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ABSTRACT

Transformer-based autoregressive models have emerged as a unifying paradigm
across modalities such as text and images, but their extension to 3D molecule
generation remains underexplored. The gap stems from two fundamental chal-
lenges: (1) tokenizing molecules into a canonical 1D sequence of tokens that is
invariant to both SE(3) transformations and atom index permutations, and (2) de-
signing an architecture capable of modeling hybrid atom-based tokens that couple
discrete atom types with continuous 3D coordinates. To address these challenges,
we introduce InertialAR. InertialAR devises a canonical tokenization that aligns
molecules to their canonical inertial frames and reorders atoms to ensure SE(3)
and permutation invariance. Moreover, InertialAR equips the attention mechanism
with geometric awareness via geometric rotary positional encoding (GeoRoPE).
In addition, it utilizes a hierarchical autoregressive paradigm to predict the next
atom-based token, predicting the atom type first and then its 3D coordinates via
Diffusion loss. Experimentally, InertialAR achieves state-of-the-art performance
on 7 of the 10 evaluation metrics for unconditional molecule generation across
QM9, GEOM-Drugs, and B3LYP. Moreover, it significantly outperforms strong
baselines in controllable generation for targeted chemical functionality, attaining
state-of-the-art results across all 5 metrics.

1 INTRODUCTION

Autoregressive (AR) models have achieved substantial progress in artificial intelligence (AI) in re-
cent years. In natural language processing, their strong sequence modeling capability and scalability
have established them as the de facto architecture for foundation models (Brown et al., 2020; Tou-
vron et al., 2023; Achiam et al., 2023). Moreover, they have shown competitive performance on par
with diffusion models in image generation, suggesting their viability as a unified sequence modeling
paradigm (Sun et al., 2024; Tian et al., 2024). Inspired by their success across these diverse modali-
ties, we seek to investigate whether AR models can serve as an effective generative model paradigm
for 3D molecule generation.

While diffusion models have achieved impressive results in 3D molecule generation, they are often
limited by computationally intensive iterative sampling and a lack of flexibility for variable-length
generation (Hoogeboom et al., 2022; Xu et al., 2023; Vignac et al., 2023). In contrast, AR models
offer a compelling alternative: by casting 3D molecule generation as a sequence prediction problem,
they enable highly efficient and flexible generation of variable-sized molecules.

However, adapting AR models for 3D molecule generation poses unique challenges at both data
and model levels. On the data side, the key difficulty centers on tokenizing 3D molecules into 1D
sequences of tokens compatible with Transformer-like models. An ideal tokenization must satisfy
two criteria: (1) SE(3)-equivariance, i.e., equivariant tokenization under rotations and translations,
and (2) permutation invariance of the atom indexing to establish a canonical sequence order for
each molecule. On the model side, unlike conventional AR models that merely predict the next
discrete token at each step, the AR model for 3D molecule generation requires jointly predicting a
discrete atom type (e.g., C, H, O, N) and its continuous 3D coordinates, due to the dual chemical
and geometric information encoded in each atom.

Our Contributions. To address these challenges, we propose InertialAR, a novel AR model for 3D
molecule generation. InertialAR rests on two key innovations. First, it leverages a canonical tok-
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Figure 1: Overview of InertialAR: (a) canonical tokenization, (b) geometric rotary positional encoding
(GeoRoPE), and (c) hierarchical autoregressive paradigm.

enization strategy that uses a canonical inertial frame to align 3D molecules, converting them into
a sequence of atom-level tokens that ensures SE(3) equivariance. It subsequently applies a canon-
ical reordering of its atoms to guarantee atom index permutation invariance. Second, it introduces
Geometric Rotary Positional Encoding (GeoRoPE), which injects relative positional awareness and
pairwise distance information between atoms into the attention mechanism, making it geometry-
aware. Built upon these two components, InertialAR employs a hierarchical AR paradigm for den-
sity estimation, iteratively predicting the discrete atom types using cross-entropy and continuous
atom positions using diffusion loss.

To evaluate the effectiveness of InertialAR, we conduct comprehensive experiments on both uncon-
ditional and controllable generation. For unconditional generation, InertialAR achieves state-of-the-
art results on 3 of 6 key metrics on QM9 and GEOM-Drugs. To further assess its scalability and
robustness, we evaluate on the more challenging large-scale B3LYP dataset, where InertialAR at-
tains state-of-the-art performance across all 4 metrics, clearly surpassing other prominent diffusion
and AR models. Furthermore, on the more demanding task of class-conditional generation, Iner-
tialAR combined with classifier-free guidance establishes state-of-the-art results on all 5 evaluation
metrics, enabling targeted generation and editing of molecules with desired chemical functionality.

Related work. We briefly review the most related works here and include a more detailed overview
in Appendix B. The central requirement for 3D molecule generation is respecting SE(3) symmetry.
Existing methods can be grouped into four paradigms: (i) SE(3)-equivariant architectures (Thomas
et al., 2018a; Liao & Smidt, 2023; Schütt et al., 2021; Satorras et al., 2022b), (ii) invariant-feature
modeling (Schütt et al., 2017; Gasteiger et al., 2022), (iii) data augmentation (Flam-Shepherd &
Aspuru-Guzik, 2023; Abramson et al., 2024), and (iv) input canonicalization (Antunes et al., 2024;
Yan et al., 2024; Li et al., 2024b; Fu et al., 2024). Another key challenge for autoregressive 3D
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generation is tokenization. While recent studies have investigated text sequence-based tokenization
(Li et al., 2024b; Yan et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023), some parallel works are
concurrently exploring voxel-based approaches (Faltings et al., 2025; Lu et al., 2025b). However,
they both rely on spatial discretization, which discards fine-grained geometry and fails to preserve
atom-level granularity.

2 PRELIMINARIES

3D Molecule Generation. The goal of 3D molecule generation is to directly construct physically
plausible 3D molecular conformations. Formally, a 3D molecule with n atoms can be represented
as a point cloud M = (t, C). The vector t = [t1, · · · , tn] ∈ Zn encodes the atom types, where
ti denotes the nuclear charge of the i-th atom. The coordinate matrix C = [c1, · · · , cn] ∈ R3×n

specifies the 3D position of each atom, with ci ∈ R3.

Autoregressive Models and Tokenization of 3D Molecule. Autoregressive (AR) models ad-
dress sequence modeling by framing it as a “next-token prediction” problem. This approach, a
direct application of the chain rule of probability, factorizes the joint distribution of a sequence
x = (x1, . . . , xn) into a product of conditional probabilities:

p(x) = p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1). (1)

The model’s core task is thus to learn the conditional distribution p(xi|x<i) for each step, which
is typically parameterized by a powerful neural network such as the Transformer (Vaswani, 2017).
The primary challenge in applying AR models to 3D molecular generation lies in the effective
tokenization of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer
architectures.

Class-conditional Generation and Classifier-free Guidance. Class-conditional generation pro-
duces samples conditioned on a class label c (Esser et al., 2021; Peebles & Xie, 2023). Classifier-free
guidance (CFG), originally proposed by Ho & Salimans (2022), enhances both sample quality and
conditional alignment. It trains a single model on both the conditional distribution p(x|c) and the
unconditional distribution p(x) by randomly dropping labels during training. Then during inference,
conditional generation is steered by combining the two predictions:

pg = pu + s(pc − pu), (2)

where pc and pu denote the conditional and unconditional predictions, respectively, and s is the
guidance scale controlling the trade-off between class fidelity and sample diversity.

3 INERTIALAR

The Inertial Autoregressive Model (InertialAR) casts 3D molecule generation as an AR process,
where a molecule is sequentially built by predicting “the next atom-based token” at each step. To
achieve this, a 3D molecule M is tokenized into an ordered 1D sequence of n atom-based tokens,
M = (a1, . . . , an), where each atom-based token ai = (ti, ci) contains a discrete atom type ti and
continuous 3D coordinates ci = (xi, yi, zi). Thus, the corresponding probability factorizes as:

p(M) =

n∏
i=1

p(ai|a<i) =

n∏
i=1

p((ti, ci)|a<i). (3)

3.1 CANONICAL TOKENIZATION OF 3D MOLECULES

The factorization in Equation (3) makes AR models inherently sensitive to the token order. There-
fore, a robust tokenization must be invariant to two fundamental symmetries: the continuous SE(3)-
equivariance of the molecular geometry under rotations and translations, and the discrete permu-
tation symmetry of the atom indexing (which can yield up to n! permutations for n atoms). Such
a canonical tokenization ensures that each molecule maps to a unique token sequence, eliminating
ambiguity and enabling effective learning.

