are shifted copies of w, where m = d - k + 1. Treating the entries of W as independent parameters yields the gradient $G = \partial L/\partial W \in \mathbb{R}^{m \times d}$. By Theorems 3.1-3.2, G admits a decomposition $G = u^{(1)}(v^{(1)})^{\top} + u^{(2)}(v^{(2)})^{\top} + E$ with at most two dominant rank-one terms and a small bulk E. Weight tying maps G to the true filter gradient as follows:

$$\frac{\partial L}{\partial w_{\ell}} = \sum_{i=1}^{m} G_{i, i+\ell-1}, \qquad \ell = 1, \dots, k.$$

Hence, letting $\tilde{v}_{i}^{(j)} = v_{d-i+1}^{(j)}$ for j = 1, 2,

$$\nabla_w L = u^{(1)} * \tilde{v}^{(1)} + u^{(2)} * \tilde{v}^{(2)} + (\text{error}),$$

the convolutional filter gradient lies in a subspace of dimension at most two, upto a small error term.

3.3 Large Spike ($\nu \geq 0.5$): Non \mathcal{C}^2 Activations and Dependence between W and X

The preceding analysis focused on $\nu < 0.5$. For large data spikes ($\nu \ge 0.5$), we note that the \mathcal{C}^2 smoothness of the activation function and independence between W and X are no longer required.

Theorem 3.2 (Large data-spike gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, and 6 are satisfied, and define $E_L = G - S_{12} - S_2$. Then, with probability 1 - o(1) for $\nu \ge \frac{1}{2}$ we have

$$\frac{\|E_L\|_2}{\sqrt{m}\gamma_m\|r\|_{\infty}} = O\left(1\right), \frac{\|S_{12}\|_2}{\|E_L\|_2} = \Omega\left(\frac{n^{\nu - \frac{\beta}{2}}}{\log n}\right), \frac{\|S_2\|_2}{\|E_L\|_2} = \Omega\left(\frac{n^{\nu}}{\log n} \frac{\|(z \circ r)^T \sigma'_{\perp}(XW^T)\|_2}{\|\sigma'_{\perp}(XW^T)\|_2}\right). \tag{8}$$

Note this is a generalization of [4], which required alignment between the targets y and the spike q. Theorem 3.2 shows that if $\nu > \frac{\beta}{2}$, or if Equation (7) holds, then the gradient is approximately rank one. In contrast to the $\nu < \frac{1}{4}$ case, this rank-one gradient aligns closely with the data spike plus interpolant $S_{12} + S_2$ rather than the residue S_1 . This is empirically verified in Figure 3 for non- \mathcal{C}^2 activations ReLU, as well as dependent and independent W and X.

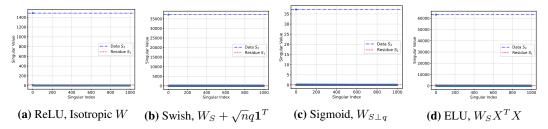


Figure 3: Singular value distributions of the gradient G under various activation functions and weight matrix initializations and structures, with a large data spike $\nu=3/4$. W_S denotes the random matrix with rows drawn mutually i.i.d. uniformly from the unit sphere. The rows of $W_{S\perp q}$ are uniform on the sphere and orthogonal to q. All weight matrices are subsequently normalized to have unit norm rows. Fixed parameters: bulk decay exponent $\alpha=0,\,n=750,\,d=1000,\,m=1250,\,\mathrm{NTK}$ -like scaling $(\gamma_m=1/\sqrt{m}),\,\mathrm{MSE}$ loss, and triple-index model targets.

3.4 Impact of the Scale Parameter: MF vs. NTK Scaling

We consider the implications of our results for the two scaling regimes and highlight three important distinctions. As with prior work, we consider the large step-size regime. Specifically, we use a step

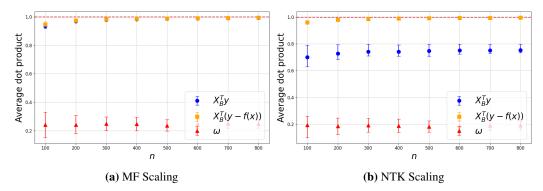


Figure 4: Empirical alignment (normalized inner product) of the top singular vector of the gradient G with $X_B^T y$, $X_B^T r$ and ω for data from a single-index model $y = \operatorname{Sigmoid}(\omega^T x) + \operatorname{noise}$. We use isotropic X, ReLU activation, and MSE loss. We average over 500 samples of a, W, X, y. The error bars are the 25th and 75th percentile.

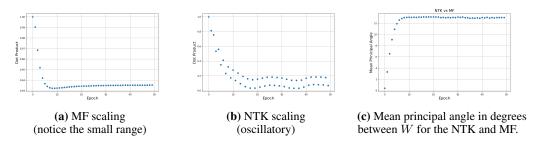


Figure 5: Evolution of the gradient direction and weight matrix during training under GD with Weight Normalization (WN) for the MF and NTK scalings. Fixed parameters are $\nu=0, \alpha=0$ while using the Sigmoid activation function and the MSE loss. Plots (a) and (b) show the alignment (normalized inner product) between the leading left singular vector of the initial gradient G_0 (epoch 0) and that of G_t (epoch t). Plot (c) shows the mean principal angle between the weight matrices learned under the MF and NTK scalings with identical initialization and training data.

size of γ_m^{-1} . To avoid exploding gradients deploy Weight Normalization (WN) [37]. We limit our focus to the MSE loss. See Appendix D for a discussion of which assumptions hold during training.

- 1) Alignment at initialization: residue r versus target vector y. Recall from Theorem 3.1 that in the small spike regime the gradient is dominated by S_1 . Further, for the MF scaling the residue r is approximately equal to the target y, while for the NTK scaling the residue can be quite distinct from y. This implies the alignment of the gradient may differ significantly depending on whether an MF or NTK scaling is used. Suppose $y = \operatorname{sigmoid}(\omega^T x) + \varepsilon$, then Figure 4 presents the normalized inner products between the leading left singular vector of G and three candidate directions $X_B^T y$, $X_B^T r$, and ω . For the MF scaling, we see that the gradient's dominant direction aligns well with $X_B^T r$, $X_B^T y$, consistent with Theorem 3.1 and [3]. For the NTK scaling, consistent with Theorem 3.1, the gradient exhibits strong alignment with $X_B^T r$. This differs notably from both $X_B^T y$ and the ω alignment directions predicted in [28] which we believe to be erroneous.
- 2) Stability of the gradient during early training. Let G_t denote the gradient after t iterations of GD. In Figure 5 we plot the alignment between the leading left singular vector of G_0 and subsequent leading left singular vectors of G_t under both MF and NTK scalings. The following is quite striking: the dominant gradient direction under the MF scaling remains stable throughout training while for the NTK scaling it evolves significantly. This leads to a divergence in the trajectories of the weight matrix even with identical initialization and training data.

Towards explaining this, suppose the conditions of Theorem 3.1 hold at least approximately up to some iteration $t \leq T$. Then under an MF scaling the gradient is approximated by a rank-one matrix whose left singular vector is nearly constant $X_B^T r_t \approx X_B^T y$. Therefore it remains stable over a number of iterations. If the NTK scaling is used instead, then as S_1 is proportional to $X_B^T r_t \not\approx X_B^T y$ and the gradient depends on the residuals r_t which evolve throughout training.

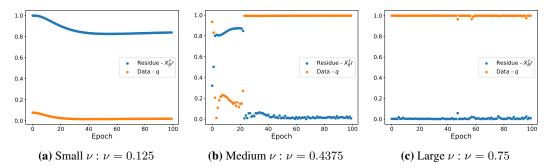


Figure 6: Evolution of the alignment of the leading left singular vector of G_t with data spike q and residue $(X_B^T r_t)$ during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, $\alpha = 0$.

3) Phase transitions both by epoch and data spike size. In Figure 6 we observe the evolution of the alignment of the gradient versus the data spike and the residue under the MF scaling. Moving from small to large spike sizes we observe a transition in the gradient alignment from the residue $X_B^T r$ to the data spike q. We remark that this is as predicted by Theorem 3.1 and Theorem 3.2 at initialization. Of particular interest is the middle spike size setting, where we witness a phase transition during training of the gradient alignment from residue to data spike. Interestingly, this transition is not discernible from the training loss, which smoothly decays during training. We only pause to highlight this interesting phenomenon here and leave a more thorough analysis to future work.

4 Effect of Regularization

We analyze three common regularization techniques: ℓ_2 weight decay, isotropic input noise, and Jacobian (or gradient) penalization. We investigate how each technique influences the relative magnitudes of the residue-aligned spike S_1 and the data-aligned spike S_2 . For what follows let $G^{(0)}$ denote the un-regularized gradient matrix derived in Proposition 2.1.

 ℓ_2 weight decay. Adding the term $\frac{\lambda}{2}\|W\|_F^2$ to the loss function modifies the gradient to $G^{(\lambda)}=G^{(0)}+\lambda W$. Proposition 4.1 implies that if $\lambda\|W\|_2=o(\sqrt{m}\gamma_m)$ it cannot suppress S_1 or S_2 , however, if $\lambda\|W\|_2=\omega(\sqrt{m}\gamma_n n^\nu)$ then it suppresses both spikes.

Proposition 4.1. Given Assumptions 1, 2, 3, 4, and 6. If $||r||_2 = O(\sqrt{n})$, then with probability 1 - o(1) we have that $||S_1||_2 \le O(\sqrt{m}\gamma_m)$, $||S_{12}||_2 \le O(\sqrt{m}\gamma_m n^{\nu - \frac{\beta}{2}})$, and $||S_2||_2 \le O(\sqrt{m}\gamma_m n^{\nu})$.

Isotropic Gaussian input noise. This regularization technique involves adding independent isotropic Gaussian noise $\xi_i \sim \mathcal{N}(0, \tau^2 I)$ to each input x_i without changing the corresponding labels y_i . [7] showed that training with input noise is equivalent under certain conditions to adding a Tikhonov regularizer to the loss, often related to $\sum_{i=1}^n \|\nabla_x f(x_i)\|_2^2$. More recent work [46] connects adding isotropic noise to the data to controlling the trace of the Hessian of the loss function.

Let us define $x_i' = x_i + \xi_i$. This changes the input data distribution, effectively modifying the bulk covariance from $\hat{\Sigma}$ to $\hat{\Sigma}' = \hat{\Sigma} + \tau^2 I$. Consequently, derived quantities such as the residue vector r', the alignment parameter β' , the gradient components S_1', S_2', S_{12}' , the error term E', and the effective bulk spectral decay α' are denoted with primes.

Proposition 4.2 (Isotropic Gaussian noise). Assume the setup of Assumptions 1, 2, 3 with independent X and W. Assume σ satisfies Assumption 4 for the noisy data X'. Additionally, suppose the modified residues satisfy $r_i' = \Theta(1)$ with probability 1 - o(1), and Assumption 6 holds for r' with scaling parameter β' . If $\tau^2 = n^\rho$ and $\|\sigma'_\perp(X'W^T)\|_2 = o(n)$, then with high probability:

$$\frac{\|S_1'\|_2}{\|E'\|_2} \ge \omega(1), \quad \frac{\|S_2'\|_2}{\|E'\|_2} \le O(n^{\nu - \frac{\rho}{2}}), \quad \frac{\|S_{12}'\|_2}{\|E'\|_2} \le o(n^{\nu - \frac{\rho}{2} - \frac{\beta'}{2}}).$$

Proposition 4.2 analyzes the effect of input noise. It indicates that the residue spike S_1' remains prominent relative to the error term E'. Conversely, if the noise is sufficiently strong, the data spike components S_2' and S_{12}' become suppressed relative to E'. Intuitively, adding noise with variance $\tau^2 = n^\rho$ increases the variance of the bulk data component. This boosts the overall scale of terms involving $(X_B')^T$. Simultaneously, the added noise tends to make the pre-activations $W^T X'$



(a) $\tau^2=0$. ReLU sup-(b) $\tau^2=0.25$. The (c) $\lambda=0$. Residue spike (d) $\lambda=100$. Data spike is presses the residue spike. residue spike re-appears. is dominant.

Figure 7: Effect of regularization. Panels (a), (b) are for isotropic Gaussian noise. Parameters: $n=750, d=1000, m=1250, \nu=1/8, \alpha=8/9$ (for original data), triple-index targets, ReLU activation, MSE loss. Panels (c), (d) are for Jacobian norm penalization. As λ increases, the size of S_1 does change, size of the bulk E_2 grows, and the size of the data spike S_3 grows. Parameters: NTK, $\nu=3/8, \alpha=0$, Sigmoid and MSE, and triple-index model targets.

more isotropic, which can reduce the operator norm $\|\sigma'_{\perp}(X'W^T)\|_2$ relative to its Frobenius norm, potentially limiting the growth rate of $\|E'\|_2$, $\|S'_2\|$. This predicted relative enhancement of S'_1 and suppression of S'_2 is verified empirically. As discussed in Section 3 (cf. Proposition 3.1), ReLU can hinder residue spike S_1 . However, Figure 7 shows that with small amount of input noise $\tau^2 = 0.25$, an initially suppressed S'_1 re-emerges, while S'_2 is diminished relative to S'_1 and the bulk.

Jacobian penalization. Another form of regularization penalizes the sensitivity of the network output to changes in the inner weights. We consider the Jacobian penalty $L_{reg} = \lambda \frac{1}{2n} \sum_{i=1}^{n} \|\partial_W f(x_i)\|_2^2$. To analyze this effect of L_{reg} on the gradient, we derive the gradient of L_{reg} with respect to W.

Proposition 4.3 (Gradient penalty). Let $\text{Diag}(\|x_i\|^2)$ be the $n \times n$ diagonal matrix, whose entries are $\|x_i\|^2$. If σ is twice differentiable, then

$$\nabla_W L_{reg} = \frac{1}{n} \lambda \gamma_m^2 \left(\sigma'(WX^T) \odot \sigma''(WX^T) \right) \operatorname{Diag}(\|x_i\|^2) X.$$

The gradient of the regularizer factorizes into a data-aligned rank-one spike S_3 and error E_2 :

$$S_3 = \frac{1}{n} \gamma_m^2 X_S^T \Psi, \quad E_2 = \frac{1}{n} \gamma_m^2 X_B^T \Psi, \quad \Psi = \operatorname{Diag}(\|x_i\|^2) \left(\sigma'(XW^T) \odot \sigma''(XW^T) \right).$$

Proposition 4.4. Given Assumptions 1, 2, 3, 4, and 6. If $||r||_2 = \Theta(\sqrt{n})$, $\alpha < 1$, and a constant fraction of the entries of $\sigma'(XW^T) \odot \sigma''(XW^T)$ are bounded away from 0, then

$$\lambda \left(n^{2\nu - \frac{\alpha}{2} - \frac{1}{2}} + n^{\frac{1 - 3\alpha}{2}} \right) \ge \sqrt{m} \gamma_m \frac{\|\lambda E_2\|_2}{\|S_1\|_2} \ge \lambda \left(n^{2\nu - \frac{\alpha}{2} - 1} + n^{-\frac{3}{2}\alpha} \right).$$

If $\nu > \frac{1}{2} + \frac{\alpha}{2}$, then we have that asymptotically the residue spike does not escape the bulk for any $\lambda = \Theta(1)$. If $\nu < \frac{1}{2}$, we see that increasing λ suppresses the residue spike. For the data spike, we have that λS_3 will grow as λ grows. Hence this enhances the data spike. We empirically verify that increasing λ kills the residue spike while promoting the data spike (Figure 7).

