

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INERTIALAR: AUTOREGRESSIVE 3D MOLECULE GENERATION WITH INERTIAL FRAMES

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformer-based autoregressive models have emerged as a unifying paradigm across modalities such as text and images, but their extension to 3D molecule generation remains underexplored. The gap stems from two fundamental challenges: (1) tokenizing molecules into a canonical 1D sequence of tokens that is invariant to both $SE(3)$ transformations and atom index permutations, and (2) designing an architecture capable of modeling hybrid atom-based tokens that couple discrete atom types with continuous 3D coordinates. To address these challenges, we introduce InertialAR. InertialAR devises a canonical tokenization that aligns molecules to their canonical inertial frames and reorders atoms to ensure $SE(3)$ and permutation invariance. Moreover, InertialAR equips the attention mechanism with geometric awareness via geometric rotary positional encoding (GeoRoPE). In addition, it utilizes a hierarchical autoregressive paradigm to predict the next atom-based token, predicting the atom type first and then its 3D coordinates via Diffusion loss. Experimentally, InertialAR achieves state-of-the-art performance on 7 of the 10 evaluation metrics for unconditional molecule generation across QM9, GEOM-Drugs, and B3LYP. Moreover, it significantly outperforms strong baselines in controllable generation for targeted chemical functionality, attaining state-of-the-art results across all 5 metrics.

1 INTRODUCTION

Autoregressive (AR) models have achieved substantial progress in artificial intelligence (AI) in recent years. In natural language processing, their strong sequence modeling capability and scalability have established them as the de facto architecture for foundation models (Brown et al., 2020; Touvron et al., 2023; Achiam et al., 2023). Moreover, they have shown competitive performance on par with diffusion models in image generation, suggesting their viability as a unified sequence modeling paradigm (Sun et al., 2024; Tian et al., 2024). Inspired by their success across these diverse modalities, we seek to investigate whether AR models can serve as an effective generative model paradigm for 3D molecule generation.

While diffusion models have achieved impressive results in 3D molecule generation, they are often limited by computationally intensive iterative sampling and a lack of flexibility for variable-length generation (Hoogeboom et al., 2022; Xu et al., 2023; Vignac et al., 2023). In contrast, AR models offer a compelling alternative: by casting 3D molecule generation as a sequence prediction problem, they enable highly efficient and flexible generation of variable-sized molecules.

However, adapting AR models for 3D molecule generation poses unique challenges at both data and model levels. On the data side, the key difficulty centers on tokenizing 3D molecules into 1D sequences of tokens compatible with Transformer-like models. An ideal tokenization must satisfy two criteria: (1) $SE(3)$ -equivariance, *i.e.*, equivariant tokenization under rotations and translations, and (2) permutation invariance of the atom indexing to establish a canonical sequence order for each molecule. On the model side, unlike conventional AR models that merely predict the next discrete token at each step, the AR model for 3D molecule generation requires jointly predicting a discrete atom type (*e.g.*, C, H, O, N) and its continuous 3D coordinates, due to the dual chemical and geometric information encoded in each atom.

Our Contributions. To address these challenges, we propose InertialAR, a novel AR model for 3D molecule generation. InertialAR rests on two key innovations. First, it leverages a canonical tok-

Figure 1: Overview of InertialAR: (a) canonical tokenization, (b) geometric rotary positional encoding (GeoRoPE), and (c) hierarchical autoregressive paradigm.

enization strategy that uses a canonical inertial frame to align 3D molecules, converting them into a sequence of atom-level tokens that ensures $SE(3)$ equivariance. It subsequently applies a canonical reordering of its atoms to guarantee atom index permutation invariance. Second, it introduces Geometric Rotary Positional Encoding (GeoRoPE), which injects relative positional awareness and pairwise distance information between atoms into the attention mechanism, making it geometry-aware. Built upon these two components, InertialAR employs a hierarchical AR paradigm for density estimation, iteratively predicting the discrete atom types using cross-entropy and continuous atom positions using diffusion loss.

To evaluate the effectiveness of InertialAR, we conduct comprehensive experiments on both unconditional and controllable generation. For unconditional generation, InertialAR achieves state-of-the-art results on 3 of 6 key metrics on QM9 and GEOM-Drugs. To further assess its scalability and robustness, we evaluate on the more challenging large-scale B3LYP dataset, where InertialAR attains state-of-the-art performance across all 4 metrics, clearly surpassing other prominent diffusion and AR models. Furthermore, on the more demanding task of class-conditional generation, InertialAR combined with classifier-free guidance establishes state-of-the-art results on all 5 evaluation metrics, enabling targeted generation and editing of molecules with desired chemical functionality.

Related work. We briefly review the most related works here and include a more detailed overview in Appendix B. The central requirement for 3D molecule generation is respecting $SE(3)$ symmetry. Existing methods can be grouped into four paradigms: (i) $SE(3)$ -equivariant architectures (Thomas et al., 2018a; Liao & Smidt, 2023; Schütt et al., 2021; Satorras et al., 2022b), (ii) invariant-feature modeling (Schütt et al., 2017; Gasteiger et al., 2022), (iii) data augmentation (Flam-Shepherd & Aspuru-Guzik, 2023; Abramson et al., 2024), and (iv) input canonicalization (Antunes et al., 2024; Yan et al., 2024; Li et al., 2024b; Fu et al., 2024). Another key challenge for autoregressive 3D

108 generation is tokenization. While recent studies have investigated text sequence-based tokenization
 109 (Li et al., 2024b; Yan et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023), some parallel works are
 110 concurrently exploring voxel-based approaches (Faltungs et al., 2025; Lu et al., 2025b). However,
 111 they both rely on spatial discretization, which discards fine-grained geometry and fails to preserve
 112 atom-level granularity.

114 2 PRELIMINARIES

116 **3D Molecule Generation.** The goal of 3D molecule generation is to directly construct physically
 117 plausible 3D molecular conformations. Formally, a 3D molecule with n atoms can be represented
 118 as a point cloud $\mathcal{M} = (t, C)$. The vector $t = [t_1, \dots, t_n] \in \mathbb{Z}^n$ encodes the atom types, where
 119 t_i denotes the nuclear charge of the i -th atom. The coordinate matrix $C = [c_1, \dots, c_n] \in \mathbb{R}^{3 \times n}$
 120 specifies the 3D position of each atom, with $c_i \in \mathbb{R}^3$.

121 **Autoregressive Models and Tokenization of 3D Molecule.** Autoregressive (AR) models ad-
 122 dress sequence modeling by framing it as a “next-token prediction” problem. This approach, a
 123 direct application of the chain rule of probability, factorizes the joint distribution of a sequence
 124 $x = (x_1, \dots, x_n)$ into a product of conditional probabilities:

$$125 \quad p(x) = p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i | x_1, \dots, x_{i-1}). \quad (1)$$

126 The model’s core task is thus to learn the conditional distribution $p(x_i | x_{<i})$ for each step, which
 127 is typically parameterized by a powerful neural network such as the Transformer (Vaswani, 2017).
 128 The primary challenge in applying AR models to 3D molecular generation lies in the effective
 129 tokenization of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer
 130 architectures.

131 **Class-conditional Generation and Classifier-free Guidance.** Class-conditional generation pro-
 132 duces samples conditioned on a class label c (Esser et al., 2021; Peebles & Xie, 2023). Classifier-free
 133 guidance (CFG), originally proposed by Ho & Salimans (2022), enhances both sample quality and
 134 conditional alignment. It trains a single model on both the conditional distribution $p(x|c)$ and the
 135 unconditional distribution $p(x)$ by randomly dropping labels during training. Then during inference,
 136 conditional generation is steered by combining the two predictions:

$$137 \quad p_g = p_u + s(p_c - p_u), \quad (2)$$

138 where p_c and p_u denote the conditional and unconditional predictions, respectively, and s is the
 139 guidance scale controlling the trade-off between class fidelity and sample diversity.

143 3 INERTIALAR

144 The Inertial Autoregressive Model (InertialAR) casts 3D molecule generation as an AR process,
 145 where a molecule is sequentially built by predicting “the next atom-based token” at each step. To
 146 achieve this, a 3D molecule \mathcal{M} is tokenized into an ordered 1D sequence of n atom-based tokens,
 147 $\mathcal{M} = (a_1, \dots, a_n)$, where each atom-based token $a_i = (t_i, c_i)$ contains a discrete atom type t_i and
 148 continuous 3D coordinates $c_i = (x_i, y_i, z_i)$. Thus, the corresponding probability factorizes as:

$$149 \quad p(\mathcal{M}) = \prod_{i=1}^n p(a_i | a_{<i}) = \prod_{i=1}^n p((t_i, c_i) | a_{<i}). \quad (3)$$

153 3.1 CANONICAL TOKENIZATION OF 3D MOLECULES

154 The factorization in Equation (3) makes AR models inherently sensitive to the token order. There-
 155 fore, a robust tokenization must be invariant to two fundamental symmetries: the continuous SE(3)-
 156 equivariance of the molecular geometry under rotations and translations, and the discrete permu-
 157 tation symmetry of the atom indexing (which can yield up to $n!$ permutations for n atoms). Such
 158 a canonical tokenization ensures that each molecule maps to a unique token sequence, eliminating
 159 ambiguity and enabling effective learning.

160 More concretely, we introduce a two-step canonical tokenization, as shown in Figure 1(a). First,
 161 to address SE(3) symmetry, we align the molecular system to its canonical inertial frame, resulting

Figure 2: Illustration of introducing a fourth node as the anchor node. We define the sign of the x-y-z axis to make sure that x_4 is in the first quadrant, and there are four cases as illustrated in the four subfigures.

in an invariant canonical pose. Second, to address index permutation symmetry, the atoms are deterministically reordered according to a predefined rule. More details are explained below.

Step 1: Canonical Inertial Frame Construction. First, we employ the following four steps to derive the reference frames that construct the rotation matrix from N atomic positions c : (1) Calculate the mass center: $\bar{c} = \frac{1}{N} \sum_i c_i$. (2) Adjust position relative to the center $c_i = c_i - \bar{c}$. (3) Compute the inertia tensor $\hat{I} = \sum_i \|c_i\|^2 I - c_i c_i^T$, where I is the unit diagonal matrix.

How to define the orderings of canonical inertial frame axes? We follow the ordering of the eigenvalues to define the ordering of the eigen-vectors, which form the rotation matrix. The key point to note is how to handle the tie between the eigenvalues. In such cases, the molecular system is symmetric (*e.g.*, CO₂ or CH₄), leading to degenerate eigenvalues of the inertia tensor. Consequently, the canonical inertial frame is not uniquely defined, yet all valid frames are physically equivalent.

How to define the directions of canonical inertial frame axes? The orthonormal I is the basis. Meanwhile, there are eight possible combinations for the directions or signs of the x-, y-, and z-axes, given by $\{\pm 1, \pm 1, \pm 1\}$, respectively. First, we enforce the ordering of the x-y-z axis to be right-handed, *i.e.*, the determinant of I to be 1, not -1. This still gives us four possible combinations. Then we can define a unique direction for each molecule system by introducing a fourth node, as in Theorem 1.

