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ABSTRACT

Transformer-based autoregressive models have emerged as a unifying paradigm
across modalities such as text and images, but their extension to 3D molecule
generation remains underexplored. The gap stems from two fundamental chal-
lenges: (1) tokenizing molecules into a canonical 1D sequence of tokens that is
invariant to both SE(3) transformations and atom index permutations, and (2) de-
signing an architecture capable of modeling hybrid atom-based tokens that couple
discrete atom types with continuous 3D coordinates. To address these challenges,
we introduce Inertial AR. Inertial AR devises a canonical tokenization that aligns
molecules to their inertial frames and reorders atoms to ensure SE(3) and per-
mutation invariance. Moreover, Inertial AR equips the attention mechanism with
geometric awareness via geometric rotary positional encoding (GeoRoPE). In ad-
dition, it utilizes a hierarchical autoregressive paradigm to predict the next atom-
based token, predicting the atom type first and then its 3D coordinates via Diffu-
sion loss. Experimentally, Inertial AR achieves state-of-the-art performance on 7
of the 10 evaluation metrics for unconditional molecule generation across QM9,
Geom-Drug, and B3LYP. Moreover, it significantly outperforms strong baselines
in controllable generation for targeted chemical functionality, attaining state-of-
the-art results across all 5 metrics.

1 INTRODUCTION

Autoregressive (AR) models have achieved substantial progress in artificial intelligence (Al) in re-
cent years. In natural language processing, their strong sequence modeling capability and scalability
have established them as the de facto architecture for foundation models (Brown et al., [2020; [Tou-
vron et al.| 2023 |Achiam et al.l2023). Moreover,they have shown competitive performance on par
with diffusion models in image generation, suggesting their viability as a unified sequence modeling
paradigm (Sun et al., 2024} Tian et al.| |2024). Inspired by their success across these diverse modali-
ties, we seek to investigate whether AR models can serve as an effective generative model paradigm
for 3D molecule generation.

While diffusion models have achieved impressive results in 3D molecule generation, they are often
limited by computationally intensive iterative sampling and a lack of flexibility for variable-length
generation (Hoogeboom et al., |2022; Xu et al., [2023b} |Vignac et al.,|2023). In contrast, AR models
offer a compelling alternative: by casting 3D molecule generation as a sequence prediction problem,
they enable highly efficient and flexible generation of variable-sized molecules.

However, adapting AR models for 3D molecule generation poses unique challenges at both data
and model levels. On the data side, the key difficulty centers on tokenizing 3D molecules into 1D
sequences of tokens compatible with Transformer-like models. An ideal tokenization must satisfy
two criteria: (1) SE(3)-equivariance, i.e., equivariant tokenization under rotations and translations,
and (2) permutation invariance of the atom indexing to establish a canonical sequence order for
each molecule. On the model side, unlike conventional AR models that merely predict the next
discrete token at each step, the AR model for 3D molecule generation requires jointly predicting a
discrete atom type (e.g., C, H, O, N) and its continuous 3D coordinates, due to the dual chemical
and geometric information encoded in each atom.

Our Contributions. To address these challenges, we propose Inertial AR, a novel AR model for 3D
molecule generation. InertialAR rests on two key innovations. First, canonical tokenization uses
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Figure 1: Overview of InertialAR: (a) canonical tokenization, (b) geometric rotary positional encoding
(GeoRoPE), and (c) hierarchical autoregressive paradigm.

an inertial frame to align 3D molecules, converting them into a sequence of atom-level tokens that
ensures SE(3) equivariance. It subsequently applies a canonical reordering of its atoms to guarantee
atom index permutation invariance. Second, we introduce Geometric Rotary Positional Encoding
(GeoRoPE), which injects relative positional awareness and pairwise distance information between
atoms into the attention mechanism, making it geometry-aware. Built upon these two components,
Inertial AR employs a hierarchical AR paradigm for density estimation, iteratively predicting the
discrete atom types using cross-entropy and continuous atom positions using diffusion loss. Fur-
ther beyond unconditional generation, by adapting classifier-free guidance (CFG), InertialAR can
generate molecules with desired functionality and perform targeted structural modifications.

To evaluate the effectiveness of Inertial AR, we conduct comprehensive experiments on both uncon-
ditional and controllable generation. For unconditional generation, Inertial AR achieves state-of-the-
art results on 3 of 6 key metrics on QM9 and GEOM-DRUG. To further assess its scalability and
robustness, we evaluate on the more challenging large-scale B3LYP dataset, where Inertial AR at-
tains state-of-the-art performance across all 4 metrics, clearly surpassing other prominent diffusion
and AR models. Furthermore, on the more demanding task of class-conditional generation, Iner-
tialAR combined with classifier-free guidance establishes state-of-the-art results on all 5 evaluation
metrics, enabling targeted generation and editing of molecules with desired chemical functionality.

Related work. We briefly review the most related works here and include a more detailed overview
in Appendix [B] The central requirement for 3D molecule generation is respecting SE(3) symmetry
Existing methods can be grouped into four paradigms: (i) SE(3)-equivariant architectures (T

etal] 2018 L ia0 & Smidg, 2023 ; [Schiitt et all, 2021}, [Satorras et al.} 2022b), (ii) invariant- feature

modeling (Schiitt et al.l 2017; [Gasteiger et al., 2022), (iii) data augmentatlon (Flam-Shepherd &
Aspuru-Guzik|, [2023; |Abrams0n et al.,[2024), and (iv) input canonicalization (Antunes et al.| [2024;
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Yan et al.| [2024; Li et al.| 2024b; |[Fu et al., [2024). Another key challenge for autoregressive 3D
generation is tokenization. While recent studies have investigated text sequence-based tokenization
(L1 et al., |2024b; Yan et al., 2024; Flam-Shepherd & Aspuru-Guzik, |2023)), some parallel works are
concurrently exploring voxel-based approaches (Lu et al.||2025). However, they both rely on spatial
discretization, which discards fine-grained geometry and fails to preserve atom-level granularity.

2 PRELIMINARIES

3D Molecule Generation. The goal of 3D molecule generation is to directly construct physically
plausible 3D molecular conformations. Formally, a 3D molecule with n atoms can be represented
as a point cloud M = (¢,C). The vector t = [t1,--- ,t,] € Z™ encodes the atom types, where
t; denotes the nuclear charge of the i-th atom. The coordinate matrix C' = [cy,- - ,c,] € R3X"
specifies the 3D position of each atom, with ¢; € R3.

Autoregressive Models and Tokenization of 3D Molecule. Autoregressive (AR) models ad-
dress sequence modeling by framing it as a “next-token prediction” problem. This approach, a
direct application of the chain rule of probability, factorizes the joint distribution of a sequence
x = (z1,...,2,) into a product of conditional probabilities:

p(ac):p(xl,...,xn):Hp(mi\ml,...,xifl). (1)
=1
The model’s core task is thus to learn the conditional distribution p(x;|z ;) for each step, which
is typically parameterized by a powerful neural network such as the Transformer (Vaswani, [2017).
The primary challenge in applying AR models to 3D molecular generation lies in the effective
tokenization of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer
architectures.

Class-conditional Generation and Classifier-free Guidance. Class-conditional generation pro-
duces samples conditioned on a class label c (Esser et al.,2021; Peebles & Xie,2023). Classifier-free
guidance (CFG), originally proposed by Ho & Salimans|(2022), enhances both sample quality and
conditional alignment. It trains a single model on both the conditional distribution p(x|c) and the
unconditional distribution p(x) by randomly dropping labels during training. Then during inference,
conditional generation is steered by combining the two predictions:

Pg = Pu + 8(pc — pu), ®)

where p. and p,, denote the conditional and unconditional predictions, respectively, and s is the
guidance scale controlling the trade-off between class fidelity and sample diversity.