Real-Data validation. The identified low-rank spike-plus-bulk gradient structure and the discussed regularization effects are observable in two standard vision datasets - MNIST and CIFAR10. For MNIST, we estimate $\nu\approx 0.784>1/2$ and the data is highly ill-conditioned, suggesting a large effective α . Theorem 3.2 predicts a gradient dominated by data-aligned components (Panel (c) of Figure 8). Adding isotropic Gaussian noise with $\sigma^2=100$ (Panel (d)) suppresses the original data-aligned spike and enhances the residue-aligned spike S_1 , consistent with the analysis in Section 4. For CIFAR-10 we use a pretrained ResNet-18 (on ImageNet) to extract 512-dimensional embedding. We estimate $\nu\approx 0.3572<1/2$ and $\alpha\approx 0.6$. For these parameters Theorem 3.1 suggests S_1 (residue-aligned) can be prominent. Panel (a) of Figure 8 shows a dominant S_1 . Applying Jacobian regularization with $\lambda=10^5$ (Panel (b)) suppresses S_1 and promotes a data-aligned spike (akin to S_2), consistent with the behavior analyzed for Jacobian penalization in Section 4.

5 Conclusion

This work shows that in two-layer neural networks, the hidden-layer gradient is approximately rank-two, driven by data-residual (S_1) and data-spike (S_2) components connected by an interpolant

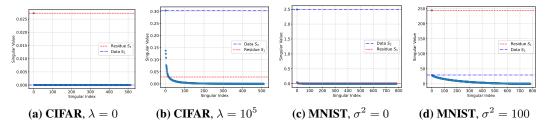


Figure 8: Gradient singular value spectra on real datasets. Each panel displays the singular values of the gradient matrix G under the specified conditions.

 (S_{12}) . We show that activation function choice, scaling, and regularization can result in qualitatively different gradients. In particular, we have the following rule of thumb for the number of spikes.

The coexistence and interplay of the two spike components offer a nuanced understanding of the gradient. We believe that the residue-aligned part propels the network towards fitting the current errors for the specific task, while the data-aligned part reflects the network's adaptation to or influence by the inherent structure and biases present in the input data distribution. This dual influence provides a potential mechanism for reconciling how networks can be both task-specific and data-adaptive. This is an interesting avenue for future work.

Acknowledgments

GM has been supported in part by the NSF in NSF CCF-2212520 and NSF DMS-2145630. GM has also been supported by DARPA in AIQ project HR00112520014, DFG in SPP 2298 (FoDL) project 464109215, and BMFTR in DAAD project 57616814 (SECAI).

References

- [1] Ben Adlam, Jake A. Levinson, and Jeffrey Pennington. A random matrix perspective on mixtures of nonlinearities in high dimensions. In *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine Learning Research*, pages 3434–3457. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/adlam22a.html.
- [2] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 322–332. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/arora19a.html.
- [3] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. In *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=akddwRG6EGi.
- [4] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the presence of low-dimensional structure: A spiked random matrix perspective. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=H1IAoCHDWW.

- [5] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear regression. *Proceedings of the National Academy of Sciences*, 117(48):30063–30070, 2020.
- [6] Lucas Benigni and Sandrine Péché. Eigenvalue distribution of some nonlinear models of random matrices. *Electronic Journal of Probability*, 26(none):1 37, 2021. URL https://doi.org/10.1214/21-EJP699.
- [7] Chris M Bishop. Training with noise is equivalent to Tikhonov regularization. *Neural computation*, 7(1):108–116, 1995.
- [8] Chen Cheng and Andrea Montanari. Dimension free ridge regression. *The Annals of Statistics*, 52(6):2879–2912, 2024.
- [9] Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/a1afc58c6ca9540d057299ec3016d726-Paper.pdf.
- [10] Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf.
- [11] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). *arXiv:1511.07289*, 2015. Published as a conference paper at ICLR 2016.
- [12] Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue Lu, Lenka Zdeborova, and Bruno Loureiro. Asymptotics of feature learning in two-layer networks after one gradient-step. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 9662–9695. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/cui24d.html.
- [13] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations with gradient descent. In *Conference on Learning Theory*, pages 5413–5452. PMLR, 2022.
- [14] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer neural networks learn, one (giant) step at a time. *Journal of Machine Learning Research*, 25(349):1–65, 2024. URL http://jmlr.org/papers/v25/23-1543.html.
- [15] Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and classification. *The Annals of Statistics*, 46(1):247–279, 2018.
- [16] Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks. In Advances in Neural Information Processing Systems, volume 33, pages 7710–7721. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/572201a4497b0b9f02d4f279b09ec30d-Paper.pdf.
- [17] Spencer Frei, Gal Vardi, Peter Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky ReLU networks trained on high-dimensional data. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=JpbLyEI5EwW.
- [18] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. *Annals of statistics*, 50(2):949, 2022.
- [19] Hong Hu and Yue M Lu. Universality laws for high-dimensional learning with random features. *IEEE Transactions on Information Theory*, 69(3):1932–1964, 2022.
- [20] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization in neural networks. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, NIPS'18, page 8580–8589, Red Hook, NY, USA, 2018. Curran Associates Inc.

- [21] Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=HJflg30qKX.
- [22] Chinmaya Kausik, Kashvi Srivastava, and Rishi Sonthalia. Double descent and overfitting under noisy inputs and distribution shift for linear denoisers. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=HxfqTdLIRF.
- [23] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent. In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf.
- [24] Xinyue Li and Rishi Sonthalia. Least squares regression can exhibit under-parameterized double descent. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=gzh9nTUtsY.
- [25] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. On the linearity of large non-linear models: when and why the tangent kernel is constant. In *Proceedings of the 34th International Conference* on Neural Information Processing Systems, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- [26] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33): E7665–E7671, 2018. doi: 10.1073/pnas.1806579115. URL https://www.pnas.org/doi/abs/10.1073/pnas.1806579115.
- [27] Hancheng Min, Enrique Mallada, and Rene Vidal. Early neuron alignment in two-layer ReLU networks with small initialization. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=QibPzdVrRu.
- [28] Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature learning with one gradient step in two-layer neural networks, 2024. URL https://arxiv.org/abs/2310.07891.
- [29] Alireza Mousavi-Hosseini, Denny Wu, Taiji Suzuki, and Murat A Erdogdu. Gradient-based feature learning under structured data. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=Fe8PxP2F2p.
- [30] S. Péché. A note on the Pennington-Worah distribution. *Electronic Communications in Probability*, 24(none):1–7, 2019. doi: 10.1214/19-ECP262. URL https://doi.org/10.1214/19-ECP262.
- [31] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random matrix theory. In *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 2798–2806. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pennington17a.html.
- [32] Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/0f3d014eead934bbdbacb62a01dc4831-Paper.pdf.
- [33] Mary Phuong and Christoph H Lampert. The inductive bias of ReLU networks on orthogonally separable data. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=krz7T0xU9Z_.
- [34] Vanessa Piccolo and Dominik Schröder. Analysis of one-hidden-layer neural networks via the resolvent method. In *Advances in Neural Information Processing Systems*, volume 34, pages 5225-5235. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/29d74915e1b323676bfc28f91b3c4802-Paper.pdf.

- [35] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv* preprint arXiv:1710.05941, 2017.
- [36] Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long time convergence and asymptotic error scaling of neural networks. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/196f5641aa9dc87067da4ff90fd81e7b-Paper.pdf.
- [37] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf.
- [38] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. *arXiv preprint arXiv:1312.6120*, 2013.
- [39] Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A central limit theorem. *Stochastic Processes and their Applications*, 130(3):1820–1852, 2020. ISSN 0304-4149. doi: https://doi.org/10.1016/j.spa.2019.06.003. URL https://www.sciencedirect.com/science/article/pii/S0304414918306197.
- [40] Rishi Sonthalia and Raj Rao Nadakuditi. Training data size induced double descent for denoising feedforward neural networks and the role of training noise. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=FdMWtpVT1I.
- [41] Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in relu networks. In *International Conference on Algorithmic Learning Theory*, pages 1429–1459. PMLR, 2023.
- [42] Roman Vershynin. *Introduction to the non-asymptotic analysis of random matrices*, page 210–268. Cambridge University Press, 2012.
- [43] Yutong Wang, Rishi Sonthalia, and Wei Hu. Near-interpolators: Rapid norm growth and the trade-off between interpolation and generalization. In *International Conference on Artificial Intelligence and Statistics*, pages 4483–4491. PMLR, 2024.
- [44] Zhichao Wang and Yizhe Zhu. Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks. *The Annals of Applied Probability*, 34(2):1896–1947, 2024.
- [45] Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propagation in deep neural networks. In *The Thirty Seventh Annual Conference on Learning Theory*, pages 4891–4957. PMLR, 2024.
- [46] Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness? In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=5spDgWmpY6x.

Contents

1	Intr	Introduction			
	1.1	Related work	2		
2	Setu	ap and Assumptions	2		
3	Spiked Data Leads to a Low-Rank Gradient				
	3.1	Small-to-Moderate Spike ($\nu \in [0,0.5)$): \mathcal{C}^2 Activations	5		
	3.2	Small-to-Moderate Spike: ReLU Activation	5		
	3.3	Large Spike $(\nu \geq 0.5) {:}\ {\rm Non}\ \mathcal{C}^2$ Activations and Dependence between W and X .	6		
	3.4	Impact of the Scale Parameter: MF vs. NTK Scaling	6		
4	Effe	ct of Regularization			
5	Con	Conclusion			
A	Proc	ofs	16		
	A.1	Regularization Proofs	16		
	A.2	Spikey Gradient Proof	20		
		A.2.1 Upper and Lower Bounds	21		
		A.2.2 Helper Results: Subgaussianity and Concentration	27		
	A.3	ReLU Data Alignment	31		
В	Assu	sumption Discussion 32			
	B.1	Activation Function Properties	32		
		B.1.1 Sigmoid Function	32		
		B.1.2 Hyperbolic Tangent (Tanh) Function	33		
		B.1.3 Rectified Linear Unit (ReLU) Function	33		
		B.1.4 Exponential Linear Unit (ELU) Function	33		
		B.1.5 Swish Function	34		
		B.1.6 Softplus Function	34		
	B.2	Loss Function Derivatives	35		
	B.3	Residue Concentration	35		
	B.4	β Alignment	35		
C	Empirical Details 3				
	C.1	Figure 1	36		
	C.2	Figure 3	36		
	C.3	Figure 4	37		
	C.4	Later in Training Experiments	37		
	C.5	Real Data Experiments	37		

Table 1: Notation

Symbol	Meaning	Where first defined / used
\overline{d}	Input dimension	Assumption 1
n	Number of samples	Assumption 1
m	Hidden-layer width	Assumption 1
$\psi_1 = n/d, \ \psi_2 = m/d$ $\hat{\Sigma}$	Proportional-scaling ratios	Assumption 1
	Bulk covariance matrix	Assumption 2
$\Sigma = \widehat{\Sigma} + \zeta^2 q q^{\top}$	Full covariance (bulk + spike)	Assumption 2
$\lambda_k = k^{-\alpha}$	Bulk eigen-spectrum	Assumption 2
$\alpha \ge 0$	Spectral-decay exponent	Assumption 2
$\zeta = n^{\nu}, \ \nu \ge 0$	Spike magnitude	Assumption 2
$q \in \mathbb{S}^{d-1}$	Spike direction	Assumption 2
$z \in \mathbb{R}^n$	Latent coordinates of the spike	Equation (3)
$X = X_B + X_S$	Data split bulk + spike	Equation (3)
X_B	Bulk part $(\mathcal{N}(0,\widehat{\Sigma}) \text{ rows})$	Equation (3)
$X_S = \zeta z q^{\top}$	Rank-1 spike part	Equation (3)
$W \in \mathbb{R}^{m \times d}$	Inner-layer weight matrix	Assumption 3
$a \in \{\pm 1\}^m$	Outer weights (fixed)	Assumption 3
γ_m	Width scale (NTK = $1/\sqrt{m}$, MF = $1/m$)	Equation (1)
$\sigma, \sigma', \sigma''$	Activation and derivatives	Assumption 4
$\mu = \mathbb{E}_x[\sigma'(Wx)]$	Mean derivative vector	Assumption 4
$\sigma'_{\perp} = \sigma' - \mu$	Centered derivative	Assumption 4
r^{-}	Residue vector	Equation (2)
β	Alignment exponent $(\frac{1}{\sqrt{n} r _2} z^{\top} r)$	Assumption 6
S_1	Residue-aligned rank-1 term	Section 3
S_2	Data-spike-aligned rank-1 term	Section 3
S_{12}	Interpolant rank-1 term	Section 3
$G = \nabla_W \mathcal{L}$	Full gradient wrt W	Prop. 2.1
E	Error term $G - S_1 - S_{12} - S_2$	Thm. 3.1
E_L	Error term $G - S_{12} - S_2$ (large-spike version)	Thm. 3.2
E_2	Bulk error from Jacobian-penalty gradient	Prop. 4.3
S_3	Data-aligned rank-1 term induced by Jacobian penalty	Prop. 4.3
λ, L_{reg}	Reg. strength and Jacobian penalty	Section 4
$rac{\lambda}{ au^2}, L_{ m reg}$	Variance of isotropic Gaussian noise	Section 4
∘, ⊗	Hadamard / outer products	

A Proofs

Notation In the appendix, we shall use $f \lesssim g$ to mean that f = O(g) with probability 1 - o(1).

A.1 Regularization Proofs

Proposition 4.1. Given Assumptions 1, 2, 3, 4, and 6. If $||r||_2 = O(\sqrt{n})$, then with probability 1 - o(1) we have that $||S_1||_2 \le O(\sqrt{m}\gamma_m)$, $||S_{12}||_2 \le O(\sqrt{m}\gamma_m n^{\nu - \frac{\beta}{2}})$, and $||S_2||_2 \le O(\sqrt{m}\gamma_m n^{\nu})$.

Proof. These bound immediately follow from Lemma A.1, Lemma A.2, and Lemma A.3.

Proposition 4.2 (Isotropic Gaussian noise). Assume the setup of Assumptions 1, 2, 3 with independent X and W. Assume σ satisfies Assumption 4 for the noisy data X'. Additionally, suppose the modified residues satisfy $r_i' = \Theta(1)$ with probability 1 - o(1), and Assumption 6 holds for r' with scaling parameter β' . If $\tau^2 = n^\rho$ and $\|\sigma_\perp'(X'W^T)\|_2 = o(n)$, then with high probability:

$$\frac{\|S_1'\|_2}{\|E'\|_2} \geq \omega(1), \quad \frac{\|S_2'\|_2}{\|E'\|_2} \leq O(n^{\nu - \frac{\rho}{2}}), \quad \frac{\|S_{12}'\|_2}{\|E'\|_2} \leq o(n^{\nu - \frac{\rho}{2} - \frac{\beta'}{2}}).$$

Proof. We prove each bound in turn.

