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ABSTRACT

Recent AI regulations call for data that remain useful for innovation while re-
sistant to misuse, balancing utility with protection at the model level. Existing
approaches either perturb data to make it unlearnable or retrain models to sup-
press transfer, but neither governs inference by unknown models, and both typi-
cally require control over training. We propose non-transferable examples (NEs),
a training-free and data-agnostic input-side usage-control mechanism. We re-
code inputs within a model-specific low-sensitivity subspace, preserving outputs
for the authorized model while reducing performance on unauthorized models
through subspace misalignment. We establish formal bounds that guarantee util-
ity for the authorized model and quantify deviation for unauthorized ones, with
the Hoffman-Wielandt inequality linking degradation to spectral differences. Em-
pirically, NEs retain performance on diverse vision backbones and state-of-the-art
vision-language models under common preprocessing, while non-targets collapse
even under severe distortions. These results establish NEs as a practical means to
preserve intended data utility while preventing unauthorized exploitation.

1 INTRODUCTION

The title alludes to Joseph Heller’s Catch-22, which symbolizes an unavoidable
paradox. We adapt this notion in Catch-Only-One (or Catch-11) to capture the
paradox that shared data may appear universally accessible yet remains usable
only by a single authorized model.

Recent regulatory initiatives — including the EU AI Act (European Parliament and Council, 2024),
the US AI Action Plan (The White House, 2025), Australia’s 2025 Privacy Law Reforms (Australian
Productivity Commission, 2025), and Singapore’s PDPC guidelines on AI and personal data (Tan,
2024) — emphasize that data should remain useful for licensed innovation while being shielded
from misuse, whether in cyber attacks, CBRN (chemical, biological, radiological, and nuclear) ap-
plications, or unlicensed model training, echoing the Frontier Safety Framework recently proposed
by DeepMind (Four Flynn, Helen King, Anca Dragan, 2025). In practice, however, this balance is
far from realized. Once online, content is easily scraped, aggregated, and repurposed without con-
sent: a few paintings can be used to clone an artist’s style (Heikkilä, 2022; Gal et al., 2022); medical
scans shared for research can be exploited in membership inference attacks (Shokri et al., 2017); and
billions of photos have been absorbed into training sets without license, fueling global disputes (The
Hollywood Reporter, 2025). The stakes are tangible: a recent class action compelled Anthropic
Inc. (Anthropic, 2025) to pay over $1.5 billion and erase pirated training data (The Guardian, 2025).
These cases underscore a pressing gap: while regulations demand that data retain authorized utility
while blocking unauthorized use, no existing safeguard enforces this balance at the model level.

Three research directions have sought to mitigate unauthorized data use, ordered by increasing
strength of protection. Anti-learnability (unlearnability) perturbs data before release so that stan-
dard training pipelines fail to converge (Ye & Wang, 2024; Wang et al., 2025), preserving human
perception but offering protection only against training misuse. Ungeneralizable training alters
objectives or weights to suppress transfer in specific domains (Wang et al., 2022; Hong et al., 2025),
but this requires retraining with custom losses and control of the pipeline, confining protection to
modified models. Fully homomorphic encryption (FHE) (Gentry, 2009) guarantees maximal con-
fidentiality by enabling inference on encrypted data, but its extreme computational and memory costs

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

make it impractical for routine applications such as online media, healthcare workflows, or MLaaS
services (Ribeiro et al., 2015).

The three aforementioned approaches illustrate a spectrum of trade-offs: anti-learnability is
lightweight but ineffective at inference, ungeneralizable training provides targeted suppression but
relies on retraining, and FHE ensures the strongest confidentiality but remains prohibitively expen-
sive in practice. These limitations highlight the need for methods that act directly at inference, pre-
serving authorized utility while preventing post-release misuse, without imposing heavy retraining
or cryptographic cost.

Our Work. We tackle the practical reality that, once data leaves its owner, it may be consumed by
countless models. Our goal is to transform the data into a cipher that only a single authorized model
f⋆ can interpret. We present a lightweight procedure that strategically recodes the data so it remains
fully usable for f⋆ while withholding utility from any unauthorized models. This mechanism has
broad applicability across online services such as machine learning as a service (MLaaS) (Ribeiro
et al., 2015), where uploaded data is often copied, cached, and reused beyond its original pur-
pose (Gal et al., 2022; Liu et al., 2024a).