More concretely, we introduce a two-step canonical tokenization, as shown in Figure 1(a). First,
to address SE(3) symmetry, we align the molecular system to its canonical inertial frame, resulting
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Figure 2: Illustration of introducing a fourth node as the anchor node. We define the sign of the x-y-z axis to
make sure that x4 is in the first quadrant, and there are four cases as illustrated in the four subfigures.

in an invariant canonical pose. Second, to address index permutation symmetry, the atoms are
deterministically reordered according to a predefined rule. More details are explained below.

Step 1: Canonical Inertial Frame Construction. First, we employ the following four steps to de-
rive the reference frames that construct the rotation matrix from N atomic positions c: (1) Calculate
the mass center: c̄ = 1

N

∑
i ci. (2) Adjust position relative to the center ci = ci − c̄. (3) Compute

the inertia tensor Î =
∑

i ∥ci∥2I − cic
T
i , where I is the unit diagonal matrix.

How to define the orderings of canonical inertial frame axes? We follow the ordering of the
eigenvalues to define the ordering of the eigen-vectors, which form the rotation matrix. The key
point to note is how to handle the tie between the eigenvalues. In such cases, the molecular system is
symmetric (e.g., CO2 or CH4), leading to degenerate eigenvalues of the inertia tensor. Consequently,
the canonical inertial frame is not uniquely defined, yet all valid frames are physically equivalent.

How to define the directions of canonical inertial frame axes? The orthonormal I is the basis.
Meanwhile, there are eight possible combinations for the directions or signs of the x-, y-, and z-
axes, given by {±1,±1,±1}, respectively. First, we enforce the ordering of the x-y-z axis to be
right-handed, i.e., the determinant of I to be 1, not -1. This still gives us four possible combinations.
Then we can define a unique direction for each molecule system by introducing a fourth node, as
in Theorem 1.

Theorem 1. For an inertial frame F , we build up the corresponding right-handed axes as coordinate
systems Q. Then we need to incorporate a fourth point that is not on the y-z plane or x-z plane to
uniquely determine the directions of the coordinate system with one rotation transformation matrix.

For detailed proof, please check Appendix E. As illustrated in Theorem 1, we must include a fourth
node to uniquely determine the directions of the three axes. To achieve this, we consider a fourth
node x4 that is not on the y-z plane or x-z plane and has the largest distance to the origin. Then we
define the requirement that x-x4-z and x4-y-z are also right-handed; in other words, this requirement
is essentially saying that x4 should be in the first quadrant of the x-y plane. For implementation,
x4 is a 3D point whose projection onto the x–y plane falls into one of the four quadrants: the first,
second, third, or fourth quadrant, depending on the signs of its x and y coordinates. Each of them
defines the signs (or directions) of the canonical inertial frame axes, as illustrated in Figure 2.

Step 2: Canonical Reordering of Atom Index. To resolve the discrete permutation ambiguity of
atom indexing, we first process the 3D molecular structure with RDKit (Landrum, 2016) to obtain a
molecule object, which provides the corresponding attributed molecular graph with atoms as nodes
and bonds as edges. Each atom is first assigned an initial identifier based on intrinsic chemical and
topological features (e.g., atomic number, degree, formal charge, attached hydrogens, ring mem-
bership). These identifiers are then iteratively refined by aggregating information from neighboring
atoms until stabilization. Atoms are finally ordered according to their refined identifiers, ensuring
that isomorphic molecules map to the same sequence. For cases where symmetry leaves multiple
atoms indistinguishable, a deterministic tie-breaking procedure perturbs the identifiers and re-runs
refinement until a unique order is obtained (Landrum, 2016). Such canonical reordering reduces
the n! possible permutations to a unique ordering, providing the consistent input required for AR
learning.
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3.2 GEOROPE: GEOMETRIC ROTARY POSITIONAL ENCODING

After obtaining the canonical sequence of tokens, each atom-based token ai = (ti, ci) defined
in Equation (3) must be effectively encoded into a latent representation suitable for Transformer
modeling. This representation should capture both the discrete atom type ti and the continuous
3D coordinates ci = (xi, yi, zi), ensuring that the self-attention mechanism can fully perceive and
reason about the chemical identity and spatial arrangement of atoms.

Atom Type Embedding. For the discrete atom type ti, we employ a learnable embedding layer to
map this categorical feature into a continuous, high-dimensional vector:

ztype
i = Embedding(ti). (4)

Geometric Rotary Positional Encoding (GeoRoPE). To enable the self-attention mechanism to ef-
fectively capture the relative spatial relationships between atoms, a geometry-aware encoding of the
continuous 3D coordinates ci = (xi, yi, zi) is essential. To this end, we introduce GeoRoPE, the Ge-
ometric Positional Encoding tailored for 3D point-based tokens, as shown in Figure 1(b). GeoRoPE
integrates: (i) 3D Rotary Positional Encoding (RoPE-3D) for relative positional awareness along
spatial axes, and (ii) Nyström Approximation Encoding for efficient modeling of pairwise dis-
tances.

(i) 3D Rotary Positional Encoding for Continuous 3D Coordinates. To make the self-attention
mechanism geometry-aware, the positional encoding must ensure the inner product for absolute
positions ci and cj depends solely on their relative positions, cj − ci. This can be expressed as:

RT
ciRcj = RT

xi,yi,ziRxj ,yj ,zj = Rxj−xi,yj−yi,zj−zi = Rcj−ci . (5)

Here, Rx,y,z is the positional encoding function that maps 3D coordinates to their high-dimensional
representation. This forces the attention scores to reflect the molecule’s internal geometry, not its
arbitrary global orientation. Then, inspired by Su (2021), we propose the 3D Rotary Positional
Encoding (RoPE-3D) for atom-based tokens in the Euclidean space:

Rx,y,zq =


q0
q1
q2
q3
q4
q5

 ·


cosxθ0
cosxθ0
cos yθ0
cos yθ0
cos zθ0
cos zθ0

+


−q1
q0
−q3
q2
−q5
q4

 ·


sinxθ0
sinxθ0
sin yθ0
sin yθ0
sin zθ0
sin zθ0

 . (6)

This RoPE-3D in Equation (6) is then applied to the query q and key k vectors of each atom within
the self-attention mechanism. A crucial outcome of this formulation is that the inner product be-
tween a query vector transformed by position ci and a key vector transformed by position cj becomes
a function of only their relative positions, cj − ci:

(Rciq)
T (Rcjk) = (Rxi,yi,ziq)

T (Rxj ,yj ,zjk) = qTRxj−xi,yj−yi,zj−zik = qTRcj−cik. (7)

Consequently, the attention score between any two atoms depends on their feature representations
(via q and k) and their relative spatial arrangement, fulfilling the initial requirement for a geometry-
aware self-attention mechanism.

(ii) Nyström Approximation Encoding for Pairwise Distance. One limitation of using RoPE-3D
in Equation (6) for structure tokenization is that it treats each axis separately; though by expectation,
it should be able to learn the token pairwise distance information. We empirically observe that
merely using RoPE-3D cannot learn adequate information, while explicitly adding the pairwise
information is more informative.

Then the question is how to explicitly incorporate the pairwise distance into the model. One straight-
forward way is to directly inject the distance information into the attention score, like (Shi et al.,
2023). However, such an architecture is not compatible with the standard transformer architecture
used in large language models (Bai et al., 2023; Achiam et al., 2023; Touvron et al., 2023).

To alleviate this issue, we consider the Nyström method (Williams & Seeger, 2000). It is a low-
rank approximation to obtain the pairwise distance. More concretely, suppose we have a Gram
matrix over n points, i.e., K ∈ Rn×n. Each element Kij is the radial basis function (RBF) over

the distance between i-th and j-th points, Kij = RBF (ci, cj) = exp(−∥ci−cj∥2

2σ2 ), with ci denoting
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the 3D coordinates of the i-th point in an Euclidean space. Then we sample m anchor points,
(c1, c2, ..., cm) with m ≪ n. The RBF of these m points can compose an m-rank matrix A ∈ Rm×m

with positive eigenvalues. By Cholesky decomposition, we have A = LLT . Then, to obtain the RBF
of a new point pair K(i, j), we first construct the feature between point i, j and the m anchor points
as ki = [RBF(i, 0),RBF(i, 1), ...,RBF(i,m)]T ∈ Rm×1. For each atom i, we define its Nyström
approximation encoding as:

zNyström
i = L−1ki. (8)

This allows the approximated RBF, which encodes the pairwise distance information between atoms,
to be recovered directly by the inner product in the attention mechanism (details are in Appendix D):

k̃(i, j) = (zNyström
i )T (zNyström

j ). (9)

Latent Representation of Atom-based Token. The final input representation for each atom i is the
concatenation of its type embedding and its Nyström approximation encoding:

zi = [ztype
i , zNyström

i ]. (10)

Within the attention layer, the input representation zi is projected into query qi, key ki, and value vi.
Here, we take the query projection for illustration:

qi = Wqzi. (11)