3 INERTIALAR

The Inertial Autoregressive Model (InertialAR) casts 3D molecule generation as an AR process,
where a molecule is sequentially built by predicting “the next atom-based token” at each step. To
achieve this, a 3D molecule M is tokenized into an ordered 1D sequence of n atom-based tokens,
M = (ay,...,a,), where each atom-based token a; = (¢;, ¢;) contains a discrete atom type ¢; and
continuous 3D coordinates ¢; = (x;, y;, z;). Thus, the corresponding probability factorizes as:

n

pM) = Hp(az'la<i) = [In(ti ci)laco). C)

=1
3.1 CANONICAL TOKENIZATION OF 3D MOLECULES

The factorization in Equation (3) makes AR models inherently sensitive to the token order. There-
fore, a robust tokenization must be invariant to two fundamental symmetries: the continuous SE(3)-
equivariance of the molecular geometry under rotations and translations, and the discrete permu-
tation symmetry of the atom indexing (which can yield up to n! permutations for n atoms). Such
a canonical tokenization ensures that each molecule maps to a unique token sequence, eliminating
ambiguity and enabling effective learning.

More concretely, we introduce a two-step canonical tokenization, as shown in Figure [T{a). First, to
address SE(3) symmetry, we align the molecular system to its inertial frame, resulting in an invariant
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Sign of x-y-z axis: Sign of x-y-z axis: Sign of x-y-z axis: Sign of x-y-z axis:
[1,1,1] 1,-1,-1] [1,1,-1] [1,-1,1]

Figure 2: Tllustration of introducing a fourth node as the anchor node. We define the sign of the x-y-z axis to
make sure that x4 is in the first quadrant, and there are four cases as illustrated in the four subfigures.

canonical pose. Second, to address index permutation symmetry, the atoms are deterministically
reordered according to a predefined rule. More details are explained below.

Step 1: Inertial Frame Construction. First, we employ the following four steps to derive the
reference frames that construct the rotation matrix from /N atomic positions c: (1) Calculate the mass
center: ¢ = % Zi ¢;. (2) Adjust position relative to the center ¢; = ¢; — ¢. (3) Compute the inertia
tensor I = 3, ||cs||2I — ¢;cT, where I is the unit diagonal matrix. (4) Obtain the principal axes
of inertia by applying eigen-decomposition on 1. We have I = QAQT, where Q is the orthogonal
matrix whose columns are the eigenvectors of I , and A is the diagonal matrix whose elements are
the eigenvalues \; of I, representing the principal moments of inertia along the principal axes.

How to define the orderings of inertial frame axes? We follow the ordering of the eigenvalues
to define the ordering of the eigen-vectors, which form the rotation matrix. The key point to note
is how to handle the tie between the eigenvalues. In such cases, the molecular system is symmetric
(e.g., CO4 or CHy), leading to degenerate eigenvalues of the inertia tensor. Consequently, the inertial
frame is not uniquely defined, yet all valid frames are physically equivalent.

How to define the directions of inertial frame axes? The orthonormal I is the basis. Meanwhile,
there are eight possible combinations for the directions or signs of the x-, y-, and z-axes, given by
{#£1, £1, £1}, respectively. First, we enforce the ordering of the x-y-z axis to be right-handed, i.e.,
the determinant of I to be 1, not -1. This still gives us four possible combinations. Then we can
define a unique direction for each molecule system by introducing a fourth node, as in Theorem I}

Theorem 1. For an inertial frame F', we build up the corresponding right-handed axes as coordinate
systems (). Then we need to incorporate a fourth point that is not on the y-z plane or x-z plane to
uniquely determine the directions of the coordinate system with one rotation transformation matrix.

For detailed proof, please check Appendix [} As illustrated in Theorem[I] we must include a fourth
node to uniquely determine the directions of the three axes. To achieve this, we consider a fourth
node x4 that is not on the y-z plane or x-z plane and has the largest distance to the origin. Then we
define the requirement that x-x4-z and x4-y-z are also right-handed; in other words, this requirement
is essentially saying that x4 should be in the first quadrant of the x-y plane. For implementation,
x4 is a 3D point whose projection onto the x—y plane falls into one of the four quadrants: the first,
second, third, or fourth quadrant, depending on the signs of its x and y coordinates. Each of them
defines the signs (or directions) of the inertial frame axes, as illustrated in Figure[2]

Step 2: Canonical Reordering of Atom Index. To resolve the discrete permutation ambiguity of
atom indexing, we first process the 3D molecular structure with RDKit (Landrum)2016)) to obtain a
molecule object, which provides the corresponding attributed molecular graph with atoms as nodes
and bonds as edges. Each atom is first assigned an initial identifier based on intrinsic chemical and
topological features (e.g., atomic number, degree, formal charge, attached hydrogens, ring mem-
bership). These identifiers are then iteratively refined by aggregating information from neighboring
atoms until stabilization. Atoms are finally ordered according to their refined identifiers, ensuring
that isomorphic molecules map to the same sequence. For cases where symmetry leaves multiple
atoms indistinguishable, a deterministic tie-breaking procedure perturbs the identifiers and re-runs
refinement until a unique order is obtained (Landrum, [2016). Such canonical reordering reduces
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the n! possible permutations to a unique ordering, providing the consistent input required for AR
learning.

3.2 GEOROPE: GEOMETRIC ROTARY POSITIONAL ENCODING

After obtaining the canonical sequence of tokens, each atom-based token a; = (;,¢;) defined
in Equation must be effectively encoded into a latent representation suitable for Transformer
modeling. This representation should capture both the discrete atom type ¢; and the continuous
3D coordinates ¢; = (z;, yi, 2;), ensuring that the self-attention mechanism can fully perceive and
reason about the chemical identity and spatial arrangement of atoms.

Atom Type Embedding. For the discrete atom type ¢;, we employ a learnable embedding layer to
map this categorical feature into a continuous, high-dimensional vector:

2% = Embedding(t;). )

Geometric Rotary Positional Encoding (GeoRoPE). To enable the self-attention mechanism to ef-
fectively capture the relative spatial relationships between atoms, a geometry-aware encoding of the
continuous 3D coordinates ¢; = (z;, y;, %) is essential. To this end, we introduce GeoRoPE, the Ge-
ometric Positional Encoding tailored for 3D point-based tokens, as shown in Figure[I[(b). GeoRoPE
integrates: (i) 3D Rotary Positional Encoding (RoPE-3D) for relative positional awareness along
spatial axes, and (ii) Nystrom Approximation Encoding for efficient modeling of pairwise dis-
tances.

