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Abstract

This paper investigates low-rank structure in the gradients of the training loss
for two-layer neural networks while relaxing the usual isotropy assumptions on
the training data and parameters. We consider a spiked data model in which the
bulk can be anisotropic and ill-conditioned, we do not require independent data
and weight matrices and we also analyze both the mean-field and neural-tangent-
kernel scalings. We show that the gradient with respect to the input weights is
approximately low rank and is dominated by two rank-one terms: one aligned
with the bulk data-residue, and another aligned with the rank one spike in the
input data. We characterize how properties of the training data, the scaling regime
and the activation function govern the balance between these two components.
Additionally, we also demonstrate that standard regularizers, such as weight decay,
input noise and Jacobian penalties, also selectively modulate these components.
Experiments on synthetic and real data corroborate our theoretical predictions.

1 Introduction

Feature learning is a critical driver behind the success of deep learning. Despite this, a theoretical
characterization of it remains elusive. In order to drive understanding, a line of research [3, 12–
14, 28, 45] has emerged studying two-layer networks whose inner weights are trained or updated
via one step of gradient descent. In this context, feature learning can be characterized through the
emergence of a low-rank structure in the network weights. In particular, when the weights of many of
the neurons align in a predominant direction, the matrix of weights becomes approximately low rank.
Moreover, Ba et al. [3] proved that a ridge estimator trained on such features can outperform random
feature models and other kernel methods. However, these prior investigations require idealized
conditions, for example isotropic data or weights, which diverge from real-world scenarios where data
typically exhibits anisotropy or an ill-conditioned covariance. In addition, the effects of regularization
in this context have also been underexplored.

This paper addresses two questions: 1) how do low-rank gradient phenomena arise and behave
under more general conditions of anisotropy and ill-conditioning? and 2) what impact do common
regularizers have on feature learning in this context? Our analysis accommodates spiked data with
an anisotropic ill-conditioned bulk. This allows us to explore the effect of the size of the data spike,
controlled by a parameter ν ≥ 0, as well as spectral decay profiles of the bulk, controlled by a
parameter α ≥ 0. Our central finding is that the gradient of the inner-layer weights is generically
well approximated by a rank-two matrix. This structure arises from the interplay of two primary
rank-one components: S1, driven by the input bulk and target residue, and S2, driven by the leading
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eigenvector of the data covariance. The relative prominence of these components, and consequently
the direction of feature learning, is determined by the interplay of data properties, the scale of the
network parametrization, the choice of loss and activation function as well as the use of regularization.
We corroborate our theoretical findings with experiments on both synthetic data (Sections 3, 3.2
and 4) and real data (MNIST, CIFAR-10 embeddings).2 A summary of our key contributions is:

• Generalized Theory of Low-Rank Gradients: We provide a theoretical framework (Section 3,
Theorems 3.1 and 3.2) characterizing the low-rank structure of the gradient under significantly
relaxed assumptions on data and weight matrices (anisotropy, ill-conditioning; Section 2).

• Identification of a Dominant Rank-Two Structure: We show (Theorems 3.1 and 3.2) that the
gradient is often better approximated by a rank-two matrix than the rank-one structures identified in
prior specialized settings. We provide conditions under which each of these components dominates.

• Modulation by Activation Function and Regularization: We show how activation functions and
common regularizers selectively modulate the components of the gradient. We reveal that ReLU
can suppress the contribution from the residue S1 (Section 3.2), while input noise and a Jacobian
penalty can promote the residue component and data spike component (Section 4) respectively.

• Mean Field (MF) versus Neural Tangent Kernel (NTK) scaling: We demonstrate differences in
dominant spike alignments, S1 ∼ XT

By in MF vs. S1 ∼ XT
Br in NTK, at initialization (Section 3)

and the subsequent impact during training.

1.1 Related work

Low rank gradients in two layer networks: For a Mean Field (MF) like regime, prior work has
shown that the gradient is approximately rank one [3, 13], which results in an alignment between the
leading eigenvector of the hidden feature kernel with the target [45]. Dandi et al. [14] showed that to
learn k directions, as opposed to a single direction, we need high sample complexity (n = Ω(dk)).
Under an NTK scaling Moniri et al. [28] showed that a learning rate which grows with the sample
size introduces multiple rank-one components in the hidden feature kernel. However, these results
rely on well-conditioned input data and weight matrices. To ameliorate this issue a number of works
have also incorporated ill-conditioning via a spiked covariance models (N (0, I + nνqqT )) with
single-index targets (σ∗(⟨β∗, x⟩)) [4, 29]. , Ba et al. [4] found dominant rank-one gradients aligned
with the data spike q (if aligned with the target β∗ and ν > 1/2), enabling efficient learning, whereas
Mousavi-Hosseini et al. [29] showed that gradient flow might yield weights nearly orthogonal to q,
even under seemingly favorable conditions (ν = 1, β∗ = q). Our work continues this line of research,
providing results for more general anisotropic and ill-conditioned data and weight matrices as well
the effects of regularization.

Understanding the spectral evolution of the network’s weight and features matrices, particularly the
‘bulk’ components beyond dominant spikes, remains challenging. While significant progress has been
made in characterizing spectra at initialization [1, 6, 16, 19, 30, 32, 34, 44] and after a single step of
gradient descent [12], the dynamics over longer timescales are complex.

Convergence to low-rank weights: While our analysis focuses on the gradient updates that drive
learning, related studies investigate the implicit bias of gradient-based optimization towards low-rank
solutions [17, 21, 27, 33, 41]. Our findings complement this body of work by characterizing the
generically dominant rank-two structure within the gradient updates themselves, providing insight
into the mechanisms potentially driving this convergence.

2 Setup and Assumptions

In this section, we provide the technical details required for analysis. A summary of notation and
discussion of examples of when the assumptions hold can be found in Table 1 and Appendix B. We
consider shallow networks with d input dimensions, m hidden neurons, and n training data points.

Assumption 1 (Proportional scaling). Let ψ1, ψ2 ∈ R>0 be fixed constants. We consider m, n as
functions of d such that n/d→ ψ1 < 1 and m/d→ ψ2 as d→∞.

Data: We consider random input data xi ∈ Rd for i ∈ [n], sampled i.i.d. These are stored row-wise
in a matrix X ∈ Rn×d. For each xi, the corresponding label is yi ∈ R, and labels stored as y ∈ Rn.

2All code is available at the anonymous Github repository: https://github.com/rsonthal/Low-Rank-Gradient
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Assumption 2 (Input features distribution). Let Σ̂ ∈ Rd×d for which there exists an α ≥ 0 such
that the k-th eigenvalue satisfies λk(Σ̂) = k−α for k = 1, . . . , d. Let q ∈ Sd−1 and define ζ = nν

for some ν ≥ 0. We assume each input data point xi is sampled i.i.d. from a multivariate Gaussian
distribution N(0,Σ), where the full covariance Σ ∈ Rd×d is given by Σ = Σ̂ + ζ2qqT .

Assumption 2 models a bulk component via Σ̂ and a spike component via q (magnitude ζ) and
allows general forms of ill-conditioning with λd(Σ̂)→ 0 if α > 0, and λ1(Σ)→∞ if ν > 0. This
generalizes typical data distribution assumptions like isotropic Gaussian (Σ = Id) or uniform on
a sphere [3, 14, 28, 31, 45], anisotropic data with a bounded condition number [15, 18], divergent
largest eigenvalue and bounded smallest eigenvalue [4, 22, 24, 29, 40], or bounded largest eigenvalue
and decaying smallest eigenvalue [5, 8, 43].

Network: We consider a two-layer neural network with input-output map f : Rd → R defined as

f(x) = γma
Tσ(Wx) ∈ R. (1)

Here, W = [w1, . . . , wm]T ∈ Rm×d is the matrix of inner (first-layer) weights, wj ∈ Rd is the
weight vector for the j-th hidden neuron and a ∈ Rm is the vector of outer (second-layer) weights.
The activation function σ : R→ R is applied element-wise to the preactivations Wx. The parameter
γm ∈ R>0 is a non-trainable scaling constant that depends on the network width m.
Assumption 3 (Network parameters). We assume the following for W,a and γm:

1. Outer weights: Elements aj are sampled i.i.d. from Uniform({−1, 1}).
2. Inner weights: Rows wj of W have unit length, wj ∈ Sd−1.
3. Scaling parameter: γm = Θ(1/

√
m) (NTK scaling) or γm = Θ(1/m) (MF scaling).

The assumption on a is standard. The assumption on W (unit-norm rows) relaxes typical literature
requirements (e.g., isotropic Gaussian or uniformly spherical wj). This allows modeling anisotropic
weights, possibly dependent on X , to analyze updates throughout training, not just at initialization.
The scaling parameter γm defines two common regimes: NTK (γm ∼ 1/

√
m) [2, 20, 23, 25],

associated with lazy training where inner weights vary little [10, 25], and MF (γm ∼ 1/m), asso-
ciated with feature learning [9, 26, 36, 39]. These scalings yield different initial output variances
(Var(f(x)) = Θ(1) in NTK vs. o(1) in MF), impacting dynamics.
Assumption 4 (Activation function). The activation function σ : R→ R satisfies:

1. Smoothness: σ′ and σ′′, first and second derivatives of σ, exist almost everywhere on R.
2. Lipschitzness: σ and σ′ are L-Lipschitz for some constant L > 0.
3. Non-trivial expected derivative: For x ∼ N(0,Σ) (per Assumption 2) and W (per Assumption 3),

let µj = Ex[σ
′(wT

j x)] (expectation over x for a given wj). We assume µj = Ω(1) for all j. Let
µ = [µ1, . . . , µm]T . We define σ′

⊥(Wx)j = σ′(wT
j x)− µj .

Common activation functions, such as Sigmoid, Tanh, ELU [11], Swish [35], Softplus, satisfy the
Smoothness and Lipschitzness. We note that the derivative of ReLU is not Lipschitz. The condition
µj = Ω(1) (non-vanishing expected derivative) is satisfied by ELU, Swish, and Softplus generically,
and for Sigmoid and Tanh as long as wT

j Σwj = O(1). See Section B.1 for more details.

Parameter update via GD: Let ℓ : R× R→ R≥0 be a function which measures the loss between
a label and a prediction. With f defined as per Equation 1, we define the loss given a dataset
(X, y) = (xi, yi)i∈[n] with respect to the inner-layer weights W as L(W ) = 1

n

∑n
i=1 ℓ(f(xi), yi) +

λR(W ). R denotes a regularization function (e.g., the 2-norm R(W ) = ∥W∥2F ), and λ ∈ R≥0

is the regularization parameter. We consider an update to W arising from one step of GD, W ←
W − η∇WL(f(X), y), where η > 0 denotes the step size. We define the residue vector as

r = [∂ℓ(f(x1), y1)/∂f(x1), . . . , ∂ℓ(f(xn), yn)/∂f(xn)]
T ∈ Rn. (2)

To motivate this terminology, consider that for the Mean Squared Error (MSE) loss, r corresponds to
the vector of residues [f(xi)− yi]i. More generally, for many losses r can typically be interpreted as
the component of the targets not captured by the predictions of the model (see Section B.2).
Proposition 2.1 (Gradient of the loss). If Assumption 4 holds and R is differentiable, then

G := ∇WTL = γmX
T
[
(raT ) ◦ σ′(XWT )

]
+ λ∇WTR(W ) ∈ Rd×m

exists for almost every W in Rm×d.
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(a) Tanh, BCE, ν = 1
8

, isotropicW .
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(c) Softplus, BCE, ν = 3
8
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Figure 1: Singular value distribution of the gradient G for varying activation, loss and ν and weight
distribution. Red, and blue lines show the singular value of S1, and S2 respectively. In (a) the rows
of W are i.i.d. uniformly random on the unit sphere, we denote this W = WS . In (b) and (c) then
W =WS + n−1/41qT , where W is then normalized. The following parameters are constant across
all experiments: α = 0, γm = 1√

m
(NTK) n = 750, d = 1000,m = 1250. The targets y are given

by a triple index model, see Appendix C. For ν < 0.25, a single residue-aligned spike is seen for
both isotropic and non-isotropic W . For ν ∈ [0.25, 0.5), the gradient is approximately rank two.

For our results to hold we require the following technical assumption on the residues.

Assumption 5 (Residue concentration). Under the proportional scaling regime (Assumption 1), with
probability 1− o(1) over the training data (X, y), the residue r satisfies

∥r∥∞
∥r∥2

= O

(
logn√
n

)
.

We emphasize that Assumption 5 is a mild condition: it ensures that no single component of the
residue vector disproportionately dominates its overall ℓ2 norm. Such a condition typically holds if
the residues ri are i.i.d. subgaussian random variables. See Appendix B.3 for more discussion.