Theorem 1. *For an inertial frame F , we build up the corresponding right-handed axes as coordinate systems Q . Then we need to incorporate a fourth point that is not on the y-z plane or x-z plane to uniquely determine the directions of the coordinate system with one rotation transformation matrix.*

For detailed proof, please check Appendix E. As illustrated in Theorem 1, we must include a fourth node to uniquely determine the directions of the three axes. To achieve this, we consider a fourth node x_4 that is not on the y-z plane or x-z plane and has the largest distance to the origin. Then we define the requirement that x-x₄-z and x₄-y-z are also right-handed; in other words, this requirement is essentially saying that x_4 should be in the first quadrant of the x-y plane. For implementation, x_4 is a 3D point whose projection onto the x-y plane falls into one of the four quadrants: the first, second, third, or fourth quadrant, depending on the signs of its x and y coordinates. Each of them defines the signs (or directions) of the canonical inertial frame axes, as illustrated in Figure 2.

Step 2: Canonical Reordering of Atom Index. To resolve the discrete permutation ambiguity of atom indexing, we first process the 3D molecular structure with RDKit (Landrum, 2016) to obtain a molecule object, which provides the corresponding attributed molecular graph with atoms as nodes and bonds as edges. Each atom is first assigned an initial identifier based on intrinsic chemical and topological features (*e.g.*, atomic number, degree, formal charge, attached hydrogens, ring membership). These identifiers are then iteratively refined by aggregating information from neighboring atoms until stabilization. Atoms are finally ordered according to their refined identifiers, ensuring that isomorphic molecules map to the same sequence. For cases where symmetry leaves multiple atoms indistinguishable, a deterministic tie-breaking procedure perturbs the identifiers and re-runs refinement until a unique order is obtained (Landrum, 2016). Such canonical reordering reduces the $n!$ possible permutations to a unique ordering, providing the consistent input required for AR learning.

216
217

3.2 GEOROPE: GEOMETRIC ROTARY POSITIONAL ENCODING

218
219
220
221
222

After obtaining the canonical sequence of tokens, each atom-based token $a_i = (t_i, c_i)$ defined in Equation (3) must be effectively encoded into a latent representation suitable for Transformer modeling. This representation should capture both the discrete atom type t_i and the continuous 3D coordinates $c_i = (x_i, y_i, z_i)$, ensuring that the self-attention mechanism can fully perceive and reason about the chemical identity and spatial arrangement of atoms.

223
224

Atom Type Embedding. For the discrete atom type t_i , we employ a learnable embedding layer to map this categorical feature into a continuous, high-dimensional vector:

225
226

$$z_i^{\text{type}} = \text{Embedding}(t_i). \quad (4)$$

227
228
229
230
231
232
233

Geometric Rotary Positional Encoding (GeoRoPE). To enable the self-attention mechanism to effectively capture the relative spatial relationships between atoms, a geometry-aware encoding of the continuous 3D coordinates $c_i = (x_i, y_i, z_i)$ is essential. To this end, we introduce GeoRoPE, the Geometric Positional Encoding tailored for 3D point-based tokens, as shown in Figure 1(b). GeoRoPE integrates: (i) **3D Rotary Positional Encoding (RoPE-3D)** for relative positional awareness along spatial axes, and (ii) **Nyström Approximation Encoding** for efficient modeling of pairwise distances.

234
235
236

(i) 3D Rotary Positional Encoding for Continuous 3D Coordinates. To make the self-attention mechanism geometry-aware, the positional encoding must ensure the inner product for absolute positions c_i and c_j depends solely on their relative positions, $c_j - c_i$. This can be expressed as:

237
238

$$R_{c_i}^T R_{c_j} = R_{x_i, y_i, z_i}^T R_{x_j, y_j, z_j} = R_{x_j - x_i, y_j - y_i, z_j - z_i} = R_{c_j - c_i}. \quad (5)$$

239
240
241
242

Here, $R_{x, y, z}$ is the positional encoding function that maps 3D coordinates to their high-dimensional representation. This forces the attention scores to reflect the molecule’s internal geometry, not its arbitrary global orientation. Then, inspired by Su (2021), we propose the 3D Rotary Positional Encoding (RoPE-3D) for atom-based tokens in the Euclidean space:

243
244
245
246
247

$$R_{x, y, z} \mathbf{q} = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} \cdot \begin{bmatrix} \cos x\theta_0 \\ \cos x\theta_0 \\ \cos y\theta_0 \\ \cos y\theta_0 \\ \cos z\theta_0 \\ \cos z\theta_0 \end{bmatrix} + \begin{bmatrix} -q_1 \\ q_0 \\ -q_3 \\ q_2 \\ -q_5 \\ q_4 \end{bmatrix} \cdot \begin{bmatrix} \sin x\theta_0 \\ \sin x\theta_0 \\ \sin y\theta_0 \\ \sin y\theta_0 \\ \sin z\theta_0 \\ \sin z\theta_0 \end{bmatrix}. \quad (6)$$

248
249
250
251
252

This RoPE-3D in Equation (6) is then applied to the query \mathbf{q} and key \mathbf{k} vectors of each atom within the self-attention mechanism. A crucial outcome of this formulation is that the inner product between a query vector transformed by position c_i and a key vector transformed by position c_j becomes a function of only their relative positions, $c_j - c_i$:

253

$$(R_{c_i} \mathbf{q})^T (R_{c_j} \mathbf{k}) = (R_{x_i, y_i, z_i} \mathbf{q})^T (R_{x_j, y_j, z_j} \mathbf{k}) = \mathbf{q}^T R_{x_j - x_i, y_j - y_i, z_j - z_i} \mathbf{k} = \mathbf{q}^T R_{c_j - c_i} \mathbf{k}. \quad (7)$$

254
255
256

Consequently, the attention score between any two atoms depends on their feature representations (via \mathbf{q} and \mathbf{k}) and their relative spatial arrangement, fulfilling the initial requirement for a geometry-aware self-attention mechanism.

257
258
259
260
261
262

(ii) Nyström Approximation Encoding for Pairwise Distance. One limitation of using RoPE-3D in Equation (6) for structure tokenization is that it treats each axis separately; though by expectation, it should be able to learn the token pairwise distance information. We empirically observe that merely using RoPE-3D cannot learn adequate information, while explicitly adding the pairwise information is more informative.

263
264
265
266
267

Then the question is how to explicitly incorporate the pairwise distance into the model. One straightforward way is to directly inject the distance information into the attention score, like (Shi et al., 2023). However, such an architecture is not compatible with the standard transformer architecture used in large language models (Bai et al., 2023; Achiam et al., 2023; Touvron et al., 2023).

268
269

To alleviate this issue, we consider the Nyström method (Williams & Seeger, 2000). It is a low-rank approximation to obtain the pairwise distance. More concretely, suppose we have a Gram matrix over n points, *i.e.*, $K \in \mathbb{R}^{n \times n}$. Each element K_{ij} is the radial basis function (RBF) over the distance between i -th and j -th points, $K_{ij} = RBF(c_i, c_j) = \exp(-\frac{\|c_i - c_j\|^2}{2\sigma^2})$, with c_i denoting

270 the 3D coordinates of the i -th point in an Euclidean space. Then we sample m anchor points,
 271 (c_1, c_2, \dots, c_m) with $m \ll n$. The RBF of these m points can compose an m -rank matrix $A \in \mathbb{R}^{m \times m}$
 272 with positive eigenvalues. By Cholesky decomposition, we have $A = LL^T$. Then, to obtain the RBF
 273 of a new point pair $K(i, j)$, we first construct the feature between point i, j and the m anchor points
 274 as $k_i = [\text{RBF}(i, 0), \text{RBF}(i, 1), \dots, \text{RBF}(i, m)]^T \in \mathbb{R}^{m \times 1}$. For each atom i , we define its Nyström
 275 approximation encoding as:

$$z_i^{\text{Nyström}} = L^{-1} k_i. \quad (8)$$

277 This allows the approximated RBF, which encodes the pairwise distance information between atoms,
 278 to be recovered directly by the inner product in the attention mechanism (details are in Appendix D):

$$\tilde{k}(i, j) = (z_i^{\text{Nyström}})^T (z_j^{\text{Nyström}}). \quad (9)$$

281 **Latent Representation of Atom-based Token.** The final input representation for each atom i is the
 282 concatenation of its type embedding and its Nyström approximation encoding:

$$z_i = [z_i^{\text{type}}, z_i^{\text{Nyström}}]. \quad (10)$$

285 Within the attention layer, the input representation z_i is projected into query q_i , key k_i , and value v_i .
 286 Here, we take the query projection for illustration:

$$q_i = W_q z_i. \quad (11)$$

288 Crucially, to maintain the distinct roles of the atom type embedding and Nyström approximation
 289 encoding, the weight matrix W_q is structured as a block-diagonal matrix. This structure ensures
 290 that the two components of the input representation are projected independently. Recall that $z_i =$
 291 $[z_i^{\text{type}}, z_i^{\text{Nyström}}]$, the projection is implemented as:

$$\begin{bmatrix} q_i^{\text{type}} \\ q_i^{\text{Nyström}} \end{bmatrix} = \begin{bmatrix} W_q^{\text{type}} & 0 \\ 0 & W_q^{\text{Nyström}} \end{bmatrix} \begin{bmatrix} z_i^{\text{type}} \\ z_i^{\text{Nyström}} \end{bmatrix}, \quad (12)$$

295 where W_q^{type} is the learnable weight matrix for the type component, and $W_q^{\text{Nyström}}$ is the identity
 296 matrix. The key k_i and value v_i are computed in an analogous manner using their own block-
 297 diagonal weight matrices, W_k and W_v . The 3D Rotary Positional Encoding is applied only to the
 298 atom type components. The final query \tilde{q}_i and key \tilde{k}_j vectors used in the attention score calculation
 299 are then formed by concatenating these two parts:

$$\tilde{q}_i = \begin{bmatrix} R_{c_i} q_i^{\text{type}} \\ q_i^{\text{Nyström}} \end{bmatrix}, \quad \tilde{k}_j = \begin{bmatrix} R_{c_j} k_j^{\text{type}} \\ k_j^{\text{Nyström}} \end{bmatrix} \quad (13)$$

303 The key advantage of this construction is revealed in the inner product, which combines the two
 304 sources of geometric information. The attention score between atoms i and j is computed as:

$$\begin{aligned} \text{AttentionScore}(i, j) &= \tilde{q}_i^T \tilde{k}_j \\ &= (R_{c_i} q_i)^T (R_{c_j} k_j) + (q_i^{\text{Nyström}})^T (k_j^{\text{Nyström}}) \\ &= \underbrace{q_i^T R_{c_j - c_i} k_j}_{\text{Relative Position from RoPE-3D}} + \underbrace{\text{RBF}(\|c_i - c_j\|)}_{\text{Pairwise Distance from Nyström}} \end{aligned} \quad (14)$$

310 This formulation ensures that the self-attention score explicitly and simultaneously models both the
 311 relative geometric arrangement via RoPE-3D and the pairwise distance via the Nyström approxima-
 312 tion encoding, providing a rich and robust inductive bias.