(i) 3D Rotary Positional Encoding for Continuous 3D Coordinates. To make the self-attention
mechanism geometry-aware, the positional encoding must ensure the inner product for absolute
positions ¢; and ¢; depends solely on their relative positions, ¢; — ¢;. This can be expressed as:

T T
RCiRCj - Rzi,yi,ziRl‘j,yj,Zj = ij—a:i,yj—yi,zj—zi = ch—ci~ (5)

Here, R, , . is the positional encoding function that maps 3D coordinates to their high-dimensional
representation. This forces the attention scores to reflect the molecule’s internal geometry, not its
arbitrary global orientation. Then, inspired by |Sul (2021), we propose the 3D Rotary Positional
Encoding (RoPE-3D) for atom-based tokens in the Euclidean space:

qo cos z8g —q sin 0o
Q cos xfo qo sin xfg
_ |a2|  |cos 2600 —q3| sin y6o
Rey-q = q3 cos ybo + q2 sin y6o ©®
qa cos z6p —qs sin z0g
qs cos zbo qa sin z0g

This RoPE-3D in Equation (6] is then applied to the query g and key k vectors of each atom within
the self-attention mechanism. A crucial outcome of this formulation is that the inner product be-
tween a query vector transformed by position c¢; and a key vector transformed by position ¢; becomes
a function of only their relative positions, ¢; — ¢;:

(Rciq)T(RCj k) = (Rzi«yivziq)T(sz»yjazj k) = qTRZj_Iiayj_yivzj_Zik' = qTRCj_Cik N

Consequently, the attention score between any two atoms depends on their feature representations
(via q and k) and their relative spatial arrangement, fulfilling the initial requirement for a geometry-
aware self-attention mechanism.

(ii) Nystrom Approximation Encoding for Pairwise Distance. One limitation of using RoPE-3D
in Equation (6) for structure tokenization is that it treats each axis separately; though by expectation,
it should be able to learn the token pairwise distance information. We empirically observe that
merely using RoPE-3D cannot learn adequate information, while explicitly adding the pairwise
information is more informative.

Then the question is how to explicitly incorporate the pairwise distance into the model. One straight-
forward way is to directly inject the distance information into the attention score, like (Shi et al.,
2023)). However, such an architecture is not compatible with the standard transformer architecture
used in large language models (Bai et al., 2023} |Achiam et al.,|2023}; [Touvron et al., 2023).

To alleviate this issue, we consider the Nystrom method (Williams & Seeger, [2000). It is a low-
rank approximation to obtain the pairwise distance. More concretely, suppose we have a Gram
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matrix over n points, i.e., ' € R"*". Each element K;; is the radial basis function (RBF) over

_llei—cyll?

the distance between i-th and j-th points, K;; = RBF(c;, ¢j) = exp(— 55— ), with ¢; denoting
the 3D coordinates of the ¢-th point in an Euclidean space. Then we sample m anchor points,
(c1,c2, ..., Cm) with m < n. The RBF of these m points can compose an m-rank matrix A € R™*™
with positive eigenvalues. By Cholesky decomposition, we have A = LL™. Then, to obtain the RBF
of a new point pair K (i, j), we first construct the feature between point ¢, j and the m anchor points
as k; = [RBF(4,0),RBF(i, 1), ..., RBF(i,m)]T € R™*L. For each atom i, we define its Nystrom
approximation encoding as:

2 = L7 . (8)
This allows the approximated RBF, which encodes the pairwise distance information between atoms,
to be recovered directly by the inner product in the attention mechanism (details are in Appendix [G):

k(Z, ]) — (ZNystrﬁm)T (ZNyslrijm) . (9)

i J
Latent Representation of Atom-based Token. The final input representation for each atom ¢ is the
concatenation of its type embedding and its Nystrom approximation encoding:

zi = [, 2. (10)

Within the attention layer, the input representation z; is projected into query g;, key k;, and value v;.
Here, we take the query projection for illustration:

qi IWqu (11)

Crucially, to maintain the distinct roles of the atom type embedding and Nystrom approximation
encoding, the weight matrix W, is structured as a block-diagonal matrix. This structure ensures
that the two components of the input representation are projected independently. Recall that z; =

[207¢ 2 NYSUOM] “the projection is implemented as:
][ ] [40] (1)
qi\lystrom 0 Wqustrom Z;\Iystrom )
type . : : Nystrom - . .
where W7 is the learnable weight matrix for the type component, and W is the identity

matrix. The key k; and value v; are computed in an analogous manner using their own block-
diagonal weight matrices, W}, and W,,. The 3D Rotary Positional Encoding is applied only to the

atom type components. The final query ¢; and key I~cj vectors used in the attention score calculation
are then formed by concatenating these two parts:

_ R.. q{ype] _ |: R.. klype
qi = [ N;/slrldm s kj = NJyerJém (13)
q; kj

(3

The key advantage of this construction is revealed in the inner product, which combines the two
sources of geometric information. The attention score between atoms ¢ and j is computed as:

AttentionScore(7, j) = G; k;
— (‘RC1 qi)T (ch k‘]) + (qI_\Iyslrém)T(kI:Iystrém)

: i j (14)
q; ch—cikj + RBF(HCZ - cj”)
—_— —_—

Relative Position from RoPE-3D  Pairwise Distance from Nystrom

This formulation ensures that the self-attention score explicitly and simultaneously models both the
relative geometric arrangement via RoPE-3D and the pairwise distance via the Nystrom approxima-
tion encoding, providing a rich and robust inductive bias.

3.3 HIERARCHICAL AUTOREGRESSIVE ARCHITECTURE

The sequence of latent representations derived from Section (#1,.-.,2n), is then processed by
the autoregressive Transformer backbone to produce a sequence of context-aware hidden embed-
dings, (h1,...,hy,). Ateach step ¢, the hidden embedding h;, which encapsulates the full context
of the previous atoms a1, is used to predict the next token, a;+1 = (¢;+1,¢;+1). This presents a
unique challenge, as the prediction target is a hybrid of a discrete type and a continuous coordinate
vector. To address this, we factorize the conditional probability into two components:

pait1 | hi) = plaivr | hi) = p(tigr | hi) - plcivr | Lita, ha)- (15)
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In Equation (I5), the model first predicts the atom type ¢;1; conditioned on the hidden embed-
ding h;. Subsequently, the continuous 3D coordinates c¢;4; are predicted given both ¢, 1 and h;.
Concretely, we implement this using a hierarchical AR architecture (as illustrated in Figure [I|c)):
(1) a type-prediction block dedicated to modeling the discrete, categorical distribution over atom
types, and (ii) a coordinates-prediction block to predict continuous 3D coordinates. This hierarchi-
cal architecture not only aligns with the intrinsic nature of molecular generation but also enhances
learning efficiency by decoupling the tasks of categorical classification and continuous density esti-
mation (Cheng et al., 2025).

Cross-Entropy Loss for Type Prediction Block. For the discrete atom type ¢;1, we employ the
standard cross-entropy, which directly maximizes the likelihood of the ground-truth atom type given
the hidden embedding h;:

Lipe = —En; t;,1)~p [log po(tit1 | hi)] . (16)

Diffusion Loss for 3D Coordinates Prediction Block. Autoregressive models are naturally well-
suited for generating discrete tokens using cross-entropy. However, for continuous 3D coordinates
ci+1, we empirically find that direct regression yields poor performance. To overcome this limita-
tion, we adopt Diffusion Loss from [Li et al.| (2024a)), which provides an effective framework for
extending autoregressive models to continuous-valued token generation. The high-level idea is that
we perturb the ground-truth position ¢;4; by adding Gaussian noise with a sampled noise level o,
and train a denoising network €y to recover the injected noise (Karras et al., 2022). Concretely, the
perturbed coordinate is given by

Cgi)l = Ci+1 + OE€, eNN(O,I). (17)

Conditioned on the hidden embedding h; and the predicted atom type ¢;1, the denoising network
is optimized with the following loss function:

Liitt = Eo,e; 41 ,e [HG — 69(051)1, o,tit1, hz)”;] (18)

This objective enables the coordinates prediction block to model the continuous distribution of atom
positions. At inference time, atom coordinates are generated by iterative denoising from Gaussian
noise, conditioned on both the autoregressive context h; and the sampled atom type ¢; 1.