Our analysis also depends on the alignment between the residue r and specific structural components
of the input data X . From Assumption 2 we have the following decomposition of the input features,

X = XB +XS = XB + ζzqT ∈ Rn×d, (3)

where XB has rows sampled i.i.d. from N (0, Σ̂), z ∼ N (0, I), and q is a unit vector. We note that
for sufficiently large ζ, z is approximately the principal eigenvector of XXT . One of the inputs to
our analysis will be the degree of alignment between the residue vector r and the spike component z
of the input data. The projection of the residue r onto the principal eigenvector of XXT is a natural
statistic of interest and has been considered in prior works [20, 38]. In Appendix B.4 we provide β
estimates for 192 scenarios.

Assumption 6 (Residue alignment). With probability 1− o(1),
∣∣∣ 1√

n∥r∥2
zT r

∣∣∣ = Θ(d−β/2).

3 Spiked Data Leads to a Low-Rank Gradient

In this section we analyze the role of spiked data in shaping the gradient with no explicit regularization,
λ = 0. We demonstrate that for a spiked data covariance the gradient G is either approximately rank
one or rank two, depending primarily on the size of the spike. To demonstrate this we define the
following three rank-one matrices:

Residue Spike: S1 :=
γm
n

(X⊤
Br) (a◦µ)⊤, Data Spike: S2 :=

γmζ

n
q
[
z⊤
(
(ra⊤)◦σ′

⊥(XW
⊤)
)]
,

Interpolant: S12 := γmζ
z⊤r

n
q (a◦µ)⊤.

We remark that S1 is studied in [3] and S2 is analogous to the gradient update in [4]. The matrix S12

interpolates between the two: in particular, S12 and S1 have the same right singular vector and S12

and S2 have the same left singular vector. Hence S1 + S12 and S12 + S2 are both rank one.
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(d) Softplus

Figure 2: ReLU suppresses the residue spike (S1) compared to smooth activations. Fixed parameters:
ν = 1/8, α = 5/9, n = 750, d = 1000, and m = 1250.

3.1 Small-to-Moderate Spike (ν ∈ [0, 0.5)): C2 Activations

The key contribution of this section is Theorem 3.1, which characterizes the approximate low
rank structure of the gradient for small-to-moderate spike sizes. We also note that Theorem 3.1
generalizes [3, Proposition 2] by covering a broader range of covariance structures, loss functions
and initialization scalings3. In the small spike setting, ν ∈ [0, 1/4), the gradient is approximately
rank one and aligns with the residue plus interpolant S1 + S12. By contrast, in the moderate spike
setting, ν ∈ [1/4, 1/2), the gradient becomes rank two. We empirically verify these our theoretical
results (Figures 1) across a range of activation and loss functions under the NTK scaling.
Theorem 3.1 (Gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and W
are independent, and σ is a C2 function. Define E = G− S1 − S12 − S2. Then, for all ν, α ∈ R≥0,

∥G− S1 − S12∥2√
mγm∥r∥∞

= O
(
∥W∥2n2ν−

1
2

)
,
∥G− S1 − S12 − S2∥2√

mγm∥r∥∞
= O

(
∥W∥2nν−

1
2

)
(4)

with probability 1− o(1) as d, n,m→∞. Moreover, if ν < 1
2 then with the same probability

∥S1∥2
∥E∥2

= Ω

(
n

1
2−ν−α

2

log n∥W∥2

)
,

∥S2∥2
∥E∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′
⊥(XW

T )∥2
∥σ′

⊥(XW
T )∥2

)
, (5)

∥S12∥2
∥E∥2

= Ω

(
n

1
2−

β
2

log n∥W∥2

)
, Ω(nν− β

2 ) ≤ ∥S12∥2
∥S1∥2

≤ O(nν−
β
2 +α

2 ). (6)

Observe that for ν < 1/4, if ∥W∥2 logn = o(n
1
2−ν−α

2 ) then G is approximately equal to the
rank-one matrix S1 + S12. Further, if β > 2ν + α then the gradient is dominated by S1 and
the spike is aligned with the data-residue term XT

Br. However, if β < 2ν then the gradient term
is dominated by S12, which is aligned with the data spike q. In addition, for ν ∈ [1/4, 1/2), if
∥W∥2 log n = o(n

1
2−ν−α

2 ) and

nν = ω

(
log n

∥σ′
⊥(XW

T )∥2
∥(z ◦ r)Tσ′

⊥(XW
T )∥2

)
, (7)

then the gradient is approximately the rank-two matrix S1 + S12 + S2. Note this is distinct from
prior works [3, 4, 14, 45] where the gradient is only ever approximately rank one.

3.2 Small-to-Moderate Spike: ReLU Activation

Theorem 3.1 requires the activation to be C2. As detailed in the proof, this is needed to estab-
lish that ∥σ′

⊥(XW
T )∥2 ≤ O(∥W∥nν+ 1

2 ). Indeed, when ∥W∥2 = Θ(1) and ν < 1
2 we have

∥σ′
⊥(XW

T )∥2 = o(n), which is key for S1 to separate from the bulk spectrum. However, ReLU is
not C2. To understand, the effect of using ReLU we provide Proposition 3.1.
Proposition 3.1 (ReLU gradient). If 2ν > 1− α, and the row of W are i.i.d. from the unit sphere,
then with probability 1− o(1) we have that σ′

⊥(XW
T ) = 1

2 sign(zi) sign(Wq)T .

From Proposition 3.1 we see that for ReLU the operator norm of σ′
⊥(XW

T ) is Θ(n). This is a
significant increase compared to the o(n) scaling for C2 activations and suggests that the norm of

3The result [3, Proposition 2] requires ν = α = 0, isotropic data and MSE loss with MF scaling.
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E and S2 are larger for ReLU. The increased size of E,S2 results in the relative suppression of the
contribution of S1 and an enhancement of the contribution of S2 to the spectrum of the gradient. We
empirically verify this phenomenon in Figure 2 where we compare ReLU to its C2 activations ELU,
Swish, and Softplus. We see that, for ReLU the relative residue contribution (S1) is significantly
smaller when compared with its smooth approximations.
Remark 1 (Convolutional filters inherit the rank-two gradient). A 1D valid convolution with stride 1
and filter w ∈ Rk can be written as a two-layer network with a sparse, weight-tied matrixW ∈ Rm×d

whose nonzeros are shifted copies of w, where m = d − k + 1. Treating the entries of W as
independent parameters yields the gradient G = ∂L/∂W ∈ Rm×d. By Theorems 3.1-3.2, G admits
a decomposition G = u(1)(v(1))⊤ + u(2)(v(2))⊤ +E with at most two dominant rank-one terms and
a small bulk E. Weight tying maps G to the true filter gradient as follows:

∂L

∂wℓ
=

m∑
i=1

Gi, i+ℓ−1, ℓ = 1, . . . , k.

Hence, letting ṽ(j)i = v
(j)
d−i+1 for j = 1, 2,

∇wL = u(1) ∗ ṽ(1) + u(2) ∗ ṽ(2) + (error),

the convolutional filter gradient lies in a subspace of dimension at most two, upto a small error term.

3.3 Large Spike (ν ≥ 0.5): Non C2 Activations and Dependence between W and X

The preceding analysis focused on ν < 0.5. For large data spikes (ν ≥ 0.5), we note that the C2
smoothness of the activation function and independence between W and X are no longer required.
Theorem 3.2 (Large data-spike gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, and 6
are satisfied, and define EL = G− S12 − S2. Then, with probability 1− o(1) for ν ≥ 1

2 we have

∥EL∥2√
mγm∥r∥∞

= O (1) ,
∥S12∥2
∥EL∥2

= Ω

(
nν−

β
2

log n

)
,
∥S2∥2
∥EL∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′
⊥(XW

T )∥2
∥σ′

⊥(XW
T )∥2

)
.

(8)

Note this is a generalization of [4], which required alignment between the targets y and the spike
q. Theorem 3.2 shows that if ν > β

2 , or if Equation (7) holds, then the gradient is approximately
rank one. In contrast to the ν < 1

4 case, this rank-one gradient aligns closely with the data spike plus
interpolant S12 + S2 rather than the residue S1. This is empirically verified in Figure 3 for non-C2
activations ReLU, as well as dependent and independent W and X .
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(a) ReLU, Isotropic W
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(c) Sigmoid, WS⊥q
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(d) ELU, WSX
TX

Figure 3: Singular value distributions of the gradient G under various activation functions and weight
matrix initializations and structures, with a large data spike ν = 3/4. WS denotes the random matrix
with rows drawn mutually i.i.d. uniformly from the unit sphere. The rows of WS⊥q are uniform on
the sphere and orthogonal to q. All weight matrices are subsequently normalized to have unit norm
rows. Fixed parameters: bulk decay exponent α = 0, n = 750, d = 1000, m = 1250, NTK-like
scaling (γm = 1/

√
m), MSE loss, and triple-index model targets.

3.4 Impact of the Scale Parameter: MF vs. NTK Scaling

We consider the implications of our results for the two scaling regimes and highlight three important
distinctions. As with prior work, we consider the large step-size regime. Specifically, we use a step
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(a) MF Scaling (b) NTK Scaling

Figure 4: Empirical alignment (normalized inner product) of the top singular vector of the gradient
G with XT

By, XT
Br and ω for data from a single-index model y = Sigmoid(ωTx) + noise. We use

isotropic X , ReLU activation, and MSE loss. We average over 500 samples of a,W,X, y. The error
bars are the 25th and 75th percentile.

(a) MF scaling
(notice the small range)

(b) NTK scaling
(oscillatory)

(c) Mean principal angle in degrees
between W for the NTK and MF.

Figure 5: Evolution of the gradient direction and weight matrix during training under GD with
Weight Normalization (WN) for the MF and NTK scalings. Fixed parameters are ν = 0, α = 0
while using the Sigmoid activation function and the MSE loss. Plots (a) and (b) show the alignment
(normalized inner product) between the leading left singular vector of the initial gradient G0 (epoch
0) and that of Gt (epoch t). Plot (c) shows the mean principal angle between the weight matrices
learned under the MF and NTK scalings with identical initialization and training data.

size of γ−1
m . To avoid exploding gradients deploy Weight Normalization (WN) [37]. We limit our

focus to the MSE loss. See Appendix D for a discussion of which assumptions hold during training.

1) Alignment at initialization: residue r versus target vector y. Recall from Theorem 3.1 that in
the small spike regime the gradient is dominated by S1. Further, for the MF scaling the residue r
is approximately equal to the target y, while for the NTK scaling the residue can be quite distinct
from y. This implies the alignment of the gradient may differ significantly depending on whether an
MF or NTK scaling is used. Suppose y = sigmoid(ωTx) + ε, then Figure 4 presents the normalized
inner products between the leading left singular vector of G and three candidate directions XT

By,
XT

Br, and ω. For the MF scaling, we see that the gradient’s dominant direction aligns well with
XT

Br,X
T
By, consistent with Theorem 3.1 and [3]. For the NTK scaling, consistent with Theorem 3.1,

the gradient exhibits strong alignment with XT
Br. This differs notably from both XT

By and the ω
alignment directions predicted in [28] which we believe to be erroneous.

2) Stability of the gradient during early training. Let Gt denote the gradient after t iterations of
GD. In Figure 5 we plot the alignment between the leading left singular vector of G0 and subsequent
leading left singular vectors of Gt under both MF and NTK scalings. The following is quite striking:
the dominant gradient direction under the MF scaling remains stable throughout training while for
the NTK scaling it evolves significantly. This leads to a divergence in the trajectories of the weight
matrix even with identical initialization and training data.

Towards explaining this, suppose the conditions of Theorem 3.1 hold at least approximately up to
some iteration t ≤ T . Then under an MF scaling the gradient is approximated by a rank-one matrix
whose left singular vector is nearly constantXT

Brt ≈ XT
By. Therefore it remains stable over a number

of iterations. If the NTK scaling is used instead, then as S1 is proportional to XT
Brt ̸≈ XT

By and the
gradient depends on the residuals rt which evolve throughout training.
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(b) Medium ν : ν = 0.4375
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Figure 6: Evolution of the alignment of the leading left singular vector of Gt with data spike q and
residue (XT

Brt) during training. Fixed parameters: MF scaling, Tanh activation, MSE loss, α = 0.

3) Phase transitions both by epoch and data spike size. In Figure 6 we observe the evolution of the
alignment of the gradient versus the data spike and the residue under the MF scaling. Moving from
small to large spike sizes we observe a transition in the gradient alignment from the residue XT

Br to
the data spike q. We remark that this is as predicted by Theorem 3.1 and Theorem 3.2 at initialization.
Of particular interest is the middle spike size setting, where we witness a phase transition during
training of the gradient alignment from residue to data spike. Interestingly, this transition is not
discernible from the training loss, which smoothly decays during training. We only pause to highlight
this interesting phenomenon here and leave a more thorough analysis to future work.