Crucially, to maintain the distinct roles of the atom type embedding and Nyström approximation
encoding, the weight matrix Wq is structured as a block-diagonal matrix. This structure ensures
that the two components of the input representation are projected independently. Recall that zi =
[ztype

i , zNyström
i ], the projection is implemented as:[

qtype
i

qNyström
i

]
=

[
W type

q 0
0 WNyström

q

] [
ztype
i

zNyström
i

]
, (12)

where W type
q is the learnable weight matrix for the type component, and WNyström

q is the identity
matrix. The key ki and value vi are computed in an analogous manner using their own block-
diagonal weight matrices, Wk and Wv . The 3D Rotary Positional Encoding is applied only to the
atom type components. The final query q̃i and key k̃j vectors used in the attention score calculation
are then formed by concatenating these two parts:

q̃i =

[
Rciq

type
i

qNyström
i

]
, k̃j =

[
Rcjk

type
j

kNyström
j

]
(13)

The key advantage of this construction is revealed in the inner product, which combines the two
sources of geometric information. The attention score between atoms i and j is computed as:

AttentionScore(i, j) = q̃Ti k̃j

= (Rciqi)
T (Rcjkj) + (qNyström

i )T (kNyström
j )

= qTi Rcj−cikj︸ ︷︷ ︸
Relative Position from RoPE-3D

+ RBF(∥ci − cj∥)︸ ︷︷ ︸
Pairwise Distance from Nyström

(14)

This formulation ensures that the self-attention score explicitly and simultaneously models both the
relative geometric arrangement via RoPE-3D and the pairwise distance via the Nyström approxima-
tion encoding, providing a rich and robust inductive bias.

3.3 HIERARCHICAL AUTOREGRESSIVE ARCHITECTURE

The sequence of latent representations derived from Section 3.2, (z1, . . . , zn), is then processed by
the autoregressive Transformer backbone to produce a sequence of context-aware hidden embed-
dings, (h1, . . . , hn). At each step i, the hidden embedding hi, which encapsulates the full context
of the previous atoms a<i+1, is used to predict the next token, ai+1 = (ti+1, ci+1). This presents a
unique challenge, as the prediction target is a hybrid of a discrete type and a continuous coordinate
vector. To address this, we factorize the conditional probability into two components:

p(ai+1 | hi) = p(ai+1 | hi) = p(ti+1 | hi) · p(ci+1 | ti+1, hi). (15)

In Equation (15), the model first predicts the atom type ti+1 conditioned on the hidden embed-
ding hi. Subsequently, the continuous 3D coordinates ci+1 are predicted given both ti+1 and hi.

6
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Concretely, we implement this using a hierarchical AR architecture (as illustrated in Figure 1(c)):
(i) a type-prediction block dedicated to modeling the discrete, categorical distribution over atom
types, and (ii) a coordinates-prediction block to predict continuous 3D coordinates. This hierarchi-
cal architecture not only aligns with the intrinsic nature of molecular generation but also enhances
learning efficiency by decoupling the tasks of categorical classification and continuous density esti-
mation (Cheng et al., 2025b).

Cross-Entropy Loss for Type Prediction Block. For the discrete atom type ti+1, we employ the
standard cross-entropy, which directly maximizes the likelihood of the ground-truth atom type given
the hidden embedding hi:

Ltype = −E(hi,ti+1)∼D [log pθ(ti+1 | hi)] . (16)

Diffusion Loss for 3D Coordinates Prediction Block. Autoregressive models are naturally well-
suited for generating discrete tokens using cross-entropy. However, for continuous 3D coordinates
ci+1, we empirically find that direct regression yields poor performance. To overcome this limita-
tion, we adopt Diffusion Loss from Li et al. (2024a), which provides an effective framework for
extending autoregressive models to continuous-valued token generation. The high-level idea is that
we perturb the ground-truth position ci+1 by adding Gaussian noise with a sampled noise level σ,
and train a denoising network ϵθ to recover the injected noise (Karras et al., 2022). Concretely, the
perturbed coordinate is given by

c
(σ)
i+1 = ci+1 + σ ϵ, ϵ ∼ N (0, I). (17)

Conditioned on the hidden embedding hi and the predicted atom type ti+1, the denoising network
is optimized with the following loss function:

Ldiff = Eσ,ci+1,ϵ

[∥∥ϵ− ϵθ(c
(σ)
i+1, σ, ti+1, hi)

∥∥2

2

]
. (18)

This objective enables the coordinates prediction block to model the continuous distribution of atom
positions. At inference time, atom coordinates are generated by iterative denoising from Gaussian
noise, conditioned on both the autoregressive context hi and the sampled atom type ti+1.

Controllable Generation with Classifier-free Guidance. We incorporate classifier-free guidance
(CFG, details in Section 2) into InertialAR to enable controllable generation. During inference,
CFG modulates conditional generation process by leveraging the difference between conditional
and unconditional predictions:

pg = pu + s(pc − pu), (19)

where pc and pu denote the conditional and unconditional predictions, respectively, and s is the
guidance scale. In InertialAR, CFG is applied to the estimated noise ϵθ in diffusion for coordinates
generation, as well as to the logits over a discrete vocabulary for atom type prediction. By tuning s,
we can achieve both stronger adherence to target molecular classes and better structural validity.

4 EXPERIMENTS

4.1 UNCONDITIONAL 3D MOLECULE GENERATION

QM9 and GEOM-Drugs Dataset. We use QM9 (Ramakrishnan et al., 2014) and GEOM-
Drugs (Axelrod & Gómez-Bombarelli, 2022) for unconditional 3D molecular generation. QM9
contains 130K small molecules with high-quality 3D conformations (up to 9 heavy atoms). We split
the dataset into train, validation and test sets with 100K, 17K and 13K samples, separately. GEOM-
Drugs consists of 37M conformations for around 450K unique molecules (up to 181 atoms and 44.2
atoms on average). Following Hoogeboom et al. (2022), we select the 30 lowest-energy conforma-
tions per molecule for training. B3LYP Dataset. Moreover, we evaluate on a brand new, larger, and
more comprehensive 3D molecular dataset, the PubChemQC B3LYP/6-31G//PM6 dataset (abbrevi-
ated as B3LYP) (Nakata & Maeda, 2023). This dataset contains a total of 85,938,443 molecules,
covering a wide range of chemical diversity with molecular weights up to 1000 and more than 50
different atom types. We use a subset of 1M molecules for training. The evaluation metrics remain
consistent with those used for the QM9 and GEOM-Drugs datasets.

Evaluation. Model performance is assessed through a set of chemical feasibility metrics. Bond
types (single, double, triple, or none) are determined from molecular geometries based on pair-
wise atomic distances and atom identities. The evaluation includes Atom Stability (proportion of
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Table 1: Unconditional generation on 3D molecules on QM9 and GEOM-Drugs.

Methods QM9 GEOM-Drugs

Valid (%) Valid&Uni (%) AtomSta (%) MolSta (%) Valid (%) AtomSta (%)

EFN 40.2 39.4 85.0 4.9 – –
G-SchNet 85.5 80.3 95.7 68.1 – –
GDM – – 97.0 63.2 90.8 75.0
GDM-AUG 90.4 89.5 97.6 71.6 91.8 77.7
EDM 91.9 90.7 98.7 82.0 92.6 81.3
MiDi 97.9 97.0 97.9 84.0 78.0 82.2
GeoLDM 93.8 92.7 98.9 89.4 99.3 84.4
UniGEM 95.0 93.2 99.0 89.8 98.4 85.1
Geo2Seq 97.1 81.7 98.9 93.2 96.1 82.5

InertialAR 97.4 92.5 99.3 94.7 96.8 87.2

  

(a) (b) (c)

 

Figure 3: Visualization of molecule editing by tuning the CFG guidance scale s.

atoms satisfying correct valency), Molecule Stability (proportion of molecules in which all atoms
are stable), Validity (fraction of chemically valid molecules as verified by RDKit), and Uniqueness
(fraction of non-duplicate molecules among generated samples). All metrics are computed following
evaluation protocols established in prior work (Hoogeboom et al., 2022; Li et al., 2024b).

Baselines. We benchmark InertialAR against established models, including G-SchNet (Gebauer
et al., 2019), ENF (Satorras et al., 2022a), EDM (Hoogeboom et al., 2022), GDM (Hoogeboom
et al., 2022), EDM-Bridge (Wu et al., 2022), MiDi (Vignac et al., 2023), GeoLDM (Xu et al., 2023),
UniGEM (Feng et al., 2025) and Geo2Seq (Li et al., 2024b).