Controllable Generation with Classifier-free Guidance. We incorporate classifier-free guidance
(CFG, details in Section [2)) into Inertial AR to enable controllable generation. During inference,
CFG modulates conditional generation process by leveraging the difference between conditional
and unconditional predictions:

Pg = Pu + 8(pe — pu), (19)
where p. and p, denote the conditional and unconditional predictions, respectively, and s is the
guidance scale. In Inertial AR, CFG is applied to the estimated noise €y in diffusion for coordinates
generation, as well as to the logits over a discrete vocabulary for atom type prediction. By tuning s,
we can achieve both stronger adherence to target molecular classes and better structural validity.

4 EXPERIMENTS

4.1 UNCONDITIONAL 3D MOLECULE GENERATION

QM9 and Geom-Drug Dataset. We use QM9 (Ramakrishnan et al.,2014) and GEOM-DRUG (Ax-
elrod & Gomez-Bombarelli, 2022)) for unconditional 3D molecular generation. QM9 contains 130K
small molecules with high-quality 3D conformations (up to 9 heavy atoms). We split the dataset into
train, validation and test sets with 100k, 17k and 13k samples, separately. GEOM-DRUG consists
of 37 million conformations for around 450K unique molecules (up to 181 atoms and 44.2 atoms
on average). Following|Hoogeboom et al.|(2022), we select the 30 lowest-energy conformations per
molecule for training. B3LYP Dataset. Moreover, we evaluate on a brand new, larger, and more
comprehensive 3D molecular dataset, the PubChemQC B3LYP/6-31G//PM6 dataset (abbreviated as
B3LYP) (Nakata & Maeda, [2023)). This dataset contains a total of 85,938,443 molecules, covering a
wide range of chemical diversity with molecular weights up to 1000 and more than 50 different atom
types. We use a subset of 1 million molecules for training.The evaluation metrics remain consistent
with those used for the QM9 and GEOM-DRUG datasets.

Evaluation. Model performance is assessed through a set of chemical feasibility metrics. Bond
types (single, double, triple, or none) are determined from molecular geometries based on pair-
wise atomic distances and atom identities. The evaluation includes Atom Stability (proportion of
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Table 1: Unconditional generation on 3D molecules on GEOM.

Methods QM9 Drug

Valid (%) Valid&Uni (%) AtomSta (%) MolSta (%) Valid (%) AtomSta (%)
EFN 40.2 394 85.0 4.9 - -
G-SchNet 85.5 80.3 95.7 68.1 - -
GDM - - 97.0 63.2 90.8 75.0
GDM-AUG 90.4 89.5 97.6 71.6 91.8 77.7
EDM 91.9 90.7 98.7 82.0 92.6 81.3
MiDi 97.9 97.0 97.9 84.0 78.0 82.2
GeoLDM 93.8 92.7 98.9 89.4 99.3 84.4
UniGEM 95.0 93.2 99.0 89.8 984 85.1
Geo2Seq 97.1 81.7 98.9 93.2 96.1 82.5
InertialAR 974 92.5 99.3 94.7 96.8 87.2

©

Molecule Class ID: 39 Molecule Class ID: 16 Molecule Class ID: 8

Heteroaromatic Ring -
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: L 2 \)D J uu h

Ketone

Figure 3: Visualization of molecule editing by tuning the CFG guidance scale s.

atoms satisfying correct valency), Molecule Stability (proportion of molecules in which all atoms
are stable), Validity (fraction of chemically valid molecules as verified by RDKit), and Uniqueness
(fraction of non-duplicate molecules among generated samples). All metrics are computed following
evaluation protocols established in prior work (Hoogeboom et al.| [2022; [Li et al.| | 2024b)).

Baselines. We benchmark Inertial AR against established models, including G-SchNet (Gebauer
et all 2019), ENF (Satorras et al., [2022a), EDM (Hoogeboom et al., |2022), GDM (Hoogeboom
et al.l [2022), EDM-Bridge (Wu et al.l [2022), MiDi (Vignac et al., 2023), GeoLDM (Xu et al.,
2023a), UniGEM (Feng et al.,[2025) and Geo2Seq (L1 et al., 2024b).

Results on QM9 and Geom-Drug. Table[T|highlights the strong performance of Inertial AR across
both QM9 and GEOM-DRUG benchmarks. On QM9, Inertial AR achieves the highest scores on
Atom Stability (99.3%) and Molecule Stability (94.7%), surpassing all competing methods and in-
dicating its ability to generate chemically consistent and structurally reliable molecules. On the
larger and more complex GEOM-DRUG dataset, Inertial AR continues to demonstrate superiority,
attaining the best Atom Stability (87.2%) among all baselines. These results underscore the robust-
ness of Inertial AR in ensuring both local chemical validity and global structural stability, validating
its effectiveness as a powerful autoregressive framework for 3D molecule generation.

Results on B3LYP. Due Table 2: Unconditional generation on 3D molecules on B3LYP-1M.

to the prohibitive compu- Valid (%) Valid&Uni (%) AtomSta (%) MolSta (%)
tational cost of training

all existing models on the IéDl\gS 2%2 9%3 ?138(6) 83
large-scale B3LYP bench- co=5eq . . . ‘
mark, we focus our com-  Inertial AR 99.0 98.6 84.8 24.2

parison on two representa-
tive strong baselines: the diffusion-based EDM and the autoregressive Geo2Seq. The main results
are shown in Table [2| InertialAR achieves substantial improvements over baselines on the large-
scale B3LYP benchmark. Compared to the strong diffusion model EDM, it attains significantly
higher validity and atom stability. Most notably, Inertial AR shows a dramatic gain in Molecule
Stability (24.2% vs. 0.8%), demonstrating its ability to produce chemically consistent molecules at
scale. In contrast, the autoregressive baseline Geo2Seq performs poorly, highlighting the robustness
and scalability of our approach on this chemically diverse dataset.

4.2 CLASS-CONDITIONAL 3D MOLECULE GENERATION AND MOLECULE EDITING

In chemistry and biology, class-conditional generation is particularly valuable, as "molecule classes”
can correspond to key attributes such as chemical functionality, thereby enabling the targeted design
or editing of molecules for drug discovery and materials science.
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To enable class-conditional generation on QM9, we reconstruct the dataset by assigning each
molecule a Molecule Class ID that encodes its functional group configuration (as shown in Fig-
ure [). Specifically, we first convert each 3D structure to its SMILES string and then apply a
rule-based SMARTS-matching system to detect predefined functional groups. The resulting pres-
ence/absence pattern is encoded as a binary string (e.g. “TTFFTFTT...”). Finally, through a pre-
defined Functional Group Pattern-to-Class ID look-up, each molecule is assigned a corresponding
Molecule Class ID.

[Step 1: Functional Group Detection HStep 2: Pattern-to-ID Look-up J

The task is then to generate S
molecules conditioned on a SMILES B Pl 3 Y Molecule Class

specified functional group ® o @) -
configuration. Concretely, | B I

we select the 5 most fre- Paitern2[D

o Dictionar
quent Molecule Class IDs |- (BEEEHEEL)] ’
as conditioning targets. In @ () B

addition to the metrics used
for unconditional genera-
tion, we introduce a critical new metric for class-conditional generation, Hit Rate, which measures
the proportion of generated molecules satisfying the target functional group requirements. A higher
hit rate indicates stronger controllability of the generation process.