4 Effect of Regularization

We analyze three common regularization techniques: ℓ2 weight decay, isotropic input noise, and
Jacobian (or gradient) penalization. We investigate how each technique influences the relative
magnitudes of the residue-aligned spike S1 and the data-aligned spike S2. For what follows let G(0)

denote the un-regularized gradient matrix derived in Proposition 2.1.

ℓ2 weight decay. Adding the term λ
2 ∥W∥

2
F to the loss function modifies the gradient to G(λ) =

G(0) + λW . Proposition 4.1 implies that if λ∥W∥2 = o(
√
mγm) it cannot suppress S1 or S2,

however, if λ∥W∥2 = ω(
√
mγnn

ν) then it suppresses both spikes.
Proposition 4.1. Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = O(

√
n), then with probability 1−o(1)

we have that ∥S1∥2 ≤ O(
√
mγm), ∥S12∥2 ≤ O(

√
mγmn

ν− β
2 ), and ∥S2∥2 ≤ O(

√
mγmn

ν).

Isotropic Gaussian input noise. This regularization technique involves adding independent isotropic
Gaussian noise ξi ∼ N (0, τ2I) to each input xi without changing the corresponding labels yi. [7]
showed that training with input noise is equivalent under certain conditions to adding a Tikhonov
regularizer to the loss, often related to

∑n
i=1 ∥∇xf(xi)∥22. More recent work [46] connects adding

isotropic noise to the data to controlling the trace of the Hessian of the loss function.

Let us define x′i = xi + ξi. This changes the input data distribution, effectively modifying the bulk
covariance from Σ̂ to Σ̂′ = Σ̂ + τ2I . Consequently, derived quantities such as the residue vector r′,
the alignment parameter β′, the gradient components S′

1, S
′
2, S

′
12, the error term E′, and the effective

bulk spectral decay α′ are denoted with primes.
Proposition 4.2 (Isotropic Gaussian noise). Assume the setup of Assumptions 1, 2, 3 with independent
X and W . Assume σ satisfies Assumption 4 for the noisy data X ′. Additionally, suppose the modified
residues satisfy r′i = Θ(1) with probability 1 − o(1), and Assumption 6 holds for r′ with scaling
parameter β′. If τ2 = nρ and ∥σ′

⊥(X
′WT )∥2 = o(n), then with high probability:

∥S′
1∥2

∥E′∥2
≥ ω(1), ∥S′

2∥2
∥E′∥2

≤ O(nν− ρ
2 ),

∥S′
12∥2
∥E′∥2

≤ o(nν−
ρ
2−

β′
2 ).

Proposition 4.2 analyzes the effect of input noise. It indicates that the residue spike S′
1 remains

prominent relative to the error term E′. Conversely, if the noise is sufficiently strong, the data
spike components S′

2 and S′
12 become suppressed relative to E′. Intuitively, adding noise with

variance τ2 = nρ increases the variance of the bulk data component. This boosts the overall scale of
terms involving (X ′

B)
T . Simultaneously, the added noise tends to make the pre-activations WTX ′
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(a) τ2 = 0. ReLU sup-
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(b) τ2 = 0.25. The
residue spike re-appears.
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(c) λ = 0. Residue spike
is dominant.
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(d) λ = 100. Data spike is
dominant.

Figure 7: Effect of regularization. Panels (a), (b) are for isotropic Gaussian noise. Parameters:
n = 750, d = 1000,m = 1250, ν = 1/8, α = 8/9 (for original data), triple-index targets, ReLU
activation, MSE loss. Panels (c), (d) are for Jacobian norm penalization. As λ increases, the size
of S1 does change, size of the bulk E2 grows, and the size of the data spike S3 grows. Parameters:
NTK, ν = 3/8, α = 0, Sigmoid and MSE, and triple-index model targets.

more isotropic, which can reduce the operator norm ∥σ′
⊥(X

′WT )∥2 relative to its Frobenius norm,
potentially limiting the growth rate of ∥E′∥2, ∥S′

2∥. This predicted relative enhancement of S′
1 and

suppression of S′
2 is verified empirically. As discussed in Section 3 (cf. Proposition 3.1), ReLU can

hinder residue spike S1. However, Figure 7 shows that with small amount of input noise τ2 = 0.25,
an initially suppressed S′

1 re-emerges, while S′
2 is diminished relative to S′

1 and the bulk.

Jacobian penalization. Another form of regularization penalizes the sensitivity of the network output
to changes in the inner weights. We consider the Jacobian penalty Lreg = λ 1

2n

∑n
i=1 ∥∂W f(xi)∥22.

To analyze this effect of Lreg on the gradient, we derive the gradient of Lreg with respect to W .
Proposition 4.3 (Gradient penalty). Let Diag(∥xi∥2) be the n× n diagonal matrix, whose entries
are ∥xi∥2. If σ is twice differentiable, then

∇WLreg =
1

n
λγ2m

(
σ′(WXT )⊙ σ′′(WXT )

)
Diag(∥xi∥2)X.

The gradient of the regularizer factorizes into a data-aligned rank-one spike S3 and error E2:

S3 =
1

n
γ2mX

T
S Ψ, E2 =

1

n
γ2mX

T
BΨ, Ψ = Diag(∥xi∥2)

(
σ′(XWT )⊙ σ′′(XWT )

)
.

Proposition 4.4. Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = Θ(
√
n), α < 1, and a constant

fraction of the entries of σ′(XWT )⊙ σ′′(XWT ) are bounded away from 0, then

λ
(
n2ν−

α
2 − 1

2 + n
1−3α

2

)
≥
√
mγm

∥λE2∥2
∥S1∥2

≥ λ
(
n2ν−

α
2 −1 + n− 3

2α
)
.

If ν > 1
2 + α

2 , then we have that asymptotically the residue spike does not escape the bulk for any
λ = Θ(1). If ν < 1

2 , we see that increasing λ suppresses the residue spike. For the data spike, we
have that λS3 will grow as λ grows. Hence this enhances the data spike. We empirically verify that
increasing λ kills the residue spike while promoting the data spike (Figure 7).

Real-Data validation. The identified low-rank spike-plus-bulk gradient structure and the discussed
regularization effects are observable in two standard vision datasets - MNIST and CIFAR10. For
MNIST, we estimate ν ≈ 0.784 > 1/2 and the data is highly ill-conditioned, suggesting a large
effective α. Theorem 3.2 predicts a gradient dominated by data-aligned components (Panel (c) of
Figure 8). Adding isotropic Gaussian noise with σ2 = 100 (Panel (d)) suppresses the original data-
aligned spike and enhances the residue-aligned spike S1, consistent with the analysis in Section 4.
For CIFAR-10 we use a pretrained ResNet-18 (on ImageNet) to extract 512-dimensional embedding.
We estimate ν ≈ 0.3572 < 1/2 and α ≈ 0.6. For these parameters Theorem 3.1 suggests S1

(residue-aligned) can be prominent. Panel (a) of Figure 8 shows a dominant S1. Applying Jacobian
regularization with λ = 105 (Panel (b)) suppresses S1 and promotes a data-aligned spike (akin to
S2), consistent with the behavior analyzed for Jacobian penalization in Section 4.

5 Conclusion

This work shows that in two-layer neural networks, the hidden-layer gradient is approximately
rank-two, driven by data-residual (S1) and data-spike (S2) components connected by an interpolant
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(b) CIFAR, λ = 105
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(c) MNIST, σ2 = 0
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(d) MNIST, σ2 = 100

Figure 8: Gradient singular value spectra on real datasets. Each panel displays the singular values of
the gradient matrix G under the specified conditions.

(S12). We show that activation function choice, scaling, and regularization can result in qualitatively
different gradients. In particular, we have the following rule of thumb for the number of spikes.

Gradient-spike rule-of-thumb: Which spike dominates at initialization?

S1 (residue spike) ↔ 2ν < min{ 12 , β − α, 1− α} or Large isotropic input noise

S12 + S2 + S3 (data spike) ↔
{

(i) 2ν > min{1, β}, or (ii) Strong Jacobian penalty,
or (iii) ReLU and 2ν > 1− α

If none of the above holds, both spikes remain, and the gradient is typically rank-two.

The coexistence and interplay of the two spike components offer a nuanced understanding of the
gradient. We believe that the residue-aligned part propels the network towards fitting the current
errors for the specific task, while the data-aligned part reflects the network’s adaptation to or influence
by the inherent structure and biases present in the input data distribution. This dual influence provides
a potential mechanism for reconciling how networks can be both task-specific and data-adaptive.
This is an interesting avenue for future work.
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Table 1: Notation
Symbol Meaning Where first defined / used

d Input dimension Assumption 1
n Number of samples Assumption 1
m Hidden-layer width Assumption 1
ψ1 = n/d, ψ2 = m/d Proportional-scaling ratios Assumption 1
Σ̂ Bulk covariance matrix Assumption 2
Σ = Σ̂ + ζ2qq⊤ Full covariance (bulk + spike) Assumption 2
λk = k−α Bulk eigen-spectrum Assumption 2
α≥0 Spectral-decay exponent Assumption 2
ζ = nν , ν≥0 Spike magnitude Assumption 2
q ∈ Sd−1 Spike direction Assumption 2
z ∈ Rn Latent coordinates of the spike Equation (3)
X = XB +XS Data split bulk + spike Equation (3)
XB Bulk part (N (0, Σ̂) rows) Equation (3)
XS = ζzq⊤ Rank-1 spike part Equation (3)
W ∈ Rm×d Inner-layer weight matrix Assumption 3
a ∈ {±1}m Outer weights (fixed) Assumption 3
γm Width scale (NTK = 1/

√
m, MF = 1/m) Equation (1)

σ, σ′, σ′′ Activation and derivatives Assumption 4
µ = Ex[σ

′(Wx)] Mean derivative vector Assumption 4
σ′
⊥ = σ′ − µ Centered derivative Assumption 4
r Residue vector Equation (2)
β Alignment exponent ( 1√

n ∥r∥2
z⊤r) Assumption 6

S1 Residue-aligned rank-1 term Section 3
S2 Data-spike-aligned rank-1 term Section 3
S12 Interpolant rank-1 term Section 3
G = ∇WL Full gradient wrt W Prop. 2.1
E Error term G− S1 − S12 − S2 Thm. 3.1
EL Error term G− S12 − S2 (large-spike version) Thm. 3.2
E2 Bulk error from Jacobian-penalty gradient Prop. 4.3
S3 Data-aligned rank-1 term induced by Jacobian penalty Prop. 4.3
λ, Lreg Reg. strength and Jacobian penalty Section 4
τ2 Variance of isotropic Gaussian noise Section 4
◦, ⊗ Hadamard / outer products

A Proofs

Notation In the appendix, we shall use f ≲ g to mean that f = O(g) with probability 1− o(1).

A.1 Regularization Proofs

Proposition 4.1. Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = O(
√
n), then with probability 1−o(1)

we have that ∥S1∥2 ≤ O(
√
mγm), ∥S12∥2 ≤ O(

√
mγmn

ν− β
2 ), and ∥S2∥2 ≤ O(

√
mγmn

ν).

Proof. These bound immediately follow from Lemma A.1, Lemma A.2, and Lemma A.3.

Proposition 4.2 (Isotropic Gaussian noise). Assume the setup of Assumptions 1, 2, 3 with independent
X and W . Assume σ satisfies Assumption 4 for the noisy data X ′. Additionally, suppose the modified
residues satisfy r′i = Θ(1) with probability 1 − o(1), and Assumption 6 holds for r′ with scaling
parameter β′. If τ2 = nρ and ∥σ′

⊥(X
′WT )∥2 = o(n), then with high probability:

∥S′
1∥2

∥E′∥2
≥ ω(1), ∥S′

2∥2
∥E′∥2

≤ O(nν− ρ
2 ),

∥S′
12∥2
∥E′∥2

≤ o(nν−
ρ
2−

β′
2 ).

Proof. We prove each bound in turn.

S′
1 Bound: Recall that S′

1 = γm

n (X ′
B)

T r′(a ◦ µ′)T . Since d > n, and X ′
B ∈ Rn×d is full rank with

probability 1, we have that with probability 1, for any vector v

∥(X ′
B)

T v∥2 ≥ σmin(X)∥v∥2

16



Since the smallest eigenvalue of Σ̂′ is nρ, with probability 1− o(1), we have that

σmin(X
′
B) ≥ n

1
2+

ρ
2 .

Applying to S′
1, we get

∥S′
1∥2 ≳ γmn

ρ/2∥a ◦ µ′∥2
∥r∥2√
n

Then using Assumption 4, the fact that the entries of a are ±1, and r′i = Θ(1), we get

∥S′
1∥2 ≳ γmn

ρ/2
√
m

E Bound: Next, we have that E′ = γm

n (X ′
B)

T ((r′aT ) ◦ σ′
⊥(X

′WT )). Using the fact that with
probability 1− o(1), r′i = Θ(1) and ai = ±1, we have that with probability 1− o(1)

∥(r′aT ) ◦ σ′
⊥(X

′WT )∥2 = ∥σ′
⊥(X

′WT )∥2.