Results on QM9 and GEOM-Drugs. Table 1 highlights the strong performance of InertialAR
across both QM9 and GEOM-Drugs benchmarks. On QM9, InertialAR achieves the highest scores
on Atom Stability (99.3%) and Molecule Stability (94.7%), surpassing all competing methods and
indicating its ability to generate chemically consistent and structurally reliable molecules. On the
larger and more complex GEOM-Drugs dataset, InertialAR continues to demonstrate superiority,
attaining the best Atom Stability (87.2%) among all baselines. These results underscore the robust-
ness of InertialAR in ensuring both local chemical validity and global structural stability, validating
its effectiveness as a powerful autoregressive framework for 3D molecule generation.

Table 2: Unconditional generation on 3D molecules on B3LYP-1M.

Valid (%) Valid&Uni (%) AtomSta (%) MolSta (%)

EDM 92.9 92.8 80.6 0.8
Geo2Seq 73.3 2.7 10.0 0.0

InertialAR 99.0 98.6 84.8 24.2

Results on B3LYP. Due
to the prohibitive compu-
tational cost of training
all existing models on the
large-scale B3LYP bench-
mark, we focus our com-
parison on two representa-
tive strong baselines: the diffusion-based EDM and the autoregressive Geo2Seq. The main results
are shown in Table 2, InertialAR achieves substantial improvements over baselines on the large-
scale B3LYP benchmark. Compared to the strong diffusion model EDM, it attains significantly
higher validity and atom stability. Most notably, InertialAR shows a dramatic gain in Molecule
Stability (24.2% vs. 0.8%), demonstrating its ability to produce chemically consistent molecules at
scale. In contrast, the autoregressive baseline Geo2Seq performs poorly, highlighting the robustness
and scalability of our approach on this chemically diverse dataset.

4.2 CLASS-CONDITIONAL 3D MOLECULE GENERATION AND MOLECULE EDITING

In chemistry and biology, class-conditional generation is particularly valuable, as ”molecule classes”
can correspond to key attributes such as chemical functionality, thereby enabling the targeted design
or editing of molecules for drug discovery and materials science.
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To enable class-conditional generation on QM9, we reconstruct the dataset by assigning each
molecule a Molecule Class ID that encodes its functional group configuration (as shown in Fig-
ure 4). Specifically, we first convert each 3D structure to its SMILES string and then apply a
rule-based SMARTS-matching system to detect predefined functional groups. The resulting pres-
ence/absence pattern is encoded as a binary string (e.g. “TTFFTFTT. . . ”). Finally, through a pre-
defined Functional Group Pattern-to-Class ID look-up, each molecule is assigned a corresponding
Molecule Class ID.

Step 1: Functional Group Detection  Step 2: Pattern-to-ID Look-up 

Pattern2ID
Dictionary

-CO
OH ...-OH -C 6H 6 -F -NR

2
-C=

C-

F F F ... T F T

F F F ... F T F

.. ... ... ... ... ... ...

T F T ... T T F

SMILES

FCC(C)C=CC

O=CC(C)CCC#CCNC

OCCc1ccc(F)c(CN)c1

...

Molecule Class
ID
42

72

124

...

Figure 4: Overview of mapping 3D molecules to their Molecule Class IDs.

The task is then to generate
molecules conditioned on a
specified functional group
configuration. Concretely,
we select the 5 most fre-
quent Molecule Class IDs
as conditioning targets. In
addition to the metrics used
for unconditional genera-
tion, we introduce a critical new metric for class-conditional generation, Hit Rate, which measures
the proportion of generated molecules satisfying the target functional group requirements. A higher
hit rate indicates stronger controllability of the generation process.

Table 3: Class-conditional generation on 3D molecules on QM9.
Class ID (c) Model Rate (%) Valid (%) Valid&Uni (%) AtomSta (%) MolSta (%)

7
(w/ Ether)

EDM 37.5 84.8 84.2 96.3 52.9
Geo2Seq 40.1 65.0 52.1 87.6 33.8
InertialAR 90.9 99.0 92.8 99.7 97.5

28
(w/ Hydroxyl

& Ether)

EDM 29.0 86.8 85.9 96.4 54.1
Geo2Seq 44.2 64.7 55.6 86.5 33.4
InertialAR 89.8 99.9 90.8 99.9 99.2

3
(w/ Hydroxyl)

EDM 27.6 85.3 84.0 96.7 56.5
Geo2Seq 49.4 70.3 53.9 89.7 42.2
InertialAR 85.7 99.9 86.9 99.9 99.4

16
(w/ Heteroa-

romatic Ring)

EDM 8.9 63.5 63.4 82.9 35.3
Geo2Seq 33.8 65.6 57.8 86.4 34.8
InertialAR 68.5 92.2 79.3 97.1 81.0

23
(w/ Secondary

Amine & Ether)

EDM 25.3 76.8 76.7 96.1 53.3
Geo2Seq 43.5 80.5 51.7 91.8 52.4
InertialAR 81.8 99.7 82.7 99.9 99.2

Baselines. We compare
the conditional generation
performance of InertialAR
against the same represen-
tative autoregressive and
diffusion-based baselines
as in the unconditional
setting, namely Geo2Seq
and EDM, to ensure a con-
sistent and fair comparison.
Results. Table 3 shows
that InertialAR achieves a
remarkable average hit rate
of 83.3%, significantly sur-
passing EDM (25.7%) and Geo2Seq (42.2%), demonstrating its strong controllability in generating
molecules that match the target functional group configurations. Beyond controllability, InertialAR
also achieves excellent performance on chemical feasibility metrics, consistently outperforming
both baselines across all evaluated molecule classes. These results highlight the effectiveness of
InertialAR in producing both chemically valid and functionally precise molecules.

Molecule Editing via CFG. To further assess controllability, we examine the effect of varying the
CFG guidance scale. Increasing the scale not only improves validity-related metrics but also enables
molecule editing: molecules that originally lacked the required functional groups and exhibited
unreasonable structures can be transformed to satisfy the target Molecule Class ID. As illustrated
in Figure 3, by raising the guidance scale by 0.3 (∆s = 0.3), the generated molecules incorporate
the desired functional groups while yielding more plausible 3D geometries, demonstrating that CFG
enhances both structural validity and compliance with functional group constraints.

5 CONCLUSION

We propose InertialAR, a hierarchical autoregressive model that ensures SE(3) and permutation in-
variance through canonical tokenization while equipping Transformers with geometric awareness
via GeoRoPE. This advances 3D molecule generation beyond restrictive physical priors and high-
lights its potential as a foundation model for scientific discovery.

Future Directions. InertialAR can be extended to more complex domains such as protein structure
modeling and periodic material discovery, and can be integrated into broader multimodal frame-
works, paving the way toward unified, AI-driven scientific discovery.
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Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra, 2021. URL https://arxiv.org/
abs/2102.03150.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. arXiv preprint arXiv:1803.02155, 2018.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling datasets,
2023. URL https://arxiv.org/abs/2203.04810.

Jianlin Su. Road to transformer upgrades: 4. rotational positional encoding for 2d positions, May
2021. URL https://spaces.ac.cn/archives/8397.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation, 2024. URL https:
//arxiv.org/abs/2406.06525.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018a.

12

https://arxiv.org/abs/2305.18454
https://arxiv.org/abs/2305.18454
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://openreview.net/forum?id=zIUyj55nXR
https://openreview.net/forum?id=zIUyj55nXR
https://arxiv.org/abs/2105.09016
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/1706.08566
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2203.04810
https://spaces.ac.cn/archives/8397
https://arxiv.org/abs/2406.06525
https://arxiv.org/abs/2406.06525


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds, 2018b. URL https://arxiv.org/abs/1802.08219.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction, 2024. URL https://arxiv.org/abs/
2404.02905.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 560–576. Springer, 2023.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
Advances in neural information processing systems, 13, 2000.

Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
generation with informative prior bridges, 2022. URL https://arxiv.org/abs/2209.
00865.

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arróyave, Marinka
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we employed large language models to refine English writing. All suggestions gener-
ated by the LLM were critically reviewed, vetted, and approved by the authors to ensure accuracy
and integrity. The final manuscript faithfully represents the authors’ own ideas, arguments, and
research findings.
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B PRELIMINARIES AND RELATED WORK

B.1 3D MOLECULE GENERATION

In the domain of AI-driven molecule discovery, 3D molecule generation has become a central
problem. Its goal is to directly construct physically plausible 3D molecular conformations. For-
mally, a 3D molecule with n atoms can be represented as a point cloud G = (z,R). The vector
z = [z1, · · · , zn] ∈ Zn encodes the atom types, where zi denotes the nuclear charge of the i-th
atom. The coordinate matrix R = [r1, · · · , rn] ∈ R3×n specifies the 3D position of each atom, with
ri ∈ R3. A fundamental challenge lies in ensuring that molecular geometries respect the inherent
SE(3) symmetry, i.e., molecular representations must remain invariant or equivariant under SE(3)
transformations such as rotations and translations.