42

Figure 4: Overview of mapping 3D molecules to their Molecule Class IDs.

Baselines. We compare Table 3: Class-conditional generation on 3D molecules on QM9.

the conditional generation Class ID (c) Model Rate (%)  Valid (%)  Valid&Uni (%)  AtomSta (%)  MolSta (%)
performance of Inertial AR 7 EDM 375 84.8 842 963 529
against the same represen- i S b1 Sh G me o
tgtlve. autoregressive .and 28 EDM 29.0 86.8 85.9 96.4 54.1
diffusion-based baselines (w/ Hydroxyl ~ Geo2Seq 442 64.7 55.6 86.5 334
as in th e uncon dltl Onal & Ether) Inertial AR 89.8 99.9 90.8 99.9 99.2
setting, namely Geo2Seq 3 Georseq 94 703 539 897 i
and EDM, to ensure a con- (w/HydroxyD o tialAR 85.7 99.9 86.9 99.9 99.4
sistent and fair comparison. 16 EDM 8.9 63.5 634 82.9 353
Results. Table (] shows  omcrne  heddar 685 939 793 071 310
that InertialAR achieves a 3 EDM 2353 768 76.7 6.1 533
remarkable average hit rate  fUIwoih, - OO, 08 %7 $27 %95 592

of 83.3%, significantly sur-
passing EDM (25.7%) and Geo2Seq (42.2%), demonstrating its strong controllability in generating
molecules that match the target functional group configurations. Beyond controllability, Inertial AR
also achieves excellent performance on chemical feasibility metrics, consistently outperforming
both baselines across all evaluated molecule classes. These results highlight the effectiveness of
Inertial AR in producing both chemically valid and functionally precise molecules.

Molecule Editing via CFG. To further assess controllability, we examine the effect of varying the
CFG guidance scale. Increasing the scale not only improves validity-related metrics but also enables
molecule editing: molecules that originally lacked the required functional groups and exhibited
unreasonable structures can be transformed to satisfy the target Molecule Class ID. As illustrated
in Figure [3] by raising the guidance scale by 0.3 (As = 0.3), the generated molecules incorporate
the desired functional groups while yielding more plausible 3D geometries, demonstrating that CFG
enhances both structural validity and compliance with functional group constraints.

5 CONCLUSION

We propose Inertial AR, a hierarchical autoregressive model that ensures SE(3) and permutation in-
variance through canonical tokenization while equipping Transformers with geometric awareness
via GeoRoPE. This advances 3D molecule generation beyond restrictive physical priors and high-
lights its potential as a foundation model for scientific discovery.

Future Directions. Inertial AR can be extended to more complex domains such as protein structure
modeling and integrated into broader multimodal paradigms, paving the way toward unified Al-
driven scientific discovery.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we employed large language models to refine English writing. All suggestions gener-
ated by the LLM were critically reviewed, vetted, and approved by the authors to ensure accuracy
and integrity. The final manuscript faithfully represents the authors’ own ideas, arguments, and
research findings.
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B PRELIMINARIES AND RELATED WORK

B.1 3D MOLECULE GENERATION

In the domain of Al-driven molecule discovery, 3D molecule generation has become a central
problem. Its goal is to directly construct physically plausible 3D molecular conformations. For-
mally, a 3D molecule with n atoms can be represented as a point cloud G = (z, R). The vector
z = [#z1,-+,2n] € Z™ encodes the atom types, where z; denotes the nuclear charge of the i-th
atom. The coordinate matrix R = [r1,--- ,7,] € R3*" specifies the 3D position of each atom, with
r; € R3. A fundamental challenge lies in ensuring that molecular geometries respect the inherent
SE(3) symmetry, i.e., molecular representations must remain invariant or equivariant under SE(3)
transformations such as rotations and translations.

Current approaches can be categorized into four main paradigms. SE(3)-equivariant architectures
explicitly enforce symmetry through specialized network designs: spherical frame basis models
(e.g., Tensor Field Networks, SEGNN, Equiformer) project features into irreducible representations
of SO(3), while vector frame basis models (e.g., EGNN, PaiNN) construct local coordinate frames
for equivariant operations. Invariant feature approaches circumvent architectural constraints by uti-
lizing geometrically invariant inputs such as pairwise distances, bond angles, and dihedral angles
(SchNet, DimeNet, GemNet). Data augmentation strategies encourage models to implicitly learn
symmetric representations by training on randomly rotated and translated molecular conformations,
particularly valuable for large-scale models where explicit equivariance is complex to scale (e.g.,
AlphaFold3). Input canonicalization methods establish a canonical orientation or reference frame
for input molecules through preprocessing, transforming each molecule into a standardized pose
so that subsequent neural networks can operate on SE(3)-invariant inputs without intrinsic SE(3)-
equivariant constraints.

Canonical Pose w/ Inertial Frame

3’0 &o —( &
Invariant Vector

TFN, SEGNN, IPA (AF2)
: Inertial AR
(Unconstrained Modeling)

(Constrained Modeling)
Figure 5: Comparison of existing SE(3)-equivariant graph neural networks and Inertial AR.

B.2 AUTOREGRESSIVE MODELS AND TOKENIZATION OF 3D MOLECULE
Autoregressive models address sequence modeling by framing it as a ’next-token prediction” prob-

lem. This approach, a direct application of the chain rule of probability, factorizes the joint distribu-
tion of a sequence x = (x4, ..., ;) into a product of conditional probabilities:

n
p(l‘) = p(xlv .o 7:En) = Hp(er'fL'l, . 7.’1,‘1‘,1).
i=1

The model’s core task is thus to learn the conditional distribution p(x;|x ;) for each step, which
is typically parameterized by a powerful neural network such as Transformer. The primary chal-
lenge in applying autoregressive models to 3D molecular generation lies in the effective structure
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tokenization of a 3D molecular structure into a 1D sequence of tokens suitable for Transformer
architectures. The choice of tokenization strategy is crucial, as it defines not only the sequence rep-
resentation but also the very nature of the conditional modeling itself. Existing approaches can be
broadly classified into three main categories:

Voxel-based tokenization, which discretizes the 3D space occupied by a molecule into a 3D grid,
draws a direct parallel to image generation. Each voxel in the grid serves as a token that encodes
local atomic information, much like a pixel in an image. Text sequence-based tokenization, which
is similar to language modeling, serializes 3D molecules into a 1D, text-like sequence. The process
involves discretizing continuous 3D coordinates and concatenating them with discrete atom types.
This treats a molecule like a sentence, where every atom type and 3D coordinates are encoded as
words. Atom-based tokenization directly treats an atom as one single token that encapsulates both
its discrete atom type and continuous 3D coordinates. This establishes an intuitive correspondence
between the physical atoms and their tokenized representation, thereby preserving atom-level gran-
ularity.

B.3 CLASS-CONDITIONAL GENERATION AND CLASSIFIER-FREE GUIDANCE

Class-conditional generation is a paradigm that generates samples conditioned on a specific class la-
bel c. In image generation, this involves generating an image guided by a prefix class embedding ().
In chemistry and biology, class-conditional generation is highly useful, as molecular “classes” can
correspond to key attributes such as chemical functionality or physicochemical characteristics, en-
abling the targeted design or editing of molecules for drug discovery and materials science.