 S_1' Bound: Recall that $S_1' = \frac{\gamma_m}{n} (X_B')^T r' (a \circ \mu')^T$. Since d > n, and $X_B' \in \mathbb{R}^{n \times d}$ is full rank with probability 1, we have that with probability 1, for any vector v

$$\|(X_B')^T v\|_2 \ge \sigma_{min}(X) \|v\|_2$$

Since the smallest eigenvalue of $\hat{\Sigma}'$ is n^{ρ} , with probability 1 - o(1), we have that

$$\sigma_{min}(X_B') \ge n^{\frac{1}{2} + \frac{\rho}{2}}.$$

Applying to S'_1 , we get

$$||S_1'||_2 \gtrsim \gamma_m n^{\rho/2} ||a \circ \mu'||_2 \frac{||r||_2}{\sqrt{n}}$$

Then using Assumption 4, the fact that the entries of a are ± 1 , and $r'_i = \Theta(1)$, we get

$$||S_1'||_2 \gtrsim \gamma_m n^{\rho/2} \sqrt{m}$$

E **Bound:** Next, we have that $E' = \frac{\gamma_m}{n} (X_B')^T ((r'a^T) \circ \sigma_{\perp}'(X'W^T))$. Using the fact that with probability 1 - o(1), $r_i' = \Theta(1)$ and $a_i = \pm 1$, we have that with probability 1 - o(1)

$$\|(r'a^T) \circ \sigma'_{\perp}(X'W^T)\|_2 = \|\sigma'_{\perp}(X'W^T)\|_2.$$

Thus, we have that

$$||E'||_2 \lesssim \frac{\gamma_m}{n} ||X_B'||_2 ||\sigma_{\perp}'(X'W^T)||_2$$
$$\lesssim \frac{\gamma_m}{n} \sqrt{n} n^{\rho/2} ||\sigma_{\perp}'(X'W^T)||_2$$

Since d>n and X_B^\prime if full rank with probability 1, we have that with probability 1,

$$||(X'_B)^T((r'a^T) \circ \sigma'_{\perp}(X'W^T))||_2 \ge \sigma_{min}(X'_B)||((r'a^T) \circ \sigma'_{\perp}(X'W^T))||_2$$

= $\sigma_{min}(X'_B)||\sigma'_{\perp}(X'W^T))||_2$

Hence we get

$$||E'||_2 \gtrsim \frac{\gamma_m}{n} \sqrt{n} n^{\rho/2} ||\sigma'_{\perp}(X'W^T)||_2$$

 S_2' **Bound:** Recall that

$$S_2' = \frac{\gamma_m}{r} n^{\nu} q z^T ((r'a^T) \circ \sigma_{\perp}'(X'W^T))$$

Hence we get that

$$\begin{split} \|S_2'\|_2 &= \frac{\gamma_m}{n} n^{\nu} \|q\|_2 \|z^T((r'a^T) \circ \sigma_{\perp}'(X'W^T))\|_2 \\ &\leq \frac{\gamma_m}{n} n^{\nu} \|z\|_2 \|((r'a^T) \circ \sigma_{\perp}'(X'W^T))\|_2 \\ &\lesssim \frac{\gamma_m}{n} n^{\nu + \frac{1}{2}} \|\sigma_{\perp}'(X'W^T))\|_2 \end{split}$$

 S'_{12} **Bound:** Recall that

$$S'_{12} = \frac{\gamma_m}{n} n^{nu} q z^T r' (a \circ \mu')^T$$

Thus, we have that

$$\begin{split} \|S_{12}'\|_2 &= \frac{\gamma_m}{n} n^{nu} \|z^T r(a \circ \mu')\|_2 \\ &= \frac{\gamma_m}{n} n^{nu} \|z^T r\|_2 \|(a \circ \mu')\|_2 \\ &\lesssim \frac{\gamma_m}{n} n^{nu-\beta'/2} \|r'\|_2 \|z\|_2 \|(a \circ \mu')\|_2 \\ &\lesssim \sqrt{m} \gamma_m n^{\nu - \frac{\beta'}{2}} \end{split}$$

Relative Bounds: Thus, we have that using $\|\sigma'_{\perp}(X'W^T)\|_2 = o(n)$

$$\frac{\|S_1'\|_2}{\|E'\|_2} \gtrsim \frac{n}{\|\sigma_+'(X'W^T)\|_2} = \omega(1)$$

For the upper bounds we see tha

$$\frac{\|S_2'\|_2}{\|E'\|_2} \lesssim n^{\nu - \frac{\rho}{2}}, \quad \frac{\|S_{12}'\|_2}{\|E'\|_2} \lesssim n^{\nu - \frac{\beta'}{2} - \frac{\rho}{2}} \cdot \frac{\|\sigma_{\perp}'(X'W^T)\|_2}{n} = n^{\nu - \frac{\beta'}{2} - \frac{\rho}{2}}o(1).$$

Proposition 4.3 (Gradient penalty). Let $\operatorname{Diag}(\|x_i\|^2)$ be the $n \times n$ diagonal matrix, whose entries are $\|x_i\|^2$. If σ is twice differentiable, then

$$\nabla_W L_{reg} = \frac{1}{n} \lambda \gamma_m^2 \left(\sigma'(WX^T) \odot \sigma''(WX^T) \right) \operatorname{Diag}(\|x_i\|^2) X.$$

Proof. Letting $Z = WX^T$ and $f_i = f(x_i)$ then note

$$f_i = a^T \sigma(W x_i) = a^T h_i$$
, and $\partial_{h_i} f_i = a$.

It follows that

$$\partial_{z_i} f_i = \partial_{h_i} f_i \odot \sigma'(z_i) = a \odot \sigma'(z_i).$$

Recall

$$\frac{\partial Z_{rc}}{\partial W_{kj}} = \mathbf{1}_{\{c=k\}} X_{rj},$$

then

$$\frac{\partial f_i}{\partial W_{kj}} = \sum_{c=1}^m \frac{\partial f_i}{\partial Z_{ic}} \frac{\partial Z_{ic}}{\partial W_{kj}} = \frac{\partial f_i}{Z_{ik}} X_{ij}$$

and therefore

$$\partial_W f_i = (a \odot \sigma'(Wx_i))x_i^T$$

Let $g_i = a \odot \sigma'(h_i)$, then

$$\|\partial_W f_i\|_F^2 = \|g_i x_i^T\|_F^2 = \sum_{j,k} g_{ij}^2 x_{ik}^2 = \|g_i\|_2^2 \|x_i\|_2^2.$$

Now

$$\frac{\partial}{\partial W_{rc}} \|g_i\|_2^2 = \frac{\partial}{\partial W_{rc}} \sum_{j=1} a_j^2 \frac{\partial}{\partial W_{rc}} \sigma'(w_j^T x_i)^2$$
$$= \left(2a_r^2 \sigma'(w_i^T x_i) \sigma''(w_i^T x_i)\right) x_{ic}.$$

The term inside the brackets is independent of c while the term outside the brackets is independent of r. As a result this is an outer product and

$$\partial_W \|g_i\|_2^2 = 2 \left(a^{\circ 2} \odot \sigma'(Wx_i) \odot \sigma''(Wx_i) \right) x_i^T.$$

Note above $a^{\circ 2}$ refers squaring operation being applied elementwise to the vector a. Therefore

$$\partial_W R = \frac{1}{2} \sum_{i=1}^n \partial_W \|\partial_W f_i\|_F^2 \tag{9}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \|x_i\|_2^2 \partial_W \|g_i\|_2^2 \tag{10}$$

$$= \sum_{i=1}^{n} \|x_i\|_2^2 \left(a^{\circ 2} \odot \sigma'(Wx_i) \odot \sigma''(Wx_i) \right) x_i^T.$$
 (11)

$$= \left(a^{\circ 2} \mathbf{1}^T \circ \sigma'(WX^T) \circ \sigma''(WX^T)\right) \operatorname{Diag}(\|x_i\|^2) X \tag{12}$$

$$= (\sigma'(WX^T) \circ \sigma''(WX^T)) \operatorname{Diag}(\|x_i\|^2) X \tag{13}$$

Proposition 4.4. Given Assumptions 1, 2, 3, 4, and 6. If $||r||_2 = \Theta(\sqrt{n})$, $\alpha < 1$, and a constant fraction of the entries of $\sigma'(XW^T) \odot \sigma''(XW^T)$ are bounded away from 0, then

$$\lambda \left(n^{2\nu - \frac{\alpha}{2} - \frac{1}{2}} + n^{\frac{1 - 3\alpha}{2}} \right) \ge \sqrt{m} \gamma_m \frac{\|\lambda E_2\|_2}{\|S_1\|_2} \ge \lambda \left(n^{2\nu - \frac{\alpha}{2} - 1} + n^{-\frac{3}{2}\alpha} \right).$$

Proof. We begin by noting that since σ , σ' are lipschitz, we have that σ' , σ'' are bounded. Hence

$$\sigma'(XW^T) \odot \sigma''(XW^T)$$

has an operator norm that is at most O(n). Since a constant fraction p of the entries are at least some universal constant c, then in the proportional regime, we have that

$$\|\sigma'(XW^T) \odot \sigma''(XW^T)\|_2 \ge \frac{1}{\sqrt{n}} \|\sigma'(XW^T) \odot \sigma''(XW^T)\|_F \gtrsim \sqrt{m}c = \Omega(\sqrt{n})$$

Recall that

$$E_2 = \frac{1}{n} \gamma_m^2 X_B^T \operatorname{Diag}(\|x_i\|^2) \left(\sigma'(XW^T) \odot \sigma''(XW^T) \right).$$

Then since d > n, $X_B^T \operatorname{Diag}(\|x_i\|^2)$ is full rank with probability 1, we have that

$$\frac{1}{n}\gamma_m^2 \sigma_{min} \left(X_B^T \operatorname{Diag}(\|x_i\|^2) \right) \|\sigma'(XW^T) \odot \sigma''(XW^T)\|_2 \lesssim \|E_2\|_2$$

and

$$||E_2||_2 \lesssim \frac{1}{n} \gamma_m^2 \sigma_{max} \left(X_B^T \operatorname{Diag}(||x_i||^2) \right) ||\sigma'(XW^T) \odot \sigma''(XW^T)||_2$$

Due to Assumption 2, with high probability 1 - o(1), we have that

$$\sigma_{max}(X_B) \lesssim \sqrt{n} \text{ and } \sigma_{min}(X_B) \gtrsim n^{\frac{1-\alpha}{2}}$$

Then since $||x_i||^2$ concentrates to $n^{2\nu} + n^{1-\alpha}$ (for $\alpha < 1$), we have that

$$||E_2||_2 \lesssim \frac{\gamma_n^2}{n} \sqrt{n} (n^{2\nu} + n^{1-\alpha}) ||\sigma'(XW^T) \odot \sigma''(XW^T)||_2$$

and

$$||E_2||_2 \gtrsim \frac{\gamma_m^2}{n} n^{\frac{1-\alpha}{2}} (n^{2\nu} + n^{1-\alpha}) ||\sigma'(XW^T) \odot \sigma''(XW^T)||_2$$

Then using the O(n) upper bound on $\|\sigma'(XW^T)\odot\sigma''(XW^T)\|_2$, in the proportional regime, with high probability 1-o(1), we get that

$$||E_2||_2 \lesssim m\gamma_m^2(n^{2\nu-\frac{1}{2}} + n^{\frac{1}{2}-\alpha})$$

Using our $\Omega(\sqrt{n})$ lower bound on $\|\sigma'(XW^T) \odot \sigma''(XW^T)\|_2$, we get

$$||E_2||_2 \gtrsim m\gamma_m^2(n^{2\nu-\frac{\alpha}{2}-1}+n^{-\frac{3\alpha}{2}})$$

On the other hand, if $||r||_2 = \Theta(\sqrt{n})$ we have that

$$\sqrt{m}\gamma_m n^{-\frac{\alpha}{2}} \lesssim ||S_1||_2 \lesssim \sqrt{m}\gamma_m$$

For the NTK regime, we have that

$$n^{2\nu - \frac{\alpha}{2} - \frac{1}{2}} + n^{\frac{1 - 3\alpha}{2}} \gtrsim \sqrt{m} \gamma_m \frac{\|E_2\|_2}{\|S_1\|_2} \gtrsim n^{2\nu - \frac{\alpha}{2} - 1} + n^{-\frac{3}{2}\alpha}$$

A.2 Spikey Gradient Proof

Proposition 2.1 (Gradient of the loss). If Assumption 4 holds and R is differentiable, then

$$G := \nabla_{W^T} L = \gamma_m X^T \left[(ra^T) \circ \sigma'(XW^T) \right] + \lambda \nabla_{W^T} R(W) \in \mathbb{R}^{d \times m}$$

exists for almost every W in $\mathbb{R}^{m \times d}$.

Proof. The first thing we need to do is to compute the gradient. To begin, we compute

$$f(x_i) = \sum_{j=1}^{m} a_j \sigma \left(\sum_{k=1}^{d} w_{jk}(x_i)_k \right)$$

Thus, we see that

$$\frac{\partial}{\partial w_{rs}} L(f(x)) = \frac{1}{n} \sum_{i=1}^{n} \ell'(f(x_i)) \frac{\partial}{\partial w_{rs}} \left(\sum_{j=1}^{m} a_j \sigma \left(\sum_{k=1}^{d} w_{jk}(x_i)_k \right) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \ell'(f(x_i)) \sum_{j=1}^{m} a_j \frac{\partial}{\partial w_{rs}} \left(\sigma \left(\sum_{k=1}^{d} w_{jk}(x_i)_k \right) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \ell'(f(x_i)) \sum_{j=1}^{m} a_j \sigma' \left(w_j^T x_i \right) \frac{\partial}{\partial w_{rs}} \left(\sum_{k=1}^{d} w_{jk}(x_i)_k \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \ell'(f(x_i)) a_r \sigma' \left(w_r^T x_i \right) (x_i)_s$$

$$= \frac{1}{n} \sum_{i=1}^{n} (L'(f(X)) a)_{ir} \sigma'(XW^T)_{ir} X_{is}$$

$$= \frac{1}{n} (X^T [(L'(f(X)) a) \circ \sigma'(XW^T)])_{sr}$$

We begin by decomposing the gradient

$$G = \frac{\gamma_m}{n} X^T \left((ra^T) \circ \sigma'(XW^T) \right).$$

This algebraic decomposition holds for the current state (X, W, r, a), irrespective of any statistical dependence between W and X. Recall the data decomposition

$$X = X_B + X_S = X_B + \zeta z q^T \in \mathbb{R}^{n \times d}$$

where rows of X_B are from $\mathcal{N}(0,\hat{\Sigma})$, $z \sim \mathcal{N}(0,I)$, $\|q\|=1$ and the activation derivative decomposition $\sigma'(XW^T)=\mathbf{1}_n\mu^T+\sigma'_\perp(XW^T)$, where $\mu=\mathbb{E}_x[\sigma'(Wx)]$ depends on the current W.