Current approaches can be categorized into four main paradigms. SE(3)-equivariant architectures
explicitly enforce symmetry through specialized network designs: spherical frame basis mod-
els (Thomas et al., 2018b; Liao & Smidt, 2023) project features into irreducible representations
of SO(3), while vector frame basis models (Satorras et al., 2022b; Schütt et al., 2021) construct
local coordinate frames for equivariant operations. Invariant feature approaches circumvent archi-
tectural constraints by utilizing geometrically invariant inputs such as pairwise distances, bond an-
gles, and dihedral angles (Schütt et al., 2017). Data augmentation strategies encourage models to
implicitly learn symmetric representations by training on randomly rotated and translated molecu-
lar conformations, particularly valuable for large-scale models where explicit equivariance is com-
plex to scale (Abramson et al., 2024). Input canonicalization methods (Li et al., 2024b; Fu et al.,
2024) establish a canonical orientation or reference frame for input molecules through preprocess-
ing, transforming each molecule into a standardized pose so that subsequent neural networks can
operate on SE(3)-invariant inputs without intrinsic SE(3)-equivariant constraints.

A representative canonicalization strategy defines an inertial reference frame for each molecule us-
ing principal component analysis (PCA) (Guo et al., 2025; Lu et al., 2025a; Cheng et al., 2025a).
After shifting the molecular coordinates so that the center of mass lies at the origin, the moment of
inertia matrix is diagonalized to obtain the principal axes of rotation. Aligning the coordinates with
these axes yields a canonical pose, unique up to axis reflections, effectively removing translational
and rotational ambiguities. This inertial frame ensures SE(3)-symmetry molecular representations,
enabling neural networks to process standardized and physically consistent 3D geometries without
explicit equivariant design.

PCA-based inertial frames provide a simple and effective practical canonicalization strategy. Empir-
ically, we find that PCA canonical poses are highly stable on real molecular datasets, making them
an efficient SE(3) canonicalization choice for unconstrained architectures. Theoretically, however,
PCA-based canonicalization is not strictly unique. Its limitations include potential axis flips from
small geometric perturbations and ambiguity in axis orientation when principal moments are tied.
These theoretical non-uniqueness issues have motivated a line of canonicalization-based symmetry
handling methods that study how to systematically manage symmetry-equivalent frames. Frame
Averaging (Puny et al., 2022) treats canonicalization as an equivariant projection by averaging out-
puts across all symmetry-equivalent PCA frames, while subsequent work shows that any finite,
unweighted canonicalization procedure necessarily introduces discontinuities under symmetric con-
figurations (Dym et al., 2024). More recent developments include Minimal Frame Averaging (Lin
et al., 2024), which constructs theoretically minimal frames via stabilizer groups, and general canon-
icalization frameworks that reinterpret Frame Averaging and related strategies as orbit canonicaliza-
tion (Ma et al., 2024). Our approach is complementary to this line: we adopt our canonical inertial
frame as a simple and empirically robust canonicalization strategy, while these canonicalization-
based methods provide principled tools that could further enhance robustness in future extensions.

B.2 AUTOREGRESSIVE MODELS AND TOKENIZATION OF 3D MOLECULE

Autoregressive models address sequence modeling by framing it as a ”next-token prediction” prob-
lem. This approach, a direct application of the chain rule of probability, factorizes the joint distribu-
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Figure 5: Comparison of existing SE(3)-equivariant graph neural networks and InertialAR.

tion of a sequence x = (x1, . . . , xn) into a product of conditional probabilities:

p(x) = p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1).

The model’s core task is thus to learn the conditional distribution p(xi|x<i) for each step, which
is typically parameterized by a powerful neural network such as Transformer. The primary chal-
lenge in applying autoregressive models to 3D molecular generation lies in the effective structure
tokenization of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer
architectures. The choice of tokenization strategy is crucial, as it defines not only the sequence rep-
resentation but also the very nature of the conditional modeling itself. Existing approaches can be
broadly classified into three main categories:

Voxel-based tokenization, which discretizes the 3D space occupied by a molecule into a 3D grid,
draws a direct parallel to image generation (Faltings et al., 2025; Lu et al., 2025b). Each voxel in
the grid serves as a token that encodes local atomic information, much like a pixel in an image. Text
sequence-based tokenization, which is similar to language modeling, serializes 3D molecules into
a 1D, text-like sequence (Li et al., 2024b; Yan et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023).
The process involves discretizing continuous 3D coordinates and concatenating them with discrete
atom types. This treats a molecule like a sentence, where every atom type and 3D coordinates
are encoded as words. Atom-based tokenization directly treats an atom as one single token that
encapsulates both its discrete atom type and continuous 3D coordinates. This establishes an intuitive
correspondence between the physical atoms and their tokenized representation, thereby preserving
atom-level granularity.

B.3 CLASS-CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

Class-conditional generation is a paradigm that generates samples conditioned on a specific class
label c. In image generation, this involves generating an image guided by a prefix class embed-
ding (Esser et al., 2021; Peebles & Xie, 2023). In chemistry and biology, class-conditional gen-
eration is highly useful, as molecular “classes” can correspond to key attributes such as chemical
functionality or physicochemical characteristics, enabling the targeted design or editing of molecules
for drug discovery and materials science.

Classifier-free guidance (CFG) improves both sample quality and fidelity to conditions by randomly
dropping conditioning signals during training (Ho & Salimans, 2022). This simple yet effective
strategy enables a single model to jointly learn both the conditional distribution p(x|c) and the un-
conditional distribution p(x). At inference, the difference between these two learned distributions is
then leveraged to amplify the conditional signal without relying on an auxiliary classifier. Although
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originally proposed for diffusion, CFG has also proven effective in autoregressive image generation,
showing great potential for molecule generation.

B.4 DIFFUSION LOSS FOR AUTOREGRESSIVE MODELS

While autoregressive models are naturally suited for generating discrete tokens via cross-entropy
loss, 3D molecule generation introduces an additional challenge: predicting continuous 3D coordi-
nates. Diffusion Loss (Li et al., 2024a) provides an effective framework to extend autoregressive
models to continuous-valued token generation. Formally, to predict the continuous-valued token xi

, the autoregressive model first outputs a vector hi−1 conditioned on previous tokens x<i. The ob-
jective is to model the conditional probability distribution p(xi|hi−1). Diffusion loss achieves this
through a denoising score-matching objective:

L(xi, hi−1) = Eϵ,t

[
|ϵ− ϵθ(x

t
i|t, hi−1)|2

]
, (20)

where xt
i =

√
ᾱtx+

√
1− ᾱtϵ is a noised version of xi, and ϵθ a denoising network that predicts the

noise ϵ conditioned on z and timestep t. Gradients from this loss propagate through hi−1, enabling
end-to-end training of the autoregressive backbone.

This approach preserves the strong sequence modeling capacity of autoregressive models while
extending them to predict continuous distributions. By directly modeling 3D coordinates, it removes
the need for discretization or coarse tokenization of molecular geometries and provides a principled
mechanism for generating chemically precise molecular structures.
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C CLASS-CONDITIONAL GENERATION

C.1 DATASET RECONSTRUCTION

Step 1: Functional Group Detection  Step 2: Pattern-to-ID Look-up 

Pattern2ID
Dictionary

-CO
OH ...-OH -C 6H 6 -F -NR

2
-C=

C-

T F F ... F F F

F F F ... T F T

F F F ... F T F

.. ... ... ... ... ... ...

T F T ... T T F

T T T ... F F F

CC(C)CC(C)O

SMILES

FCC(C)C=CC

O=CC(C)CCC#CCNC

OCCc1ccc(F)c(CN)c1

...

O=C(O)c1ccccc1O

1

Molecule Class
ID

42

72

124

...

210

Figure 6: Overview of how 3D molecules are mapped to their Molecule Class IDs.

In chemistry and biology, class-conditional generation is highly useful, as ”molecule classes” can
correspond to key attributes such as chemical functionality or physicochemical characteristics, en-
abling the targeted design or editing of molecules for drug discovery and materials science. How-
ever, commonly used datasets, such as QM9 and Geom-Drug, do not provide explicit functional
group annotations. To enable controllable molecule generation with specified functional group con-
figurations, we reconstruct the datasets by assigning each molecule a unique class label (Molecule
Class ID) that encodes its functional group composition. Concretely, we design a comprehensive la-
beling pipeline based on functional groups (shown in Figure 6): for each molecule, we first convert
its 3D structure to a SMILES representation. We then employ a rule-based system with a library of
SMARTS queries to identify the presence or absence of a predefined set of functional groups. The
resulting pattern is encoded as a binary string (e.g., “TTFFTFTT. . . ”), where each position indicates
the presence (T) or absence (F) of a functional group. Finally, through a predefined Functional
Group Pattern-to-Class ID mapping, each molecule is assigned a corresponding Molecule Class ID.