3.3 HIERARCHICAL AUTOREGRESSIVE ARCHITECTURE

316 The sequence of latent representations derived from Section 3.2, (z_1, \dots, z_n) , is then processed by
 317 the autoregressive Transformer backbone to produce a sequence of context-aware hidden embed-
 318 dings, (h_1, \dots, h_n) . At each step i , the hidden embedding h_i , which encapsulates the full context
 319 of the previous atoms $a_{<i+1}$, is used to predict the next token, $a_{i+1} = (t_{i+1}, c_{i+1})$. This presents a
 320 unique challenge, as the prediction target is a hybrid of a discrete type and a continuous coordinate
 321 vector. To address this, we factorize the conditional probability into two components:

$$p(a_{i+1} | h_i) = p(a_{i+1} | h_i) = p(t_{i+1} | h_i) \cdot p(c_{i+1} | t_{i+1}, h_i). \quad (15)$$

323 In Equation (15), the model first predicts the atom type t_{i+1} conditioned on the hidden embed-
 324 ding h_i . Subsequently, the continuous 3D coordinates c_{i+1} are predicted given both t_{i+1} and h_i .

Concretely, we implement this using a hierarchical AR architecture (as illustrated in Figure 1(c)): (i) a type-prediction block dedicated to modeling the discrete, categorical distribution over atom types, and (ii) a coordinates-prediction block to predict continuous 3D coordinates. This hierarchical architecture not only aligns with the intrinsic nature of molecular generation but also enhances learning efficiency by decoupling the tasks of categorical classification and continuous density estimation (Cheng et al., 2025b).

Cross-Entropy Loss for Type Prediction Block. For the discrete atom type t_{i+1} , we employ the standard cross-entropy, which directly maximizes the likelihood of the ground-truth atom type given the hidden embedding h_i :

$$\mathcal{L}_{\text{type}} = -\mathbb{E}_{(h_i, t_{i+1}) \sim \mathcal{D}} [\log p_{\theta}(t_{i+1} | h_i)]. \quad (16)$$

Diffusion Loss for 3D Coordinates Prediction Block. Autoregressive models are naturally well-suited for generating discrete tokens using cross-entropy. However, for continuous 3D coordinates c_{i+1} , we empirically find that direct regression yields poor performance. To overcome this limitation, we adopt Diffusion Loss from Li et al. (2024a), which provides an effective framework for extending autoregressive models to continuous-valued token generation. The high-level idea is that we perturb the ground-truth position c_{i+1} by adding Gaussian noise with a sampled noise level σ , and train a denoising network ϵ_{θ} to recover the injected noise (Karras et al., 2022). Concretely, the perturbed coordinate is given by

$$c_{i+1}^{(\sigma)} = c_{i+1} + \sigma \epsilon, \quad \epsilon \sim \mathcal{N}(0, I). \quad (17)$$

Conditioned on the hidden embedding h_i and the predicted atom type t_{i+1} , the denoising network is optimized with the following loss function:

$$\mathcal{L}_{\text{diff}} = \mathbb{E}_{\sigma, c_{i+1}, \epsilon} \left[\|\epsilon - \epsilon_{\theta}(c_{i+1}^{(\sigma)}, \sigma, t_{i+1}, h_i)\|_2^2 \right]. \quad (18)$$

This objective enables the coordinates prediction block to model the continuous distribution of atom positions. At inference time, atom coordinates are generated by iterative denoising from Gaussian noise, conditioned on both the autoregressive context h_i and the sampled atom type t_{i+1} .

Controllable Generation with Classifier-free Guidance. We incorporate classifier-free guidance (CFG, details in Section 2) into InertialAR to enable controllable generation. During inference, CFG modulates conditional generation process by leveraging the difference between conditional and unconditional predictions:

$$p_g = p_u + s(p_c - p_u), \quad (19)$$

where p_c and p_u denote the conditional and unconditional predictions, respectively, and s is the guidance scale. In InertialAR, CFG is applied to the estimated noise ϵ_{θ} in diffusion for coordinates generation, as well as to the logits over a discrete vocabulary for atom type prediction. By tuning s , we can achieve both stronger adherence to target molecular classes and better structural validity.

4 EXPERIMENTS

4.1 UNCONDITIONAL 3D MOLECULE GENERATION

QM9 and GEOM-Drugs Dataset. We use QM9 (Ramakrishnan et al., 2014) and GEOM-Drugs (Axelrod & Gómez-Bombarelli, 2022) for unconditional 3D molecular generation. QM9 contains 130K small molecules with high-quality 3D conformations (up to 9 heavy atoms). We split the dataset into train, validation and test sets with 100K, 17K and 13K samples, separately. GEOM-Drugs consists of 37M conformations for around 450K unique molecules (up to 181 atoms and 44.2 atoms on average). Following Hoogeboom et al. (2022), we select the 30 lowest-energy conformations per molecule for training. **B3LYP Dataset.** Moreover, we evaluate on a brand new, larger, and more comprehensive 3D molecular dataset, the PubChemQC B3LYP/6-31G//PM6 dataset (abbreviated as B3LYP) (Nakata & Maeda, 2023). This dataset contains a total of 85,938,443 molecules, covering a wide range of chemical diversity with molecular weights up to 1000 and more than 50 different atom types. We use a subset of 1M molecules for training. The evaluation metrics remain consistent with those used for the QM9 and GEOM-Drugs datasets.

Evaluation. Model performance is assessed through a set of chemical feasibility metrics. Bond types (single, double, triple, or none) are determined from molecular geometries based on pairwise atomic distances and atom identities. The evaluation includes Atom Stability (proportion of

378

Table 1: Unconditional generation on 3D molecules on QM9 and GEOM-Drugs.

Methods	QM9				GEOM-Drugs	
	Valid (%)	Valid&Uni (%)	AtomSta (%)	MolSta (%)	Valid (%)	AtomSta (%)
EFN	40.2	39.4	85.0	4.9	—	—
G-SchNet	85.5	80.3	95.7	68.1	—	—
GDM	—	—	97.0	63.2	90.8	75.0
GDM-AUG	90.4	89.5	97.6	71.6	91.8	77.7
EDM	91.9	90.7	98.7	82.0	92.6	81.3
MiDi	97.9	97.0	97.9	84.0	78.0	82.2
GeoLDM	93.8	92.7	98.9	89.4	99.3	84.4
UniGEM	95.0	<u>93.2</u>	<u>99.0</u>	89.8	<u>98.4</u>	85.1
Geo2Seq	97.1	81.7	98.9	<u>93.2</u>	96.1	82.5
InertialAR	<u>97.4</u>	92.5	99.3	94.7	96.8	87.2

Figure 3: Visualization of molecule editing by tuning the CFG guidance scale s .

atoms satisfying correct valency), Molecule Stability (proportion of molecules in which all atoms are stable), Validity (fraction of chemically valid molecules as verified by RDKit), and Uniqueness (fraction of non-duplicate molecules among generated samples). All metrics are computed following evaluation protocols established in prior work (Hoogeboom et al., 2022; Li et al., 2024b).

Baselines. We benchmark InertialAR against established models, including G-SchNet (Gebauer et al., 2019), ENF (Satorras et al., 2022a), EDM (Hoogeboom et al., 2022), GDM (Hoogeboom et al., 2022), EDM-Bridge (Wu et al., 2022), MiDi (Vignac et al., 2023), GeoLDM (Xu et al., 2023), UniGEM (Feng et al., 2025) and Geo2Seq (Li et al., 2024b).

Results on QM9 and GEOM-Drugs. Table 1 highlights the strong performance of InertialAR across both QM9 and GEOM-Drugs benchmarks. On QM9, InertialAR achieves the highest scores on Atom Stability (99.3%) and Molecule Stability (94.7%), surpassing all competing methods and indicating its ability to generate chemically consistent and structurally reliable molecules. On the larger and more complex GEOM-Drugs dataset, InertialAR continues to demonstrate superiority, attaining the best Atom Stability (87.2%) among all baselines. These results underscore the robustness of InertialAR in ensuring both local chemical validity and global structural stability, validating its effectiveness as a powerful autoregressive framework for 3D molecule generation.

Results on B3LYP. Due to the prohibitive computational cost of training all existing models on the large-scale B3LYP benchmark, we focus our comparison on two representative strong baselines: the diffusion-based EDM and the autoregressive Geo2Seq. The main results are shown in Table 2, InertialAR achieves substantial improvements over baselines on the large-scale B3LYP benchmark. Compared to the strong diffusion model EDM, it attains significantly higher validity and atom stability. Most notably, InertialAR shows a dramatic gain in Molecule Stability (24.2% vs. 0.8%), demonstrating its ability to produce chemically consistent molecules at scale. In contrast, the autoregressive baseline Geo2Seq performs poorly, highlighting the robustness and scalability of our approach on this chemically diverse dataset.

Table 2: Unconditional generation on 3D molecules on B3LYP-1M.

	Valid (%)	Valid&Uni (%)	AtomSta (%)	MolSta (%)
EDM	92.9	92.8	80.6	0.8
Geo2Seq	73.3	2.7	10.0	0.0
InertialAR	99.0	98.6	84.8	24.2

4.2 CLASS-CONDITIONAL 3D MOLECULE GENERATION AND MOLECULE EDITING

In chemistry and biology, class-conditional generation is particularly valuable, as "molecule classes" can correspond to key attributes such as chemical functionality, thereby enabling the targeted design or editing of molecules for drug discovery and materials science.

To enable class-conditional generation on QM9, we reconstruct the dataset by assigning each molecule a **Molecule Class ID** that encodes its functional group configuration (as shown in Figure 4). Specifically, we first convert each 3D structure to its SMILES string and then apply a rule-based SMARTS-matching system to detect predefined functional groups. The resulting presence/absence pattern is encoded as a binary string (e.g. “TTFFFTFT…”). Finally, through a pre-defined Functional Group Pattern-to-Class ID look-up, each molecule is assigned a corresponding Molecule Class ID.

The task is then to generate molecules conditioned on a specified functional group configuration. Concretely, we select the 5 most frequent Molecule Class IDs as conditioning targets. In addition to the metrics used for unconditional generation, we introduce a critical new metric for class-conditional generation, **Hit Rate**, which measures the proportion of generated molecules satisfying the target functional group requirements. A higher hit rate indicates stronger controllability of the generation process.

Baselines. We compare the conditional generation performance of InertialAR against the same representative autoregressive and diffusion-based baselines as in the unconditional setting, namely Geo2Seq and EDM, to ensure a consistent and fair comparison.