Classifier-free guidance (CFG) improves both sample quality and fidelity to conditions by randomly
dropping conditioning signals during training (). This simple yet effective strategy enables a sin-
gle model to jointly learn both the conditional distribution p(z|c) and the unconditional distribution
p(x). At inference, the difference between these two learned distributions is then leveraged to am-
plify the conditional signal without relying on an auxiliary classifier. Although originally proposed
for diffusion, CFG has also proven effective in autoregressive image generation, showing great po-
tential for molecule generation.

B.4 DIFFUSION LOSS FOR AUTOREGRESSIVE MODELS

While autoregressive models are naturally suited for generating discrete tokens via cross-entropy
loss, 3D molecule generation introduces an additional challenge: predicting continuous 3D co-
ordinates. Diffusion Loss () provides an effective framework to extend autoregressive models to
continuous-valued token generation. Formally, to predict the continuous-valued token z; , the au-
toregressive model first outputs a vector h;_1 conditioned on previous tokens x ;. The objective is
to model the conditional probability distribution p(z;|h;_1). Diffusion loss achieves this through a
denoising score-matching objective:

L(zi hi—1) = Eey [|e — eg(@t]t, him1)[?] | (20)

where 2! = \/a;z++/1 — ate is a noised version of z;, and €, a denoising network that predicts the
noise € conditioned on z and timestep ¢. Gradients from this loss propagate through h;_;, enabling
end-to-end training of the autoregressive backbone.

This approach preserves the strong sequence modeling capacity of autoregressive models while
extending them to predict continuous distributions. By directly modeling 3D coordinates, it removes
the need for discretization or coarse tokenization of molecular geometries and provides a principled
mechanism for generating chemically precise molecular structures.
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C CLASS-CONDITIONAL GENERATION

C.1 DATASET RECONSTRUCTION

[Step 1: Functional Group Detection ]—>[Step 2: Pattern-to-ID Look-up ]
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Figure 6: Overview of how 3D molecules are mapped to their Molecule Class IDs.

In chemistry and biology, class-conditional generation is highly useful, as “molecule classes” can
correspond to key attributes such as chemical functionality or physicochemical characteristics, en-
abling the targeted design or editing of molecules for drug discovery and materials science. How-
ever, commonly used datasets, such as QM9 and Geom-Drug, do not provide explicit functional
group annotations. To enable controllable molecule generation with specified functional group con-
figurations, we reconstruct the datasets by assigning each molecule a unique class label (Molecule
Class ID) that encodes its functional group composition. Concretely, we design a comprehensive la-
beling pipeline based on functional groups (shown in Figure[f): for each molecule, we first convert
its 3D structure to a SMILES representation. We then employ a rule-based system with a library of
SMARTS queries to identify the presence or absence of a predefined set of functional groups. The
resulting pattern is encoded as a binary string (e.g., “TTFFTFTT...”), where each position indicates
the presence (T) or absence (F) of a functional group. Finally, through a predefined Functional
Group Pattern-to-Class ID mapping, each molecule is assigned a corresponding Molecule Class ID.

C.2 CONTROLLABLE GENERATION WITH CLASSIFIER-FREE GUIDANCE

Originally developed in the diffusion model community, classifier-free guidance (CFG) is widely
recognized for improving both sample quality and conditional alignment. The key idea is to train a
single model that jointly learns the conditional distribution p(x|c) and the unconditional distribution
p(z) by randomly dropping conditioning labels during training.

We incorporate classifier-free guidance (CFG, details in Section [2) into Inertial AR to enable con-
trollable generation. During inference, CFG modulates conditional generation process by leveraging
the difference between conditional and unconditional predictions:

Dg :pu+3(pc_pu)» 21

where p. and p,, denote the conditional and unconditional predictions, respectively, and s is the
guidance scale. In Inertial AR, CFG is applied to the estimated noise €y in diffusion for coordinates
generation, as well as to the logits over a discrete vocabulary for atom type prediction. By tuning s,
we can achieve both stronger adherence to target molecular classes and better structural validity.
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D COMPLEX, QUATERNION, AND ROTATION

D.1 COMPLEX

Any complex number z € C can be written as z = a + bi, where a,b € R and i> = —1. We call a
as the real part and b as the imaginary part.

We can write z as a vector, meaning the linear combination over the basis {1, }:

2= [‘g] . (22)

Addition If have two complex numbers z; = a + bi and 29 = ¢ + dt, then the addition of two
numbers is:
z1+ 20 =(a+c¢)+ (b+d)i. (23)

Multiplication If have two complex numbers z; = a + bi and z5 = ¢+ di, then the multiplication

of two numbers is:
z122 = (a + bi)(c + di)

24
= (ac — bd) + (ad + be)i. @4
Or we can write this in a matrix-vector multiplication:
—b
2z = {Z . ] [;] : (25)
a —b|. . cl .
where [ b 4 ] is the matrix for z; and [ d} is the vector for z5.
Conjugate The conjugate of z = a + bi is:
zZ=a-—bi. (26)

D.2 COMPLEX AND ROTATION

Multiplying a complex number z = a + bi is equivalent to multiplying the matrix [Z _ab] , then

the question is what does this matrix mean?
Imaginary part

Real part

Figure 7: Ilustration of the geometric representation of a complex number.

If we transform the matrix as follows:

[2 _b] = Va2 + 12

a

a —b
\/a2b+b2 aZ+b2 ]
Vit Vil
—1I2]] cos(f) —sin(6)
sin(d) cos(9) |-

Then we can see that this matrix is indeed the rotation transformation on the 2D plane, as shown
in Figure

27
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Inner product or Hermitian inner product or conjugate symmetric inner product If have two
complex numbers z; = a + bi and z3 = ¢ + di, then the inner product of two numbers is:

(21,22) = 21722
= (a+ bi) * (¢ — di) = ac + bd + (bc — ad)i

i91 —i92 — i(91—92)

= [21]e"" - [22]e™" = |21]|22]e
= |z1|(cos(61) + isin(fy)) - |z2|(cos(f2) — isin(fz)) = |21]|22|(cos(0; — 02) + isin(6; — 62))

— x| cos(61) 2l cos(fz) | 2] 2] cos(f1 — 63)
“H sin(6,) 2 —sin(fe)| — 12 1 sin(6; — 69)
cos(f1) —sin(6y) | cos(fz) sin(f2)| 2] cos(fy — 03) —sin(6; — 6)
= |z sin(f1)  cos(fy) | |2 —sin(f2) cos(f2)| — [#1ll22 sin(fy — 03) cos(fy —62) |-
(28)
D.3 QUATERNION
A quaternion is defined as:
qg=a+bi+cj+dk, (29)

where a,b,c,d € R and i2 = j2 = k? = ijk = —1.

Similarly, we can also write quaternion as a vector, i.e., the linear combination of basis {1, 4, j, k}:

a
b
= |, 30)
d
We can rewrite this as:
q=[w,u]
= cos(0) + sin(0)u
Iql(eu( ) (0)u) 31
= |qle

= |g|(cos @ + (zsin@)i + (ysinf)j + (zsin)k)
zityj+zk

[224y2 422"

Addition If we have two quaternions ¢; = a + bi + ¢j + dk and ¢ = e + fi + gj + hk, then the
addition of two quaternions is:

@+ =(ate)+ 0+ flit(ct+g)i+(d+h)k. (32)

where u =

Multiplication If we have two quaternions ¢ = a + bi + ¢j + dk and ¢ = e + fi + gj + hk,
then the multiplication of two quaternions is:

@12 =(a+ bi + ¢j + dk)(e + fi+ gj + hk)
=ae + afi+ agj + ahk+
bei + bfi* + bgij + bhij+
cej + cfji + cgj?® + chjk+
dek + dfji + dgkj + dhk?
=(ae — bf —cg — dh)+
(be +af —dg+ ch)i+
(ce + df +ag — bh)j+
(de —cf +bg + ah)k

(33)

a —b —c —d] Je
b a —-d c f
T le d a =b| g

d —c b a h

19



Under review as a conference paper at ICLR 2026

Inner product
(q1,42) = Re(q1 * q2) (34)

@1 * G2 = |q1||g2|(cos(61) + sin(07)uy)(cos(f2) + sin(fa) — us)

(35)
= [st + uyug, Sus + tug + uy X us)

This is only measuring the angle distance? Not Euclidean distance?