We propose non-transferable examples (NEs), a data-side construction that enforces model-specific
data usability and requires neither retraining nor access to non-target models. NEs leverage a struc-
tural property of neural networks in which many input directions have negligible effect on early
features, yielding a model-specific set of insensitivity directions that rarely align across models.
With a small probe budget, we estimate the spectral basis for the f⋆’s insensitivity subspace of the
authorized model, and add a calibrated perturbation confined to this basis, preserving the target’s
predictions while substantially reducing utility on unauthorized models.

We establish a formal foundation for NEs by deriving crucial bounds that provide strong theoreti-
cal guarantees: recoding within the identified insensitivity subspace preserves f⋆’s outputs within
a quantified tolerance for authorized utility. For authorized-utility retention, we bound the distance
between outputs computed with the same first-layer weight matrix W via matrix perturbation the-
ory, using random matrix and vector norm inequalities (Vershynin, 2018). For unauthorized usage,
we prove a cross-model deviation bound using the Hoffman-Wielandt spectral inequality (Bhatia
& Elsner, 1994), linking non-target degradation to differences in the singular spectrum and to mis-
alignment between the corresponding feature subspaces.

We conduct a comprehensive empirical evaluation to demonstrate generality across tasks and model
architectures. For image classification, we cover representative families including ResNet, ViT,
SwinV2, DeiT, and MambaVision; recoded data remain usable only on the authorized target,
while models with different weights collapse to effectively unusable performance (e.g., even under
an extreme distortion of 0 dB PSNR on ImageNet, the top-1 accuracy of the authorized ResNet-
50 changes negligibly from 80.3% to 80.1%, whereas all other models drop to ≈ 0.1%). We also
evaluate the vision-language models Qwen2.5-VL and InternVL3 on the comprehensive bench-
mark MMBench (Liu et al., 2024b), which spans mathematical reasoning, chart/table understanding,
document QA, and OCR, demonstrating applicability beyond classification to multimodal data. We
further test NEs’ resistance to common preprocessing and reconstruction attacks. Across all settings,
NEs preserve authorized performance while rendering non-target systems effectively unusable.

Contributions. We summarize our main contributions as follows:

• A new problem setting. We formulate model-specific data authorization: user-provided data
should remain fully usable for an authorized model while withholding utility from any other
models. We introduce non-transferable examples (NEs), a lightweight, training-free, data-
agnostic spectral recoding method.

• A formal framework and theoretical analysis. We establish a strong formal foundation for
NE, providing crucial bounds that guarantee efficacy and provide an independent, model-level
confirmation of provable data-authorization guarantees.

• An empirical evaluation. Across diverse model architectures and data modalities, NEs consis-
tently confine utility to the authorized model while non-targets fail, and they remain robust under
routine preprocessing and resistant to reconstruction attempts, supporting practical deployment
in real-world settings.
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2 PROBLEM FORMULATION

We consider a supervised task with ambient input space X and output space Y . A datasetD induces
the task domains XD ⊂ X and YD ⊂ Y observed in practice. Training on D yields a family of
models FD, where each f ∈ FD implements a mapping f : XD → YD. To quantify the usability
of f on inputs x ∈ XD, we adopt a performance metric m : FD × X → R (e.g., accuracy indi-
cator for classification, negative sequence error for OCR, log-likelihood for generative decoding)
and evaluate Ex∈XD [m(f, x)]. We postpone the detailed neural-network parameterization and nota-
tion (architectures, layers, operators) to Appendix B.1, where we formalize the conventions used in
subsequent sections. For clarity, we assume smaller values of m(·) indicate better usability.

2.1 MODEL-SPECIFIC DATA REPRESENTATION

At inference on new data outside the training set, the data provider (defender) seeks to release
content (e.g., images, speech, documents) that is correctly processed by a designated target model
f⋆ while remaining unusable for any non-target models f ′ ∈ FD \ {f⋆}, i.e.,

Ex∈XD [m(f ′, x)]− Ex∈XD [m(f⋆, x)]≫ 0

for non-authorized aims.