Results. Table 3 shows that InertialAR achieves a remarkable average hit rate of 83.3%, significantly surpassing EDM (25.7%) and Geo2Seq (42.2%), demonstrating its strong controllability in generating molecules that match the target functional group configurations. Beyond controllability, InertialAR also achieves excellent performance on chemical feasibility metrics, consistently outperforming both baselines across all evaluated molecule classes. These results highlight the effectiveness of InertialAR in producing both chemically valid and functionally precise molecules.

Molecule Editing via CFG. To further assess controllability, we examine the effect of varying the CFG guidance scale. Increasing the scale not only improves validity-related metrics but also enables molecule editing: molecules that originally lacked the required functional groups and exhibited unreasonable structures can be transformed to satisfy the target Molecule Class ID. As illustrated in Figure 3, by raising the guidance scale by 0.3 ($\Delta s = 0.3$), the generated molecules incorporate the desired functional groups while yielding more plausible 3D geometries, demonstrating that CFG enhances both structural validity and compliance with functional group constraints.

5 CONCLUSION

We propose InertialAR, a hierarchical autoregressive model that ensures $SE(3)$ and permutation invariance through canonical tokenization while equipping Transformers with geometric awareness via GeoRoPE. This advances 3D molecule generation beyond restrictive physical priors and highlights its potential as a foundation model for scientific discovery.

Future Directions. InertialAR can be extended to more complex domains such as protein structure modeling and periodic material discovery, and can be integrated into broader multimodal frameworks, paving the way toward unified, AI-driven scientific discovery.

Figure 4: Overview of mapping 3D molecules to their Molecule Class IDs. The task is then to generate molecules conditioned on a specified functional group configuration. Concretely, we select the 5 most frequent Molecule Class IDs as conditioning targets. In addition to the metrics used for unconditional generation, we introduce a critical new metric for class-conditional generation, **Hit Rate**, which measures the proportion of generated molecules satisfying the target functional group requirements. A higher hit rate indicates stronger controllability of the generation process.

Table 3: Class-conditional generation on 3D molecules on QM9.

Class ID (c)	Model	Rate (%)	Valid (%)	Valid&Uni (%)	AtomSta (%)	MolSta (%)
7 (w/ Ether)	EDM	37.5	84.8	84.2	96.3	52.9
	Geo2Seq	40.1	65.0	52.1	87.6	33.8
	InertialAR	99.0	99.0	92.8	99.7	97.5
28 (w/ Hydroxyl & Ether)	EDM	29.0	86.8	85.9	96.4	54.1
	Geo2Seq	44.2	64.7	55.6	86.5	33.4
	InertialAR	89.8	99.9	90.8	99.9	99.2
3 (w/ Hydroxyl)	EDM	27.6	85.3	84.0	96.7	56.5
	Geo2Seq	49.4	70.3	53.9	89.7	42.2
	InertialAR	85.7	99.9	86.9	99.9	99.4
16 (w/ Heteroaromatic Ring)	EDM	8.9	63.5	63.4	82.9	35.3
	Geo2Seq	33.8	65.6	57.8	86.4	34.8
	InertialAR	68.5	92.2	79.3	97.1	81.0
23 (w/ Secondary Amine & Ether)	EDM	25.3	76.8	76.7	96.1	53.3
	Geo2Seq	43.5	80.5	51.7	91.8	52.4
	InertialAR	81.8	99.7	82.7	99.9	99.2

ETHICS STATEMENT

This research adheres fully to the ICLR Code of Ethics. It does not involve human subjects, personal information, or sensitive data. All datasets and code used or released comply with their respective licenses and terms of use. The contributions of this work are methodological and foundational, raising no concerns related to fairness, privacy, security, or potential misuse.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Upon acceptance, we will release comprehensive resources on GitHub, including dataset access, experimental setup, model configurations, evaluation metrics, and checkpoints. Clear documentation and scripts will accompany these materials to enable accurate replication of all main results, thereby promoting transparency and scientific rigor.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with autoregressive large language modeling. *Nature Communications*, 15(1):1–16, 2024.

Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conformations for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022. doi: 10.1038/s41597-022-01288-4. URL <https://doi.org/10.1038/s41597-022-01288-4>.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

Austin Cheng, Alston Lo, Kin Long Kelvin Lee, Santiago Miret, and Alán Aspuru-Guzik. Stiefel flow matching for moment-constrained structure elucidation, 2025a. URL <https://arxiv.org/abs/2412.12540>.

Austin H. Cheng, Chong Sun, and Alán Aspuru-Guzik. Scalable autoregressive 3d molecule generation, 2025b. URL <https://arxiv.org/abs/2505.13791>.

Zihang Dai. Transformer-xl: Attentive language models beyond a fixed-length context. *arXiv preprint arXiv:1901.02860*, 2019.

Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant frames and the impossibility of continuous canonicalization. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis, 2021. URL <https://arxiv.org/abs/2012.09841>.

540 Felix Faltings, Hannes Stark, Regina Barzilay, and Tommi Jaakkola. Proxelgen: Generating proteins
 541 as 3d densities, 2025. URL <https://arxiv.org/abs/2506.19820>.

542

543 Shikun Feng, Yuyan Ni, Yan Lu, Zhi-Ming Ma, Wei-Ying Ma, and Yanyan Lan. Unigem: A unified
 544 approach to generation and property prediction for molecules, 2025. URL <https://arxiv.org/abs/2410.10516>.

545

546 Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materi-
 547 als, and protein binding sites directly in three dimensions as xyz, cif, and pdb files, 2023. URL
 548 <https://arxiv.org/abs/2305.05708>.

549

550 Cong Fu, Xiner Li, Blake Olson, Heng Ji, and Shuiwang Ji. Fragment and geometry aware to-
 551 kenization of molecules for structure-based drug design using language models, 2024. URL
 552 <https://arxiv.org/abs/2408.09730>.

553

554 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
 555 ular graphs, 2022. URL <https://arxiv.org/abs/2003.03123>.

556

557 Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted genera-
 558 tion of 3d point sets for the targeted discovery of molecules. In H. Wallach,
 559 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-
 560 vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 561 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/a4d8e2a7e0d0c102339f97716d2fdfb6-Paper.pdf.

562

563 Hongyu Guo, Yoshua Bengio, and Shengchao Liu. Assembleflow: Rigid flow matching with in-
 564 erial frames for molecular assembly. In *The Thirteenth International Conference on Learning
 565 Representations*, 2025. URL <https://openreview.net/forum?id=jckKNzYYA6>.

566

567 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
 568 with disentangled attention. *arXiv preprint arXiv:2006.03654*, 2020.

569

570 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

571

572 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 573 sion for molecule generation in 3d, 2022. URL <https://arxiv.org/abs/2203.17003>.

574

575 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 576 based generative models, 2022. URL <https://arxiv.org/abs/2206.00364>.

577

578 Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.

579

580 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image gener-
 581 ation without vector quantization, 2024a. URL <https://arxiv.org/abs/2406.11838>.

582

583 Xiner Li, Limei Wang, Youzhi Luo, Carl Edwards, Shurui Gui, Yuchao Lin, Heng Ji, and Shuiwang
 584 Ji. Geometry informed tokenization of molecules for language model generation. *arXiv preprint
 585 arXiv:2408.10120*, 2024b.

586

587 Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
 588 graphs, 2023. URL <https://arxiv.org/abs/2206.11990>.

589

590 Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via minimal frame averaging
 591 for more symmetries and efficiency. In *Forty-first International Conference on Machine Learning*,
 592 2024. URL <https://openreview.net/forum?id=guFsTBXsov>.

593

594 Shuqi Lu, Xiaohong Ji, Bohang Zhang, Lin Yao, Siyuan Liu, Zhifeng Gao, Linfeng Zhang, and Guolin
 595 Ke. Beyond atoms: Enhancing molecular pretrained representations with 3d space mod-
 596 eling, 2025a. URL <https://arxiv.org/abs/2503.10489>.

597

598 Shuqi Lu, Huawei Lin, Lin Yao, Zhifeng Gao, Xiaohong Ji, Weinan E, Linfeng Zhang, and Guolin
 599 Ke. Uni-3dar: Unified 3d generation and understanding via autoregression on compressed spatial
 600 tokens, 2025b. URL <https://arxiv.org/abs/2503.16278>.

594 George Ma, Yifei Wang, Derek Lim, Stefanie Jegelka, and Yisen Wang. A canonicalization perspec-
 595 tive on invariant and equivariant learning. In *Proceedings of the 38th International Conference on*
 596 *Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2024. Curran Associates
 597 Inc. ISBN 9798331314385.

598 Maho Nakata and Toshiyuki Maeda. Pubchemqc b3lyp/6-31g*//pm6 dataset: the electronic struc-
 599 tures of 86 million molecules using b3lyp/6-31g* calculations, 2023. URL <https://arxiv.org/abs/2305.18454>.

600 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

601 Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
 602 Yaron Lipman. Frame averaging for invariant and equivariant network design. In *International*
 603 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=zIUyj55nXR>.

604 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 605 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 606 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

607 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in*
 608 *neural information processing systems*, 20, 2007.

609 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 610 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

611 Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, and Max Welling. E(n)
 612 equivariant normalizing flows, 2022a. URL <https://arxiv.org/abs/2105.09016>.

613 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
 614 works, 2022b. URL <https://arxiv.org/abs/2102.09844>.

615 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 616 of tensorial properties and molecular spectra. In *International Conference on Machine Learning*,
 617 pp. 9377–9388. PMLR, 2021.

618 Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
 619 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 620 for modeling quantum interactions, 2017. URL <https://arxiv.org/abs/1706.08566>.

621 Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
 622 prediction of tensorial properties and molecular spectra, 2021. URL <https://arxiv.org/abs/2102.03150>.

623 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
 624 tions. *arXiv preprint arXiv:1803.02155*, 2018.

625 Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
 626 Di He, and Tie-Yan Liu. Benchmarking graphomer on large-scale molecular modeling datasets,
 627 2023. URL <https://arxiv.org/abs/2203.04810>.

628 Jianlin Su. Road to transformer upgrades: 4. rotational positional encoding for 2d positions, May
 629 2021. URL <https://spaces.ac.cn/archives/8397>.

630 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 631 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

632 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 633 Autoregressive model beats diffusion: Llama for scalable image generation, 2024. URL <https://arxiv.org/abs/2406.06525>.

634 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
 635 Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
 636 clouds. *arXiv preprint arXiv:1802.08219*, 2018a.

648 Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
 649 Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
 650 clouds, 2018b. URL <https://arxiv.org/abs/1802.08219>.

651
 652 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 653 Scalable image generation via next-scale prediction, 2024. URL <https://arxiv.org/abs/2404.02905>.

654
 655 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 656 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 657 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 658 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

659
 660 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

661
 662 Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
 663 denoising diffusion for molecule generation. In *Joint European Conference on Machine Learning*
 and *Knowledge Discovery in Databases*, pp. 560–576. Springer, 2023.

664
 665 Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
 666 *Advances in neural information processing systems*, 13, 2000.

667
 668 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule
 669 generation with informative prior bridges, 2022. URL <https://arxiv.org/abs/2209.00865>.

670
 671 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 672 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
 pp. 38592–38610. PMLR, 2023.