Thus, we have that

∥E′∥2 ≲
γm
n
∥X ′

B∥2∥σ′
⊥(X

′WT )∥2

≲
γm
n

√
nnρ/2∥σ′

⊥(X
′WT )∥2

Since d > n and X ′
B if full rank with probability 1, we have that with probability 1,

∥(X ′
B)

T ((r′aT ) ◦ σ′
⊥(X

′WT ))∥2 ≥ σmin(X
′
B)∥((r′aT ) ◦ σ′

⊥(X
′WT ))∥2

= σmin(X
′
B)∥σ′

⊥(X
′WT ))∥2

Hence we get

∥E′∥2 ≳
γm
n

√
nnρ/2∥σ′

⊥(X
′WT )∥2

S′
2 Bound: Recall that

S′
2 =

γm
n
nνqzT ((r′aT ) ◦ σ′

⊥(X
′WT ))

Hence we get that

∥S′
2∥2 =

γm
n
nν∥q∥2∥zT ((r′aT ) ◦ σ′

⊥(X
′WT ))∥2

≤ γm
n
nν∥z∥2∥((r′aT ) ◦ σ′

⊥(X
′WT ))∥2

≲
γm
n
nν+

1
2 ∥σ′

⊥(X
′WT ))∥2

S′
12 Bound: Recall that

S′
12 =

γm
n
nnuqzT r′(a ◦ µ′)T

Thus, we have that

∥S′
12∥2 =

γm
n
nnu∥zT r(a ◦ µ′)∥2

=
γm
n
nnu∥zT r∥2∥(a ◦ µ′)∥2

≲
γm
n
nnu−β′/2∥r′∥2∥z∥2∥(a ◦ µ′)∥2

≲
√
mγmn

ν− β′
2
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Relative Bounds: Thus, we have that using ∥σ′
⊥(X

′WT )∥2 = o(n)

∥S′
1∥2

∥E′∥2
≳

n

∥σ′
⊥(X

′WT )∥2
= ω(1)

For the upper bounds we see that

∥S′
2∥2

∥E′∥2
≲ nν−

ρ
2 ,

∥S′
12∥2
∥E′∥2

≲ nν−
β′
2 − ρ

2 · ∥σ
′
⊥(X

′WT )∥2
n

= nν−
β′
2 − ρ

2 o(1).

Proposition 4.3 (Gradient penalty). Let Diag(∥xi∥2) be the n× n diagonal matrix, whose entries
are ∥xi∥2. If σ is twice differentiable, then

∇WLreg =
1

n
λγ2m

(
σ′(WXT )⊙ σ′′(WXT )

)
Diag(∥xi∥2)X.

Proof. Letting Z =WXT and fi = f(xi) then note

fi = aTσ(Wxi) = aThi, and ∂hifi = a.

It follows that

∂zifi = ∂hifi ⊙ σ′(zi) = a⊙ σ′(zi).

Recall
∂Zrc

∂Wkj
= 1{c=k}Xrj ,

then

∂fi
∂Wkj

=

m∑
c=1

∂fi
∂Zic

∂Zic

∂Wkj
=
∂fi
Zik

Xij

and therefore

∂W fi = (a⊙ σ′(Wxi))x
T
i

Let gi = a⊙ σ′(hi), then

∥∂W fi∥2F = ∥gixTi ∥2F =
∑
j,k

g2ijx
2
ik = ∥gi∥22∥xi∥22.

Now
∂

∂Wrc
∥gi∥22 =

∂

∂Wrc

∑
j=1

a2j
∂

∂Wrc
σ′(wT

j xi)
2

=
(
2a2rσ

′(wT
j xi)σ

′′(wT
j xi)

)
xic.

The term inside the brackets is independent of c while the term outside the brackets is independent of
r. As a result this is an outer product and

∂W ∥gi∥22 = 2
(
a◦2 ⊙ σ′(Wxi)⊙ σ′′(Wxi)

)
xTi .

Note above a◦2 refers squaring operation being applied elementwise to the vector a. Therefore

∂WR =
1

2

n∑
i=1

∂W ∥∂W fi∥2F (9)

=
1

2

n∑
i=1

∥xi∥22∂W ∥gi∥22 (10)

=

n∑
i=1

∥xi∥22
(
a◦2 ⊙ σ′(Wxi)⊙ σ′′(Wxi)

)
xTi . (11)

=
(
a◦21T ◦ σ′(WXT ) ◦ σ′′(WXT )

)
Diag(∥xi∥2)X (12)

=
(
σ′(WXT ) ◦ σ′′(WXT )

)
Diag(∥xi∥2)X (13)
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Proposition 4.4. Given Assumptions 1, 2, 3, 4, and 6. If ∥r∥2 = Θ(
√
n), α < 1, and a constant

fraction of the entries of σ′(XWT )⊙ σ′′(XWT ) are bounded away from 0, then

λ
(
n2ν−

α
2 − 1

2 + n
1−3α

2

)
≥
√
mγm

∥λE2∥2
∥S1∥2

≥ λ
(
n2ν−

α
2 −1 + n− 3

2α
)
.

Proof. We begin by noting that since σ, σ′ are lipschitz, we have that σ′, σ′′ are bounded. Hence

σ′(XWT )⊙ σ′′(XWT )

has an operator norm that is at most O(n). Since a constant fraction p of the entries are at least some
universal constant c, then in the proportional regime, we have that

∥σ′(XWT )⊙ σ′′(XWT )∥2 ≥
1√
n
∥σ′(XWT )⊙ σ′′(XWT )∥F ≳

√
mc = Ω(

√
n)

Recall that

E2 =
1

n
γ2mX

T
B Diag(∥xi∥2)

(
σ′(XWT )⊙ σ′′(XWT )

)
.

Then since d > n, XT
B Diag(∥xi∥2) is full rank with probability 1, we have that

1

n
γ2mσmin

(
XT

B Diag(∥xi∥2)
)
∥σ′(XWT )⊙ σ′′(XWT )∥2 ≲ ∥E2∥2

and

∥E2∥2 ≲
1

n
γ2mσmax

(
XT

B Diag(∥xi∥2)
)
∥σ′(XWT )⊙ σ′′(XWT )∥2

Due to Assumption 2, with high probability 1− o(1), we have that

σmax(XB) ≲
√
n and σmin(XB) ≳ n

1−α
2

Then since ∥xi∥2 concentrates to n2ν + n1−α (for α < 1), we have that

∥E2∥2 ≲
γ2m
n

√
n(n2ν + n1−α)∥σ′(XWT )⊙ σ′′(XWT )∥2

and

∥E2∥2 ≳
γ2m
n
n

1−α
2 (n2ν + n1−α)∥σ′(XWT )⊙ σ′′(XWT )∥2

Then using the O(n) upper bound on ∥σ′(XWT )⊙ σ′′(XWT )∥2, in the proportional regime, with
high probability 1− o(1), we get that

∥E2∥2 ≲ mγ2m(n2ν−
1
2 + n

1
2−α)

Using our Ω(
√
n) lower bound on ∥σ′(XWT )⊙ σ′′(XWT )∥2, we get

∥E2∥2 ≳ mγ2m(n2ν−
α
2 −1 + n− 3α

2 )

On the other hand, if ∥r∥2 = Θ(
√
n) we have that
√
mγmn

−α
2 ≲ ∥S1∥2 ≲

√
mγm

For the NTK regime, we have that

n2ν−
α
2 − 1

2 + n
1−3α

2 ≳
√
mγm

∥E2∥2
∥S1∥2

≳ n2ν−
α
2 −1 + n− 3

2α
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A.2 Spikey Gradient Proof

Proposition 2.1 (Gradient of the loss). If Assumption 4 holds and R is differentiable, then

G := ∇WTL = γmX
T
[
(raT ) ◦ σ′(XWT )

]
+ λ∇WTR(W ) ∈ Rd×m

exists for almost every W in Rm×d.

Proof. The first thing we need to do is to compute the gradient. To begin, we compute

f(xi) =

m∑
j=1

ajσ

(
d∑

k=1

wjk(xi)k

)
Thus, we see that

∂

∂wrs
L(f(x)) =

1

n

n∑
i=1

ℓ′(f(xi))
∂

∂wrs

 m∑
j=1

ajσ

(
d∑

k=1

wjk(xi)k

)
=

1

n

n∑
i=1

ℓ′(f(xi))

m∑
j=1

aj
∂

∂wrs

(
σ

(
d∑

k=1

wjk(xi)k

))

=
1

n

n∑
i=1

ℓ′(f(xi))

m∑
j=1

ajσ
′ (wT

j xi
) ∂

∂wrs

(
d∑

k=1

wjk(xi)k

)

=
1

n

n∑
i=1

ℓ′(f(xi))arσ
′ (wT

r xi
)
(xi)s

=
1

n

n∑
i=1

(L′(f(X))a)irσ
′(XWT )irXis

=
1

n
(XT [(L′(f(X))a) ◦ σ′(XWT )])sr

We begin by decomposing the gradient

G =
γm
n
XT

(
(raT ) ◦ σ′(XWT )

)
.

This algebraic decomposition holds for the current state (X,W, r, a), irrespective of any statistical
dependence between W and X . Recall the data decomposition

X = XB +XS = XB + ζzqT ∈ Rn×d

where rows of XB are from N (0, Σ̂), z ∼ N (0, I), ∥q∥ = 1 and the activation derivative de-
composition σ′(XWT ) = 1nµ

T + σ′
⊥(XW

T ), where µ = Ex[σ
′(Wx)] depends on the current

W .

Substituting these into the gradient expression yields:

G =
γm
n
XT

(
(raT ) ◦

[
1nµ

T + σ′
⊥(XW

T )
])

=
γm
n
XT

(
r(a ◦ µ)T + (raT ) ◦ σ′

⊥(XW
T )
)

=
γm
n

(XT
B +XT

S )
(
r(a ◦ µ)T

)
+
γm
n

(XT
B +XT

S )
(
(raT ) ◦ σ′

⊥(XW
T )
)

=
γm
n
XT

Br(a ◦ µ)T︸ ︷︷ ︸
S1

+
γm
n
XT

S r(a ◦ µ)T︸ ︷︷ ︸
S12

+
γm
n
XT

S ((ra
T ) ◦ σ′

⊥(XW
T ))︸ ︷︷ ︸

S2

+
γm
n
XT

B((ra
T ) ◦ σ′

⊥(XW
T ))︸ ︷︷ ︸

E

.
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Using XS = ζzqT , we identify the components explicitly:

S1 = γm
XT

Br

n
(a ◦ µ)T

S12 = γmζ

(
zT r

n

)
q(a ◦ µ)T

S2 =
γmζ

n
q
(
zT ((raT ) ◦ σ′

⊥(XW
T ))
)

E =
γm
n
XT

B((ra
T ) ◦ σ′

⊥(XW
T )).

Note that S12 shares its right singular vector (a ◦µ) with S1 (up to scaling) and its left singular vector
q with S2. Understanding the gradient structure requires bounding the norms of these terms, which
depends on the properties of the current W, r, µ, and the data statistics.

A.2.1 Upper and Lower Bounds

Given our helper results, we now provide bounds for the S1, S12, S2, and E appearing in Section 3.

Lemma A.1 (S1 Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows, and let
S1 = γm

XT
Br
n (a ◦ µ)T . Suppose XB is from Assumption 2, a has fixed ±1 entries (Assumption 3), r

is the current residual, and µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) for all k (Assumption 4). Assume

d > n. Then with high probability:
√
mγmµmin∥r∥2n−

α+1
2 ≲ ∥S1∥2 ≲

√
mγmµmax∥r∥2n−

1
2 ,

where µmin = mink |µk| = Ω(1) and µmax = maxk |µk| = O(1).

Proof. The operator norm is
∥S1∥2 =

γm
n
∥XT

Br∥2∥a ◦ µ∥2.

First, consider a ◦ µ, where ak = ±1 and µk = Ex[σ
′(wT

k x)]. By assumption, µmin = mink |µk| =
Ω(1) and µmax = maxk |µk| = O(1) (since σ′ is bounded). We have:

∥a ◦ µ∥22 =

m∑
k=1

a2kµ
2
k =

m∑
k=1

µ2
k.

Thus, we see that
µmin

√
m ≤ ∥a ◦ µ∥2 ≤ µmax

√
m.

By Assumption 2, if d > n we have that with high probability

n
1−α
2 ∥r∥2 ≲ ∥XT

Br∥2 ≲ n
1
2 ∥r∥2.