Accordingly, we formulate a data usage-control objective: preserve the usability of f⋆ while degrad-
ing that of any non-target model, without requiring retraining and without imposing assumptions on
non-target models, to maintain generality. Formally, we allow an input recoding x̃ = T (x) with
T : X → X . The resulting set X̃D ⊂ X is termed non-transferable examples (NEs).

We view NEs as a model-specific data representation: recoded inputs x̃ = T (x) are tailored to
the designated target f⋆ so that authorized-utility retention holds for f⋆ and unauthorized-utility
degradation holds for any f ′ ∈ FD \ {f⋆}. Formally, we state the following problem.
Problem (Model-specific Data Representation). Given an authorized-utility tolerance ρ ≥ 0 and
a non-target separation margin γ > 0, a recoded data sample x̃ = T (x) (for fixed T ) is model-
specific to f⋆ if, for the designated f⋆ and any non-authorized f ′, it satisfies:

(authorized-utility retention) Ex̃∈X̃D
[m(f⋆, x̃)]− Ex∈XD [m(f⋆, x)] ≤ ρ, (1)

(unauthorized-utility degradation) Ex̃∈X̃D
[m(f ′, x̃)]− Ex̃∈X̃D

[m(f⋆, x̃)] ≥ γ. (2)

Before proceeding, we specify the threat model that this work takes into consideration.

2.2 THREAT MODEL

We consider a data producer (defender) who has white-box access to the authorized model f⋆ and
a probe source from the task domain XD (a clean test set D or a sampler over XD). The defender
may query internal features of f⋆ and deploy an input-side transformation T : X → X , releasing
only recoded inputs x̃ = T (x). The algorithmic form of T may be public, while target-specific
parameters (e.g., spectral basis, thresholds) remain private. The defender has no access to non-target
models in FD \ {f⋆}.
Adversaries operate unauthorized models f ′ ∈ FD \ {f⋆} and receive only x̃. Before inference,
they may optionally apply standard acquisition or preprocessing to obtain a preprocessed input x̃′

from x̃. The exact parameters of T are hidden. The adversary’s objective is to minimize the task
metric m(f ′, x̃′) under fixed compute or query budgets.

Specifically, we consider three adversary classes:

(i) General Adversary (GA): Any non-target f ′ with arbitrary architecture and parameters, given
x̃ and allowed to apply an input-side preprocessing operator A.

(ii) Transfer-match Adversary (TA): A GA sharing the architecture of f⋆ but with different weights.
(iii) Adaptive Adversary (AA): A GA/TA that optimizes over A ∈ A to reduce m(f ′,A(x̃)).

Defense Objective. Design T to achieve model-specific data usability, i.e., to satisfy Formula (1)
and Formula (2).

3
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Scope. This setting is practical as an authorized third party may enforce such a process on behalf of
the model owner: with agreed access to f⋆ (e.g., feature probes sufficient to instantiate T ), it applies
the protection server-side and releases only x̃. Neither the internals of f⋆ (architecture, weights) nor
the target-specific parameters of T are disclosed to end users (see Appendix A for evidence).

3 OUR METHOD

Neural networks typically begin with a linear feature extractor (e.g., a convolution with weight shar-
ing or a token embedding), which reduces redundancy because input coordinates are often correlated
(see Appendices B.2 and B.3). This motivates input-side perturbations that lie in an insensitivity sub-
space of the target model’s first linear map: these directions are nearly inert for the target but, due to
subspace misalignment across models, can induce nontrivial changes for non-targets.

3.1 INSENSITIVITY SUBSPACE IDENTIFICATION

Let W denote the first linear transformation (bias omitted) of the target model. In practice, W typi-
cally has a nontrivial nullspace Null(W ) = {x ∈ X |Wx = 0}, owing to high input dimensionality
(see Appendix B.4). For any x ∈ X and perturbation δ ∈ Null(W ), we have W (x+ δ) = Wx, so
downstream computation receives identical features, i.e., f(x+ δ) = f(x).