D.4 QUATERNION AND ROTATION
First, we can have the quaternion to rotation matrix as:
1—2y% — 222 2xy — 22y 2xz + 2yw
R(q)= | 2zy+22w 1—22%—222 2yz— 22w (36)
2xz — 2yw 2yz + 2xw 1— 222 — 2y
D.5 TOKENIZATION
We assume that we would like to use the following equations to add absolute positions to ¢ and k:
G = F(@ T Yms 2m)s ko = F (R, s Y, 20)- (37)
In other words, we hope that we can add the absolute position into ¢ and k.

Because the core module of attention is the inner product, so we prefer the following:

<Qrm,ym,cm ) kfcn,yn,cn> =9(q, k, dm,n)a (38)

where d,, ., = \/(xm —2p)2 4 (Ym — Yn)? + (2m — 2n)2.
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E POSITIONAL ENCODING

Position embedding is one of the most important building blocks in Transformer. There have been
multiple methods, and we would like to briefly discuss them here.

E.1 ABSOLUTE POSITIONAL ENCODING

In absolute positional encoding, each position in the input sequence is assigned a unique, fixed
embedding. The most classical positional encoding is the sinusoidal function |[Vaswani| (2017):

{pm = sin(k/10000%t/%)

39
piatr1 = cos(k/10000%t/) (39)

Such a positional encoding will be added (or multiplied) to the token embedding, and the classical
attention module is as:

¢ = (z; + pi)Wo
kj = (zj +pj)Wk
v; = (; +pj)Qv

a; ; = softmax(qx kJT)

0; = E alv,jvj.
J

(40)

Pros:
» Simple and easy to implement.
* Provides a clear, ordered embedding that the model can use to distinguish between different
token positions.
Cons:

e Limited in capturing the relative distance between tokens, especially in very long se-
quences.

* Fixed nature can limit the model’s ability to generalize to longer sequences beyond what it
was trained on.

E.2 RELATIVE POSITIONAL ENCODING

In relative positional encoding, the model encodes the distance (or relative position) between tokens

rather than absolute positions. The relative distance will be further used in calculating the attention

score.

The first relative positional encoding was proposed in|Shaw et al.| (2018)), as:
Rf = pr[clip(i — j, pmin, pmaz)] @1)

RX] =Dpv [Chp<z - ja pminvpma/x)]7

where pg, py are certain learnable functions or non-learnable functions (like sinusoidal function
in Equation (39)). This will be then used to define the attention score, which will be then replaced

to Equation (40):
a; ; = softmax(z; Wq(x; Wk + RZK])T) (42)

Based on this, there are more variants on defining the relative distance, such as XLNet|Dai (2019),
DeBERTa He et al.| (2020)), and T5 [Raffel et al. (2020)).

Pros:

* More flexible and generalizable, especially to unseen sequence lengths.
 Better at capturing the local context by focusing on distances between tokens.
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Cons:

* Can be more complex to implement and computationally intensive.

* The model might need to adapt if positional relationships are nuanced.

E.3 ROTARY POSITIONAL ENCODING: HYBRID OF ABSOLUTE & RELATIVE POSITIONAL
ENCODING

Rotary positional encoding (RoPE) Su et al| (2024) is a hybrid of both the absolute and relative
positional encoding.

Will keep consistent on the prefix and suffix. The core idea is the utilization of imaginary value and
the its inner product property. More concretely, we have the query and key vectors as gme™™ and
k,e™?, and their inner product is:

<qm6im0, knein0> _ Re[(qmeimO)(kneine)*]

. 43)
— Re[quzez(mfn)e)]’

where Re[-] is to take the real part of an imaginary value, and k* is the conjugate.

ROEP As Absolute Position Encoding: RoPE uses absolute positions to determine each token’s
rotation, hence capturing absolute positional information directly in each embedding.

RoEP As Relative Position Encoding: The relative distances are captured in the attention layer,
thanks to the inner product of rotated embeddings, which varies based on the distance between
positions. This allows RoPE to behave similarly to relative positional encodings in the self-attention

scores.
Matrix Format: Considering Euler equation e’ = cos 6 + isin §, we can further write this in the
following formation for matrix ¢ with even dimension d:

[cosmby —sinmby 0 0 0 0 qo
sinmfy  cosmby 0 0 0 0 q1
0 0 cosmb; —sinmb, 0 0 qo
0 0 sinmf;  cosmb 0 0 q3
0 0 0 0 cos méd/g,l —sin n%@d/Q,l qd;g
| O 0 0 0 oo sinmbgo_y cosmbao_q | [qa-1]
R’IYL
(44)
We can easily observe that:
(Rma)" (Ruk) = ¢" Ry, Ruk = q" Ry (45)

Preliminary Matrix Exponential Format: First let’s recall that for an imaginary value, z = a+ bi,
we can write it in the following formats:

z=a+b
=rcosf +irsind
= ret? (46)
. {cos 0 —sin 9}

sinf cos6

Here we want to prove that this imaginary value can be further written in a matrix exponential way.

rexp(6 ﬁ 01}) = rexp(6J)

oo
=r Z o Jm.
n=0

(47)
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Proof. Because matrix J has an interesting property: J? = —1I, J3 = —J, J* = I, thus we can
rewrite as:

rexp(0J) =r Z onJn

n=0
02 63 94 6° 68 07
:r(I+9J—— TR TR L2 Al R A A )
n 271 ) 92n+1 (48)
=r]- A
Z ot Z (2n +1)!
= rIcosH +rJsinf

sinf  cosf

_ [cos # —sin 9}

O
To sum up, for an imaginary value, we have:
z=a+b
=rcosf +irsinf
= ret?
_ |cosf —sind (49)
" lsing  cos#

— rexp(0 [(1) ‘01] ).