C.2 CONTROLLABLE GENERATION WITH CLASSIFIER-FREE GUIDANCE

Originally developed in the diffusion model community, classifier-free guidance (CFG) is widely
recognized for improving both sample quality and conditional alignment. The key idea is to train a
single model that jointly learns the conditional distribution p(x|c) and the unconditional distribution
p(x) by randomly dropping conditioning labels during training.

We incorporate classifier-free guidance (CFG, details in Section 2) into InertialAR to enable con-
trollable generation. During inference, CFG modulates conditional generation process by leveraging
the difference between conditional and unconditional predictions:

pg = pu + s(pc − pu), (21)

where pc and pu denote the conditional and unconditional predictions, respectively, and s is the
guidance scale. In InertialAR, CFG is applied to the estimated noise ϵθ in diffusion for coordinates
generation, as well as to the logits over a discrete vocabulary for atom type prediction. By tuning s,
we can achieve both stronger adherence to target molecular classes and better structural validity.
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D NYSTRÖM ESTIMATION

The Nyström method (Williams & Seeger, 2000) is a low-rank approximation to obtain the pairwise
distance. More concretely, suppose we have a Gram matrix over n points, i.e., K ∈ Rn×n. Each
element Kij is the radial basis function (RBF) over the distance between i-th and j-th points, Kij =

RBF (xi, xj) = exp(−∥xi−xj∥2

2σ2 ). Then we sample m anchor points, (c1, c2, ..., cm), where c is
3D coordinates in an Euclidean space and n ≫ m.

First, we can decompose the matrix K with eigendecomposition,

K = UΛUT , (22)

where U ∈ Rn×n is an orthogonal matrix whose columns are the orthonormal eigenvectors of K,
and Λ ∈ Rn×n is a diagonal matrix whose entries are the corresponding eigenvalues of K.

Then, Nyström approximation is a low rank approximation, assuming that matrix K can be approx-
imated using K̃:

K ≈ K̃

= Ũ Λ̃ŨT

=

[
A B
BT C

]
,

(23)

where Ũ is the first m columns of U and Λ̃ is the block diagonal matrix of first m eigenvalues of Λ.
At this point, we assume that the m points picked can estimate the m-rank matrix A with positive

eigenvalues. Then let us have Ũ =

[
Ũ1

Ũ2

]
, where Ũ1 ∈ Rm×m and Ũ2 ∈ R(n−m)×m. This means

A = Ũ1Λ̃Ũ
T
1 and B = Ũ2Λ̃Ũ2. Thus, we can rewrite Equation (23) as:

K̃ =

[
Ũ1

Ũ2

]
Λ̃

[
Ũ1

Ũ2

]T
=

[
Ũ1Λ̃Ũ

T
1 Ũ1Λ̃Ũ

T
2

Ũ2Λ̃Ũ
T
1 Ũ2Λ̃Ũ

T
2

]
.

(24)

Combining this with Equation (23), we have Ũ2 = BT Ũ1Λ̃
−1 and ŨT

2 = Λ̃−1ŨT
1 B. Thus, we can

have
C = Ũ2Λ̃Ũ

T
2 = BT Ũ1Λ̃

−1ŨT
1 B = BTA−1B. (25)

To inject this back to Equation (23), we have

K̃ =

[
A B
BT BTA−1B

]
=

[
A
BT

]
A−1 [A B] .

(26)

This wraps up the key idea of Nyström method. Then, to obtain the RBF of a new point
pair K(i, j), we first construct the feature between point i, j and the m anchor points as ki =
[RBF(i, 0),RBF(i, 1), ...,RBF(i,m)]T ∈ Rm×1. The approximated RBF(i, j) can be obtained as:

k̃(i, j) = kTi A
−1kj

=
(
A−1/2ki

)T (
A−1/2kj

)
=

(
L−1ki

)T (
L−1kj

)
,

(27)

where A = LLT is the Cholesky decomposition.

For each atom i, we define its Nyström Approximation Encoding as

zNyström
i = L−1ki. (28)
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This design allows the approximated RBF, which encodes the pairwise distance information between
atoms, to be recovered directly by the inner product within the attention mechanism:

k̃(i, j) = (zNyström
i )T (zNyström

j ). (29)

Discussion. There is another research line using random features (e.g., random Fourier features)
for the pairwise distance approximation (Rahimi & Recht, 2007). There are certain works that have
proved that Nyström method is more accurate (Yang et al., 2012). One intuitive way to understand
this is that Nyström method utilizes the data-dependent basis, while the random features use data-
independent basis functions.
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E DETERMINE INERTIAL FRAME DIRECTIONS BY INTRODUCING FOURTH
NODE

Theorem 2. For an inertial frame F , we build up the corresponding right-handed axes as coordinate
systems Q. Then we need to incorporate a fourth point that is coplanar with the three basis vectors to
uniquely determine the directions of the coordinate system with one rotation transformation matrix.

Figure 7: (a, b) show two potential rotational alignments between two coordinate systems (axes). (c, d) show
that only one unique rotation is possible for four non-coplanar points.

Proof. For three vectors, we can easily find a counter-example , as illustrated in Figure 7 (a, b).
Figure 7 (a, b) describes two cases where we have the same initial frame, and we can rotate it to two
different final frames with two rotation matrices, yet the righthandness still matches. We can easily
see that there are four options of rotation matrices in this case, and we cannot uniquely determine
the final inertial frame in this case.

More rigorously, let us first assume that there exists a rotation transformation R that can transform
the initial coordinate system Qi to the final coordinate system Qf , as:[

Qf,0

Qf,1

Qf,2

]T

= R ·

[
Qi,0

Qi,1

Qi,2

]T

(30)

First, we should change either zero or two directions for direction alignment. Then, without loss of
generality, we can assume the two directions to be the last two axes. Thus, we can obtain a rotation
matrix R′ such that R′ is rotating R along vector Qf,0 with 180 degrees. We can represent R′ using
Rodrigue’s rotation formula, as R′ = (2Qf,0Q

T
f,0 − I)R. Thus, we can have:

R′ ·

[
Qi,0

Qi,1

Qi,2

]T

= (2Qf,0Q
T
f,0 − I)

[
Qf,0

Qf,1

Qf,2

]T

=

[
Qf,0

−Qf,1

−Qf,2

]T

(31)

This is essentially saying starting from one initial frame, we can have multiple matched final frames.
Thus, using only three vectors cannot uniquely determine the direction matching. We provide two
examples in Figure 7 (a, b).

For the four vectors, we introduce an extra atom into the inertial frame system, and such an extra
atom point is nonplanar to the three base axes. Then the problem becomes: starting from an initial
frame and an extra point, can we find multiple rotation matrices such that the final frames have
reflected directions? To be more rigorous, let us have the following formulation.

First, let us assume we have this rotation matrix:Qf,0

Qf,1

Qf,2

v


T

= R ·

Qi,0

Qi,1

Qi,2

v


T

(32)
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As discussed above, we need to guarantee the right-handedness property, thus, without loss gener-
ality, here we also assume the last two axes are reflected. The question turns to: does it exit another
rotation matrix R′, such that:  Qf,0

−Qf,1

−Qf,2

v


T

= R′ ·

Qi,0

Qi,1

Qi,2

v


T

(33)

We now use contradiction. Since we still have the two axes rotated 180 degrees around the first axes,
Qf,0, so R′ = (2Qf,0Q

T
f,0 − I)R. Then given the two conditions vT = RvT and vT = R′vT , we

have (2Qf,0Q
T
f,0 − I)vT = vT .

If we let Qf,0 = [k1, k2, k3] and v = [v1, v2, v3], then we have

(2Qf,0Q
T
f,0 − I)vT = vT[

k1k1 k1k2 k1k3
k1k2 k2k2 k2k3
k2k3 k2k3 k3k3

][
v1
v2
v3

]
=

[
v1
v2
v3

]
[
k1(k1v1 + k2v2 + k3v3)
k2(k1v1 + k2v2 + k3v3)
k3(k1v1 + k2v2 + k3v3)

]
=

[
v1
v2
v3

]

(k1v1 + k2v2 + k3v3)

[
k1
k2
k3

]
=

[
v1
v2
v3

]
.

(34)

After calculation, we can obtain that Qf,0 = cv, where c is a coefficient. However, as we claimed in
the condition, v does not lie in the same line as Qf,0, thus, there does not exist such another rotation
matrix R′ ̸= R satisfying Equation (33). We also provide two examples in Figure 7 (c, d).

By contradiction, we can tell that there is only one unique rotation mapping from the initial inertial
frame to the final inertial frame.