Substituting the bounds for ∥XT
Br∥2 and ∥a ◦ µ∥2 into the expression for ∥S1∥2 = γm

n ∥X
T
Br∥2∥a ◦

µ∥2:

Lower: ∥S1∥2 ≳
γm
n

(n
1−α
2 ∥r∥2)(

√
mµmin) = γm

√
mµmin∥r∥2n−

α+1
2

Upper: ∥S1∥2 ≲
γm
n

(n
1
2 ∥r∥2)(

√
mµmax) = γm

√
mµmax∥r∥2n−

1
2 .

This completes the proof.

Lemma A.2 (S12 Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows. Let
S12 = γmζ(

zT r
n )q(a ◦ µ)T . Suppose z, q, ζ = nν are from Assumption 2, a has fixed ±1 entries

(Assumption 3), µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) (Assumption 4), and the current residual r

satisfies | z
T r
n | = Θ(∥r∥2n−β/2−1/2) (Assumption 6). Assume d > n. Then w.h.p.:

∥S12∥2 = Θ
(√

mγm∥r∥2nν−
β
2 − 1

2

)
.
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Proof. Since S12 is a rank-1 matrix and ∥q∥2 = 1, its operator norm is:

∥S12∥2 =

∣∣∣∣γmζ (zT rn
)∣∣∣∣ ∥q∥2∥a ◦ µ∥2 = γmn

ν

∣∣∣∣zT rn
∣∣∣∣ ∥a ◦ µ∥2.

By Assumption 6 applied to the current residual r, we have∣∣∣∣zT rn
∣∣∣∣ = Θ

(
∥r∥2n−

β
2 − 1

2

)
.

Substituting this scaling, we get

∥S12∥2 = γmn
νΘ
(
∥r∥2n−

β
2 − 1

2

)
∥a ◦ µ∥2 = Θ

(
γmn

ν− β+1
2 ∥r∥2∥a ◦ µ∥2

)
.

As established in the proof of Lemma A.1, using the assumptions on a and µ (specifically µk = Θ(1)),
we have ∥a ◦ µ∥2 = Θ(

√
m). Combining these gives the final result:

∥S12∥2 = Θ
(
γmn

ν− β+1
2 ∥r∥2Θ(

√
m)
)
= Θ

(√
mγm∥r∥2nν−

β
2 − 1

2

)
.

Lemma A.3 (S2 Bound). Let W be the weight matrix (e.g., at step t) with unit norm rows. Let

S2 =
γmζ

n
qzT

[
(raT ) ◦ σ′

⊥(XW
T )
]
. Suppose z, q, ζ = nν are from Assumption 2, a has fixed

±1 entries (Assumption 3), µ = Ex[σ
′(Wx)] satisfies µk = Θ(1) (Assumption 4), and the current

residual r satisfies | z
T r
n | = Θ(∥r∥2n−β/2−1/2) (Assumption 6).Then, w.h.p.:

γmn
ν− β

2 −1∥r∥2σmin(σ
′
⊥(XW

T )) ≲ ∥S2∥2 ≲ γm
√
m ∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ).

Where ≲ hides universal constants C1, C2.

Proof. The operator norm is

∥S2∥2 =
γmn

ν

n
∥zT ((raT ) ◦ σ′

⊥(XW
T ))∥2.

Upper Bound: Using Lemma A.8 and Assumption 3 that ai ∼ Unif(±1), we have the upper bound

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ ∥z∥2∥r∥∞∥a∥∞∥σ′
⊥(XW

T ))∥2
≲ ∥z∥2∥r∥∞∥σ′

⊥(XW
T ))∥2.

Then with probability 1− o(1), since z ∼ N (0, I), we have that ∥z∥2 ≲ C
√
n. Hence we get that

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ C∥r∥∞∥σ′
⊥(XW

T ))∥2
√
n.

Then since we have Assumption 4, we can use Lemma A.7 to bound the norm ∥σ′
⊥(XW

T )∥2, which
gives us that with probability 1− o(1),

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ C∥r∥∞
√
nmin

(
n,
√
n∥WΣ1/2∥2

)
= C∥r∥∞

√
nmin(n, ∥W∥2nν+1/2).

Thus, we get that

∥S2∥2 ≲
γm
n
nνC∥r∥∞

√
nmin(n, ∥W∥2nν+1/2)

= C
√
mγm ∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ),

where we used the proportional scaling of n and m, Assumption 1, in the second line.

Lower Bound: For a lower bound, we start by writing

(raT ) ◦ σ′
⊥(XW

T ) = Diag(r)σ′
⊥(XW

T ) Diag(a).
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Thus, we have that

qzT
(
(raT ) ◦ σ′

⊥(XW
T )
)
= q

(
zT Diag(r)

)
σ′
⊥(XW

T ) Diag(a)

= q(z ◦ r)T σ′
⊥(XW

T ) Diag(a).

Taking the norm and recalling that ζ = nν , we get

∥ζqzT
(
(raT ) ◦ σ′

⊥(XW
T )
)
∥2 = nν∥q∥

∥∥(z ◦ r)T σ′
⊥(XW

T ) Diag(a)
∥∥ .

Since the entries of a are ±1 and q has unit norm, we have that this is the same as

nν∥q∥
∥∥(z ◦ r)T σ′

⊥(XW
T )
∥∥ = nν

∥∥(z ◦ r)T σ′
⊥(XW

T )
∥∥ .

By Cauchy-Schwarz, we have using Assumption 6 |zT r/
√
n∥r∥2| = Θ(d−β/2) that

∥z ◦ r∥ =

√√√√ n∑
i=1

(ziri)2 ≥
|
∑n

i=1 ziri|√∑n
i=1 1

=
|zT r|∥r∥2√
n∥r∥2

= Ω(n−
β
2 ∥r∥2).

Thus, we get that for some constant C

∥S2∥ ≳ Cγm
1

n
nν−

β
2 ∥r∥2σmin(σ

′
⊥(XW

T )).

Lemma A.4 (Upper Bound on E). Assuming Assumption 1], Assumption 3, Assumption 2, and
Assumption 4, we have that with probability at least 1− o(1)

∥E∥2 ≲ C
√
mγm∥r∥∞ min

(
1, nν−

1
2 ∥W∥2

)
.

Proof. Recall E = γm

n XT
B((ra

T ) ◦ σ′
⊥(XW

T )). Using Lemma A.8, we have that
n

γm
∥E∥2 ≲ ∥XB∥2∥r∥∞∥a∥∞∥σ′

⊥(XW
T )∥2.

Then using Assumption 2, whereby the rows of XB are iid from N (0, Σ̂), we have with probability
1− o(1) that

∥XB∥2 ≲ C
√
n,

and using Assumption 3, we trivially have that

∥a∥∞ = 1.

Thus, we have that
n

γm
∥E∥2 ≲ C

√
n∥r∥∞∥σ′

⊥(XW
T )∥2.

Then using Lemma A.7, we have that with probability 1− o(1)

∥σ′
⊥(XW

T )∥2 ≲ Cmin
(
n,
√
n∥WΣ1/2∥2

)
.

Since ∥Σ1/2∥ = nν , we get the result in the proportional scaling of Assumption 1.

Theorem 3.1 (Gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, 6 are satisfied, X and W
are independent, and σ is a C2 function. Define E = G− S1 − S12 − S2. Then, for all ν, α ∈ R≥0,

∥G− S1 − S12∥2√
mγm∥r∥∞

= O
(
∥W∥2n2ν−

1
2

)
,
∥G− S1 − S12 − S2∥2√

mγm∥r∥∞
= O

(
∥W∥2nν−

1
2

)
(4)

with probability 1− o(1) as d, n,m→∞. Moreover, if ν < 1
2 then with the same probability

∥S1∥2
∥E∥2

= Ω

(
n

1
2−ν−α

2

log n∥W∥2

)
,

∥S2∥2
∥E∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′
⊥(XW

T )∥2
∥σ′

⊥(XW
T )∥2

)
, (5)

∥S12∥2
∥E∥2

= Ω

(
n

1
2−

β
2

log n∥W∥2

)
, Ω(nν− β

2 ) ≤ ∥S12∥2
∥S1∥2

≤ O(nν−
β
2 +α

2 ). (6)
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Proof. We start with the gradient decomposition derived in Section 3:

G = S1 + S12 + S2 + E

where

S1 = γm
XT

Br

n
(a ◦ µ)T

S12 = γmζ

(
zT r

n

)
q(a ◦ µ)T

S2 =
γmζ

n
q
(
zT ((raT ) ◦ σ′

⊥(XW
T ))
)

E =
γm
n
XT

B((ra
T ) ◦ σ′

⊥(XW
T )).

We assume the conditions of the theorem hold, including the scaling
√
mγm = O(1) and the residual

concentration ∥r∥2/∥r∥∞ = Θ(
√
n/ logn) (Assumption 5).

Proof of Upper Bounds:

For the first upper bound, we have G− S1 − S12 − S2 = E. Using the upper bound on ∥E∥2 from
Lemma A.4 and the assumption

√
mγm = O(1):

∥G− S1 − S12 − S2∥2
∥r∥∞

=
∥E∥2
∥r∥∞

≲
C
√
mγm min

(
1, nν−

1
2 ∥W∥2

)
∥r∥∞

= O
(
min(1, ∥W∥2nν−

1
2 )
)
.

For the second upper bound, we have G− S1 − S12 = S2 +E. Using the triangle inequality and the
upper bounds on ∥S2∥2 from Lemma A.3 and ∥E∥2 from Lemma A.4, along with

√
mγm = O(1):

∥G− S1 − S12∥2
∥r∥∞

≤ ∥S2∥2 + ∥E∥2
∥r∥∞

≲

√
mγm∥r∥∞ min(nν , ∥W∥2n2ν−

1
2 ) +

√
mγm∥r∥∞ min

(
1, nν−

1
2 ∥W∥2

)
∥r∥∞

= O
(
min(nν , ∥W∥2n2ν−

1
2 ) + min(1, ∥W∥2nν−

1
2 )
)
.

Proof of Lower Bounds:

We establish lower bounds for the ratios ∥S1∥/∥E∥, ∥S12∥/∥E∥, and ∥S2∥/∥E∥. These rely on the
lower bounds for ∥S1∥, ∥S12∥, ∥S2∥ and the upper bound for ∥E∥. We use the result ∥r∥2/∥r∥∞ =
Θ(
√
n/ logn).

Ratio ∥S1∥/∥E∥: Using Lemma A.1 (lower bound) and Lemma A.4 (upper bound), we have that

∥S1∥2
∥E∥2

≳

√
mγmµmin∥r∥2n−

α+1
2

√
mγm∥r∥∞ min

(
1, nν−

1
2 ∥W∥2

)
≳
∥r∥2
∥r∥∞

n−(α+1)/2

min(1, ∥W∥2nν−1/2)

=

√
n

log n

n−(α+1)/2

min(1, ∥W∥2nν−1/2)

=
n−α/2

log nmin(1, ∥W∥2nν−1/2)
.
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If ν < 1/2 and we assume ∥W∥2nν−1/2 = O(1) is the dominant term in the minimum, the ratio is

Ω

(
n1/2−ν−α/2

log n∥W∥2

)
.

If ν ≥ 1/2 and assume ∥W∥2nν−1/2 ≥ Ω(1), the minimum is O(1). The ratio is

Ω

(
n−α/2

logn

)
.

Ratio ∥S12∥/∥E∥: Using Lemma A.2 (lower bound) and Lemma A.4 (upper bound):

∥S12∥2
∥E∥2

≳

√
mγm∥r∥2nν−β/2−1/2

√
mγm∥r∥∞ min(1, ∥W∥2nν−1/2)

≳
∥r∥2
∥r∥∞

nν−β/2−1/2

min(1, ∥W∥2nν−1/2)

=

√
n

log n

nν−β/2−1/2

min(1, ∥W∥2nν−1/2)

=
nν−β/2

log nmin(1, ∥W∥2nν−1/2)
.

If ν < 1/2 and assume ∥W∥2nν−1/2 = O(1) dominates the minimum, the ratio is

Ω

(
n1/2−β/2

log n∥W∥2

)
.

If ν ≥ 1/2 and assume ∥W∥2nν−1/2 ≥ Ω(1), the minimum is O(1). The ratio is

Ω

(
nν−β/2

logn

)
.