Matrix Exponential Format for Rotary Positional Encoding: Then we would like to explore how

. .. . . |cosmf —sinmb
to incorporate this into rotary embedding. For matrix [ .

sinmf  cosmb } = ™’ we can rewrite

.. . . 0 -1
it in the matrix exponential format as e/, where J = {1 0 } )

Thus, our rotation matrix can be written as R,, = exp(n.J), and we can observe that
RI'R,, = exp(mJ)T exp(nJ)
= exp(mJT +nJ)
= exp(nJ —mJ)
= Ry—m-

(50)
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E.4 GEOMETRIC POSITION EMBEDDING

We would like to extend such a hybrid positional encoding to our geometric model setting for 3D

Euclidean data. The objective is to get RT

Z1,Y1,21

R$21y2722 =

T2—T1,Y2—Y1,22—21"

We may want to expand this “by design”? By design, we can easily see that the following geometric
position embedding satisfies our requirement:

0 —x 0 0 O

xr 0 0 0 O

0 0 0 —y O

Ry, =exp(f 0 0 vy Oy 0

0 0 0 0 O

0O 0 0 0 =z
coszl —sinzl 0
sinxf  cosxf 0

. 0 0 cosyl

B 0 0 sin z0
0 0 0
0 0 0

If we inject this into the token embedding, only testing on d=6 and ¢, we will have:

qo
q1
q2
q3
q4
qs

Rey,-q=

Will extend this to a more formal way.

cos 0
cos z0y
cos yby
cos yby
cos 20y
cos 20y

24

+

0
0

—sinyf
cos yf

0
0

—q1
qo
—q3
q2
—qs
44

0
0
0

0

cos 20
sin z60

sin x6g
sin 26y
sin yfy
sin y6y
sin z0,
sin z0g

[e>en el an]

—sin 260
cos z0

&1V

(52)
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F DETERMINE INERTIAL FRAME DIRECTIONS BY INTRODUCING FOURTH
NODE

Theorem 2. For an inertial frame F', we build up the corresponding right-handed axes as coordinate
systems Q). Then we need to incorporate a fourth point that is coplanar with the three basis vectors to
uniquely determine the directions of the coordinate system with one rotation transformation matrix.

Proof. For three vectors, we can easily find a counter-example, as illustrated in ?? (a, b). ?? (a, b)
describes two cases where we have the same initial frame, and we can rotate it to two different final
frames with two rotation matrices, yet the righthandness still matches. We can easily see that there
are four options of rotation matrices in this case, and we cannot uniquely determine the final inertial
frame in this case.

More rigorously, let us first assume that there exists a rotation transformation R that can transform
the initial coordinate system (); to the final coordinate system Q) ¢, as:

Qsol" Qio]"
le,l =R- Qi,l] (53)
Qf2 Qi

First, as 2?, we should change either zero or two directions for direction alignment.

Then without loss of generality, we can assume the two directions to be the last two axes. Thus, we
can obtain a rotation matrix R’ such that R’ is rotating R along vector Qs with 180 degrees. We
can represent R’ using Rodrigue’s rotation formula, as R’ = (2Q f,oQ?o —I)R. Thus, we can have:

Qio T Qo T Qo T
R - Qm] = (2Q,f,OQ?0 - 1) Qf,l] = [—Qm] (54)
Qi Q.2 —Qy2

This is essentially saying starting from one initial frame, we can have multiple matched final frames.
Thus, using only three vectors cannot uniquely determine the direction matching. We provide two
examples in ?? (a, b).

For the four vectors, we introduce an extra atom into the inertial frame system, and such an extra
atom point is nonplanar to the three base axes. Then the problem becomes: starting from an initial
frame and an extra point, can we find multiple rotation matrices such that the final frames have
reflected directions? To be more rigorous, let us have the following formulation.

First, let us assume we have this rotation matrix:

8f,0 4 gz‘,o T

fi1 —P. 7,1 55
Qf2 R Qi2 (53)
v v

As discussed above, we need to guarantee the right-handedness property, thus, without loss gener-
ality, here we also assume the last two axes are reflected. The question turns to: does it exit another
rotation matrix R’, such that:

Qéf,o 4 81’,0 r

—Wfil — /. 2,1 56

—Qy2 R Qi2 (56)
v v

We now use contradiction. Since we still have the two axes rotated 180 degrees around the first axes,
Q10,50 R' = (2Q0Q7 ¢ — I)R. Then given the two conditions v" = Rv” and v" = R'v", we

have (2Qf70Q£0 — Dot =T,
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If we let Q0 = [k1, k2, k3] and v = [vq, v, v3], then we have

(2Q1.0Q%,0 — Do
kiki kika Kk ks V1]
kle kgk’Q k2k3 V2
k2k3 k2k3 k3k3 VU3 |
k1 (k1v1 + kavo + k3vs)]
ka(k1v1 + kava + ksvs)
ks (kyvi + kava + k3vs)

k1
(k1v1 + kovo + k3vg) [kz

k3]

’UT

U1
V2
LV3]
ro1]
V2
U3 |

"oy
V2

LV3]

(57)

After calculation, we can obtain that Qs o = cv, where c is a coefficient. However, as we claimed in
the condition, v does not lie in the same line as Q) s o, thus, there does not exist such another rotation

matrix R’ # R satisfying Equation . We also provide two examples in ?? (c, d).

By contradiction, we can tell that there is only one unique rotation mapping from the initial inertial

frame to the final inertial frame.

O

To sum up, three points cannot form a rigid structure in Euclidean space, thus there can exist multiple
reflection transformations, leading to opposite inertial frames. Four points can form a rigid structure,

thus there exists only one reflection transformation.
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G NYSTROM ESTIMATION

The Nystrom method (Williams & Seeger, 2000) is a low-rank approximation to obtain the pairwise
distance. More concretely, suppose we have a Gram matrix over n points, i.e., K € R™*". Each
element K;; is the radial basis function (RBF) over the distance between i-th and j-th points, K;; =

r.— . 2 . .
RBF(x;,xj) = exp(—%). Then we sample m anchor points, (¢1, cg, ..., ¢, ), Where ¢ is

3D coordinates in an Euclidean space and n > m.

First, we can decompose the matrix K with eigendecomposition,
K =UAUT, (58)

where U € R™*™ is an orthogonal matrix whose columns are the orthonormal eigenvectors of K,
and A € R™*" is a diagonal matrix whose entries are the corresponding eigenvalues of K.

Then, Nystrom approximation is a low rank approximation, assuming that matrix K can be approx-
imated using K:
K~K

=UAUT
_|A B
—|BT C|’
where U is the first m columns of U and A is the block diagonal matrix of first m eigenvalues of A.

At this point, we assume that the m points picked can estimate the m-rank matrix A with positive

eigenvalues. Then let us have U= {(ﬁ} , Where f]l € R™*™ and Ug € R(n=m)xm  Thigs means

(59)

U,
A= Ulf\UlT and B = 02[&[}2. Thus, we can rewrite Equation as:
~ - T
- e
2 2 (60)

_ [BATT U ADY
~ |0,AUT  0,ATT |
Combining this with Equation (59), we have Uy = BTU;A~! and U] = A—'U] B. Thus, we can

have o o
C =U,AU] = BTU,A~'UI'B=BTA™'B. (61)

To inject this back to Equation (59), we have

- A B
K= {BT BTA—lB}
A (62)
- [BT] A~'[A B].

This wraps up the key idea of Nystrom method. Then, to obtain the RBF of a new point
pair K (i, ), we first construct the feature between point ¢, and the m anchor points as k; =
[RBF(i,0), RBF(i, 1), ..., RBF(i,m)]T € R™*L. The approximated RBF(i, j) can be obtained as:

k(i,j) = kI A=k,
= (A7) (A 2k (63)
= (L) (L7Ry).
where A = LL7 is the Cholesky decomposition.
For each atom ¢, we define its Nystrom Approximation Encoding as

A0 = [, (64)
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This design allows the approximated RBF, which encodes the pairwise distance information between
atoms, to be recovered directly by the inner product within the attention mechanism:

k‘(l,j) — (Z?ystrom)T(Z?ysuom). (65)
Discussion. There is another research line using random features (e.g., random Fourier features)
for the pairwise distance approximation (Rahimi & Recht,2007). There are certain works that have
proved that Nystrom method is more accurate (Yang et al., [2012). One intuitive way to understand
this is that Nystrom method utilizes the data-dependent basis, while the random features use data-
independent basis functions.
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