To sum up, three points cannot form a rigid structure in Euclidean space, thus there can exist multiple
reflection transformations, leading to opposite inertial frames. Four points can form a rigid structure,
thus there exists only one reflection transformation.
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F POSITIONAL ENCODING

Position embedding is one of the most important building blocks in Transformer. There have been
multiple methods, and we would like to briefly discuss them here.

F.1 ABSOLUTE POSITIONAL ENCODING

In absolute positional encoding, each position in the input sequence is assigned a unique, fixed
embedding. The most classical positional encoding is the sinusoidal function Vaswani (2017):{

pi,2t = sin(k/100002t/d)

pi,2t+1 = cos(k/100002t/d)
(35)

Such a positional encoding will be added (or multiplied) to the token embedding, and the classical
attention module is as:

qi = (xi + pi)WQ

kj = (xj + pj)WK

vj = (xj + pj)QV

ai,j = softmax(qkkTj )

oi =
∑
j

ai,jvj .

(36)

Pros:

• Simple and easy to implement.
• Provides a clear, ordered embedding that the model can use to distinguish between different

token positions.

Cons:

• Limited in capturing the relative distance between tokens, especially in very long se-
quences.

• Fixed nature can limit the model’s ability to generalize to longer sequences beyond what it
was trained on.

F.2 RELATIVE POSITIONAL ENCODING

In relative positional encoding, the model encodes the distance (or relative position) between tokens
rather than absolute positions. The relative distance will be further used in calculating the attention
score.

The first relative positional encoding was proposed in Shaw et al. (2018), as:

RK
i,j = pK [clip(i− j, pmin, pmax)]

RV
i,j = pV [clip(i− j, pmin, pmax)],

(37)

where pK , pV are certain learnable functions or non-learnable functions (like sinusoidal function
in Equation (35)). This will be then used to define the attention score, which will be then replaced
to Equation (36):

ai,j = softmax(xiWQ(xjWK +RK
i,j)

T ) (38)

Based on this, there are more variants on defining the relative distance, such as XLNet Dai (2019),
DeBERTa He et al. (2020), and T5 Raffel et al. (2020).

Pros:

• More flexible and generalizable, especially to unseen sequence lengths.
• Better at capturing the local context by focusing on distances between tokens.
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Cons:

• Can be more complex to implement and computationally intensive.
• The model might need to adapt if positional relationships are nuanced.

F.3 ROTARY POSITIONAL ENCODING: HYBRID OF ABSOLUTE & RELATIVE POSITIONAL
ENCODING

Rotary Positional Encoding (RoPE) (Su et al., 2024) is a hybrid of both the absolute and relative
positional encoding.

The core idea is the utilization of complex numbers and their inner-product property. More con-
cretely, we have the query and key vectors as qmeimθ and kne

inθ, and their inner product is:

⟨qmeimθ, kne
inθ⟩ = Re

[
(qmeimθ) (kneinθ)

]
= Re

[
qmkn e

i(m−n)θ
]
,

(39)

where Re[·] denotes the real part and (·) denotes complex conjugation. Here qm and kn denote the
complex-valued 2D sub-block representations (paired components) of the original real vectors.

RoPE As Absolute Positional Encoding: RoPE uses absolute positions to determine each token’s
rotation, hence capturing absolute positional information directly in each embedding.

RoPE As Relative Positional Encoding: The relative distances are captured in the attention layer,
thanks to the inner product of rotated embeddings, which varies based on the distance between
positions. This allows RoPE to behave similarly to relative positional encodings in the self-attention
scores.

Matrix Format: Considering Euler’s formula eiθ = cos θ + i sin θ, we can further write this in the
following formation for matrix q with even dimension d:

cosmθ0 − sinmθ0 0 0 · · · 0 0
sinmθ0 cosmθ0 0 0 · · · 0 0

0 0 cosmθ1 − sinmθ1 · · · 0 0
0 0 sinmθ1 cosmθ1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2−1 − sinmθd/2−1

0 0 0 0 · · · sinmθd/2−1 cosmθd/2−1


︸ ︷︷ ︸

Rm



q0
q1
q2
q3
...

qd−2

qd−1


(40)

We can easily observe that:

(Rmq)T (Rnk) = qTRT
mRnk = qTRn−mk. (41)

Preliminary Matrix Exponential Format: First, let us recall that for a complex number, z = a+bi,
we can write it in the following formats:

z = a+ bi

= r cos θ + ir sin θ

= reiθ

= r

[
cos θ − sin θ
sin θ cos θ

]
.

(42)

Here we want to prove that this complex number can be further written in a matrix exponential way.

r exp(θ

[
0 −1
1 0

]
) ≡ r exp(θJ)

= r

∞∑
n=0

(θJ)n

n!
.

(43)
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Proof. Because matrix J has an interesting property: J2 = −I , J3 = −J , J4 = I , thus we can
rewrite as:

r exp(θJ) = r

∞∑
n=0

(θJ)n

n!

= r
(
I + θJ − θ2

2!
I − θ3

3!
J +

θ4

4!
I +

θ5

5!
J − θ6

6!
I − θ7

7!
J + · · ·

)
= rI ·

∞∑
n=0

(−1)nθ2n

(2n)!
+ rJ ·

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

= rI cos θ + rJ sin θ

= r

[
cos θ − sin θ
sin θ cos θ

]
.

(44)

To sum up, for a complex number, we have:

z = a+ bi

= r cos θ + ir sin θ

= reiθ

= r

[
cos θ − sin θ
sin θ cos θ

]
= r exp(θ

[
0 −1
1 0

]
).

(45)

Matrix Exponential Format for Rotary Positional Encoding: Then we would like to explore how

to incorporate this into rotary embedding. For the 2 × 2 rotation matrix
[
cosmθ − sinmθ
sinmθ cosmθ

]
, we

can write its matrix exponential form as exp(mθJ), where J =

[
0 −1
1 0

]
.

Thus, our rotation matrix can be written as Rn = exp(nθJ), and we can observe that

RT
mRn = exp(mθJ)T exp(nθJ)

= exp(−mθJ) exp(nθJ)

= exp((n−m)θJ)

= Rn−m.

(46)
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G COMPLEX, QUATERNION, AND ROTATION

G.1 COMPLEX

Any complex number z ∈ C can be written as z = a + bi, where a, b ∈ R and i2 = −1. We call a
as the real part and b as the imaginary part.

We can write z as a vector, meaning the linear combination over the basis {1, i}:

z =

[
a
b

]
. (47)

Addition If have two complex numbers z1 = a + bi and z2 = c + di, then the addition of two
numbers is:

z1 + z2 = (a+ c) + (b+ d)i. (48)

Multiplication If have two complex numbers z1 = a+ bi and z2 = c+di, then the multiplication
of two numbers is:

z1z2 = (a+ bi)(c+ di)

= (ac− bd) + (ad+ bc)i.
(49)

Or we can write this in a matrix-vector multiplication:

z1z2 =

[
a −b
b a

] [
c
d

]
, (50)

where
[
a −b
b a

]
is the matrix for z1 and

[
c
d

]
is the vector for z2.

Conjugate The conjugate of z = a+ bi is:

z̄ = a− bi. (51)

G.2 COMPLEX AND ROTATION

Multiplying a complex number z = a + bi is equivalent to multiplying the matrix
[
a −b
b a

]
, then

the question is what does this matrix mean?

Figure 8: Illustration of the geometric representation of a complex number.

If we transform the matrix as follows:[
a −b
b a

]
=

√
a2 + b2

[
a√

a2+b2
−b√
a2+b2

b√
a2+b2

a√
a2+b2

]

= ||z||
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

(52)

Then we can see that this matrix is indeed the rotation transformation on the 2D plane, as shown
in Figure 8.
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Inner product or Hermitian inner product or conjugate symmetric inner product If have two
complex numbers z1 = a+ bi and z2 = c+ di, then the inner product of two numbers is:

⟨z1, z2⟩ = z1z̄2

= (a+ bi) ∗ (c− di) = ac+ bd+ (bc− ad)i

= |z1|eiθ1 · |z2|e−iθ2 = |z1||z2|ei(θ1−θ2)

= |z1|(cos(θ1) + i sin(θ1)) · |z2|(cos(θ2)− i sin(θ2))

= |z1||z2|(cos(θ1 − θ2) + i sin(θ1 − θ2))

= |z1|
[
cos(θ1)
sin(θ1)

]
· |z2|

[
cos(θ2)
− sin(θ2)

]
= |z1||z2|

[
cos(θ1 − θ2)
sin(θ1 − θ2)

]
= |z1|

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
· |z2|

[
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

]
= |z1||z2|

[
cos(θ1 − θ2) − sin(θ1 − θ2)
sin(θ1 − θ2) cos(θ1 − θ2)

]
.

(53)

G.3 QUATERNION

A quaternion is defined as:

q = a+ bi+ cj + dk, (54)

where a, b, c, d ∈ R and i2 = j2 = k2 = ijk = −1.