Ratio ∥S2∥/∥E∥: We have that

∥S2∥
∥E∥

≳
γm

n nν∥(z ◦ r)Tσ′
⊥(XW

T )∥
γm

n ∥XB∥2∥r∥∞∥σ′
⊥(XW

T )∥

≳ nν−
1
2
∥z ◦ r∥
∥r∥∞

κ
(
σ′
⊥(XW

T )
)

≳ nν−
1
2−

β
2
∥r∥2
∥r∥∞

κ
(
σ′
⊥(XW

T )
)

≳
nν−

β
2

log n
κ
(
σ′
⊥(XW

T )
)

Relative Sizes Next, we prove the relative bounds. First, we have that

∥S12∥
∥S1∥

=
∥XT

S r∥∥a ◦ µ∥
∥XT

Br∥∥a ◦ µ∥
=
nν+

1
2−

β
2 ∥r∥2

∥XT
Br∥

Then since
n−

α
2 + 1

2 ∥r∥2 ≲ ∥XT
Br∥2 ≲

√
n∥r∥2,

we get that

nν−
β
2 ≲

∥S12∥
∥S1∥

≲ nν−
β
2 +α

2
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For the second relative bound, we have that

∥S12∥
∥S2∥

=
nν+

1
2−

β
2 ∥r∥2∥a ◦ µ∥

nν∥(z ◦ r)Tσ′
⊥(XW

T )∥
= Θ

(
n1−

β
2 ∥r∥2

∥(z ◦ r)Tσ′
⊥(XW

T )∥

)
For a lower bound, we get that

∥S12∥
∥S2∥

≳ C
∥r∥2
∥z∥2∥r∥2

n1−
β
2

nν+
1
2

=
1

nν+
β
2

For an upper bound, we have that

∥S12∥
∥S2∥

≲
n1−

β
2 ∥r∥2

n−
β
2 ∥r∥2σmin(σ′

⊥(XW
T ))

=
n

σmin(σ′
⊥(XW

T ))

Theorem 3.2 (Large data-spike gradient approximation). Suppose Assumptions 1, 2, 3, 4, 5, and 6
are satisfied, and define EL = G− S12 − S2. Then, with probability 1− o(1) for ν ≥ 1

2 we have

∥EL∥2√
mγm∥r∥∞

= O (1) ,
∥S12∥2
∥EL∥2

= Ω

(
nν−

β
2

log n

)
,
∥S2∥2
∥EL∥2

= Ω

(
nν

log n

∥(z ◦ r)Tσ′
⊥(XW

T )∥2
∥σ′

⊥(XW
T )∥2

)
.

(8)

Proof. This proof is exactly the same as Theorem 3.1. In particular, we note that
EL = E + S1

Except we use the following upper bounds. We have already bounded S1, in the following we bound
E.

Data Spike: The operator norm is

∥S2∥2 =
γmn

ν

n
∥zT ((raT ) ◦ σ′

⊥(XW
T ))∥2.

Using Lemma A.8 and Assumption 3 that ai ∼ Unif(±1), we have the upper bound

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ ∥z∥2∥r∥∞∥a∥∞∥σ′
⊥(XW

T ))∥2
≲ ∥z∥2∥r∥∞∥σ′

⊥(XW
T ))∥2.

Then with probability 1− o(1), since z ∼ N (0, I), we have that ∥z∥2 ≲ C
√
n. Hence we get that

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ C∥r∥∞∥σ′
⊥(XW

T ))∥2
√
n.

Then since we have Assumption 4, we can bound the norm ∥σ′
⊥(XW

T )∥2 by O(n)

∥zT ((raT ) ◦ σ′
⊥(XW

T ))∥2 ≲ C∥r∥∞
√
nn

Thus, we get that
∥S2∥2 ≲ C

√
mγm ∥r∥∞ nν ,

where we used the proportional scaling of n and m, Assumption 1, in the second line.

Error Term: Recall E = γm

n XT
B((ra

T ) ◦ σ′
⊥(XW

T )). Using Lemma A.8, we have that
n

γm
∥E∥2 ≲ ∥XB∥2∥r∥∞∥a∥∞∥σ′

⊥(XW
T )∥2.

Then using Assumption 2, whereby the rows of XB are iid from N (0, Σ̂), we have with probability
1− o(1) that

∥XB∥2 ≲ C
√
n,

and using Assumption 3, we trivially have that
∥a∥∞ = 1.

Thus, we have that
n

γm
∥E∥2 ≲ C

√
n∥r∥∞∥σ′

⊥(XW
T )∥2.

Then
∥σ′

⊥(XW
T )∥2 ≤ O(n).

Since ∥Σ1/2∥ = nν , we get the result in the proportional scaling of Assumption 1.
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A.2.2 Helper Results: Subgaussianity and Concentration

Lemma A.5. Let Z ∈ Rn×d be a matrix with standard normal IID entries. If n < d, then as
n/d→ c ∈ (0, 1), we have that with probability 1, the eigenvalues of 1

dZZ
T are Θ(1). Further,

σmin(Z) = Θ(
√
d−
√
n), σmax(Z) = Θ(

√
d+
√
n).

Proof. As 1
dZZ

T is a Wishart matrix, the limiting empirical spectral distribution almost surely
weakly converges to the Marchenko-Pastur distribution supported on [(1−

√
c)2, (1 +

√
c)2].

Lemma A.6. Let XB ∈ Rn×d have IID rows from N (0, Σ̂), where λk(Σ̂) ∼ k−α as per Assump-
tion 2. Then with probability 1− 2 exp(−cn) for positive universal constants c, we have that

Ω
(
n

1−α
2

)
≤ ∥XB∥2 ≤ O

(
n

1
2

)
Proof. We can write XB = Σ̂1/2Z where Z ∈ Rn×d has IID standard normal entries. Using
Lemma A.5, we have that in the proportional regime (Assumption 1), ∥Z∥2 = Θ(

√
n). The result

follows using the fact that

σmin(Σ̂
1/2)∥Z∥2 ≤ ∥XB∥2 = ∥Σ̂1/2Z∥2 ≤ σmax(Σ̂

1/2)∥Z∥2,
and noting that

σmin(Σ
1/2) = Θ(n−α/2) and σmax(Σ

1/2) = Θ(1).

Lemma A.7. Let W be a given fixed matrix indepedent of X . If Assumption 4 is satisfied and σ is
C2, then we have with probability 1− C exp(−cn) for positive universal constants c, C, that

∥σ′
⊥(XW

T )∥2 ≲ C ′ min
(
n,
√
n∥WΣ1/2∥2

)
.

for some constant C ′ > 0. Here Σ = Σ̂ + ζ2qqT is the full data covariance from Assumption 2.

Proof. Since σ isL-Lipschitz (Assumption 4), its derivative σ′ is bounded byL. As µ = Ex[σ
′(Wx)],

the centered term σ′
⊥(XW

T ) = σ′(XWT )−1nµ
T has entries bounded by someM (e.g., M = 2L).

Thus, using the relation between operator and Frobenius norms:

∥σ′
⊥(XW

T )∥22 ≤ ∥σ′
⊥(XW

T )∥2F ≤Mnm.

Thus, we have that in the proportional regime

∥σ′
⊥(XW

T )∥2 = O(n).

On the other hand, σ′
⊥(XW

T ) represents mean-centered features and is Lipschitz, using Corol-
lary A.2, with probability 1− C exp(−cn), we have that

∥σ′
⊥(XW

T )∥2 = O
(√

n∥WΣ1/2∥2
)
.

The overall bound follows by taking the minimum of the two derived bounds.

Lemma A.8. For any vectors u, v and matrix A, we have that

min
i
|ui|min

j
|vj |∥A∥2 ≤ ∥(uvT ) ◦A∥2 ≤ ∥u∥∞∥v∥∞∥A∥2.

Proof. This follows from the observation that

(uvT ) ◦A = diag(u)Adiag(v),

where diag(u) is the diagonal matrix with u in the diagonal. Then using the fact that

σmin(B)∥A∥2 ≤ ∥AB∥2 ≤ σmax(B)∥A∥2,
where σmin is allowed to be zero and noticing that

σmax(diag(u)) = ∥u∥∞ and σmin(diag(u)) = min
i
|ui|.

The bounds follow from applying the matrix norm inequality twice.
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Lemma A.9 (Sub-Gaussianity). For x ∼ N (0,Σ), a fixed vector w ∈ Rd, and an Lf -Lipschitz
function f : R→ R, the random variable f(wTx) is sub-gaussian with subgaussian norm at most
CL2

f∥wTΣ1/2∥22 for some constant C. Furthermore,

E[|f(wTx)|] = |f(0)|+O
(
Lf∥wTΣ1/2∥2

)
= O(1 + Lf∥wTΣ1/2∥2).

Proof. Using Lipschitzness,∣∣f(xTw)− f(0Tw)∣∣ ≤ Lf |xTw − 0| = Lf |xTw|.

The variable wTx ∼ N (0, σ2
w) where σ2

w = ∥wTΣ1/2∥22. Thus, wTx is (σ2
w)-sub-gaussian. For

t ≥ 0,

Pr
[
|f(xTw)− f(0)| ≥ t

]
≤ Pr

[
Lf |xTw| ≥ t

]
≤ 2 exp

(
− t2

2L2
f∥wTΣ1/2∥22

)
.

Thus, we see that

Pr[|f(xTw)| ≥ t] ≤ 2 exp

(
− (t− c)2

2L2
f∥wTΣ1/2∥22

)
,

where c = |f(0)|. For the expectations, taking expectations, we get that

E
[
|f(xTw)− f(0)|

]
≤ E

[
Lf |xTw|

]
= Lf

√
2

π
∥wTΣ1/2∥22.

Using |f(wTx)| ≤ |f(wTx) − f(0)| + |f(0)| and the triangle inequality for expectations,
E[|f(wTx)|] ≤ E[|f(wTx)− f(0)|] + |f(0)| = |f(0)|+O(Lfσw), giving the result.

Lemma A.10 (Covariance Operator Norm Bound). Let W ∈ Rm×d be a fixed matrix whose rows
have unit norm and let x ∼ N (0,Σ). Suppose that f : R→ R is Lf Lipschitz respectively. Define
the population second moment matrix

Φ = Ex[f(Wx)f(Wx)T ],

where f is applied element-wise to the vector Wx ∈ Rm. Then

∥Φ∥2 ≤ ∥Ex [f(Wx)]∥22 + ∥WΣ1/2∥22L2
f

for some universal constants C1, C2.

Proof. We note that Φ is the uncentered covariance matrix. However, to bound the operator norm of
Φ we need to consider the centered covariance matrix Φ̌

Φ̌ = E
[
f(Wx)f(Wx)T

]︸ ︷︷ ︸
Φ

−E [f(Wx)]E [f(Wx)]
T

Then we see that∥∥Φ̌∥∥
2
= sup

∥v∥=1

vT Φ̌v

= sup
∥v∥=1

vTΦv −
(
E
[
vT f(Wx)

])2
= sup

∥v∥=1

E
[(
vT f(Wx)

) (
vT f(Wx)

)T ]− (E [vT f(Wx)
])2

= sup
∥v∥=1

Var
(
vT f(Wx)

)
We want to bound this using the Gaussian Poincare inequality. Which we recall here (Link). Let
g : Rd → R be a C1 function then

Varz∼N (0,I)(g(z)) ≤ Ez∼N (0,I)

[
∥∇g(z)∥2

]
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Since x ∼ N (0,Σ), we can write it as x = Σ1/2z. Thus, define the function

g(z) := f(Wx) = vT f
(
WΣ1/2x

)
=

m∑
k=1

vkf
(
wT

k Σ
1/2x

)
.

Let us then define
u =

[
v1f

′ (wT
1 Σ

1/2x
)

. . . vmf
′ (wT

mΣ1/2x
)]T

Then we see that

∇g(z)T =

m∑
k=1

vkf
′
(
wT

k Σ
1/2x

)(
wT

k Σ
1/2
)
= uTWΣ1/2

Thus, we see that

Ez

[
∥∇zg(z)∥2

]
≤ Ex

[
∥WΣ1/2∥22∥u∥2

]
≤ ∥WΣ1/2∥22Ex

[
∥u∥2

]
Then using Lemma A.9 and noting that f ′ is bounded by Lf , we get that

Ex

[
m∑

k=1

u2k

]
=

m∑
k=1

v2kEx

[(
f ′(wT

k x)
)2]

≤
m∑

k=1

v2kL2
f ≤ L2

f

Thus, we have that
E
[
∥∇g(z)∥2

]
≤ ∥WΣ1/2∥22L2

f

Thus, using the Gaussian Poincare inequality, we see that∥∥Φ̌∥∥
2
≤ ∥WΣ1/2∥22L2

f

Thus, we see that
∥Φ∥2 ≤ ∥Φ̌− Φ∥2 + ∥WΣ1/2∥22L2

f

Finally, we see that ∥∥Φ̌− Φ
∥∥
2
=
∥∥∥E [f(Wx)]E [f(Wx)]

T
∥∥∥
2

= ∥E [f(Wx)]∥22
Thus,

∥Φ∥2 ≤ ∥E [f(Wx)]∥22 + ∥WΣ1/2∥22 · L2
f

We are going to instantiate a few corollaries for cases that we care about. Specifically, we shall
f = σ′

⊥ as the non-linearity. In this case we have that E [f(Wx)] = 0.
Corollary A.1. If E [f(Wx)] = 0, we have that

∥Φ∥2 ≤ ∥WΣ1/2∥22L2
f .