673
 674 Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arróyave, Marinka
 675 Zitnik, Heng Ji, Xiaofeng Qian, Xiaoning Qian, et al. Invariant tokenization of crystalline materi-
 676 als for language model enabled generation. *Advances in Neural Information Processing Systems*,
 677 37:125050–125072, 2024.

678
 679 Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström method vs
 680 random fourier features: A theoretical and empirical comparison. *Advances in neural information*
 processing systems, 25, 2012.

681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A THE USE OF LARGE LANGUAGE MODELS**
703704 In this work, we employed large language models to refine English writing. All suggestions generated
705 by the LLM were critically reviewed, vetted, and approved by the authors to ensure accuracy
706 and integrity. The final manuscript faithfully represents the authors' own ideas, arguments, and
707 research findings.
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B PRELIMINARIES AND RELATED WORK**
757758 **B.1 3D MOLECULE GENERATION**
759760
761 In the domain of AI-driven molecule discovery, 3D molecule generation has become a central
762 problem. Its goal is to directly construct physically plausible 3D molecular conformations. For-
763 mally, a 3D molecule with n atoms can be represented as a point cloud $G = (z, R)$. The vector
764 $z = [z_1, \dots, z_n] \in \mathbb{Z}^n$ encodes the atom types, where z_i denotes the nuclear charge of the i -th
765 atom. The coordinate matrix $R = [r_1, \dots, r_n] \in \mathbb{R}^{3 \times n}$ specifies the 3D position of each atom, with
766 $r_i \in \mathbb{R}^3$. A fundamental challenge lies in ensuring that molecular geometries respect the inherent
767 $SE(3)$ symmetry, i.e., molecular representations must remain invariant or equivariant under $SE(3)$
768 transformations such as rotations and translations.769 Current approaches can be categorized into four main paradigms. $SE(3)$ -equivariant architectures
770 explicitly enforce symmetry through specialized network designs: spherical frame basis mod-
771 els (Thomas et al., 2018b; Liao & Smidt, 2023) project features into irreducible representations
772 of $SO(3)$, while vector frame basis models (Satorras et al., 2022b; Schütt et al., 2021) construct
773 local coordinate frames for equivariant operations. Invariant feature approaches circumvent archi-
774 tectural constraints by utilizing geometrically invariant inputs such as pairwise distances, bond an-
775 gles, and dihedral angles (Schütt et al., 2017). Data augmentation strategies encourage models to
776 implicitly learn symmetric representations by training on randomly rotated and translated molecu-
777 lar conformations, particularly valuable for large-scale models where explicit equivariance is com-
778 plex to scale (Abramson et al., 2024). Input canonicalization methods (Li et al., 2024b; Fu et al.,
779 2024) establish a canonical orientation or reference frame for input molecules through preprocess-
780 ing, transforming each molecule into a standardized pose so that subsequent neural networks can
781 operate on $SE(3)$ -invariant inputs without intrinsic $SE(3)$ -equivariant constraints.782 A representative canonicalization strategy defines an inertial reference frame for each molecule us-
783 ing principal component analysis (PCA) (Guo et al., 2025; Lu et al., 2025a; Cheng et al., 2025a).
784 After shifting the molecular coordinates so that the center of mass lies at the origin, the moment of
785 inertia matrix is diagonalized to obtain the principal axes of rotation. Aligning the coordinates with
786 these axes yields a canonical pose, unique up to axis reflections, effectively removing translational
787 and rotational ambiguities. This inertial frame ensures $SE(3)$ -symmetry molecular representations,
788 enabling neural networks to process standardized and physically consistent 3D geometries without
789 explicit equivariant design.790 PCA-based inertial frames provide a simple and effective practical canonicalization strategy. Empir-
791 ically, we find that PCA canonical poses are highly stable on real molecular datasets, making them
792 an efficient $SE(3)$ canonicalization choice for unconstrained architectures. Theoretically, however,
793 PCA-based canonicalization is not strictly unique. Its limitations include potential axis flips from
794 small geometric perturbations and ambiguity in axis orientation when principal moments are tied.
795 These theoretical non-uniqueness issues have motivated a line of canonicalization-based symmetry
796 handling methods that study how to systematically manage symmetry-equivalent frames. Frame
797 Averaging (Puny et al., 2022) treats canonicalization as an equivariant projection by averaging out-
798 puts across all symmetry-equivalent PCA frames, while subsequent work shows that any finite,
799 unweighted canonicalization procedure necessarily introduces discontinuities under symmetric con-
800 figurations (Dym et al., 2024). More recent developments include Minimal Frame Averaging (Lin
801 et al., 2024), which constructs theoretically minimal frames via stabilizer groups, and general canoni-
802 calization frameworks that reinterpret Frame Averaging and related strategies as orbit canonicaliza-
803 tion (Ma et al., 2024). Our approach is complementary to this line: we adopt our canonical inertial
804 frame as a simple and empirically robust canonicalization strategy, while these canonicalization-
805 based methods provide principled tools that could further enhance robustness in future extensions.806 **B.2 AUTOREGRESSIVE MODELS AND TOKENIZATION OF 3D MOLECULE**
807808 Autoregressive models address sequence modeling by framing it as a "next-token prediction" prob-
809 lem. This approach, a direct application of the chain rule of probability, factorizes the joint distribu-

Figure 5: Comparison of existing $SE(3)$ -equivariant graph neural networks and InertialAR.

tion of a sequence $x = (x_1, \dots, x_n)$ into a product of conditional probabilities:

$$p(x) = p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i|x_1, \dots, x_{i-1}).$$

The model’s core task is thus to learn the conditional distribution $p(x_i|x_{<i})$ for each step, which is typically parameterized by a powerful neural network such as Transformer. The primary challenge in applying autoregressive models to 3D molecular generation lies in the effective **structure tokenization** of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer architectures. The choice of tokenization strategy is crucial, as it defines not only the sequence representation but also the very nature of the conditional modeling itself. Existing approaches can be broadly classified into three main categories:

Voxel-based tokenization, which discretizes the 3D space occupied by a molecule into a 3D grid, draws a direct parallel to image generation (Faltungs et al., 2025; Lu et al., 2025b). Each voxel in the grid serves as a token that encodes local atomic information, much like a pixel in an image. **Text sequence-based tokenization**, which is similar to language modeling, serializes 3D molecules into a 1D, text-like sequence (Li et al., 2024b; Yan et al., 2024; Flam-Shepherd & Aspuru-Guzik, 2023). The process involves discretizing continuous 3D coordinates and concatenating them with discrete atom types. This treats a molecule like a sentence, where every atom type and 3D coordinates are encoded as words. **Atom-based tokenization** directly treats an atom as one single token that encapsulates both its discrete atom type and continuous 3D coordinates. This establishes an intuitive correspondence between the physical atoms and their tokenized representation, thereby preserving atom-level granularity.

B.3 CLASS-CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

Class-conditional generation is a paradigm that generates samples conditioned on a specific class label c . In image generation, this involves generating an image guided by a prefix class embedding (Esser et al., 2021; Peebles & Xie, 2023). In chemistry and biology, class-conditional generation is highly useful, as molecular “classes” can correspond to key attributes such as chemical functionality or physicochemical characteristics, enabling the targeted design or editing of molecules for drug discovery and materials science.

Classifier-free guidance (CFG) improves both sample quality and fidelity to conditions by randomly dropping conditioning signals during training (Ho & Salimans, 2022). This simple yet effective strategy enables a single model to jointly learn both the conditional distribution $p(x|c)$ and the unconditional distribution $p(x)$. At inference, the difference between these two learned distributions is then leveraged to amplify the conditional signal without relying on an auxiliary classifier. Although

864 originally proposed for diffusion, CFG has also proven effective in autoregressive image generation,
 865 showing great potential for molecule generation.
 866

867 **B.4 DIFFUSION LOSS FOR AUTOREGRESSIVE MODELS**
 868

869 While autoregressive models are naturally suited for generating discrete tokens via cross-entropy
 870 loss, 3D molecule generation introduces an additional challenge: predicting continuous 3D coordi-
 871 nates. Diffusion Loss (Li et al., 2024a) provides an effective framework to extend autoregressive
 872 models to continuous-valued token generation. Formally, to predict the continuous-valued token x_i
 873 , the autoregressive model first outputs a vector h_{i-1} conditioned on previous tokens $x_{<i}$. The ob-
 874 jective is to model the conditional probability distribution $p(x_i|h_{i-1})$. Diffusion loss achieves this
 875 through a denoising score-matching objective:

876
$$L(x_i, h_{i-1}) = \mathbb{E}_{\epsilon, t} [|\epsilon - \epsilon_\theta(x_i^t|t, h_{i-1})|^2], \quad (20)$$

 877

878 where $x_i^t = \sqrt{\bar{\alpha}_t}x + \sqrt{1 - \bar{\alpha}_t}\epsilon$ is a noised version of x_i , and ϵ_θ a denoising network that predicts the
 879 noise ϵ conditioned on \mathbf{z} and timestep t . Gradients from this loss propagate through h_{i-1} , enabling
 880 end-to-end training of the autoregressive backbone.

881 This approach preserves the strong sequence modeling capacity of autoregressive models while
 882 extending them to predict continuous distributions. By directly modeling 3D coordinates, it removes
 883 the need for discretization or coarse tokenization of molecular geometries and provides a principled
 884 mechanism for generating chemically precise molecular structures.

885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 C CLASS-CONDITIONAL GENERATION
919920 C.1 DATASET RECONSTRUCTION
921

972 **D NYSTRÖM ESTIMATION**
 973

974 The Nyström method (Williams & Seeger, 2000) is a low-rank approximation to obtain the pairwise
 975 distance. More concretely, suppose we have a Gram matrix over n points, *i.e.*, $K \in \mathbb{R}^{n \times n}$. Each
 976 element K_{ij} is the radial basis function (RBF) over the distance between i -th and j -th points, $K_{ij} =$
 977 $RBF(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$. Then we sample m anchor points, (c_1, c_2, \dots, c_m) , where c is
 978 3D coordinates in an Euclidean space and $n \gg m$.
 979

980 First, we can decompose the matrix K with eigendecomposition,

981
$$K = U \Lambda U^T, \quad (22)$$

 982

983 where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix whose columns are the orthonormal eigenvectors of K ,
 984 and $\Lambda \in \mathbb{R}^{n \times n}$ is a diagonal matrix whose entries are the corresponding eigenvalues of K .