Substituting these into the gradient expression yields:

$$G = \frac{\gamma_m}{n} X^T \left((ra^T) \circ \left[\mathbf{1}_n \mu^T + \sigma'_{\perp}(XW^T) \right] \right)$$

$$= \frac{\gamma_m}{n} X^T \left(r(a \circ \mu)^T + (ra^T) \circ \sigma'_{\perp}(XW^T) \right)$$

$$= \frac{\gamma_m}{n} (X_B^T + X_S^T) \left(r(a \circ \mu)^T \right) + \frac{\gamma_m}{n} (X_B^T + X_S^T) \left((ra^T) \circ \sigma'_{\perp}(XW^T) \right)$$

$$= \underbrace{\frac{\gamma_m}{n} X_B^T r(a \circ \mu)^T}_{S_1} + \underbrace{\frac{\gamma_m}{n} X_S^T r(a \circ \mu)^T}_{S_{12}}$$

$$+ \underbrace{\frac{\gamma_m}{n} X_S^T ((ra^T) \circ \sigma'_{\perp}(XW^T))}_{S_2} + \underbrace{\frac{\gamma_m}{n} X_B^T ((ra^T) \circ \sigma'_{\perp}(XW^T))}_{E}.$$

Using $X_S = \zeta z q^T$, we identify the components explicitly:

$$S_1 = \gamma_m \frac{X_B^T r}{n} (a \circ \mu)^T$$

$$S_{12} = \gamma_m \zeta \left(\frac{z^T r}{n}\right) q(a \circ \mu)^T$$

$$S_2 = \frac{\gamma_m \zeta}{n} q \left(z^T ((ra^T) \circ \sigma'_{\perp}(XW^T))\right)$$

$$E = \frac{\gamma_m}{n} X_B^T ((ra^T) \circ \sigma'_{\perp}(XW^T)).$$

Note that S_{12} shares its right singular vector $(a \circ \mu)$ with S_1 (up to scaling) and its left singular vector q with S_2 . Understanding the gradient structure requires bounding the norms of these terms, which depends on the properties of the current W, r, μ , and the data statistics.

A.2.1 Upper and Lower Bounds

Given our helper results, we now provide bounds for the S_1, S_{12}, S_2 , and E appearing in Section 3.

Lemma A.1 (S_1 Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows, and let $S_1 = \gamma_m \frac{X_B^T r}{n} (a \circ \mu)^T$. Suppose X_B is from Assumption 2, a has fixed ± 1 entries (Assumption 3), r is the current residual, and $\mu = \mathbb{E}_x[\sigma'(Wx)]$ satisfies $\mu_k = \Theta(1)$ for all k (Assumption 4). Assume d > n. Then with high probability:

$$\sqrt{m}\gamma_m \mu_{\min} \|r\|_2 n^{-\frac{\alpha+1}{2}} \lesssim \|S_1\|_2 \lesssim \sqrt{m}\gamma_m \mu_{\max} \|r\|_2 n^{-\frac{1}{2}},$$

where $\mu_{\min} = \min_k |\mu_k| = \Omega(1)$ and $\mu_{\max} = \max_k |\mu_k| = O(1)$.

Proof. The operator norm is

$$||S_1||_2 = \frac{\gamma_m}{n} ||X_B^T r||_2 ||a \circ \mu||_2.$$

First, consider $a \circ \mu$, where $a_k = \pm 1$ and $\mu_k = \mathbb{E}_x[\sigma'(w_k^Tx)]$. By assumption, $\mu_{\min} = \min_k |\mu_k| = \Omega(1)$ and $\mu_{\max} = \max_k |\mu_k| = O(1)$ (since σ' is bounded). We have:

$$||a \circ \mu||_2^2 = \sum_{k=1}^m a_k^2 \mu_k^2 = \sum_{k=1}^m \mu_k^2.$$

Thus, we see that

$$\mu_{\min}\sqrt{m} \le ||a \circ \mu||_2 \le \mu_{\max}\sqrt{m}$$
.

By Assumption 2, if d > n we have that with high probability

$$n^{\frac{1-\alpha}{2}} \|r\|_2 \lesssim \|X_B^T r\|_2 \lesssim n^{\frac{1}{2}} \|r\|_2.$$

Substituting the bounds for $\|X_B^Tr\|_2$ and $\|a \circ \mu\|_2$ into the expression for $\|S_1\|_2 = \frac{\gamma_m}{n} \|X_B^Tr\|_2 \|a \circ \mu\|_2$:

Lower:
$$||S_1||_2 \gtrsim \frac{\gamma_m}{n} (n^{\frac{1-\alpha}{2}} ||r||_2) (\sqrt{m}\mu_{\min}) = \gamma_m \sqrt{m}\mu_{\min} ||r||_2 n^{-\frac{\alpha+1}{2}}$$

Upper: $||S_1||_2 \lesssim \frac{\gamma_m}{n} (n^{\frac{1}{2}} ||r||_2) (\sqrt{m}\mu_{\max}) = \gamma_m \sqrt{m}\mu_{\max} ||r||_2 n^{-\frac{1}{2}}.$

This completes the proof.

Lemma A.2 (S_{12} Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows. Let $S_{12} = \gamma_m \zeta(\frac{z^T r}{n}) q(a \circ \mu)^T$. Suppose $z, q, \zeta = n^{\nu}$ are from Assumption 2, a has fixed ± 1 entries (Assumption 3), $\mu = \mathbb{E}_x[\sigma'(Wx)]$ satisfies $\mu_k = \Theta(1)$ (Assumption 4), and the current residual r satisfies $|\frac{z^T r}{n}| = \Theta(||r||_2 n^{-\beta/2 - 1/2})$ (Assumption 6). Assume d > n. Then w.h.p.:

$$||S_{12}||_2 = \Theta\left(\sqrt{m}\gamma_m||r||_2 n^{\nu - \frac{\beta}{2} - \frac{1}{2}}\right).$$

Proof. Since S_{12} is a rank-1 matrix and $||q||_2 = 1$, its operator norm is:

$$||S_{12}||_2 = \left|\gamma_m \zeta\left(\frac{z^T r}{n}\right)\right| ||q||_2 ||a \circ \mu||_2 = \gamma_m n^{\nu} \left|\frac{z^T r}{n}\right| ||a \circ \mu||_2.$$

By Assumption 6 applied to the current residual r, we have

$$\left| \frac{z^T r}{n} \right| = \Theta\left(||r||_2 n^{-\frac{\beta}{2} - \frac{1}{2}} \right).$$

Substituting this scaling, we get

$$||S_{12}||_2 = \gamma_m n^{\nu} \Theta\left(||r||_2 n^{-\frac{\beta}{2} - \frac{1}{2}}\right) ||a \circ \mu||_2 = \Theta\left(\gamma_m n^{\nu - \frac{\beta + 1}{2}} ||r||_2 ||a \circ \mu||_2\right).$$

As established in the proof of Lemma A.1, using the assumptions on a and μ (specifically $\mu_k = \Theta(1)$), we have $||a \circ \mu||_2 = \Theta(\sqrt{m})$. Combining these gives the final result:

$$||S_{12}||_2 = \Theta\left(\gamma_m n^{\nu - \frac{\beta+1}{2}} ||r||_2 \Theta(\sqrt{m})\right) = \Theta\left(\sqrt{m}\gamma_m ||r||_2 n^{\nu - \frac{\beta}{2} - \frac{1}{2}}\right).$$

Lemma A.3 (S_2 Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows. Let $S_2 = \frac{\gamma_m \zeta}{n} q z^T \left[(ra^T) \circ \sigma'_{\perp}(XW^T) \right]$. Suppose $z, q, \zeta = n^{\nu}$ are from Assumption 2, a has fixed ± 1 entries (Assumption 3), $\mu = \mathbb{E}_x[\sigma'(Wx)]$ satisfies $\mu_k = \Theta(1)$ (Assumption 4), and the current residual r satisfies $|z^T_{-r}| = \Theta(||r||_2 n^{-\beta/2-1/2})$ (Assumption 6). Then, w.h.p.:

$$\gamma_m n^{\nu - \frac{\beta}{2} - 1} \| r \|_2 \sigma_{\min}(\sigma'_{\perp}(XW^T)) \lesssim \| S_2 \|_2 \lesssim \gamma_m \sqrt{m} \| r \|_{\infty} \min(n^{\nu}, \| W \|_2 n^{2\nu - \frac{1}{2}}).$$

Where \leq hides universal constants C_1, C_2 .

Proof. The operator norm is

$$||S_2||_2 = \frac{\gamma_m n^{\nu}}{n} ||z^T((ra^T) \circ \sigma'_{\perp}(XW^T))||_2.$$

Upper Bound: Using Lemma A.8 and Assumption 3 that $a_i \sim \text{Unif}(\pm 1)$, we have the upper bound

$$||z^{T}((ra^{T}) \circ \sigma'_{\perp}(XW^{T}))||_{2} \lesssim ||z||_{2}||r||_{\infty}||a||_{\infty}||\sigma'_{\perp}(XW^{T}))||_{2}$$
$$\lesssim ||z||_{2}||r||_{\infty}||\sigma'_{\perp}(XW^{T}))||_{2}.$$

Then with probability 1 - o(1), since $z \sim \mathcal{N}(0, I)$, we have that $||z||_2 \lesssim C\sqrt{n}$. Hence we get that

$$||z^T((ra^T) \circ \sigma'_+(XW^T))||_2 \lesssim C||r||_{\infty} ||\sigma'_+(XW^T)||_2 \sqrt{n}.$$

Then since we have Assumption 4, we can use Lemma A.7 to bound the norm $\|\sigma'_{\perp}(XW^T)\|_2$, which gives us that with probability 1 - o(1),

$$||z^{T}((ra^{T}) \circ \sigma'_{\perp}(XW^{T}))||_{2} \lesssim C||r||_{\infty} \sqrt{n} \min\left(n, \sqrt{n} ||W\Sigma^{1/2}||_{2}\right)$$
$$= C||r||_{\infty} \sqrt{n} \min(n, ||W||_{2} n^{\nu+1/2}).$$

Thus, we get that

$$||S_2||_2 \lesssim \frac{\gamma_m}{n} n^{\nu} C ||r||_{\infty} \sqrt{n} \min(n, ||W||_2 n^{\nu+1/2})$$

= $C\sqrt{m} \gamma_m ||r||_{\infty} \min(n^{\nu}, ||W||_2 n^{2\nu - \frac{1}{2}}),$

where we used the proportional scaling of n and m, Assumption 1, in the second line.

Lower Bound: For a lower bound, we start by writing

$$(ra^T) \circ \sigma'_{\perp}(XW^T) = \operatorname{Diag}(r) \, \sigma'_{\perp}(XW^T) \, \operatorname{Diag}(a).$$

Thus, we have that

$$qz^{T} ((ra^{T}) \circ \sigma'_{\perp}(XW^{T})) = q (z^{T} \operatorname{Diag}(r)) \sigma'_{\perp}(XW^{T}) \operatorname{Diag}(a)$$
$$= q(z \circ r)^{T} \sigma'_{\perp}(XW^{T}) \operatorname{Diag}(a).$$

Taking the norm and recalling that $\zeta = n^{\nu}$, we get

$$\|\zeta q z^T \left((ra^T) \circ \sigma'_{\perp}(XW^T) \right)\|_2 = n^{\nu} \|q\| \|(z \circ r)^T \sigma'_{\perp}(XW^T) \operatorname{Diag}(a)\|.$$

Since the entries of a are ± 1 and q has unit norm, we have that this is the same as

$$n^{\nu} \|q\| \|(z \circ r)^T \sigma'_{\perp}(XW^T)\| = n^{\nu} \|(z \circ r)^T \sigma'_{\perp}(XW^T)\|.$$

By Cauchy-Schwarz, we have using Assumption 6 $|z^T r/\sqrt{n}||r||_2| = \Theta(d^{-\beta/2})$ that

$$||z \circ r|| = \sqrt{\sum_{i=1}^{n} (z_i r_i)^2} \ge \frac{|\sum_{i=1}^{n} z_i r_i|}{\sqrt{\sum_{i=1}^{n} 1}} = \frac{|z^T r| ||r||_2}{\sqrt{n} ||r||_2} = \Omega(n^{-\frac{\beta}{2}} ||r||_2).$$

Thus, we get that for some constant C

$$||S_2|| \gtrsim C\gamma_m \frac{1}{n} n^{\nu - \frac{\beta}{2}} ||r||_2 \sigma_{\min}(\sigma'_{\perp}(XW^T)).$$

Lemma A.4 (Upper Bound on E). Assuming Assumption 1], Assumption 3, Assumption 2, and Assumption 4, we have that with probability at least 1 - o(1)

$$||E||_2 \lesssim C\sqrt{m}\gamma_m||r||_{\infty} \min\left(1, n^{\nu - \frac{1}{2}}||W||_2\right).$$

Proof. Recall $E = \frac{\gamma_m}{n} X_B^T((ra^T) \circ \sigma'_{\perp}(XW^T))$. Using Lemma A.8, we have that

$$\frac{n}{\gamma_m} \|E\|_2 \lesssim \|X_B\|_2 \|r\|_{\infty} \|a\|_{\infty} \|\sigma'_{\perp}(XW^T)\|_2.$$

Then using Assumption 2, whereby the rows of X_B are iid from $\mathcal{N}(0,\hat{\Sigma})$, we have with probability 1-o(1) that

$$||X_B||_2 \lesssim C\sqrt{n}$$

and using Assumption 3, we trivially have that

$$||a||_{\infty} = 1.$$

Thus, we have that

$$\frac{n}{\gamma_m} \|E\|_2 \lesssim C\sqrt{n} \|r\|_{\infty} \|\sigma'_{\perp}(XW^T)\|_2.$$

Then using Lemma A.7, we have that with probability 1 - o(1)

$$\|\sigma'_{\perp}(XW^T)\|_2 \lesssim C \min\left(n, \sqrt{n}\|W\Sigma^{1/2}\|_2\right).$$

Since $\|\Sigma^{1/2}\| = n^{\nu}$, we get the result in the proportional scaling of Assumption 1.