We shall also need to bound the norm of the expectation. In the case, when σ is bounded, we get that
the expectation
Lemma A.11 (Feature Norm Bound). Let xi ∼ N (0,Σ) be IID for i = 1 . . . n, forming rows of
X . Let W ∈ Rm×d be a fixed matrix whose rows wj have norm ∥wj∥2 = 1. Let f : R → R be
Lf -Lipschitz. Define the population second moment matrix

Φ = Ex[f(Wx)f(Wx)T ]

(as in Lemma A.10). Then with probability 1− 2e−cn for some universal constant c > 0,∥∥∥∥ 1√
n
f(XWT )

∥∥∥∥
2

≤
(
1 + C ′

√
m

n

)√
∥Φ∥2

for some universal constant C ′.

29



Proof. Since xi are IID, we have the rows of f(XWT ) ∈ Rn×m are IID. Additionally, by
Lemma A.9 the entries are L2

f∥wT
i Σ

1/2∥22 sub-gaussian entries. Thus, we have that

X̌ =
1

Lf maxi=1...m ∥wT
i Σ

1/2∥2
f(XWT )

has IID rows whose sub-Gaussian norm is at most a universal constant. Let

Φ̌ =
1

n
E
[
X̌T X̌

]
=

1

L2
f maxi=1...m ∥wT

i Σ
1/2∥22

Φ

Then using Equation 5.26 from [42], there exists universal constant C, c such that

Pr

[∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

≥ max(δ, δ2)∥Φ̌∥2
]
< 2e−ct2 , δ = C

√
m

n
+

t√
n

Thus, with probability 1− 2e−ct2 , we have that∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

≤ max(δ, δ2)∥Φ̌∥2

Using the reverse triangle inequality, we have that

1

n
∥X̌T X̌∥2 ≤

∥∥∥∥ 1nX̌T X̌ − Φ̌

∥∥∥∥
2

+ ∥Φ̌∥2

Thus, with probability at least 1− 2e−ct2 , we have that

1

n
∥X̌T X̌∥2 ≤ ∥Φ̌∥2 +max(δ, δ2)∥Φ̌∥2

Thus, we get that
1√
n
∥X̌∥2 ≤

√
∥Φ̌∥2 +max(δ, δ2)∥Φ̌∥2

Multiplying both sides by Lf maxi=1...m ∥wT
i Σ

1/2∥2, we see that∥∥∥∥ 1√
n
f(W0X̃

T )

∥∥∥∥
2

≤ Lf max
i=1...m

∥wT
i Σ

1/2∥2(1 + C ′δ)

√
∥Φ̌∥2

≤ (1 + C ′δ)
√
L2
f max
i=1...m

∥wT
i Σ

1/2∥22∥Φ̌∥2

≤ (1 + C ′δ)
√
∥Φ∥2

Using t =
√
m, we see that with probability 1− 2e−cm,∥∥∥∥ 1√

n
f(W0X̃

T )

∥∥∥∥
2

≤
(
1 + C ′

√
m

n

)√
∥Φ∥2

Hence, we can again instantiate some simple corollaries.
Corollary A.2. If E [f(Wx)] = 0, we have that∥∥∥f(W0X̃

T )
∥∥∥
2
≤ LfC∥WΣ1/2∥2

√
n

Another important case, if f is uniformly bounded. This is the case, when we apply it for σ′, σ′′.
Here we either have the expectation is zero. In which Corollary A.2 applies. If the mean in non-zero
then we get the following.
Corollary A.3. If |E[f(z)]| =M , we have that∥∥∥f(W0X̃

T )
∥∥∥
2
≤ C

[
n+ Lf∥WΣ1/2∥2

√
n
]
.
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A.3 ReLU Data Alignment

Lemma A.12. Let M = uvT be a non-zero rank 1 matrix, where u ∈ Rm and v ∈ Rn. Assume that
all entries of u and v are non-zero, i.e., ui ̸= 0 for all i = 1, . . . ,m and vj ̸= 0 for all j = 1, . . . , n.
Let M̃ be the matrix with entries M̃ij = δuivj>0. Let M̂ = M̃ − 0.5J , where J is the m× n matrix
of all ones. Then, rank(M̂) = 1.

Proof. Let u′, u′′ ∈ {0, 1}m and v′, v′′ ∈ {0, 1}n be indicator vectors defined as follows:

• u′i = δui>0

• u′′i = δui<0

• v′j = δvj>0

• v′′j = δvj<0

Since we assume ui ̸= 0 and vj ̸= 0 for all i, j, every entry in u is either positive or negative, and
similarly for v. This means 1m = u′ + u′′ and 1n = v′ + v′′, where 1 denotes a vector of all ones of
the appropriate dimension.

The entry M̃ij = δuivj>0 is 1 if and only if (ui > 0 and vj > 0) or (ui < 0 and vj < 0). This can be
written as:

M̃ = u′(v′)T + u′′(v′′)T

The all-ones matrix J can be written as J = 1m1Tn . Using the property that 1 = u′ + u′′ and
1 = v′ + v′′:

J = (u′ + u′′)(v′ + v′′)T

= u′(v′)T + u′(v′′)T + u′′(v′)T + u′′(v′′)T

Now we compute M̂ = M̃ − 0.5J :

M̂ = (u′(v′)T + u′′(v′′)T )− 0.5(u′(v′)T + u′(v′′)T + u′′(v′)T + u′′(v′′)T )

= 0.5u′(v′)T + 0.5u′′(v′′)T − 0.5u′(v′′)T − 0.5u′′(v′)T

= 0.5
[
u′(v′)T − u′(v′′)T − u′′(v′)T + u′′(v′′)T

]
= 0.5

[
u′((v′)T − (v′′)T )− u′′((v′)T − (v′′)T )

]
= 0.5(u′ − u′′)((v′)T − (v′′)T )

= 0.5(u′ − u′′)(v′ − v′′)T

Let sign(u) denote the vector with entries sign(ui), where sign(x) = 1 if x > 0 and sign(x) = −1 if
x < 0. Since no ui is zero, (u′−u′′)i = δui>0−δui<0 = sign(ui). Similarly, (v′−v′′)j = sign(vj).
Thus, we have shown:

M̂ = 0.5 · sign(u) · sign(v)T

Since M = uvT is non-zero, both u and v must be non-zero vectors. Because we assumed no
zero entries, the vectors sign(u) (containing only ±1) and sign(v) (containing only ±1) are non-
zero vectors. The matrix M̂ is expressed as the outer product of two non-zero vectors. Therefore,
rank(M̂) = 1.

Proposition 3.1 (ReLU gradient). If 2ν > 1− α, and the row of W are i.i.d. from the unit sphere,
then with probability 1− o(1) we have that σ′

⊥(XW
T ) = 1

2 sign(zi) sign(Wq)T .

Proof. Recall the data decomposition xi = ζziq+xb,i, where the spike direction q∈Rd is unit-norm,
zi ∼ N (0, 1), the bulk component xb,i has spectrum exponent α, and the spike magnitude scales
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as ζ = nν . Since each row wT
k of W is uniform on Sd−1, ∥Wq∥2 ≈

√
m/d with high probability.

Using standard concentration for random projections, with probability 1− o(1),

∥Wxb,i∥22 ≤ C ∥xb,i∥22 = C

d∑
j=1

j−α =


Θ
(
d1−α

)
α < 1,

Θ(log d) α = 1,

O(1) α > 1.

(14)

For the spike term ∥W (ζziq)∥2 = |zi| ζ ∥Wq∥2 ≳ nν
√

m
d |zi| ≥ nν , since |zi| ≥ c with

probability 1− o(1) for some universal c > 0. Hence, whenever 2ν > 1− α, the spike contribution
W (ζziq) dominates the bulk, so that sign(Wxi) = sign

(
W (ζziq)

)
. Then Lemma A.12 then implies

for ReLU that
σ′
⊥(XW

T ) = 1
2 sign(zi) sign(Wq)T .

B Assumption Discussion

B.1 Activation Function Properties

We verify the smoothness and lipschitzness conditions for several common activation functions.

B.1.1 Sigmoid Function

Let σ(u) = (1 + e−u)−1.

Smoothness: The Sigmoid function is infinitely differentiable (C∞) for all u ∈ R.

σ′(u) = σ(u)(1− σ(u))
σ′′(u) = σ′(u)(1− 2σ(u)) = σ(u)(1− σ(u))(1− 2σ(u))

Both σ′(u) and σ′′(u) exist for all u ∈ R.

Lipschitzness: Since Sigmoid is bounded and all derivatives of the sigmoid can be written as a
polynomial of sigmoid, we see that the derivatives are bounded and hence lipschitz.

Non-Vanishing Derivative Here we show that if the weight vector wj is drawn uniformly from the
unit sphere Sd−1, then the expected derivative µj = Ex[σ

′(wT
j x)] is Ω(1) when ν < 1/2.

The derivative σ′(u) = σ(u)(1 − σ(u)) is bounded. We can see that the argument uj = wT
j x is

Gaussian N(0, σ2
uj
), with variance σ2

uj
= wT

j Σ̂wj + n2ν(wT
j q)

2. Then the behavior of µj is such
that if σ2

uj
= O(1), then µj = Ω(1). Specifically, if σ2

uj
→ 0, then µj → σ′(0) = 0.25. If σ2

uj
→∞,

then µj → 0.

Spike Contribution VS = n2ν(wT
j q)

2: For a fixed q ∈ Sd−1 and random wj ∈ Sd−1, the term (wT
j q)

2

concentrates around its mean E[(wT
j q)

2] = 1/d. With high probability for large d, (wT
j q)

2 = Θ(1/d).
Then in proportional regime, we have that, VS = n2ν · Θ(1/n) = Θ(n2ν−1). Since ν < 1/2,
2ν − 1 < 0, so VS = o(1) as n→∞.

Bulk Contribution VB = wT
j Σ̂wj : For random wj ∈ Sd−1, wT

j Σ̂wj concentrates around
E[wT

j Σ̂wj ] =
1
dTr(Σ̂). The eigenvalues λk(Σ̂) ∼ k−α.

• If α = 0: Tr(Σ̂) = Θ(d), so VB = Θ(1).

• If 0 < α < 1: Tr(Σ̂) = Θ(d1−α), so VB = Θ(d−α) = Θ(n−α) = o(1).

• If α = 1: Tr(Σ̂) = Θ(log d), so VB = Θ((log d)/d) = Θ((logn)/n) = o(1).

• If α > 1: Tr(Σ̂) = Θ(1), so VB = Θ(1/d) = Θ(1/n) = o(1).

Thus, VB is either Θ(1) (for α = 0) or o(1) (for α > 0).
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B.1.2 Hyperbolic Tangent (Tanh) Function

Let σ(u) = tanh(u).

Smoothness: The Tanh function is C∞ for all u ∈ R.

σ′(u) = 1− tanh2(u) = sech2(u)

σ′′(u) = −2 tanh(u)sech2(u)

Both σ′(u) and σ′′(u) exist for all u ∈ R.

Lipschitzness:

• For σ(u): max |σ′(u)| = σ′(0) = 1. Thus, σ(u) is 1-Lipschitz.

• For σ′(u): max |σ′′(u)| occurs at u = arctanh(±1/
√
3), giving |σ′′(u)| = 4

3
√
3
≈ 0.7698.

Thus, σ′(u) is Lipschitz with L ≈ 0.77 (or L = 1 as a looser bound).

L = 2 serves as a common upper bound.

Non-vanishing Derivative: Let σ(u) = tanh(u). Its derivative is σ′(u) = sech2(u). This derivative
is always positive, 0 < σ′(u) ≤ 1, with a maximum of σ′(0) = 1, and σ′(u)→ 0 as |u| → ∞. The
analysis of the expected derivative µj = Ex[σ

′(wT
j x)] parallels that of the Sigmoid function.

B.1.3 Rectified Linear Unit (ReLU) Function

Let σ(u) = max(0, u).

Smoothness: Here we see that the derivatives for u ̸= 0 are as follows

σ′(u) =

{
0 if u < 0

1 if u > 0
, σ′′(u) = 0 for u ̸= 0

Lipschitzness:

• For σ(u): |σ′(u)| ≤ 1 a.e. Thus, σ(u) is 1-Lipschitz.

• For σ′(u): σ′(u) is a step function. It is bounded, but not Lipschitz over R due to the
discontinuity at u = 0. However, its values are 0 or 1.

Non-vanishing Derivative: Since Wx is symmetric, we get that the mean is 0.5.

B.1.4 Exponential Linear Unit (ELU) Function

Let σ(u) =
{
u if u > 0

eu − 1 if u ≤ 0
.

Smoothness: The derivatives are as follows.

σ′(u) =

{
1 if u > 0

eu if u ≤ 0
σ′′(u) =

{
0 if u > 0

eu if u < 0

Here we have that σ′ is continuous, and σ′′ is defined everywhere except for 0.