To generalize the construction, we relax exact nulling and consider a low-sensitivity subspace that
permits controlled feature deviation, i.e., require Wδ ≈ 0 rather than Wδ = 0. Perturbations
confined to such an insensitivity subspace induce only small changes beyond the first layer, espe-
cially given intervening nonlinearities (e.g., ReLU truncation, sigmoid/tanh saturation). To iden-
tify such directions for a given W ∈ Rm×n, we consider its singular value decomposition (SVD)
W = UΣV ⊤: the nullspace is spanned by right singular vectors with zero singular values, and by
extension we define the τ -insensitive subspace as the span of right singular vectors whose singular
values are at most a threshold τ > 0. We formalize it as follows.
Definition 1 (τ -insensitive Subspace). Let W ∈ Rm×n have SVD, W = USV ⊤, with singular
values ordered s1 ≤ s2 ≤ · · · ≤ sn. Given a spectral threshold τ > 0, the τ -insensitive subspace is

Insτ (W ) = span{(v1, v2, . . . , vk) |
k∑

i=1

si ≤ τ, W = USV ⊤}, (3)

where vi denotes the i-th column of V corresponding to the i-th singular value si in S.

This construction naturally captures the nullspace, and Insτ (W ) ⊇ Null(W ) for any τ ≥ 0.

3.2 NON-TRANSFERABLE EXAMPLES

Inheriting Definition 1, and given a τ -insensitive subspace Insτ (W ), we first sample a vector z ∈ Rn

(e.g., i.i.d. Gaussian, structured pattern, or content-dependent code) and zero out the coordinates
aligned with singular values exceeding τ (i.e., directions sensitive to the target model). Then, we
project z onto Insτ (W ) to obtain a perturbation δ in input space by δ = V z. Following that,
the perturbation δ is added to the original input x to obtain a recoded input x̃ = x + δ, which
forms an NE. Note that V is an orthogonal matrix such that V ⊤V = V −1V = I . Intuitively, we
have Wδ = WV z = USV ⊤V z = USz, where Sz has small entries since z only has non-zero
elements on coordinates with small singular values. By the distributive law of matrix multiplication,
Wx̃ = W (x+ δ) = Wx+Wδ, where Wδ is small and thus Wx̃ is close to Wx.

Practical Implementation. Our procedure is model-agnostic and applies across architectures. Fully
connected fronts can directly use their first weight matrix as W . For convolutional fronts, we apply
the construction to the linearized operator of the first convolution (e.g., nn.unfold) to obtain W ;
after synthesis, the perturbation is folded back to the native input layout. For Transformer-style mod-
els (e.g., BERT (Devlin et al., 2019)), we take W to be the input projection of the first multi-head
self-attention block after the embedding layer (e.g., the QKV input projection or its concatenated
form) and apply the same spectral construction. In this work, we instantiate and evaluate the ap-
proach on convolutional and Transformer architectures. A theoretical discussion of the equivalence
and generalizability of these instantiations is provided in Appendices B.5 and B.6. The generation
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of the vector z can be stochastic (e.g., seeded per instance) or deterministic (e.g., fixed codes per
class or per client). We use δ ← λ · δ/max{1, ∥δ∥2} to ensure ∥δ∥2 ≤ 1 and then introduce a
scaling factor λ > 0 to scale its amplitude. The parameters τ and λ govern the trade-off between
authorized-utility retention and unauthorized-utility degradation: larger τ tends to increase more
perturbed input dimensions, while larger λ increases the perturbation magnitude. In practice, the
permissible insensitive space is deliberately loose, offering substantial flexibility in synthesis, as
empirically explored in Section 5.

4 THEORETICAL ANALYSIS

This section provides a formal foundation for non-transferable examples (NEs), establishing their
model-specific property as defined earlier, namely authorized-utility retention (Section 4.1) and
unauthorized-utility degradation (Section 4.2). Our analysis focuses on the first linear transfor-
mation of the network and treats subsequent layers implicitly, consistent with many prior works
of perturbation propagation and local robustness (Huang et al., 2021; Wang et al., 2024; Qian &
Klabjan, 2021; Wu et al., 2021).