985 Then, Nyström approximation is a low rank approximation, assuming that matrix K can be approx-
 986 imated using \tilde{K} :

987
$$\begin{aligned} K &\approx \tilde{K} \\ 988 &= \tilde{U} \tilde{\Lambda} \tilde{U}^T \\ 989 &= \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, \end{aligned} \quad (23)$$

 990
 991

992 where \tilde{U} is the first m columns of U and $\tilde{\Lambda}$ is the block diagonal matrix of first m eigenvalues of Λ .
 993 At this point, we assume that the m points picked can estimate the m -rank matrix A with positive
 994 eigenvalues. Then let us have $\tilde{U} = \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \end{bmatrix}$, where $\tilde{U}_1 \in \mathbb{R}^{m \times m}$ and $\tilde{U}_2 \in \mathbb{R}^{(n-m) \times m}$. This means
 995 $A = \tilde{U}_1 \tilde{\Lambda} \tilde{U}_1^T$ and $B = \tilde{U}_2 \tilde{\Lambda} \tilde{U}_2^T$. Thus, we can rewrite Equation (23) as:

996
$$\begin{aligned} \tilde{K} &= \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \end{bmatrix} \tilde{\Lambda} \begin{bmatrix} \tilde{U}_1 \\ \tilde{U}_2 \end{bmatrix}^T \\ 997 &= \begin{bmatrix} \tilde{U}_1 \tilde{\Lambda} \tilde{U}_1^T & \tilde{U}_1 \tilde{\Lambda} \tilde{U}_2^T \\ \tilde{U}_2 \tilde{\Lambda} \tilde{U}_1^T & \tilde{U}_2 \tilde{\Lambda} \tilde{U}_2^T \end{bmatrix}. \end{aligned} \quad (24)$$

 998
 999

1000 Combining this with Equation (23), we have $\tilde{U}_2 = B^T \tilde{U}_1 \tilde{\Lambda}^{-1}$ and $\tilde{U}_2^T = \tilde{\Lambda}^{-1} \tilde{U}_1^T B$. Thus, we can
 1001 have

1002
$$C = \tilde{U}_2 \tilde{\Lambda} \tilde{U}_2^T = B^T \tilde{U}_1 \tilde{\Lambda}^{-1} \tilde{U}_1^T B = B^T A^{-1} B. \quad (25)$$

 1003

1004 To inject this back to Equation (23), we have

1005
$$\begin{aligned} \tilde{K} &= \begin{bmatrix} A & B \\ B^T & B^T A^{-1} B \end{bmatrix} \\ 1006 &= \begin{bmatrix} A \\ B^T \end{bmatrix} A^{-1} [A \quad B]. \end{aligned} \quad (26)$$

 1007
 1008

1009 This wraps up the key idea of Nyström method. Then, to obtain the RBF of a new point
 1010 pair $K(i, j)$, we first construct the feature between point i, j and the m anchor points as $k_i =$
 1011 $[RBF(i, 0), RBF(i, 1), \dots, RBF(i, m)]^T \in \mathbb{R}^{m \times 1}$. The approximated $RBF(i, j)$ can be obtained as:

1012
$$\begin{aligned} \tilde{k}(i, j) &= k_i^T A^{-1} k_j \\ 1013 &= (A^{-1/2} k_i)^T (A^{-1/2} k_j) \\ 1014 &= (L^{-1} k_i)^T (L^{-1} k_j), \end{aligned} \quad (27)$$

 1015

1016 where $A = LL^T$ is the Cholesky decomposition.

1017 For each atom i , we define its Nyström Approximation Encoding as

1018
$$z_i^{\text{Nyström}} = L^{-1} k_i. \quad (28)$$

 1019
 1020

1026 This design allows the approximated RBF, which encodes the pairwise distance information between
 1027 atoms, to be recovered directly by the inner product within the attention mechanism:
 1028

$$1029 \tilde{k}(i, j) = (z_i^{\text{Nyström}})^T (z_j^{\text{Nyström}}). \quad (29)$$

1030
 1031 **Discussion.** There is another research line using random features (*e.g.*, random Fourier features)
 1032 for the pairwise distance approximation (Rahimi & Recht, 2007). There are certain works that have
 1033 proved that Nyström method is more accurate (Yang et al., 2012). One intuitive way to understand
 1034 this is that Nyström method utilizes the data-dependent basis, while the random features use data-
 1035 independent basis functions.

1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 E DETERMINE INERTIAL FRAME DIRECTIONS BY INTRODUCING FOURTH
1081 NODE
1082

1083 **Theorem 2.** For an inertial frame F , we build up the corresponding right-handed axes as coordinate
1084 systems Q . Then we need to incorporate a fourth point that is coplanar with the three basis vectors to
1085 uniquely determine the directions of the coordinate system with one rotation transformation matrix.
1086

1088 Figure 7: (a, b) show two potential rotational alignments between two coordinate systems (axes). (c, d) show
1089 that only one unique rotation is possible for four non-coplanar points.
1090

1091 *Proof.* For three vectors, we can easily find a counter-example , as illustrated in Figure 7 (a, b).
1092 Figure 7 (a, b) describes two cases where we have the same initial frame, and we can rotate it to two
1093 different final frames with two rotation matrices, yet the righthandness still matches. We can easily
1094 see that there are four options of rotation matrices in this case, and we cannot uniquely determine
1095 the final inertial frame in this case.
1096

1097 More rigorously, let us first assume that there exists a rotation transformation R that can transform
1098 the initial coordinate system Q_i to the final coordinate system Q_f , as:
1099

1100
$$\begin{bmatrix} Q_{f,0} \\ Q_{f,1} \\ Q_{f,2} \end{bmatrix}^T = R \cdot \begin{bmatrix} Q_{i,0} \\ Q_{i,1} \\ Q_{i,2} \end{bmatrix}^T \quad (30)$$

1101 First, we should change either zero or two directions for direction alignment. Then, without loss of
1102 generality, we can assume the two directions to be the last two axes. Thus, we can obtain a rotation
1103 matrix R' such that R' is rotating R along vector $Q_{f,0}$ with 180 degrees. We can represent R' using
1104 Rodrigue's rotation formula, as $R' = (2Q_{f,0}Q_{f,0}^T - I)R$. Thus, we can have:
1105

1106
$$R' \cdot \begin{bmatrix} Q_{i,0} \\ Q_{i,1} \\ Q_{i,2} \end{bmatrix}^T = (2Q_{f,0}Q_{f,0}^T - I) \begin{bmatrix} Q_{f,0} \\ Q_{f,1} \\ Q_{f,2} \end{bmatrix}^T = \begin{bmatrix} Q_{f,0} \\ -Q_{f,1} \\ -Q_{f,2} \end{bmatrix}^T \quad (31)$$

1107 This is essentially saying starting from one initial frame, we can have multiple matched final frames.
1108 Thus, using only three vectors cannot uniquely determine the direction matching. We provide two
1109 examples in Figure 7 (a, b).
1110

1111 For the four vectors, we introduce an extra atom into the inertial frame system, and such an extra
1112 atom point is nonplanar to the three base axes. Then the problem becomes: starting from an initial
1113 frame and an extra point, can we find multiple rotation matrices such that the final frames have
1114 reflected directions? To be more rigorous, let us have the following formulation.
1115

1116 First, let us assume we have this rotation matrix:
1117

1118
$$\begin{bmatrix} Q_{f,0} \\ Q_{f,1} \\ Q_{f,2} \\ v \end{bmatrix}^T = R \cdot \begin{bmatrix} Q_{i,0} \\ Q_{i,1} \\ Q_{i,2} \\ v \end{bmatrix}^T \quad (32)$$

1134 As discussed above, we need to guarantee the right-handedness property, thus, without loss gener-
 1135 ality, here we also assume the last two axes are reflected. The question turns to: does it exist another
 1136 rotation matrix R' , such that:

$$\begin{bmatrix} Q_{f,0} \\ -Q_{f,1} \\ -Q_{f,2} \\ \mathbf{v} \end{bmatrix}^T = R' \cdot \begin{bmatrix} Q_{i,0} \\ Q_{i,1} \\ Q_{i,2} \\ \mathbf{v} \end{bmatrix}^T \quad (33)$$

1141 We now use contradiction. Since we still have the two axes rotated 180 degrees around the first axes,
 1142 $Q_{f,0}$, so $R' = (2Q_{f,0}Q_{f,0}^T - I)R$. Then given the two conditions $\mathbf{v}^T = R\mathbf{v}^T$ and $\mathbf{v}^T = R'\mathbf{v}^T$, we
 1143 have $(2Q_{f,0}Q_{f,0}^T - I)\mathbf{v}^T = \mathbf{v}^T$.

1144 If we let $Q_{f,0} = [k_1, k_2, k_3]$ and $\mathbf{v} = [v_1, v_2, v_3]$, then we have

$$\begin{aligned} (2Q_{f,0}Q_{f,0}^T - I)\mathbf{v}^T &= \mathbf{v}^T \\ \begin{bmatrix} k_1k_1 & k_1k_2 & k_1k_3 \\ k_1k_2 & k_2k_2 & k_2k_3 \\ k_2k_3 & k_2k_3 & k_3k_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} &= \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \\ \begin{bmatrix} k_1(k_1v_1 + k_2v_2 + k_3v_3) \\ k_2(k_1v_1 + k_2v_2 + k_3v_3) \\ k_3(k_1v_1 + k_2v_2 + k_3v_3) \end{bmatrix} &= \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \quad (34) \\ (k_1v_1 + k_2v_2 + k_3v_3) \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} &= \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}. \end{aligned}$$

1157 After calculation, we can obtain that $Q_{f,0} = c\mathbf{v}$, where c is a coefficient. However, as we claimed in
 1158 the condition, \mathbf{v} does not lie in the same line as $Q_{f,0}$, thus, there does not exist such another rotation
 1159 matrix $R' \neq R$ satisfying Equation (33). We also provide two examples in Figure 7 (c, d).

1161 By contradiction, we can tell that there is only one unique rotation mapping from the initial inertial
 1162 frame to the final inertial frame. \square

1163 To sum up, three points cannot form a rigid structure in Euclidean space, thus there can exist multiple
 1164 reflection transformations, leading to opposite inertial frames. Four points can form a rigid structure,
 1165 thus there exists only one reflection transformation.

1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **F POSITIONAL ENCODING**
 1189

1190 Position embedding is one of the most important building blocks in Transformer. There have been
 1191 multiple methods, and we would like to briefly discuss them here.
 1192

1193 **F.1 ABSOLUTE POSITIONAL ENCODING**
 1194

1195 In absolute positional encoding, each position in the input sequence is assigned a unique, fixed
 1196 embedding. The most classical positional encoding is the sinusoidal function Vaswani (2017):
 1197

$$\begin{cases} p_{i,2t} = \sin(k/10000^{2t/d}) \\ p_{i,2t+1} = \cos(k/10000^{2t/d}) \end{cases} \quad (35)$$

1200 Such a positional encoding will be added (or multiplied) to the token embedding, and the classical
 1201 attention module is as:
 1202

$$\begin{aligned} q_i &= (x_i + p_i)W_Q \\ k_j &= (x_j + p_j)W_K \\ v_j &= (x_j + p_j)Q_V \\ a_{i,j} &= \text{softmax}(q_k k_j^T) \\ o_i &= \sum_j a_{i,j} v_j. \end{aligned} \quad (36)$$

1210 Pros:

1211

- Simple and easy to implement.
- Provides a clear, ordered embedding that the model can use to distinguish between different
 1214 token positions.