Lipschitzness:

• For σ(u): For u > 0, σ′(u) = 1. For u ≤ 0, σ′(u) = eu ∈ (0, 1]. Thus |σ′(u)| ≤ 1. So
σ(u) is 1-Lipschitz.

• For σ′(u): For u > 0, σ′′(u) = 0. For u < 0, σ′′(u) = eu ∈ (0, 1). On [−1, 1], the
function is continuous. Hence lipschitz. Thus, we have global lipschitzness.

Non-vanishing Derivative: The derivative dominates the ReLU case. Hence µj is at least 0.5.
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B.1.5 Swish Function

Let σ(u) = u · sigmoid(u) = u(1 + e−u)−1.

Smoothness: This follows from smoothness of Sigmoid.

Lipschitzness: Let S(u) = sigmoid(u) = (1 + e−u)−1. Then σ(u) = uS(u).

• For σ(u): The first derivative is:
σ′(u) = S(u) + uS′(u) = S(u) + uS(u)(1− S(u))

This is a continuous function that decays to zero. Hence is bounded.
• For σ′(u): The second derivative of σ(u) is:

σ′′(u) =
d

du
(S(u) + uS′(u)) = S′(u) + (S′(u) + uS′′(u))

= 2S′(u) + uS′′(u)

This is a continuous function that decays to zero. Hence is bounded.
• For σ′′(u): The third derivative of σ(u) is:

σ′′′(u) =
d

du
(2S′(u) + uS′′(u)) = 2S′′(u) + (S′′(u) + uS′′′(u))

= 3S′′(u) + uS′′′(u)

This is a continuous function that decays to zero. Hence is bounded.

Therefore, σ(u), σ′(u), and σ′′(u) are all Lipschitz for Swish with β = 1.

Non-vanishing Derivative: The expected derivative µj is:
µj = E[σ′(uj)] = E[S(uj) + ujS

′(uj)]

= E[S(uj)] + E[ujS′(uj)]

We evaluate each term:

For E[S(uj)]: The function g(u) = S(u) − 1/2 is an odd function. Since uj ∼ N(0, σ2
uj
) has a

probability density function symmetric about 0, the expectation of any odd function of uj is 0. Thus,
E[S(uj)− 1/2] = 0, which implies E[S(uj)] = 1/2.

For E[ujS′(uj)]: The derivative of sigmoid, S′(u) = S(u)(1−S(u)), is an even function: S′(−u) =
S(−u)(1 − S(−u)) = (1 − S(u))S(u) = S′(u). The product h(u) = uS′(u) is an odd function,
being the product of an odd function (u) and an even function (S′(u)). Since uj ∼ N(0, σ2

uj
) has a

symmetric PDF about 0, E[ujS′(uj)] = 0.

Combining these results:
µj = 1/2 + 0 = 1/2

The value 1/2 is a positive constant, independent of other parameters such as d, n,m, ν, α, or the
specifics of Σ (provided it is positive definite) and wj (provided wj ∈ Sd−1).

B.1.6 Softplus Function

Let σ(u) = log(1 + eu).

Smoothness: The Softplus function is C∞ for all u ∈ R.

σ′(u) =
eu

1 + eu
= sigmoid(u)

σ′′(u) =
eu

(1 + eu)2
= sigmoid(u)(1− sigmoid(u))

Both σ′(u) and σ′′(u) exist for all u ∈ R.

Lipschitzness: The lipschitzness follows from the boundedness and lipschitzness of sigmoid.

Non-vanishing Derivative: Following the argument presented for the Swish activation function, the
mean is 0.5.
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B.2 Loss Function Derivatives

Let us see what this is for some common loss functions.

• For the Mean Squared Error (MSE) loss,

L(f(X)) =
1

2
∥f(X)− y∥2 =

1

2

n∑
i=1

(f(xi)− yi)2 and L′(f(x)) = f(x)− y.

• For the Binary Cross Entropy (BCE) loss, we assume the network produces logits z = f(X) ∈ Rn

with associated class-one probabilities p = sigmoid(z) = 1
1+e−z ∈ Rn computed component wise.

Then, for given output data y ∈ {0, 1}n,

L(f(X)) = −
n∑

i=1

[
yi ln(pi)+ (1− yi) ln(1− pi)

]
, L′(f(X)) = p− y = sigmoid(f(X))− y.

• For the Hinge loss for binary classification with output data y ∈ {−1, 1}n, f(X) ∈ Rn and

L(f(X)) =

n∑
i=1

max (0, 1− yi f(xi)) .

Then L′(f(X)) is the vector whose ith entry is given by the subgradient

∂L

∂f(xi)
=

{
0, if yi f(xi) ≥ 1,

−yi, if yi f(xi) < 1.

B.3 Residue Concentration

1. Suppose the training labels satisfy yi = f∗(xi) + ξi, where f∗ is Lipschitz and ξi are i.i.d.
subgaussian random variables. Then, for independent W and X , lipschitz activation functions and
for either the MSE or Binary Cross Entropy (BCE) loss the residues are subgaussian variables and
satisfy this assumption.

2. For binary classification with the hinge loss, then since ai ∼ Unif(±1) we have with probability
1− o(1) that at least a constant fraction of the data points satisfy 1− yif(xi) ≥ 0, and therefore
ri = ±1. As a result the assumption holds at initialization.

B.4 β Alignment

Here we consider Sigmoid, ReLU, Tanh, ELU, Softplus, and Swish activation functions. For each
activation function, we consider three different loss functions - MSE, BCE, and Hinge. Then for
for each activation and loss function combination, we consider (ν, α) ∈ {1/8, 3/8, 5/8} × {0, 1/2}.
This gives us 96 scenarios. We do each each scenario for the Mean Field and NTK scalings. For each
scenario we let ψ1 = 0.75 and ψ2 = 1.25. We consider n ∈ {750, 1500, 2250, 3000, 3750}. We use
triple index targets

f(x) = sigmoid(βT
1 x) + tanh(βT

2 x) + relu(βT
3 x)

for three unit vectors β1, β2, β3. For each value we do 50 trials to get the mean inner product
| 1√

n∥r∥z
T r|. Then we then estimate beta using linear regression.

Figure 9, presents the estimates βs. Here we see that β has a mode around 1. Recall if z1, z2 are
independent uniformly unit norm vectors. Then zT1 z2 ∼ d−1. Figure 9, however, that many βs are
bigger than 1. This suggest z, r are rapidly becoming orthogonal. Note that negative βs are cases,
where the alignment improves, so z, r are becoming parallel. Eventually, the inner product will
saturate at 1 and β should be close to zero. The reason we get negative βs is due to the limited range
of n used for the experiments.

C Empirical Details

All code for the experiments can be found at Link.

The following details are common for all experiments.
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Figure 9: Estimated β values

Hardware: All experiments were run on Google Colab using an A100.

Data X: We sampled q uniformly randomly from the unit sphere and we used a diagonal Σ̂.

µ Estimation: We estimate µ using 10000 samples.

Targets: The triple index model we used is as follows.

f(x) = sigmod(βT
1 x) + tanh(βT

2 x) + relu(βT
3 x)

For three unit vectors β1, β2, β3.

When using MSE loss, we let
y = f(x) + ε

for standard gaussian noise ε.

When using BCE loss, we use
y = f(x).

Note that these y are not necessarily in [0, 1]. However, the BCE loss is still well defined.

When using Hinge loss,
y = sign(f(x)− 0.5).

Note this dataset can be imbalanced.

Alignment determination: To plot the red and blue lines in Figures 1,2,3,7,8, we use the following
procedure. We let B = S1 + S12 + S2 (+ S3 for the gradient penalty). Then we compute its leading
left singular vectors for B. We then check if with q and XT

Br. Thus, how we get the associated
singular value and we plot the corresponding lines.

C.1 Figure 1

For non-isotropic W , we generate WS by sampling the rows i.i.d. from the unit sphere. We then
introduce anisotropy, by adding n−1/41qT to WS and then renormalizing to unit norm. This results
in the weight concentrating around q.

C.2 Figure 3

For Figure (b), we generate WS by sampling the rows i.i.d. from the unit sphere. We then introduce
anisotropy, by adding n1/21qT to WS and then renormalizing to unit norm. This results in the weight
concentrating around q.

For Figure (c), we generate WS by sampling the rows i.i.d. from the unit sphere. Then we project
onto the ortho-complement of q and renormalize the rows.

For Figure (d), we generate WS by sampling the rows i.i.d. from the unit sphere. We then let
W =WSX

TX and renormalize the rows. This results in a W that is highly dependent on X .
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Figure 10: Evolution of µmin and µmax during training. Fixed parameters: MF scaling, Tanh
activation, MSE loss, α = 0.

C.3 Figure 4

Here we use ζ = 0, α = 0. Hence applies for prior work from [3, 28].

We let n ∈ {100, 200, 300, 400, 500, 600, 700, 800} and use d = n/2 and m = n/3.

C.4 Later in Training Experiments

Here both network are initialized with the same weight matrix for both the inner and outer layers.

We use a step size of η = γ−1
m . Additionally, after each iteration, we re-normalize the rows of W to

have unit norm.

For Figure 5(c), the mean principal angle in the following quantity. Given orthonormal basis
u1, . . . , uk and v1, . . . , vk for two subspaces, we form the matrix A via

Aij = uTi vj

We the compute cos(σi(A)). These are the principal angles between the subspaces. We then report
the mean of angels.

C.5 Real Data Experiments

MNIST Dataset: We load the standard MNIST dataset, divide by 256 to have all entries in
[0, 1]. We use 1000 centered and flattened MNIST images to form X ∈ R1000×784. We estimate
ν ≈ 0.784 > 1/2. The data is highly ill-conditioned, suggesting a large effective α.

CIFAR Dataset: We use n = 1000 CIFAR-10 training images, processed through a pretrained
ResNet-18 (on ImageNet) to extract 512-dimensional penultimate-layer activations, forming X ∈
R1000×512. We estimate ν ≈ 0.3572 < 1/2 and α ≈ 0.6.

Spcifically, the code for the transformations are as follows.

resnet18(weights=ResNet18_Weights.DEFAULT)

transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], # ResNet defaults

std=[0.229, 0.224, 0.225])
])

D Later in Training

For Theorem 3.1 and Theorem 3.2 to apply beyond initialization, during training we require certain
assumptions to hold. We begin by considering the common assumptions needed for both theorems.

1. Assumption 1 concerns the proportional regime and hence holds during training.

2. Assumption 2 concerns the data generation process and hence also holds during training.
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Figure 11: Evolution of ∥r∥∞/∥r∥2 during training. Fixed parameters: MF scaling, Tanh activation,
MSE loss, α = 0.
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Figure 12: Evolution of |zT r/(
√
n∥r∥2) during training. Fixed parameters: MF scaling, Tanh

activation, MSE loss, α = 0.

3. Assumption 3 concerns the network initialization, and scaling, hence the assumptions on a and
γm continue to hold during training. Moreover, through the use of weight normalization the
assumption that the rows of W are on the unit sphere also holds.

4. Assumption 4 concerns the activation function, namely its smoothness and Lipschitzness which of
course also hold during training. However, it is not clear that the assumption on the non-vanishing
gradient is satisfied. Despite this, we empirically verify as per Figure 10 that it does hold during
training at least for small ν. For moderate ν = 7/16 we observe that µmin appears to decrease,
hence later in training this assumption may be violated. For large ν = 3/4,the assumption only
appears to hold for the first iteration. We remark that this results in the suppression of S1 and S12

but does not effect S2 or E. As a result, we suspect that the data spike q remains dominant.
5. Assumption 5. This is the assumption that

∥r∥∞
∥r∥2

= O

(
log n√
n

)
.

Figure 11 shows that while this ratio grows, the change is very small. Hence, we believe that this
assumptions holds.

6. Assumption 6. This is about the alignment between z and r. Figure 12 shows that while this ratio
grows, the change is very small. Hence, we believe that this assumptions holds.

For the additional assumptions required for Theorem 3.1, clearly if the activation is C2 at initialization
then it is also C2 throughout training. Finally, although clearly the independence of Wt and X is
violated, due to the near constant gradient direction, (at least for the MF scaling) the correlation
between W and X remains small.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction are about general conditions under which we see
low rank gradients. Our theorems and experiments reflect these claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper exactly defines the scope of the work and presents results within
that scope. Additionally, we have experimental evidence for the phenomena holding beyond
our theoretical setting.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All of the assumptions are very carefully listed and the detailed proofs are
presented

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental details are presented. The code is also available

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are publicaly available

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimtnal details are presented

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: None of the experiments require errorbars. Most experiments are single runs.
For experiments that are averaged over many trials, we report the number of trials.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were on Google Colab with an A100.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducts conforms with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theory paper exploring theoretical aspects of spectrum of the gradient.
There are no societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such threats
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets were used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code used to run the experiments is provided at an anonymize github
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used an LLM to help write the paper
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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