Similarly, we can also write quaternion as a vector, i.e., the linear combination of basis {1, i, j, k}:

q =

abc
d

 . (55)

We can rewrite this as:

q = [w,u]

= |q|(cos(θ) + sin(θ)u)

= |q|eθu

= |q|(cos θ + (x sin θ)i+ (y sin θ)j + (z sin θ)k),

(56)

where u = xi+yj+zk√
x2+y2+z2

.

Addition If we have two quaternions q1 = a+ bi+ cj + dk and q2 = e+ fi+ gj + hk, then the
addition of two quaternions is:

q1 + q2 = (a+ e) + (b+ f)i+ (c+ g)j + (d+ h)k. (57)
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Multiplication If we have two quaternions q1 = a + bi + cj + dk and q2 = e + fi + gj + hk,
then the multiplication of two quaternions is:

q1q2 =(a+ bi+ cj + dk)(e+ fi+ gj + hk)

=ae+ afi+ agj + ahk+

bei+ bfi2 + bgij + bhij+

cej + cfji+ cgj2 + chjk+

dek + dfji+ dgkj + dhk2

=(ae− bf − cg − dh)+

(be+ af − dg + ch)i+

(ce+ df + ag − bh)j+

(de− cf + bg + ah)k

=

a −b −c −d
b a −d c
c d a −b
d −c b a


efg
h

 .

(58)

Inner product
⟨q1, q2⟩ = Re(q1 ∗ q̄2) (59)

q1 ∗ q̄2 = |q1||q2|(cos(θ1) + sin(θ1)u1)(cos(θ2) + sin(θ2)− u2)

= [st+ u1u2, su2 + tu1 + u1 × u2]
(60)

G.4 QUATERNION AND ROTATION

First, we can have the quaternion to rotation matrix as:

R(q) =

1− 2y2 − 2z2 2xy − 2zy 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2

 (61)

G.5 TOKENIZATION

We assume that we would like to use the following equations to add absolute positions to q and k:

q̃m = f(q, xm, ym, zm), k̃n = f(k, xn, yn, zn). (62)

In other words, we hope that we can add the absolute position into q̃ and k̃.

Because the core module of attention is the inner product, so we prefer the following:

⟨qxm,ym,cm , kxn,yn,cn⟩ = g(q, k, dm,n), (63)

where dm,n =
√
(xm − xn)2 + (ym − yn)2 + (zm − zn)2.
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H ABLATION STUDIES

In this section, we provide additional ablation studies and robustness analyses that were conducted
during the rebuttal phase. Unless otherwise stated, all experiments are performed on the QM9
unconditional generation setting, and we report the same four metrics as in the main paper: Valid,
Valid&Unique, AtomSta, and MolSta.

H.1 ROBUSTNESS OF THE CANONICAL INERTIAL FRAME

We perform two complementary analyses to assess the robustness of the canonical inertial frame: (i)
stability under small geometric perturbations, and (ii) frequency of principal-moment degeneracy in
realistic datasets.

Stability under small perturbations. We add i.i.d. Gaussian noise to atomic coordinates in QM9
and Drugs to quantify how often the “farthest atom” (used for axis-sign resolution) changes. Since
quantum-derived coordinates are typically reported with precision around 10−3 Å, we consider per-
turbation magnitudes ε ∈ [10−4, 10−5, 10−6, 10−7] Å, which are already larger than typical numer-
ical noise. For each molecule and noise level, we measure the fraction of cases where the identity of
the farthest atom changes relative to the unperturbed geometry.

As shown in Table 4, the sign-flip event becomes extremely rare at ε = 10−5 Å (change ratio below
10−3 on QM9 and below 2 × 10−5 on Drugs), and completely disappears at ε = 10−7 Å. This
indicates that the inertial-frame construction is highly stable under realistic coordinate noise.

Table 4: Farthest-atom change ratio under Gaussian coordinate perturbations.

Dataset ε (Å) Farthest-Atom Change Ratio

QM9

1× 10−4 0.00581
1× 10−5 0.00078
1× 10−6 0.00016
1× 10−7 0.00000

Drugs

1× 10−4 0.0000990
1× 10−5 0.0000198
1× 10−6 0.00000375
1× 10−7 0.00000

Principal-moment degeneracy. We next quantify how often perfect symmetries (e.g., exact pla-
narity or higher-order symmetry) cause principal-moment degeneracy, which in principle can make
the inertial frame non-unique. We scan the full QM9 and Drugs datasets and count molecules with
degenerate principal moments.

Table 5 shows that such cases are statistically negligible: only 9 molecules in QM9 (out of ∼ 130K)
and 1 molecule in Drugs exhibit exact degeneracy. These extremely rare symmetric molecules are
simply excluded from training, which has no measurable impact on performance.

Table 5: Frequency of principal-moment degeneracy in QM9 and Drugs.

Dataset # Degenerate Molecules Fraction
QM9 9 0.00007
Drugs 1 0.00000

Combining these analyses, the probability of any frame instability (from either sign flips or degen-
eracy) is bounded by < 10−4 on QM9 and is effectively zero on Drugs. Empirically, we do not
observe any training issues attributable to frame instability, supporting the practical robustness of
our canonical inertial frame.
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H.2 POSITIONAL ENCODING: GEOROPE AND ITS VARIANTS

We further ablate the proposed GeoRoPE positional encoding by varying only the positional mecha-
nism and keeping all other components fixed (inertial frame, hierarchical AR design, training setup,
parameter count).

The compared variants are:

• Ours: full GeoRoPE (RoPE-3D + Nyström distance features).

• No GeoRoPE: 3D coordinates are encoded only as static features; the Transformer back-
bone uses no geometry-aware positional encoding.

• RoPE-only: only the RoPE-3D component is used.

• Nyström-only: only the Nyström distance feature component is used.

The results in Table 6 highlight three key observations. First, removing GeoRoPE entirely causes
a catastrophic collapse in Valid and MolSta, indicating that a Transformer without geometry-aware
positional structure cannot reliably reason about 3D molecular geometry. Second, both RoPE-only
and Nyström-only models perform well, showing that each component provides a strong geometric
inductive bias. Third, combining them into GeoRoPE yields the best overall performance, partic-
ularly in molecule-level stability. While the gains on QM9 appear modest, this is expected given
that QM9 molecules are small and near-rigid; on more flexible datasets (e.g., Drugs, B3LYP-level
systems), we observe larger improvements.

Table 6: Ablations on GeoRoPE positional encoding on QM9.

Model Valid (%) Valid&Unique (%) AtomSta (%) MolSta (%)
Ours (GeoRoPE) 97.4 92.5 99.3 94.7
No GeoRoPE 8.7 3.8 20.2 0.0
RoPE-only 97.1 92.5 99.2 94.3
Nyström-only 97.3 92.5 99.2 94.2

These results support our claim that GeoRoPE is not merely a cosmetic design choice: it is the core
mechanism that makes 3D molecular modeling feasible for an autoregressive Transformer.

H.3 EFFECT OF CANONICAL ATOM INDEXING

To evaluate the effect of canonicalizing atom indices, we compare the full model against a variant
where the RDKit-based canonicalization step is removed while keeping all other components un-
changed. In the non-canonical variant, atom indices are taken directly from the raw input ordering.

As shown in Table 7, removing canonicalization consistently degrades both validity and unique-
ness, even though the drop is moderate in absolute terms. This confirms that enforcing a unique,
RDKit-consistent atom ordering is beneficial for the autoregressive model, as it eliminates the n!
permutation ambiguity and provides a more stable training signal.

Table 7: Effect of RDKit-based canonicalization of atom indices on QM9.

Model Valid (%) Valid&Unique (%) AtomSta (%) MolSta (%)
Ours (with canonicalization) 97.4 92.5 99.3 94.7
w/o canonicalization 97.0 90.0 99.1 94.0

H.4 DIFFUSION LOSS VS. DIRECT L2 REGRESSION

Finally, we compare the diffusion-based coordinate loss used in our main model with a simple L2
regression loss on the coordinates. In the L2 variant, all other components—including the autore-
gressive architecture, inertial frame, and GeoRoPE—are kept identical.
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As reported in Table 8, using an L2 loss causes a dramatic collapse in generation quality, show-
ing that direct coordinate regression fails to model the nature of 3D positions in autoregressive
paradigm. The diffusion loss avoids this collapse and yields stable, valid structures, which is fully
consistent with the insight reported in Li et al. (2024a). Therefore, we adopt the diffusion loss in
our framework.

Table 8: Comparison between diffusion loss and simple L2 coordinate regression on QM9.

Model Valid (%) Valid&Unique (%) AtomSta (%) MolSta (%)
Diffusion Loss 97.4 92.5 99.3 94.7
L2 Loss 24.7 4.4 76.2 14.2
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