1215 Cons:

1216

- Limited in capturing the relative distance between tokens, especially in very long se-
 1218 quences.
- Fixed nature can limit the model's ability to generalize to longer sequences beyond what it
 1220 was trained on.

1222 **F.2 RELATIVE POSITIONAL ENCODING**
 1223

1224 In relative positional encoding, the model encodes the distance (or relative position) between tokens
 1225 rather than absolute positions. The relative distance will be further used in calculating the attention
 1226 score.

1227 The first relative positional encoding was proposed in Shaw et al. (2018), as:
 1228

$$\begin{aligned} R_{i,j}^K &= p_K[\text{clip}(i - j, p_{min}, p_{max})] \\ R_{i,j}^V &= p_V[\text{clip}(i - j, p_{min}, p_{max})], \end{aligned} \quad (37)$$

1229 where p_K, p_V are certain learnable functions or non-learnable functions (like sinusoidal function
 1230 in Equation (35)). This will be then used to define the attention score, which will be then replaced
 1231 to Equation (36):
 1232

$$a_{i,j} = \text{softmax}(x_i W_Q (x_j W_K + R_{i,j}^K)^T) \quad (38)$$

1233 Based on this, there are more variants on defining the relative distance, such as XLNet Dai (2019),
 1234 DeBERTa He et al. (2020), and T5 Raffel et al. (2020).
 1235

1236 Pros:

1237

- More flexible and generalizable, especially to unseen sequence lengths.
- Better at capturing the local context by focusing on distances between tokens.

1242 Cons:

1243

- 1244 • Can be more complex to implement and computationally intensive.
- 1245 • The model might need to adapt if positional relationships are nuanced.

1246

1247 **F.3 ROTARY POSITIONAL ENCODING: HYBRID OF ABSOLUTE & RELATIVE POSITIONAL**
 1248 **ENCODING**
 1249

1250 Rotary Positional Encoding (RoPE) (Su et al., 2024) is a hybrid of both the absolute and relative
 1251 positional encoding.

1252 The core idea is the utilization of complex numbers and their inner-product property. More con-
 1253cretely, we have the query and key vectors as $q_m e^{im\theta}$ and $k_n e^{in\theta}$, and their inner product is:

$$\begin{aligned} 1254 \langle q_m e^{im\theta}, k_n e^{in\theta} \rangle &= \text{Re}[(q_m e^{im\theta})(\overline{k_n e^{in\theta}})] \\ 1255 &= \text{Re}[q_m \overline{k_n} e^{i(m-n)\theta}], \end{aligned} \quad (39)$$

1256 where $\text{Re}[\cdot]$ denotes the real part and $\overline{(\cdot)}$ denotes complex conjugation. Here q_m and k_n denote the
 1257 complex-valued 2D sub-block representations (paired components) of the original real vectors.

1258 **RoPE As Absolute Positional Encoding:** RoPE uses absolute positions to determine each token's
 1259 rotation, hence capturing absolute positional information directly in each embedding.

1260 **RoPE As Relative Positional Encoding:** The relative distances are captured in the attention layer,
 1261 thanks to the inner product of rotated embeddings, which varies based on the distance between
 1262 positions. This allows RoPE to behave similarly to relative positional encodings in the self-attention
 1263 scores.

1264 **Matrix Format:** Considering Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$, we can further write this in the
 1265 following formation for matrix q with even dimension d :

$$\begin{aligned} 1266 \begin{bmatrix} \cos m\theta_0 & -\sin m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\ 1267 \sin m\theta_0 & \cos m\theta_0 & 0 & 0 & \cdots & 0 & 0 \\ 1268 0 & 0 & \cos m\theta_1 & -\sin m\theta_1 & \cdots & 0 & 0 \\ 1269 0 & 0 & \sin m\theta_1 & \cos m\theta_1 & \cdots & 0 & 0 \\ 1270 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1271 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2-1} & -\sin m\theta_{d/2-1} \\ 1272 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2-1} & \cos m\theta_{d/2-1} \end{bmatrix} \underbrace{\begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_{d-2} \\ q_{d-1} \end{bmatrix}}_{R_m} \end{aligned} \quad (40)$$

1273 We can easily observe that:

$$1274 (R_m q)^T (R_n k) = q^T R_m^T R_n k = q^T R_{n-m} k. \quad (41)$$

1275

1276 **Preliminary Matrix Exponential Format:** First, let us recall that for a complex number, $z = a+bi$,
 1277 we can write it in the following formats:

$$\begin{aligned} 1278 z &= a + bi \\ 1279 &= r \cos \theta + ir \sin \theta \\ 1280 &= r e^{i\theta} \\ 1281 &= r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \end{aligned} \quad (42)$$

1282 Here we want to prove that this complex number can be further written in a matrix exponential way.

$$\begin{aligned} 1283 r \exp(\theta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}) &\equiv r \exp(\theta J) \\ 1284 &= r \sum_{n=0}^{\infty} \frac{(\theta J)^n}{n!}. \end{aligned} \quad (43)$$

1296 *Proof.* Because matrix J has an interesting property: $J^2 = -I$, $J^3 = -J$, $J^4 = I$, thus we can
 1297 rewrite as:

$$\begin{aligned}
 1299 \quad r \exp(\theta J) &= r \sum_{n=0}^{\infty} \frac{(\theta J)^n}{n!} \\
 1300 \\
 1301 &= r \left(I + \theta J - \frac{\theta^2}{2!} I - \frac{\theta^3}{3!} J + \frac{\theta^4}{4!} I + \frac{\theta^5}{5!} J - \frac{\theta^6}{6!} I - \frac{\theta^7}{7!} J + \dots \right) \\
 1302 \\
 1303 &= rI \cdot \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n}}{(2n)!} + rJ \cdot \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n+1}}{(2n+1)!} \\
 1304 \\
 1305 &= rI \cos \theta + rJ \sin \theta \\
 1306 \\
 1307 &= r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.
 \end{aligned} \tag{44}$$

□

1312 To sum up, for a complex number, we have:

$$\begin{aligned}
 1313 \quad z &= a + bi \\
 1314 &= r \cos \theta + ir \sin \theta \\
 1315 &= re^{i\theta} \\
 1316 \\
 1317 &= r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\
 1318 \\
 1319 &= r \exp(\theta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}).
 \end{aligned} \tag{45}$$

1322 **Matrix Exponential Format for Rotary Positional Encoding:** Then we would like to explore how
 1323 to incorporate this into rotary embedding. For the 2×2 rotation matrix $\begin{bmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{bmatrix}$, we
 1324 can write its matrix exponential form as $\exp(m\theta J)$, where $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

1325 Thus, our rotation matrix can be written as $R_n = \exp(n\theta J)$, and we can observe that

$$\begin{aligned}
 1330 \quad R_m^T R_n &= \exp(m\theta J)^T \exp(n\theta J) \\
 1331 &= \exp(-m\theta J) \exp(n\theta J) \\
 1332 &= \exp((n-m)\theta J) \\
 1333 &= R_{n-m}.
 \end{aligned} \tag{46}$$

1350 **G COMPLEX, QUATERNION, AND ROTATION**
13511352 **G.1 COMPLEX**
13531354 Any complex number $z \in \mathbb{C}$ can be written as $z = a + bi$, where $a, b \in \mathbb{R}$ and $i^2 = -1$. We call a
1355 as the real part and b as the imaginary part.
13561357 We can write z as a vector, meaning the linear combination over the basis $\{1, i\}$:
1358

1359
$$z = \begin{bmatrix} a \\ b \end{bmatrix}. \quad (47)$$

1360

1361 **Addition** If have two complex numbers $z_1 = a + bi$ and $z_2 = c + di$, then the addition of two
1362 numbers is:
1363

1364
$$z_1 + z_2 = (a + c) + (b + d)i. \quad (48)$$

1365

1366 **Multiplication** If have two complex numbers $z_1 = a + bi$ and $z_2 = c + di$, then the multiplication
1367 of two numbers is:
1368

1369
$$\begin{aligned} z_1 z_2 &= (a + bi)(c + di) \\ &= (ac - bd) + (ad + bc)i. \end{aligned} \quad (49)$$

1370 Or we can write this in a matrix-vector multiplication:
1371

1372
$$z_1 z_2 = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}, \quad (50)$$

1373 where $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ is the matrix for z_1 and $\begin{bmatrix} c \\ d \end{bmatrix}$ is the vector for z_2 .
13741375 **Conjugate** The conjugate of $z = a + bi$ is:
1376

1377
$$\bar{z} = a - bi. \quad (51)$$

1378

1379 **G.2 COMPLEX AND ROTATION**
13801381 Multiplying a complex number $z = a + bi$ is equivalent to multiplying the matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then
1382 the question is what does this matrix mean?
13831394 Figure 8: Illustration of the geometric representation of a complex number.
13951396 If we transform the matrix as follows:
1397

1398
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \sqrt{a^2 + b^2} \begin{bmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{-b}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{bmatrix} \quad (52)$$

1399
1400
1401
1402

$$= ||z|| \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

1403 Then we can see that this matrix is indeed the rotation transformation on the 2D plane, as shown
in Figure 8.

1404 **Inner product or Hermitian inner product or conjugate symmetric inner product** If have two
 1405 complex numbers $z_1 = a + bi$ and $z_2 = c + di$, then the inner product of two numbers is:
 1406

$$\begin{aligned}
 1408 \quad \langle z_1, z_2 \rangle &= z_1 \bar{z}_2 \\
 1409 &= (a + bi) * (c - di) = ac + bd + (bc - ad)i \\
 1410 &= |z_1| e^{i\theta_1} \cdot |z_2| e^{-i\theta_2} = |z_1| |z_2| e^{i(\theta_1 - \theta_2)} \\
 1411 &= |z_1| (\cos(\theta_1) + i \sin(\theta_1)) \cdot |z_2| (\cos(\theta_2) - i \sin(\theta_2)) \\
 1412 &= |z_1| |z_2| (\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)) \\
 1413 &= |z_1| \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{bmatrix} \cdot |z_2| \begin{bmatrix} \cos(\theta_2) \\ -\sin(\theta_2) \end{bmatrix} \\
 1414 &= |z_1| |z_2| \begin{bmatrix} \cos(\theta_1 - \theta_2) \\ \sin(\theta_1 - \theta_2) \end{bmatrix} \\
 1415 &= |z_1| |z_2| \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix} \cdot |z_2| \begin{bmatrix} \cos(\theta_2) & \sin(\theta_2) \\ -\sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \\
 1416 &= |z_1| |z_2| \begin{bmatrix} \cos(\theta_1 - \theta_2) & -\sin(\theta_1 - \theta_2) \\ \sin(\theta_1 - \theta_2) & \cos(\theta_1 - \theta_2) \end{bmatrix}. \tag{53}
 \end{aligned}$$

1425 G.3 QUATERNION

1427 A quaternion is defined as:

$$1429 \quad q = a + bi + cj + dk, \tag{54}$$

1432 where $a, b, c, d \in \mathbb{R}$ and $i^2 = j^2 = k^2 = ijk = -1$.