Theorem 3.1 (Gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and W are independent, and σ is a C^2 function. Define $E = G - S_1 - S_{12} - S_2$. Then, for all $\nu, \alpha \in \mathbb{R}_{>0}$,

$$\frac{\|G - S_1 - S_{12}\|_2}{\sqrt{m}\gamma_m \|r\|_{\infty}} = O\left(\|W\|_2 n^{2\nu - \frac{1}{2}}\right), \quad \frac{\|G - S_1 - S_{12} - S_2\|_2}{\sqrt{m}\gamma_m \|r\|_{\infty}} = O\left(\|W\|_2 n^{\nu - \frac{1}{2}}\right) \tag{4}$$

with probability 1 - o(1) as $d, n, m \to \infty$. Moreover, if $\nu < \frac{1}{2}$ then with the same probability

$$\frac{\|S_1\|_2}{\|E\|_2} = \Omega\left(\frac{n^{\frac{1}{2}-\nu-\frac{\alpha}{2}}}{\log n\|W\|_2}\right), \qquad \frac{\|S_2\|_2}{\|E\|_2} = \Omega\left(\frac{n^{\nu}}{\log n}\frac{\|(z\circ r)^T\sigma'_{\perp}(XW^T)\|_2}{\|\sigma'_{\perp}(XW^T)\|_2}\right), \tag{5}$$

$$\frac{\|S_{12}\|_{2}}{\|E\|_{2}} = \Omega\left(\frac{n^{\frac{1}{2} - \frac{\beta}{2}}}{\log n\|W\|_{2}}\right), \qquad \Omega(n^{\nu - \frac{\beta}{2}}) \le \frac{\|S_{12}\|_{2}}{\|S_{1}\|_{2}} \le O(n^{\nu - \frac{\beta}{2} + \frac{\alpha}{2}}). \tag{6}$$

Proof. We start with the gradient decomposition derived in Section 3:

$$G = S_1 + S_{12} + S_2 + E$$

where

$$S_1 = \gamma_m \frac{X_B^T r}{n} (a \circ \mu)^T$$

$$S_{12} = \gamma_m \zeta \left(\frac{z^T r}{n}\right) q(a \circ \mu)^T$$

$$S_2 = \frac{\gamma_m \zeta}{n} q \left(z^T ((ra^T) \circ \sigma'_{\perp}(XW^T))\right)$$

$$E = \frac{\gamma_m}{n} X_B^T ((ra^T) \circ \sigma'_{\perp}(XW^T)).$$

We assume the conditions of the theorem hold, including the scaling $\sqrt{m}\gamma_m = O(1)$ and the residual concentration $||r||_2/||r||_\infty = \Theta(\sqrt{n}/\log n)$ (Assumption 5).

Proof of Upper Bounds:

For the first upper bound, we have $G-S_1-S_{12}-S_2=E$. Using the upper bound on $||E||_2$ from Lemma A.4 and the assumption $\sqrt{m}\gamma_m=O(1)$:

$$\frac{\|G - S_1 - S_{12} - S_2\|_2}{\|r\|_{\infty}} = \frac{\|E\|_2}{\|r\|_{\infty}}$$

$$\lesssim \frac{C\sqrt{m}\gamma_m \min\left(1, n^{\nu - \frac{1}{2}} \|W\|_2\right)}{\|r\|_{\infty}}$$

$$= O\left(\min(1, \|W\|_2 n^{\nu - \frac{1}{2}})\right).$$

For the second upper bound, we have $G-S_1-S_{12}=S_2+E$. Using the triangle inequality and the upper bounds on $\|S_2\|_2$ from Lemma A.3 and $\|E\|_2$ from Lemma A.4, along with $\sqrt{m}\gamma_m=O(1)$:

$$\begin{split} \frac{\|G - S_1 - S_{12}\|_2}{\|r\|_{\infty}} &\leq \frac{\|S_2\|_2 + \|E\|_2}{\|r\|_{\infty}} \\ &\lesssim \frac{\sqrt{m}\gamma_m \|r\|_{\infty} \, \min(n^{\nu}, \|W\|_2 n^{2\nu - \frac{1}{2}}) + \sqrt{m}\gamma_m \|r\|_{\infty} \min\left(1, n^{\nu - \frac{1}{2}} \|W\|_2\right)}{\|r\|_{\infty}} \\ &= O\left(\min(n^{\nu}, \|W\|_2 n^{2\nu - \frac{1}{2}}) + \min(1, \|W\|_2 n^{\nu - \frac{1}{2}})\right). \end{split}$$

Proof of Lower Bounds:

We establish lower bounds for the ratios $||S_1||/||E||$, $||S_{12}||/||E||$, and $||S_2||/||E||$. These rely on the lower bounds for $||S_1||$, $||S_{12}||$, $||S_2||$ and the upper bound for ||E||. We use the result $||r||_2/||r||_\infty = \Theta(\sqrt{n}/\log n)$.

Ratio $||S_1||/||E||$: Using Lemma A.1 (lower bound) and Lemma A.4 (upper bound), we have that

$$\begin{split} \frac{\|S_1\|_2}{\|E\|_2} &\gtrsim \frac{\sqrt{m}\gamma_m \mu_{\min} \|r\|_2 n^{-\frac{\alpha+1}{2}}}{\sqrt{m}\gamma_m \|r\|_\infty \min\left(1, n^{\nu - \frac{1}{2}} \|W\|_2\right)} \\ &\gtrsim \frac{\|r\|_2}{\|r\|_\infty} \frac{n^{-(\alpha+1)/2}}{\min(1, \|W\|_2 n^{\nu - 1/2})} \\ &= \frac{\sqrt{n}}{\log n} \frac{n^{-(\alpha+1)/2}}{\min(1, \|W\|_2 n^{\nu - 1/2})} \\ &= \frac{n^{-\alpha/2}}{\log n \min(1, \|W\|_2 n^{\nu - 1/2})}. \end{split}$$

If $\nu < 1/2$ and we assume $\|W\|_2 n^{\nu-1/2} = O(1)$ is the dominant term in the minimum, the ratio is

$$\Omega\left(\frac{n^{1/2-\nu-\alpha/2}}{\log n\|W\|_2}\right).$$

If $\nu \geq 1/2$ and assume $\|W\|_2 n^{\nu-1/2} \geq \Omega(1)$, the minimum is O(1). The ratio is

$$\Omega\left(\frac{n^{-\alpha/2}}{\log n}\right).$$

Ratio $||S_{12}||/||E||$: Using Lemma A.2 (lower bound) and Lemma A.4 (upper bound):

$$\begin{split} \frac{\|S_{12}\|_{2}}{\|E\|_{2}} &\gtrsim \frac{\sqrt{m}\gamma_{m}\|r\|_{2}n^{\nu-\beta/2-1/2}}{\sqrt{m}\gamma_{m}\|r\|_{\infty}\min(1,\|W\|_{2}n^{\nu-1/2})} \\ &\gtrsim \frac{\|r\|_{2}}{\|r\|_{\infty}} \frac{n^{\nu-\beta/2-1/2}}{\min(1,\|W\|_{2}n^{\nu-1/2})} \\ &= \frac{\sqrt{n}}{\log n} \frac{n^{\nu-\beta/2-1/2}}{\min(1,\|W\|_{2}n^{\nu-1/2})} \\ &= \frac{n^{\nu-\beta/2}}{\log n \min(1,\|W\|_{2}n^{\nu-1/2})}. \end{split}$$

If $\nu < 1/2$ and assume $\|W\|_2 n^{\nu-1/2} = O(1)$ dominates the minimum, the ratio is

$$\Omega\left(\frac{n^{1/2-\beta/2}}{\log n\|W\|_2}\right).$$

If $\nu \geq 1/2$ and assume $\|W\|_2 n^{\nu-1/2} \geq \Omega(1)$, the minimum is O(1). The ratio is

$$\Omega\left(\frac{n^{\nu-\beta/2}}{\log n}\right).$$

Ratio $||S_2||/||E||$: We have that

$$\frac{\|S_2\|}{\|E\|} \gtrsim \frac{\frac{\gamma_m}{n} n^{\nu} \|(z \circ r)^T \sigma'_{\perp}(XW^T)\|}{\frac{\gamma_m}{n} \|X_B\|_2 \|r\|_{\infty} \|\sigma'_{\perp}(XW^T)\|}$$

$$\gtrsim n^{\nu - \frac{1}{2}} \frac{\|z \circ r\|}{\|r\|_{\infty}} \kappa \left(\sigma'_{\perp}(XW^T)\right)$$

$$\gtrsim n^{\nu - \frac{1}{2} - \frac{\beta}{2}} \frac{\|r\|_2}{\|r\|_{\infty}} \kappa \left(\sigma'_{\perp}(XW^T)\right)$$

$$\gtrsim \frac{n^{\nu - \frac{\beta}{2}}}{\log n} \kappa \left(\sigma'_{\perp}(XW^T)\right)$$

Relative Sizes Next, we prove the relative bounds. First, we have that

$$\frac{\|S_{12}\|}{\|S_1\|} = \frac{\|X_S^T r\| \|a \circ \mu\|}{\|X_B^T r\| \|a \circ \mu\|} = \frac{n^{\nu + \frac{1}{2} - \frac{\beta}{2}} \|r\|_2}{\|X_B^T r\|}$$

Then since

$$n^{-\frac{\alpha}{2} + \frac{1}{2}} ||r||_2 \lesssim ||X_B^T r||_2 \lesssim \sqrt{n} ||r||_2,$$

we get that

$$n^{\nu - \frac{\beta}{2}} \lesssim \frac{\|S_{12}\|}{\|S_1\|} \lesssim n^{\nu - \frac{\beta}{2} + \frac{\alpha}{2}}$$

For the second relative bound, we have that

$$\frac{\|S_{12}\|}{\|S_{2}\|} = \frac{n^{\nu + \frac{1}{2} - \frac{\beta}{2}} \|r\|_{2} \|a \circ \mu\|}{n^{\nu} \|(z \circ r)^{T} \sigma'_{\perp}(XW^{T})\|} = \Theta\left(\frac{n^{1 - \frac{\beta}{2}} \|r\|_{2}}{\|(z \circ r)^{T} \sigma'_{\perp}(XW^{T})\|}\right)$$

For a lower bound, we get that

$$\frac{\|S_{12}\|}{\|S_{2}\|} \gtrsim C \frac{\|r\|_{2}}{\|z\|_{2}\|r\|_{2}} \frac{n^{1-\frac{\beta}{2}}}{n^{\nu+\frac{1}{2}}} = \frac{1}{n^{\nu+\frac{\beta}{2}}}$$

For an upper bound, we have that

$$\frac{\|S_{12}\|}{\|S_2\|} \lesssim \frac{n^{1-\frac{\beta}{2}} \|r\|_2}{n^{-\frac{\beta}{2}} \|r\|_2 \sigma_{\min}(\sigma'_{\perp}(XW^T))} = \frac{n}{\sigma_{\min}(\sigma'_{\perp}(XW^T))}$$

П

Theorem 3.2 (Large data-spike gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, and 6 are satisfied, and define $E_L = G - S_{12} - S_2$. Then, with probability 1 - o(1) for $\nu \ge \frac{1}{2}$ we have

$$\frac{\|E_L\|_2}{\sqrt{m}\gamma_m\|r\|_{\infty}} = O(1), \frac{\|S_{12}\|_2}{\|E_L\|_2} = \Omega\left(\frac{n^{\nu - \frac{\beta}{2}}}{\log n}\right), \frac{\|S_2\|_2}{\|E_L\|_2} = \Omega\left(\frac{n^{\nu}}{\log n} \frac{\|(z \circ r)^T \sigma'_{\perp}(XW^T)\|_2}{\|\sigma'_{\perp}(XW^T)\|_2}\right). \tag{8}$$

Proof. This proof is exactly the same as Theorem 3.1. In particular, we note that

$$E_L = E + S_1$$

Except we use the following upper bounds. We have already bounded S_1 , in the following we bound E.

Data Spike: The operator norm is

$$||S_2||_2 = \frac{\gamma_m n^{\nu}}{n} ||z^T((ra^T) \circ \sigma'_{\perp}(XW^T))||_2.$$

Using Lemma A.8 and Assumption 3 that $a_i \sim \text{Unif}(\pm 1)$, we have the upper bound

$$||z^{T}((ra^{T}) \circ \sigma'_{\perp}(XW^{T}))||_{2} \lesssim ||z||_{2} ||r||_{\infty} ||a||_{\infty} ||\sigma'_{\perp}(XW^{T}))||_{2}$$
$$\lesssim ||z||_{2} ||r||_{\infty} ||\sigma'_{\perp}(XW^{T}))||_{2}.$$

Then with probability 1 - o(1), since $z \sim \mathcal{N}(0, I)$, we have that $||z||_2 \lesssim C\sqrt{n}$. Hence we get that

$$||z^T((ra^T) \circ \sigma'_{\perp}(XW^T))||_2 \lesssim C||r||_{\infty} ||\sigma'_{\perp}(XW^T))||_2 \sqrt{n}.$$

Then since we have Assumption 4, we can bound the norm $\|\sigma'_{\perp}(XW^T)\|_2$ by O(n)

$$||z^T((ra^T) \circ \sigma'_{\perp}(XW^T))||_2 \lesssim C||r||_{\infty}\sqrt{n}n$$

Thus, we get that

$$||S_2||_2 \lesssim C\sqrt{m}\,\gamma_m\,||r||_\infty\,n^\nu,$$

where we used the proportional scaling of n and m, Assumption 1, in the second line.

Error Term: Recall $E=\frac{\gamma_m}{n}X_B^T((ra^T)\circ\sigma'_\perp(XW^T))$. Using Lemma A.8, we have that $\frac{n}{\gamma_m}\|E\|_2\lesssim \|X_B\|_2\|r\|_\infty\|a\|_\infty\|\sigma'_\perp(XW^T)\|_2.$

Then using Assumption 2, whereby the rows of X_B are iid from $\mathcal{N}(0,\hat{\Sigma})$, we have with probability 1-o(1) that

$$||X_B||_2 \lesssim C\sqrt{n}$$

and using Assumption 3, we trivially have that

$$||a||_{\infty} = 1.$$

Thus, we have that

$$\frac{n}{\gamma_m} \|E\|_2 \lesssim C\sqrt{n} \|r\|_{\infty} \|\sigma'_{\perp}(XW^T)\|_2.$$

Then

$$\|\sigma'_{\perp}(XW^T)\|_2 \le O(n).$$

Since $\|\Sigma^{1/2}\| = n^{\nu}$, we get the result in the proportional scaling of Assumption 1.

A.2.2 Helper Results: Subgaussianity and Concentration

Lemma A.5. Let $Z \in \mathbb{R}^{n \times d}$ be a matrix with standard normal IID entries. If n < d, then as $n/d \to c \in (0,1)$, we have that with probability 1, the eigenvalues of $\frac{1}{d}ZZ^T$ are $\Theta(1)$. Further,

$$\sigma_{\min}(Z) = \Theta(\sqrt{d} - \sqrt{n}), \quad \sigma_{\max}(Z) = \Theta(\sqrt{d} + \sqrt{n}).$$

Proof. As $\frac{1}{d}ZZ^T$ is a Wishart matrix, the limiting empirical spectral distribution almost surely weakly converges to the Marchenko-Pastur distribution supported on $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$.