4.1 AUTHORIZED-UTILITY RETENTION

We first quantify the perturbation effect on the target (authorized) model, characterizing how the
recoded input x̃ = x+ δ alters its first-layer features relative to the original input x. Throughout the
analysis, ∥ · ∥F and ∥ · ∥2 denote the Frobenius and Euclidean norms, respectively.
Theorem 1 (Bounding Authorized Utility). W ∈ Rm×n represents a linear transformation as the
first operation in a neural network, and its SVD is W = USV ⊤. The perturbation δ = V z in
Insτ (W ) is generated following Section 3. z ∈ Rn is a random vector, each entry of which is i.i.d.
by following a standard normal distribution N (0, σ). Let x̃ = x + δ be the recoded input, the
following bound holds,

∥Wx̃−Wx∥2 < τ ·
√
kσ2 + t, (4)

with high probability of at least 1− 2kσ4/t2, where t > 0 is a small positive number.

Proof. First, we have x̃ = x + δ = x + V z. Then, we get Wx̃ −Wx = Wδ = USV ⊤V z. Next,
we have USV ⊤V z = USz, considering V ⊤V is an identity matrix because V is orthogonal.

Let U = [u1, u2, . . . , um] and consider each sq (q ≤ k) satisfies sq ≤ τ , we have

∥Wx̃−Wx∥F = ∥US∗z∥F =
√∑m

p=1(
∑k

q=1 up,qsqzq)2 ≤ τ
√∑m

p=1(
∑k

q=1 up,qzq)2 = τ · ∥Uz∥F ,

where up,q is the (p, q)-th entry of the matrix U , sq is the q-th singular value in S, and zq is the q-th
entry of the matrix z.

Considering that U is orthogonal satisfying U⊤U is an identity matrix, we have

∥Uz∥2F = trace((Uz)⊤(Uz)) = trace(z⊤U⊤Uz) = trace(z⊤z) = ∥z∥2F = ∥z∥22.
Thus, we have ∥Wx̃−Wx∥F ≤ τ · ∥z∥2.

Since z is a random vector following the standard normal distribution N (0, σ), i.e., each entry of
z is independently sampled from the standard normal distribution, i.e., zq ∼ N (0, σ), we have z2q
follows the Chi-squared distribution with 1 degree of freedom, i.e., z2q ∼ χ2(1), with E[z2q ] = σ2 and
Var(z2q ) = 2σ4. Next, we have E[∥z∥22] =

∑k
q=1 E[z2q ] = kσ2 and Var(∥z∥22) =

∑k
q=1 Var(z

2
q ) =

2kσ4. By Chebyshev’s inequality, we can bound the probability of the perturbation effect as

P{∥z∥22 ≥ kσ2 + t} ≤ Var(∥z∥22)/t2 = 2kσ4/t2,

where t > 0 is a small positive number. Therefore, we can conclude that the perturbation effect is
bounded by τ · ∥z∥2 with high probability, i.e., considering ∥Wx̃−Wx∥2 ≤ ∥Wx̃−Wx∥F ,

P{∥Wx̃−Wx∥2 < τ ·
√
kσ2 + t} > 1− 2kσ4/t2.
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Theorem 1 clarifies that the perturbation effect can be controlled in the first linear transformation
of a neural network by choosing a small τ (determining k) and σ. Considering the generalization
property of neural networks, they can commonly handle small perturbations (Novak et al., 2018).
On the other hand, considering some special activation functions, such as zeroing negative values in
ReLU, saturating in sigmoid and tanh, the perturbation effect is even smaller in practice because the
inactive neurons yield a zero output with negative inputs. This supports |f⋆(x̃) − f⋆(x)| is small
and further guarantees Formula (1) in Section 2.