1434 Similarly, we can also write quaternion as a vector, *i.e.*, the linear combination of basis $\{1, i, j, k\}$:

$$\begin{aligned}
 1436 \quad q &= \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}. \tag{55}
 \end{aligned}$$

1442 We can rewrite this as:

$$\begin{aligned}
 1444 \quad q &= [w, \mathbf{u}] \\
 1445 &= |q|(\cos(\theta) + \sin(\theta)\mathbf{u}) \\
 1446 &= |q|e^{\theta\mathbf{u}} \\
 1447 &= |q|(\cos \theta + (x \sin \theta)i + (y \sin \theta)j + (z \sin \theta)k), \tag{56}
 \end{aligned}$$

1450 where $\mathbf{u} = \frac{xi + yj + zk}{\sqrt{x^2 + y^2 + z^2}}$.

1454 **Addition** If we have two quaternions $q_1 = a + bi + cj + dk$ and $q_2 = e + fi + gj + hk$, then the
 1455 addition of two quaternions is:

$$1456 \quad q_1 + q_2 = (a + e) + (b + f)i + (c + g)j + (d + h)k. \tag{57}$$

1458 **Multiplication** If we have two quaternions $q_1 = a + bi + cj + dk$ and $q_2 = e + fi + gj + hk$,
 1459 then the multiplication of two quaternions is:
 1460

$$\begin{aligned}
 1461 \quad q_1 q_2 &= (a + bi + cj + dk)(e + fi + gj + hk) \\
 1462 &= ae + afi + agj + ahk + \\
 1463 &\quad bei + bfi^2 + bgij + bhi + \\
 1464 &\quad cej + cfji + cgj^2 + chjk + \\
 1465 &\quad dek + dfji + dgkj + dhk^2 \\
 1466 &= (ae - bf - cg - dh) + \\
 1467 &\quad (be + af - dg + ch)i + \\
 1468 &\quad (ce + df + ag - bh)j + \\
 1469 &\quad (de - cf + bg + ah)k \\
 1470 &= \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix}. \tag{58}
 \end{aligned}$$

1471 **Inner product**

$$1472 \quad \langle q_1, q_2 \rangle = \text{Re}(q_1 * \bar{q}_2) \tag{59}$$

$$\begin{aligned}
 1473 \quad q_1 * \bar{q}_2 &= |q_1| |q_2| (\cos(\theta_1) + \sin(\theta_1) \mathbf{u}_1) (\cos(\theta_2) + \sin(\theta_2) - \mathbf{u}_2) \\
 1474 &= [st + \mathbf{u}_1 \mathbf{u}_2, s\mathbf{u}_2 + t\mathbf{u}_1 + \mathbf{u}_1 \times \mathbf{u}_2] \tag{60}
 \end{aligned}$$

1475 **G.4 QUATERNION AND ROTATION**

1476 First, we can have the quaternion to rotation matrix as:
 1477

$$1478 \quad R(q) = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2zy & 2xz + 2yw \\ 2xy + 2zw & 1 - 2x^2 - 2z^2 & 2yz - 2xw \\ 2xz - 2yw & 2yz + 2xw & 1 - 2x^2 - 2y^2 \end{bmatrix} \tag{61}$$

1479 **G.5 TOKENIZATION**

1480 We assume that we would like to use the following equations to add absolute positions to q and k :

$$1481 \quad \tilde{q}_m = f(q, x_m, y_m, z_m), \quad \tilde{k}_n = f(k, x_n, y_n, z_n). \tag{62}$$

1482 In other words, we hope that we can add the absolute position into \tilde{q} and \tilde{k} .

1483 Because the core module of attention is the inner product, so we prefer the following:

$$1484 \quad \langle q_{x_m, y_m, c_m}, k_{x_n, y_n, c_n} \rangle = g(q, k, d_{m,n}), \tag{63}$$

1485 where $d_{m,n} = \sqrt{(x_m - x_n)^2 + (y_m - y_n)^2 + (z_m - z_n)^2}$.
 1486

1512 H ABLATION STUDIES

1514 In this section, we provide additional ablation studies and robustness analyses that were conducted
 1515 during the rebuttal phase. Unless otherwise stated, all experiments are performed on the QM9
 1516 unconditional generation setting, and we report the same four metrics as in the main paper: Valid,
 1517 Valid&Unique, AtomSta, and MolSta.

1519 H.1 ROBUSTNESS OF THE CANONICAL INERTIAL FRAME

1521 We perform two complementary analyses to assess the robustness of the canonical inertial frame: (i)
 1522 stability under small geometric perturbations, and (ii) frequency of principal-moment degeneracy in
 1523 realistic datasets.

1525 **Stability under small perturbations.** We add i.i.d. Gaussian noise to atomic coordinates in QM9
 1526 and Drugs to quantify how often the “farthest atom” (used for axis-sign resolution) changes. Since
 1527 quantum-derived coordinates are typically reported with precision around 10^{-3} Å, we consider per-
 1528 turbation magnitudes $\varepsilon \in [10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}]$ Å, which are already larger than typical numer-
 1529 ical noise. For each molecule and noise level, we measure the fraction of cases where the identity of
 1530 the farthest atom changes relative to the unperturbed geometry.

1531 As shown in Table 4, the sign-flip event becomes extremely rare at $\varepsilon = 10^{-5}$ Å (change ratio below
 1532 10^{-3} on QM9 and below 2×10^{-5} on Drugs), and completely disappears at $\varepsilon = 10^{-7}$ Å. This
 1533 indicates that the inertial-frame construction is highly stable under realistic coordinate noise.

1535 Table 4: Farthest-atom change ratio under Gaussian coordinate perturbations.

1537 Dataset	ε (Å)	Farthest-Atom Change Ratio
1539 QM9	1×10^{-4}	0.00581
	1×10^{-5}	0.00078
	1×10^{-6}	0.00016
	1×10^{-7}	0.00000
1543 Drugs	1×10^{-4}	0.0000990
	1×10^{-5}	0.0000198
	1×10^{-6}	0.00000375
	1×10^{-7}	0.00000

1548 **Principal-moment degeneracy.** We next quantify how often perfect symmetries (e.g., exact pla-
 1549 narity or higher-order symmetry) cause principal-moment degeneracy, which in principle can make
 1550 the inertial frame non-unique. We scan the full QM9 and Drugs datasets and count molecules with
 1551 degenerate principal moments.

1552 Table 5 shows that such cases are statistically negligible: only 9 molecules in QM9 (out of ~ 130 K)
 1553 and 1 molecule in Drugs exhibit exact degeneracy. These extremely rare symmetric molecules are
 1554 simply excluded from training, which has no measurable impact on performance.

1556 Table 5: Frequency of principal-moment degeneracy in QM9 and Drugs.

1559 Dataset	# Degenerate Molecules	Fraction
1560 QM9	9	0.00007
1561 Drugs	1	0.00000

1562 Combining these analyses, the probability of any frame instability (from either sign flips or degen-
 1563 eracy) is bounded by $< 10^{-4}$ on QM9 and is effectively zero on Drugs. Empirically, we do not
 1564 observe any training issues attributable to frame instability, supporting the practical robustness of
 1565 our canonical inertial frame.

1566
1567

H.2 POSITIONAL ENCODING: GEOROPE AND ITS VARIANTS

1568
1569
1570

We further ablate the proposed GeoRoPE positional encoding by varying only the positional mechanism and keeping all other components fixed (inertial frame, hierarchical AR design, training setup, parameter count).

1571
1572

The compared variants are:

1573
1574
1575
1576
1577

- **Ours:** full GeoRoPE (RoPE-3D + Nyström distance features).
- **No GeoRoPE:** 3D coordinates are encoded only as static features; the Transformer backbone uses no geometry-aware positional encoding.
- **RoPE-only:** only the RoPE-3D component is used.
- **Nyström-only:** only the Nyström distance feature component is used.

1578
1579
1580
1581
1582
1583
1584
1585
1586

The results in Table 6 highlight three key observations. First, removing GeoRoPE entirely causes a catastrophic collapse in Valid and MolSta, indicating that a Transformer without geometry-aware positional structure cannot reliably reason about 3D molecular geometry. Second, both RoPE-only and Nyström-only models perform well, showing that each component provides a strong geometric inductive bias. Third, combining them into GeoRoPE yields the best overall performance, particularly in molecule-level stability. While the gains on QM9 appear modest, this is expected given that QM9 molecules are small and near-rigid; on more flexible datasets (e.g., Drugs, B3LYP-level systems), we observe larger improvements.

1587
1588
1589
1590
1591
1592
1593
1594
1595

Table 6: Ablations on GeoRoPE positional encoding on QM9.

Model	Valid (%)	Valid&Unique (%)	AtomSta (%)	MolSta (%)
Ours (GeoRoPE)	97.4	92.5	99.3	94.7
No GeoRoPE	8.7	3.8	20.2	0.0
RoPE-only	97.1	92.5	99.2	94.3
Nyström-only	97.3	92.5	99.2	94.2

1596
1597
1598

These results support our claim that GeoRoPE is not merely a cosmetic design choice: it is the core mechanism that makes 3D molecular modeling feasible for an autoregressive Transformer.

1599
1600

H.3 EFFECT OF CANONICAL ATOM INDEXING

1601
1602
1603

To evaluate the effect of canonicalizing atom indices, we compare the full model against a variant where the RDKit-based canonicalization step is removed while keeping all other components unchanged. In the non-canonical variant, atom indices are taken directly from the raw input ordering.

1604
1605
1606
1607
1608

As shown in Table 7, removing canonicalization consistently degrades both validity and uniqueness, even though the drop is moderate in absolute terms. This confirms that enforcing a unique, RDKit-consistent atom ordering is beneficial for the autoregressive model, as it eliminates the $n!$ permutation ambiguity and provides a more stable training signal.

1609
1610

Table 7: Effect of RDKit-based canonicalization of atom indices on QM9.

Model	Valid (%)	Valid&Unique (%)	AtomSta (%)	MolSta (%)
Ours (with canonicalization)	97.4	92.5	99.3	94.7
w/o canonicalization	97.0	90.0	99.1	94.0

1615
1616
1617

H.4 DIFFUSION LOSS VS. DIRECT L2 REGRESSION

1618
1619

Finally, we compare the diffusion-based coordinate loss used in our main model with a simple L2 regression loss on the coordinates. In the L2 variant, all other components—including the autoregressive architecture, inertial frame, and GeoRoPE—are kept identical.

1620 As reported in Table 8, using an L2 loss causes a dramatic collapse in generation quality, showing
 1621 that direct coordinate regression fails to model the nature of 3D positions in autoregressive
 1622 paradigm. The diffusion loss avoids this collapse and yields stable, valid structures, which is fully
 1623 consistent with the insight reported in Li et al. (2024a). Therefore, we adopt the diffusion loss in
 1624 our framework.

1625

1626 Table 8: Comparison between diffusion loss and simple L2 coordinate regression on QM9.

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673