Lemma A.6. Let $X_B \in \mathbb{R}^{n \times d}$ have IID rows from $\mathcal{N}(0, \hat{\Sigma})$, where $\lambda_k(\hat{\Sigma}) \sim k^{-\alpha}$ as per Assumption 2. Then with probability $1 - 2\exp(-cn)$ for positive universal constants c, we have that

$$\Omega\left(n^{\frac{1-\alpha}{2}}\right) \le \|X_B\|_2 \le O\left(n^{\frac{1}{2}}\right)$$

Proof. We can write $X_B = \hat{\Sigma}^{1/2}Z$ where $Z \in \mathbb{R}^{n \times d}$ has IID standard normal entries. Using Lemma A.5, we have that in the proportional regime (Assumption 1), $\|Z\|_2 = \Theta(\sqrt{n})$. The result follows using the fact that

$$\sigma_{\min}(\hat{\Sigma}^{1/2}) \|Z\|_2 \le \|X_B\|_2 = \|\hat{\Sigma}^{1/2} Z\|_2 \le \sigma_{\max}(\hat{\Sigma}^{1/2}) \|Z\|_2,$$

and noting that

$$\sigma_{\min}(\Sigma^{1/2}) = \Theta(n^{-\alpha/2}) \text{ and } \sigma_{\max}(\Sigma^{1/2}) = \Theta(1).$$

Lemma A.7. Let W be a given fixed matrix indepedent of X. If Assumption 4 is satisfied and σ is C^2 , then we have with probability $1 - C \exp(-cn)$ for positive universal constants c, C, that

$$\|\sigma'_{\perp}(XW^T)\|_2 \lesssim C' \min\left(n, \sqrt{n} \|W\Sigma^{1/2}\|_2\right).$$

for some constant C' > 0. Here $\Sigma = \hat{\Sigma} + \zeta^2 q q^T$ is the full data covariance from Assumption 2.

Proof. Since σ is L-Lipschitz (Assumption 4), its derivative σ' is bounded by L. As $\mu = \mathbb{E}_x[\sigma'(Wx)]$, the centered term $\sigma'_{\perp}(XW^T) = \sigma'(XW^T) - \mathbf{1}_n\mu^T$ has entries bounded by some M (e.g., M = 2L). Thus, using the relation between operator and Frobenius norms:

$$\|\boldsymbol{\sigma}_{\perp}'(\boldsymbol{X}\boldsymbol{W}^T)\|_2^2 \leq \|\boldsymbol{\sigma}_{\perp}'(\boldsymbol{X}\boldsymbol{W}^T)\|_F^2 \leq Mnm.$$

Thus, we have that in the proportional regime

$$\|\sigma'_{\perp}(XW^T)\|_2 = O(n).$$

On the other hand, $\sigma'_{\perp}(XW^T)$ represents mean-centered features and is Lipschitz, using Corollary A.2, with probability $1-C\exp(-cn)$, we have that

$$\|\sigma'_{\perp}(XW^T)\|_2 = O\left(\sqrt{n}\|W\Sigma^{1/2}\|_2\right).$$

The overall bound follows by taking the minimum of the two derived bounds.

Lemma A.8. For any vectors u, v and matrix A, we have that

$$\min_{i} |u_i| \min_{j} |v_j| ||A||_2 \le ||(uv^T) \circ A||_2 \le ||u||_{\infty} ||v||_{\infty} ||A||_2.$$

Proof. This follows from the observation that

$$(uv^T) \circ A = \operatorname{diag}(u) A \operatorname{diag}(v),$$

where diag(u) is the diagonal matrix with u in the diagonal. Then using the fact that

$$\sigma_{\min}(B) ||A||_2 \le ||AB||_2 \le \sigma_{\max}(B) ||A||_2,$$

where σ_{\min} is allowed to be zero and noticing that

$$\sigma_{\max}(\operatorname{diag}(u)) = \|u\|_{\infty} \quad \text{and} \quad \sigma_{\min}(\operatorname{diag}(u)) = \min_{i} |u_{i}|.$$

The bounds follow from applying the matrix norm inequality twice.

Lemma A.9 (Sub-Gaussianity). For $x \sim \mathcal{N}(0, \Sigma)$, a fixed vector $w \in \mathbb{R}^d$, and an \mathcal{L}_f -Lipschitz function $f : \mathbb{R} \to \mathbb{R}$, the random variable $f(w^T x)$ is sub-gaussian with subgaussian norm at most $C\mathcal{L}_f^2 \|w^T \Sigma^{1/2}\|_2^2$ for some constant C. Furthermore,

$$\mathbb{E}[|f(w^T x)|] = |f(0)| + O\left(\mathcal{L}_f \|w^T \Sigma^{1/2}\|_2\right) = O(1 + \mathcal{L}_f \|w^T \Sigma^{1/2}\|_2).$$

Proof. Using Lipschitzness,

$$|f(x^T w) - f(0^T w)| \le \mathcal{L}_f |x^T w - 0| = \mathcal{L}_f |x^T w|.$$

The variable $w^Tx \sim \mathcal{N}(0, \sigma_w^2)$ where $\sigma_w^2 = \|w^T\Sigma^{1/2}\|_2^2$. Thus, w^Tx is (σ_w^2) -sub-gaussian. For t > 0.

$$\Pr\left[|f(x^T w) - f(0)| \ge t\right] \le \Pr\left[\mathcal{L}_f|x^T w| \ge t\right] \le 2\exp\left(-\frac{t^2}{2\mathcal{L}_f^2 \|w^T \Sigma^{1/2}\|_2^2}\right).$$

Thus, we see that

$$\Pr[|f(x^T w)| \ge t] \le 2 \exp\left(-\frac{(t-c)^2}{2\mathcal{L}_f^2 ||w^T \Sigma^{1/2}||_2^2}\right),$$

where c = |f(0)|. For the expectations, taking expectations, we get that

$$\mathbb{E}\left[|f(x^T w) - f(0)|\right] \le \mathbb{E}\left[\mathcal{L}_f | x^T w|\right] = \mathcal{L}_f \sqrt{\frac{2}{\pi} \|w^T \Sigma^{1/2}\|_2^2}.$$

Using $|f(w^Tx)| \leq |f(w^Tx) - f(0)| + |f(0)|$ and the triangle inequality for expectations, $\mathbb{E}[|f(w^Tx)|] \leq \mathbb{E}[|f(w^Tx) - f(0)|] + |f(0)| = |f(0)| + O(\mathcal{L}_f\sigma_w)$, giving the result. \square

Lemma A.10 (Covariance Operator Norm Bound). Let $W \in \mathbb{R}^{m \times d}$ be a fixed matrix whose rows have unit norm and let $x \sim \mathcal{N}(0, \Sigma)$. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is \mathcal{L}_f Lipschitz respectively. Define the population second moment matrix

$$\Phi = \mathbb{E}_x[f(Wx)f(Wx)^T],$$

where f is applied element-wise to the vector $Wx \in \mathbb{R}^m$. Then

$$\|\Phi\|_2 \le \|\mathbb{E}_x \left[f(Wx)\right]\|_2^2 + \|W\Sigma^{1/2}\|_2^2 \mathcal{L}_f^2$$

for some universal constants C_1, C_2 .

Proof. We note that Φ is the uncentered covariance matrix. However, to bound the operator norm of Φ we need to consider the centered covariance matrix $\check{\Phi}$

$$\check{\Phi} = \underbrace{\mathbb{E}\left[f(Wx)f(Wx)^T\right]}_{\Phi} - \mathbb{E}\left[f(Wx)\right]\mathbb{E}\left[f(Wx)\right]^T$$

Then we see that

$$\begin{split} \left\| \check{\Phi} \right\|_2 &= \sup_{\|v\|=1} v^T \check{\Phi} v \\ &= \sup_{\|v\|=1} v^T \Phi v - \left(\mathbb{E} \left[v^T f(Wx) \right] \right)^2 \\ &= \sup_{\|v\|=1} \mathbb{E} \left[\left(v^T f(Wx) \right) \left(v^T f(Wx) \right)^T \right] - \left(\mathbb{E} \left[v^T f(Wx) \right] \right)^2 \\ &= \sup_{\|v\|=1} \operatorname{Var} \left(v^T f(Wx) \right) \end{split}$$

We want to bound this using the Gaussian Poincare inequality. Which we recall here (Link). Let $g: \mathbb{R}^d \to \mathbb{R}$ be a C^1 function then

$$\operatorname{Var}_{z \sim \mathcal{N}(0,I)}(g(z)) \leq \mathbb{E}_{z \sim \mathcal{N}(0,I)} \left[\left\| \nabla g(z) \right\|^2 \right]$$

Since $x \sim \mathcal{N}(0, \Sigma)$, we can write it as $x = \Sigma^{1/2}z$. Thus, define the function

$$g(z) := f(Wx) = v^T f(W\Sigma^{1/2}x) = \sum_{k=1}^m v_k f(w_k^T \Sigma^{1/2}x).$$

Let us then define

$$u = \begin{bmatrix} v_1 f' \left(w_1^T \Sigma^{1/2} x \right) & \dots & v_m f' \left(w_m^T \Sigma^{1/2} x \right) \end{bmatrix}^T$$

Then we see that

$$\nabla g(z)^{T} = \sum_{k=1}^{m} v_{k} f'\left(w_{k}^{T} \Sigma^{1/2} x\right) \left(w_{k}^{T} \Sigma^{1/2}\right) = u^{T} W \Sigma^{1/2}$$

Thus, we see that

$$\mathbb{E}_{z}\left[\|\nabla_{z}g(z)\|^{2}\right] \leq \mathbb{E}_{x}\left[\|W\Sigma^{1/2}\|_{2}^{2}\|u\|^{2}\right] \leq \|W\Sigma^{1/2}\|_{2}^{2}\mathbb{E}_{x}\left[\|u\|^{2}\right]$$

Then using Lemma A.9 and noting that f' is bounded by \mathcal{L}_f , we get that

$$\mathbb{E}_{x} \left[\sum_{k=1}^{m} u_{k}^{2} \right] = \sum_{k=1}^{m} v_{k}^{2} \mathbb{E}_{x} \left[\left(f'(w_{k}^{T} x) \right)^{2} \right]$$

$$\leq \sum_{k=1}^{m} v_{k}^{2} \mathcal{L}_{f}^{2} \qquad \leq \mathcal{L}_{f}^{2}$$

Thus, we have that

$$\mathbb{E}\left[\|\nabla g(z)\|^2\right] \leq \|W\Sigma^{1/2}\|_2^2\mathcal{L}_f^2$$

Thus, using the Gaussian Poincare inequality, we see that

$$\left\|\check{\Phi}\right\|_2 \le \|W\Sigma^{1/2}\|_2^2 \mathcal{L}_f^2$$

Thus, we see that

$$\|\Phi\|_2 \le \|\check{\Phi} - \Phi\|_2 + \|W\Sigma^{1/2}\|_2^2 \mathcal{L}_f^2$$

Finally, we see that

$$\begin{split} \left\| \check{\Phi} - \Phi \right\|_2 &= \left\| \mathbb{E} \left[f(Wx) \right] \mathbb{E} \left[f(Wx) \right]^T \right\|_2 \\ &= \left\| \mathbb{E} \left[f(Wx) \right] \right\|_2^2 \end{split}$$

Thus,

$$\|\Phi\|_2 \le \|\mathbb{E}\left[f(Wx)\right]\|_2^2 + \|W\Sigma^{1/2}\|_2^2 \cdot \mathcal{L}_f^2$$

We are going to instantiate a few corollaries for cases that we care about. Specifically, we shall $f = \sigma'_{\perp}$ as the non-linearity. In this case we have that $\mathbb{E}\left[f(Wx)\right] = 0$.

Corollary A.1. If $\mathbb{E}[f(Wx)] = 0$, we have that

$$\|\Phi\|_2 \le \|W\Sigma^{1/2}\|_2^2 \mathcal{L}_f^2.$$

We shall also need to bound the norm of the expectation. In the case, when σ is bounded, we get that the expectation

Lemma A.11 (Feature Norm Bound). Let $x_i \sim \mathcal{N}(0, \Sigma)$ be IID for $i = 1 \dots n$, forming rows of X. Let $W \in \mathbb{R}^{m \times d}$ be a fixed matrix whose rows w_j have norm $\|w_j\|_2 = 1$. Let $f : \mathbb{R} \to \mathbb{R}$ be \mathcal{L}_f -Lipschitz. Define the population second moment matrix

$$\Phi = \mathbb{E}_x[f(Wx)f(Wx)^T]$$

(as in Lemma A.10). Then with probability $1 - 2e^{-cn}$ for some universal constant c > 0,

$$\left\|\frac{1}{\sqrt{n}}f(XW^T)\right\|_2 \leq \left(1 + C'\sqrt{\frac{m}{n}}\right)\sqrt{\|\Phi\|_2}$$

for some universal constant C'.

Proof. Since x_i are IID, we have the rows of $f(XW^T) \in \mathbb{R}^{n \times m}$ are IID. Additionally, by Lemma A.9 the entries are $\mathcal{L}_f^2 \| w_i^T \Sigma^{1/2} \|_2^2$ sub-gaussian entries. Thus, we have that

$$\check{X} = \frac{1}{\mathcal{L}_f \max_{i=1...m} \|\boldsymbol{w}_i^T \boldsymbol{\Sigma}^{1/2}\|_2} f(\boldsymbol{X} \boldsymbol{W}^T)$$

has IID rows whose sub-Gaussian norm is at most a universal constant. Let

$$\check{\Phi} = \frac{1}{n} \mathbb{E} \left[\check{X}^T \check{X} \right] = \frac{1}{\mathcal{L}_f^2 \max_{i=1...m} \|w_i^T \Sigma^{1/2}\|_2^2} \Phi$$

Then using Equation 5.26 from [42], there exists universal constant C, c such that

$$\Pr\left[\left\|\frac{1}{n}\check{X}^T\check{X} - \check{\Phi}\right\|_2 \ge \max(\delta, \delta^2) \|\check{\Phi}\|_2\right] < 2e^{-ct^2}, \quad \delta = C\sqrt{\frac{m}{n}} + \frac{t}{\sqrt{n}}$$

Thus, with probability $1 - 2e^{-ct^2}$, we have that

$$\left\| \frac{1}{n} \check{X}^T \check{X} - \check{\Phi} \right\|_2 \le \max(\delta, \delta^2) \|\check{\Phi}\|_2$$

Using the reverse triangle inequality, we have that

$$\frac{1}{n} \| \check{X}^T \check{X} \|_2 \le \left\| \frac{1}{n} \check{X}^T \check{X} - \check{\Phi} \right\|_2 + \| \check{\Phi} \|_2$$

Thus, with probability at least $1 - 2e^{-ct^2}$, we have that

$$\frac{1}{n} \| \check{X}^T \check{X} \|_2 \le \| \check{\Phi} \|_2 + \max(\delta, \delta^2) \| \check{\Phi} \|_2$$

Thus, we get that

$$\frac{1}{\sqrt{n}} \|\check{X}\|_2 \leq \sqrt{\|\check{\Phi}\|_2 + \max(\delta, \delta^2) \|\check{\Phi}\|_2}$$

Multiplying both sides by $\mathcal{L}_f \max_{i=1...m} \|w_i^T \Sigma^{1/2}\|_2$, we see that

$$\left\| \frac{1}{\sqrt{n}} f(W_0 \tilde{X}^T) \right\|_{2} \leq \mathcal{L}_{f} \max_{i=1...m} \|w_i^T \Sigma^{1/2}\|_{2} (1 + C'\delta) \sqrt{\|\check{\Phi}\|_{2}}
\leq (1 + C'\delta) \sqrt{\mathcal{L}_{f}^2 \max_{i=1...m} \|w_i^T \Sigma^{1/2}\|_{2}^2 \|\check{\Phi}\|_{2}}
\leq (1 + C'\delta) \sqrt{\|\Phi\|_{2}}$$

Using $t = \sqrt{m}$, we see that with probability $1 - 2e^{-cm}$.

$$\left\| \frac{1}{\sqrt{n}} f(W_0 \tilde{X}^T) \right\|_2 \le \left(1 + C' \sqrt{\frac{m}{n}} \right) \sqrt{\|\Phi\|_2}$$

Hence, we can again instantiate some simple corollaries.

Corollary A.2. If $\mathbb{E}[f(Wx)] = 0$, we have that

$$\left\| f(W_0 \tilde{X}^T) \right\|_2 \le \mathcal{L}_f C \|W \Sigma^{1/2} \|_2 \sqrt{n}$$

Another important case, if f is uniformly bounded. This is the case, when we apply it for σ' , σ'' . Here we either have the expectation is zero. In which Corollary A.2 applies. If the mean in non-zero then we get the following.

Corollary A.3. If $|\mathbb{E}[f(z)]| = M$, we have that

$$\left\| f(W_0 \tilde{X}^T) \right\|_2 \le C \left[n + \mathcal{L}_f \| W \Sigma^{1/2} \|_2 \sqrt{n} \right].$$

A.3 ReLU Data Alignment

Lemma A.12. Let $M = uv^T$ be a non-zero rank 1 matrix, where $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Assume that all entries of u and v are non-zero, i.e., $u_i \neq 0$ for all $i = 1, \ldots, m$ and $v_j \neq 0$ for all $j = 1, \ldots, n$. Let \tilde{M} be the matrix with entries $\tilde{M}_{ij} = \delta_{u_i v_j > 0}$. Let $\hat{M} = \tilde{M} - 0.5J$, where J is the $m \times n$ matrix of all ones. Then, $rank(\hat{M}) = 1$.

Proof. Let $u', u'' \in \{0, 1\}^m$ and $v', v'' \in \{0, 1\}^n$ be indicator vectors defined as follows:

- $u'_i = \delta_{u_i > 0}$
- $u_i'' = \delta_{u_i < 0}$
- $v_i' = \delta_{v_i > 0}$
- $v_j'' = \delta_{v_j < 0}$

Since we assume $u_i \neq 0$ and $v_j \neq 0$ for all i, j, every entry in u is either positive or negative, and similarly for v. This means $1_m = u' + u''$ and $1_n = v' + v''$, where 1 denotes a vector of all ones of the appropriate dimension.

The entry $\tilde{M}_{ij} = \delta_{u_i v_j > 0}$ is 1 if and only if $(u_i > 0 \text{ and } v_j > 0)$ or $(u_i < 0 \text{ and } v_j < 0)$. This can be written as:

$$\tilde{M} = u'(v')^T + u''(v'')^T$$

The all-ones matrix J can be written as $J = 1_m 1_n^T$. Using the property that 1 = u' + u'' and 1 = v' + v'':

$$J = (u' + u'')(v' + v'')^{T}$$

= $u'(v')^{T} + u'(v'')^{T} + u''(v')^{T} + u''(v'')^{T}$

Now we compute $\hat{M} = \tilde{M} - 0.5J$:

$$\begin{split} \hat{M} &= (u'(v')^T + u''(v'')^T) - 0.5(u'(v')^T + u'(v'')^T + u''(v')^T + u''(v'')^T) \\ &= 0.5u'(v')^T + 0.5u''(v'')^T - 0.5u''(v'')^T - 0.5u''(v')^T \\ &= 0.5 \left[u'(v')^T - u'(v'')^T - u''(v')^T + u''(v'')^T \right] \\ &= 0.5 \left[u'((v')^T - (v'')^T) - u''((v')^T - (v'')^T) \right] \\ &= 0.5(u' - u'')((v')^T - (v'')^T) \\ &= 0.5(u' - u'')(v' - v'')^T \end{split}$$

Let $\operatorname{sign}(u)$ denote the vector with entries $\operatorname{sign}(u_i)$, where $\operatorname{sign}(x) = 1$ if x > 0 and $\operatorname{sign}(x) = -1$ if x < 0. Since no u_i is zero, $(u' - u'')_i = \delta_{u_i > 0} - \delta_{u_i < 0} = \operatorname{sign}(u_i)$. Similarly, $(v' - v'')_j = \operatorname{sign}(v_j)$. Thus, we have shown:

$$\hat{M} = 0.5 \cdot \text{sign}(u) \cdot \text{sign}(v)^T$$

Since $M=uv^T$ is non-zero, both u and v must be non-zero vectors. Because we assumed no zero entries, the vectors $\mathrm{sign}(u)$ (containing only ± 1) and $\mathrm{sign}(v)$ (containing only ± 1) are non-zero vectors. The matrix \hat{M} is expressed as the outer product of two non-zero vectors. Therefore, $\mathrm{rank}(\hat{M})=1$.

Proposition 3.1 (ReLU gradient). If $2\nu > 1 - \alpha$, and the row of W are i.i.d. from the unit sphere, then with probability 1 - o(1) we have that $\sigma'_{\perp}(XW^T) = \frac{1}{2}\operatorname{sign}(z_i)\operatorname{sign}(Wq)^T$.

Proof. Recall the data decomposition $x_i = \zeta z_i q + x_{b,i}$, where the *spike direction* $q \in \mathbb{R}^d$ is unit-norm, $z_i \sim \mathcal{N}(0,1)$, the bulk component $x_{b,i}$ has spectrum exponent α , and the spike magnitude scales

as $\zeta = n^{\nu}$. Since each row w_k^T of W is uniform on \mathbb{S}^{d-1} , $||Wq||_2 \approx \sqrt{m/d}$ with high probability. Using standard concentration for random projections, with probability 1 - o(1),

$$||Wx_{b,i}||_{2}^{2} \leq C ||x_{b,i}||_{2}^{2} = C \sum_{j=1}^{d} j^{-\alpha} = \begin{cases} \Theta(d^{1-\alpha}) & \alpha < 1, \\ \Theta(\log d) & \alpha = 1, \\ O(1) & \alpha > 1. \end{cases}$$
(14)

For the spike term $\|W(\zeta z_i q)\|_2 = |z_i| \zeta \|W q\|_2 \gtrsim n^{\nu} \sqrt{\frac{m}{d}} |z_i| \geq n^{\nu}$, since $|z_i| \geq c$ with probability 1 - o(1) for some universal c > 0. Hence, whenever $2\nu > 1 - \alpha$, the spike contribution $W(\zeta z_i q)$ dominates the bulk, so that $\mathrm{sign}(W x_i) = \mathrm{sign}(W(\zeta z_i q))$. Then Lemma A.12 then implies for ReLU that

$$\sigma'_{\perp}(XW^T) = \frac{1}{2} \operatorname{sign}(z_i) \operatorname{sign}(Wq)^T.$$

B Assumption Discussion

B.1 Activation Function Properties

We verify the smoothness and lipschitzness conditions for several common activation functions.

B.1.1 Sigmoid Function

Let
$$\sigma(u) = (1 + e^{-u})^{-1}$$
.

Smoothness: The Sigmoid function is infinitely differentiable (C^{∞}) for all $u \in \mathbb{R}$.

$$\sigma'(u) = \sigma(u)(1 - \sigma(u))$$

$$\sigma''(u) = \sigma'(u)(1 - 2\sigma(u)) = \sigma(u)(1 - \sigma(u))(1 - 2\sigma(u))$$

Both $\sigma'(u)$ and $\sigma''(u)$ exist for all $u \in \mathbb{R}$.

Lipschitzness: Since Sigmoid is bounded and all derivatives of the sigmoid can be written as a polynomial of sigmoid, we see that the derivatives are bounded and hence lipschitz.

Non-Vanishing Derivative Here we show that if the weight vector w_j is drawn uniformly from the unit sphere \mathbb{S}^{d-1} , then the expected derivative $\mu_j = \mathbb{E}_x[\sigma'(w_j^T x)]$ is $\Omega(1)$ when $\nu < 1/2$.

The derivative $\sigma'(u) = \sigma(u)(1-\sigma(u))$ is bounded. We can see that the argument $u_j = w_j^T x$ is Gaussian $N(0,\sigma_{u_j}^2)$, with variance $\sigma_{u_j}^2 = w_j^T \hat{\Sigma} w_j + n^{2\nu} (w_j^T q)^2$. Then the behavior of μ_j is such that if $\sigma_{u_j}^2 = O(1)$, then $\mu_j = \Omega(1)$. Specifically, if $\sigma_{u_j}^2 \to 0$, then $\mu_j \to \sigma'(0) = 0.25$. If $\sigma_{u_j}^2 \to \infty$, then $\mu_j \to 0$.

Spike Contribution $V_S = n^{2\nu} (w_j^T q)^2$: For a fixed $q \in \mathbb{S}^{d-1}$ and random $w_j \in \mathbb{S}^{d-1}$, the term $(w_j^T q)^2$ concentrates around its mean $\mathbb{E}[(w_j^T q)^2] = 1/d$. With high probability for large d, $(w_j^T q)^2 = \Theta(1/d)$. Then in proportional regime, we have that, $V_S = n^{2\nu} \cdot \Theta(1/n) = \Theta(n^{2\nu-1})$. Since $\nu < 1/2$, $2\nu - 1 < 0$, so $V_S = o(1)$ as $n \to \infty$.

Bulk Contribution $V_B = w_j^T \hat{\Sigma} w_j$: For random $w_j \in \mathbb{S}^{d-1}$, $w_j^T \hat{\Sigma} w_j$ concentrates around $\mathbb{E}[w_j^T \hat{\Sigma} w_j] = \frac{1}{d} \mathrm{Tr}(\hat{\Sigma})$. The eigenvalues $\lambda_k(\hat{\Sigma}) \sim k^{-\alpha}$.

- If $\alpha = 0$: $\operatorname{Tr}(\hat{\Sigma}) = \Theta(d)$, so $V_B = \Theta(1)$.
- If $0 < \alpha < 1$: $\operatorname{Tr}(\hat{\Sigma}) = \Theta(d^{1-\alpha})$, so $V_B = \Theta(d^{-\alpha}) = \Theta(n^{-\alpha}) = o(1)$.
- If $\alpha = 1$: $\operatorname{Tr}(\hat{\Sigma}) = \Theta(\log d)$, so $V_B = \Theta((\log d)/d) = \Theta((\log n)/n) = o(1)$.
- If $\alpha > 1$: $\operatorname{Tr}(\hat{\Sigma}) = \Theta(1)$, so $V_B = \Theta(1/d) = \Theta(1/n) = o(1)$.

Thus, V_B is either $\Theta(1)$ (for $\alpha = 0$) or o(1) (for $\alpha > 0$).

B.1.2 Hyperbolic Tangent (Tanh) Function

Let $\sigma(u) = \tanh(u)$.

Smoothness: The Tanh function is C^{∞} for all $u \in \mathbb{R}$.

$$\sigma'(u) = 1 - \tanh^2(u) = \operatorname{sech}^2(u)$$

$$\sigma''(u) = -2 \tanh(u) \operatorname{sech}^2(u)$$

Both $\sigma'(u)$ and $\sigma''(u)$ exist for all $u \in \mathbb{R}$.

Lipschitzness:

- For $\sigma(u)$: max $|\sigma'(u)| = \sigma'(0) = 1$. Thus, $\sigma(u)$ is 1-Lipschitz.
- For $\sigma'(u)$: $\max |\sigma''(u)|$ occurs at $u = \operatorname{arctanh}(\pm 1/\sqrt{3})$, giving $|\sigma''(u)| = \frac{4}{3\sqrt{3}} \approx 0.7698$. Thus, $\sigma'(u)$ is Lipschitz with $L \approx 0.77$ (or L = 1 as a looser bound).

L=2 serves as a common upper bound.

Non-vanishing Derivative: Let $\sigma(u) = \tanh(u)$. Its derivative is $\sigma'(u) = \mathrm{sech}^2(u)$. This derivative is always positive, $0 < \sigma'(u) \le 1$, with a maximum of $\sigma'(0) = 1$, and $\sigma'(u) \to 0$ as $|u| \to \infty$. The analysis of the expected derivative $\mu_j = \mathbb{E}_x[\sigma'(w_j^T x)]$ parallels that of the Sigmoid function.

B.1.3 Rectified Linear Unit (ReLU) Function

Let $\sigma(u) = \max(0, u)$.

Smoothness: Here we see that the derivatives for $u \neq 0$ are as follows

$$\sigma'(u) = \begin{cases} 0 & \text{if } u < 0 \\ 1 & \text{if } u > 0 \end{cases}, \qquad \sigma''(u) = 0 \quad \text{for } u \neq 0$$

Lipschitzness:

- For $\sigma(u)$: $|\sigma'(u)| \le 1$ a.e. Thus, $\sigma(u)$ is 1-Lipschitz.
- For $\sigma'(u)$: $\sigma'(u)$ is a step function. It is bounded, but not Lipschitz over \mathbb{R} due to the discontinuity at u=0. However, its values are 0 or 1.

Non-vanishing Derivative: Since Wx is symmetric, we get that the mean is 0.5.

B.1.4 Exponential Linear Unit (ELU) Function

Let
$$\sigma(u) = \begin{cases} u & \text{if } u > 0 \\ e^u - 1 & \text{if } u \le 0 \end{cases}$$
.

Smoothness: The derivatives are as follows

$$\sigma'(u) = \begin{cases} 1 & \text{if } u > 0 \\ e^u & \text{if } u \le 0 \end{cases} \qquad \sigma''(u) = \begin{cases} 0 & \text{if } u > 0 \\ e^u & \text{if } u < 0 \end{cases}$$

Here we have that σ' is continuous, and σ'' is defined everywhere except for 0.

Lipschitzness:

- For $\sigma(u)$: For u > 0, $\sigma'(u) = 1$. For $u \le 0$, $\sigma'(u) = e^u \in (0,1]$. Thus $|\sigma'(u)| \le 1$. So $\sigma(u)$ is 1-Lipschitz.
- For $\sigma'(u)$: For u > 0, $\sigma''(u) = 0$. For u < 0, $\sigma''(u) = e^u \in (0,1)$. On [-1,1], the function is continuous. Hence lipschitz. Thus, we have global lipschitzness.

Non-vanishing Derivative: The derivative dominates the ReLU case. Hence μ_i is at least 0.5.

B.1.5 Swish Function

Let $\sigma(u) = u \cdot \text{sigmoid}(u) = u(1 + e^{-u})^{-1}$.

Smoothness: This follows from smoothness of Sigmoid.

Lipschitzness: Let $S(u) = \text{sigmoid}(u) = (1 + e^{-u})^{-1}$. Then $\sigma(u) = uS(u)$.

• For $\sigma(u)$: The first derivative is:

$$\sigma'(u) = S(u) + uS'(u) = S(u) + uS(u)(1 - S(u))$$

This is a continuous function that decays to zero. Hence is bounded.

• For $\sigma'(u)$: The second derivative of $\sigma(u)$ is:

$$\sigma''(u) = \frac{d}{du}(S(u) + uS'(u)) = S'(u) + (S'(u) + uS''(u))$$
$$= 2S'(u) + uS''(u)$$

This is a continuous function that decays to zero. Hence is bounded.

• For $\sigma''(u)$: The third derivative of $\sigma(u)$ is:

$$\sigma'''(u) = \frac{d}{du}(2S'(u) + uS''(u)) = 2S''(u) + (S''(u) + uS'''(u))$$
$$= 3S''(u) + uS'''(u)$$

This is a continuous function that decays to zero. Hence is bounded.

Therefore, $\sigma(u)$, $\sigma'(u)$, and $\sigma''(u)$ are all Lipschitz for Swish with $\beta = 1$.

Non-vanishing Derivative: The expected derivative μ_i is:

$$\mu_j = \mathbb{E}[\sigma'(u_j)] = \mathbb{E}[S(u_j) + u_j S'(u_j)]$$
$$= \mathbb{E}[S(u_j)] + \mathbb{E}[u_j S'(u_j)]$$

We evaluate each term:

For $\mathbb{E}[S(u_j)]$: The function g(u) = S(u) - 1/2 is an odd function. Since $u_j \sim N(0, \sigma_{u_j}^2)$ has a probability density function symmetric about 0, the expectation of any odd function of u_j is 0. Thus, $\mathbb{E}[S(u_j) - 1/2] = 0$, which implies $\mathbb{E}[S(u_j)] = 1/2$.

For $\mathbb{E}[u_jS'(u_j)]$: The derivative of sigmoid, S'(u) = S(u)(1-S(u)), is an even function: S'(-u) = S(-u)(1-S(-u)) = (1-S(u))S(u) = S'(u). The product h(u) = uS'(u) is an odd function, being the product of an odd function (u) and an even function (S'(u)). Since $u_j \sim N(0, \sigma_{u_j}^2)$ has a symmetric PDF about 0, $\mathbb{E}[u_jS'(u_j)] = 0$.

Combining these results:

$$\mu_i = 1/2 + 0 = 1/2$$

The value 1/2 is a positive constant, independent of other parameters such as d, n, m, ν, α , or the specifics of Σ (provided it is positive definite) and w_j (provided $w_j \in \mathcal{S}^{d-1}$).

B.1.6 Softplus Function

Let
$$\sigma(u) = \log(1 + e^u)$$
.

Smoothness: The Softplus function is C^{∞} for all $u \in \mathbb{R}$.

$$\begin{split} \sigma'(u) &= \frac{e^u}{1+e^u} = \operatorname{sigmoid}(u) \\ \sigma''(u) &= \frac{e^u}{(1+e^u)^2} = \operatorname{sigmoid}(u)(1-\operatorname{sigmoid}(u)) \end{split}$$

Both $\sigma'(u)$ and $\sigma''(u)$ exist for all $u \in \mathbb{R}$.

Lipschitzness: The lipschitzness follows from the boundedness and lipschitzness of sigmoid.

Non-vanishing Derivative: Following the argument presented for the Swish activation function, the mean is 0.5.

B.2 Loss Function Derivatives

Let us see what this is for some common loss functions.

• For the Mean Squared Error (MSE) loss,

$$L(f(X)) = \frac{1}{2} ||f(X) - y||^2 = \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$
 and $L'(f(x)) = f(x) - y$.

• For the Binary Cross Entropy (BCE) loss, we assume the network produces logits $z = f(X) \in \mathbb{R}^n$ with associated class-one probabilities $p = \operatorname{sigmoid}(z) = \frac{1}{1+e^{-z}} \in \mathbb{R}^n$ computed component wise. Then, for given output data $y \in \{0,1\}^n$,

$$L(f(X)) = -\sum_{i=1}^{n} \left[y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i) \right], \quad L'(f(X)) = p - y = \text{sigmoid}(f(X)) - y.$$

• For the Hinge loss for binary classification with output data $y \in \{-1,1\}^n$, $f(X) \in \mathbb{R}^n$ and

$$L(f(X)) = \sum_{i=1}^{n} \max(0, 1 - y_i f(x_i)).$$

Then L'(f(X)) is the vector whose ith entry is given by the subgradient

$$\frac{\partial L}{\partial f(x_i)} = \begin{cases} 0, & \text{if } y_i f(x_i) \ge 1, \\ -y_i, & \text{if } y_i f(x_i) < 1. \end{cases}$$

B.3 Residue Concentration

- 1. Suppose the training labels satisfy $y_i = f_*(\mathbf{x}_i) + \xi_i$, where f_* is Lipschitz and ξ_i are i.i.d. subgaussian random variables. Then, for independent W and X, lipschitz activation functions and for either the MSE or Binary Cross Entropy (BCE) loss the residues are subgaussian variables and satisfy this assumption.
- 2. For binary classification with the hinge loss, then since $a_i \sim \text{Unif}(\pm 1)$ we have with probability 1 o(1) that at least a constant fraction of the data points satisfy $1 y_i f(x_i) \geq 0$, and therefore $r_i = \pm 1$. As a result the assumption holds at initialization.

B.4 β Alignment

Here we consider Sigmoid, ReLU, Tanh, ELU, Softplus, and Swish activation functions. For each activation function, we consider three different loss functions - MSE, BCE, and Hinge. Then for for each activation and loss function combination, we consider $(\nu,\alpha)\in\{1/8,3/8,5/8\}\times\{0,1/2\}.$ This gives us 96 scenarios. We do each each scenario for the Mean Field and NTK scalings. For each scenario we let $\psi_1=0.75$ and $\psi_2=1.25.$ We consider $n\in\{750,1500,2250,3000,3750\}.$ We use triple index targets

$$f(x) = \operatorname{sigmoid}(\beta_1^T x) + \tanh(\beta_2^T x) + \operatorname{relu}(\beta_3^T x)$$

for three unit vectors $\beta_1, \beta_2, \beta_3$. For each value we do 50 trials to get the mean inner product $|\frac{1}{\sqrt{n}||r||}z^Tr|$. Then we then estimate beta using linear regression.

Figure 9, presents the estimates β s. Here we see that β has a mode around 1. Recall if z_1, z_2 are independent uniformly unit norm vectors. Then $z_1^T z_2 \sim d^{-1}$. Figure 9, however, that many β s are bigger than 1. This suggest z, r are rapidly becoming orthogonal. Note that negative β s are cases, where the alignment improves, so z, r are becoming parallel. Eventually, the inner product will saturate at 1 and β should be close to zero. The reason we get negative β s is due to the limited range of n used for the experiments.

C Empirical Details

All code for the experiments can be found at Link.

The following details are common for all experiments.

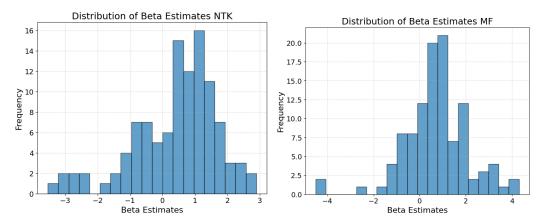


Figure 9: Estimated β values

Hardware: All experiments were run on Google Colab using an A100.

Data X: We sampled q uniformly randomly from the unit sphere and we used a diagonal Σ .

 μ Estimation: We estimate μ using 10000 samples.

Targets: The triple index model we used is as follows.

$$f(x) = \operatorname{sigmod}(\beta_1^T x) + \tanh(\beta_2^T x) + \operatorname{relu}(\beta_3^T x)$$

For three unit vectors $\beta_1, \beta_2, \beta_3$.

When using MSE loss, we let

$$y = f(x) + \varepsilon$$

for standard gaussian noise ε .

When using BCE loss, we use

$$y = f(x)$$
.

Note that these y are not necessarily in [0,1]. However, the BCE loss is still well defined.

When using Hinge loss,

$$y = sign(f(x) - 0.5).$$

Note this dataset can be imbalanced.

Alignment determination: To plot the red and blue lines in Figures 1,2,3,7,8, we use the following procedure. We let $B = S_1 + S_{12} + S_2$ (+ S_3 for the gradient penalty). Then we compute its leading left singular vectors for B. We then check if with q and $X_B^T r$. Thus, how we get the associated singular value and we plot the corresponding lines.

C.1 Figure 1

For non-isotropic W, we generate W_S by sampling the rows i.i.d. from the unit sphere. We then introduce anisotropy, by adding $n^{-1/4}\mathbf{1}q^T$ to W_S and then renormalizing to unit norm. This results in the weight concentrating around q.

C.2 Figure 3

For Figure (b), we generate W_S by sampling the rows i.i.d. from the unit sphere. We then introduce anisotropy, by adding $n^{1/2}\mathbf{1}q^T$ to W_S and then renormalizing to unit norm. This results in the weight concentrating around q.

For Figure (c), we generate W_S by sampling the rows i.i.d. from the unit sphere. Then we project onto the ortho-complement of q and renormalize the rows.

For Figure (d), we generate W_S by sampling the rows i.i.d. from the unit sphere. We then let $W = W_S X^T X$ and renormalize the rows. This results in a W that is highly dependent on X.

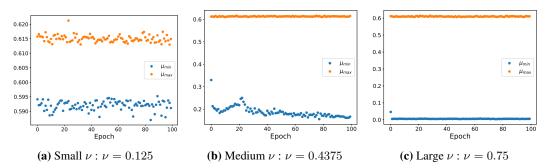


Figure 10: Evolution of μ_{\min} and μ_{max} during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, $\alpha = 0$.

C.3 Figure 4

Here we use $\zeta = 0$, $\alpha = 0$. Hence applies for prior work from [3, 28].

We let $n \in \{100, 200, 300, 400, 500, 600, 700, 800\}$ and use d = n/2 and m = n/3.

C.4 Later in Training Experiments

Here both network are initialized with the same weight matrix for both the inner and outer layers.

We use a step size of $\eta = \gamma_m^{-1}$. Additionally, after each iteration, we re-normalize the rows of W to have unit norm.

For Figure 5(c), the mean principal angle in the following quantity. Given orthonormal basis u_1, \ldots, u_k and v_1, \ldots, v_k for two subspaces, we form the matrix A via

$$A_{ij} = u_i^T v_j$$

We the compute $\cos(\sigma_i(A))$. These are the principal angles between the subspaces. We then report the mean of angels.

C.5 Real Data Experiments

MNIST Dataset: We load the standard MNIST dataset, divide by 256 to have all entries in [0,1]. We use 1000 centered and flattened MNIST images to form $X \in \mathbb{R}^{1000 \times 784}$. We estimate $\nu \approx 0.784 > 1/2$. The data is highly ill-conditioned, suggesting a large effective α .

CIFAR Dataset: We use n=1000 CIFAR-10 training images, processed through a pretrained ResNet-18 (on ImageNet) to extract 512-dimensional penultimate-layer activations, forming $X \in \mathbb{R}^{1000 \times 512}$. We estimate $\nu \approx 0.3572 < 1/2$ and $\alpha \approx 0.6$.

Spcifically, the code for the transformations are as follows.

resnet18(weights=ResNet18_Weights.DEFAULT)

D Later in Training

For Theorem 3.1 and Theorem 3.2 to apply beyond initialization, during training we require certain assumptions to hold. We begin by considering the common assumptions needed for both theorems.

- 1. Assumption 1 concerns the proportional regime and hence holds during training.
- 2. Assumption 2 concerns the data generation process and hence also holds during training.

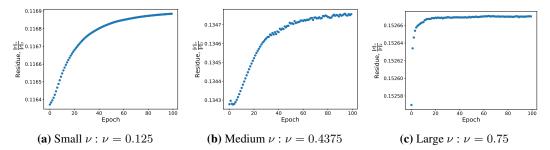


Figure 11: Evolution of $||r||_{\infty}/||r||_2$ during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, $\alpha = 0$.

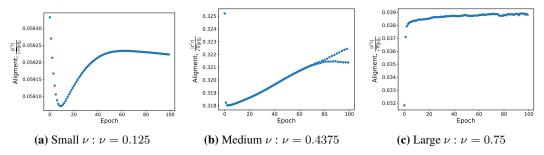


Figure 12: Evolution of $|z^T r/(\sqrt{n}||r||_2)$ during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, $\alpha = 0$.

- 3. Assumption 3 concerns the network initialization, and scaling, hence the assumptions on a and γ_m continue to hold during training. Moreover, through the use of weight normalization the assumption that the rows of W are on the unit sphere also holds.
- 4. Assumption 4 concerns the activation function, namely its smoothness and Lipschitzness which of course also hold during training. However, it is not clear that the assumption on the non-vanishing gradient is satisfied. Despite this, we empirically verify as per Figure 10 that it does hold during training at least for small ν . For moderate $\nu=7/16$ we observe that μ_{min} appears to decrease, hence later in training this assumption may be violated. For large $\nu=3/4$,the assumption only appears to hold for the first iteration. We remark that this results in the suppression of S_1 and S_{12} but does not effect S_2 or E. As a result, we suspect that the data spike q remains dominant.
- 5. Assumption 5. This is the assumption that

$$\frac{\|r\|_{\infty}}{\|r\|_2} = O\left(\frac{\log n}{\sqrt{n}}\right).$$

Figure 11 shows that while this ratio grows, the change is very small. Hence, we believe that this assumptions holds.

6. Assumption 6. This is about the alignment between z and r. Figure 12 shows that while this ratio grows, the change is very small. Hence, we believe that this assumptions holds.

For the additional assumptions required for Theorem 3.1, clearly if the activation is C^2 at initialization then it is also C^2 throughout training. Finally, although clearly the independence of W_t and X is violated, due to the near constant gradient direction, (at least for the MF scaling) the correlation between W and X remains small.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction are about general conditions under which we see low rank gradients. Our theorems and experiments reflect these claims.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper exactly defines the scope of the work and presents results within that scope. Additionally, we have experimental evidence for the phenomena holding beyond our theoretical setting.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All of the assumptions are very carefully listed and the detailed proofs are presented

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are presented. The code is also available

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code and data are publicaly available

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All experimtnal details are presented

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: None of the experiments require errorbars. Most experiments are single runs. For experiments that are averaged over many trials, we report the number of trials.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: All experiments were on Google Colab with an A100.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducts conforms with the NeurIPS Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This is a theory paper exploring theoretical aspects of spectrum of the gradient. There are no societal impacts.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such threats

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: No existing assets were used.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The code used to run the experiments is provided at an anonymize github Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects involved

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects involved

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We only used an LLM to help write the paper

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.