4.2 UNAUTHORIZED-UTILITY DEGRADATION

We then analyze the difference bound between the outputs of the first linear transformation in two
models with different initialization or training. This shows a difference from the view that the
perturbation based on the insensitivity subspace of one model can significantly affect the output
of the other model, because their first layer weight matrices have different SVDs. Formally, we
consider two models with the first layer weight matrices W1 and W2, respectively, shown in the
following theorem, which is based on the Hoffman-Wielandt theorem (Bhatia & Elsner, 1994).
Theorem 2 (Bounding Unauthorized Utility). Given two models with the same-sized first-layer
weight matrices W1,W2 ∈ Rm×n trained on the same dataset, their SVDs are W1 = U1S1V

⊤
1 and

W2 = U2S2V
⊤
2 . Let V1 = [v1,1, v1,2, . . . , v1,n] and V2 = [v2,1, v2,2, . . . , v2,n] be the right singular

vector matrices of W1 and W2. The perturbation is δ = V z, δ ∈ Insτ (W ), generated following
Section 3. z ∈ Rn is a random vector, each entry of which is i.i.d. by following a standard normal
distribution N (0, σ). Let x̃ = x + δ be the recoded input. Given any σ1,i ≤ τ (1 ≤ i ≤ k) by
Definition 1, the following bound holds,

∥(σ1,iv1,i − σ2,iv2,i)
⊤x̃∥2 ≤ ∥x̃∥2(τ∥W1 −W2∥2/ε+ ε), (5)

where ε = min(|σ1,i − σ2,j | | ∀i, j = 1, 2, . . . , n) is the minimum gap between the i-th singular
value of W1 and the singular values of W2.

Proof. First, we have
∥(σ1,iv1,i − σ2,iv2,i)

⊤x̃∥2
≤∥(σ1,iv1,i − σ1,iv2,i)

⊤x̃+ (σ1,iv2,i − σ2,iv2,i)
⊤x̃∥2

=∥σ1,i(v1,i − v2,i)
⊤x̃∥2 + ∥(σ1,i − σ2,i)(v2,i)

⊤x̃∥2
≤|σ1,i|∥v1,i − v2,i∥2∥x̃∥2 + |σ1,i − σ2,i|∥v2,i∥2∥x̃∥2

Considering that ∥v2,i∥2 = 1 because V2 is orthogonal and σ1,i ≤ τ by Definition 1, we have

∥(σ1,iv1,i − σ2,iv2,i)
⊤x̃∥2 ≤ ∥x̃∥2(τ∥v1,i − v2,i∥2 + |σ1,i − σ2,i|).

By the Hoffman-Wielandt theorem (Bhatia & Elsner, 1994), we have
∥v1,i − v2,i∥2 ≤ ∥W1 −W2∥2/ε,

where ε = min(|σ1,i − σ2,j | | ∀i, j = 1, 2, . . . , n) is the minimum gap between the i-th singular
value of W1 and the adjacent singular values of W2, v1,i and v2,i are the i-th right singular vectors
of W1 and W2, and s1,i and s2,j are the i-th and j-th singular values of W1 and W2, accordingly.
Thus, we have, considering |σ1,i − σ2,i| ≤ ε because the singular values are in descending order,

∥(σ1,iv1,i − σ2,iv2,i)
⊤x̃∥2 ≤ ∥x̃∥2(τ∥W1 −W2∥2/ε+ ε),

which concludes the proof.

Theorem 2 is strong enough by considering each single singular value. It clarifies that the perturba-
tion effect of the insensitivity subspace of one model can significantly affect the output of the other
model. Because Assumption 1 (see Appendix 1 for more discussion) supports that δ is near zero
with τ as a positive number. Further, such two models obtain the first layer weight matrices from the
same dataset based on Assumption 2 (see Appendix 2), which means that the right singular vectors
of the first layer weight matrices are aligned with the principal components of the data represen-
tations, there exist multiple feasible solutions for the first layer weight matrix because of multiple
feasible solutions for the principal components of the data representations due to the spectral flatness
of the data representations. This provides an extra difference when multiplying the singular values
of the first layer weight matrices, where the first model with W1 has a small singular value σ1,i and
a near-zero σ1,iv

⊤
1,ix̃ while the second model with W2 has a different σ2,i and a non-zero σ2,iv

⊤
2,ix̃.

This supports that |f ′(x̃)− f⋆(x̃)| is large and further yields Formula (2) in Section 2.
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5 EXPERIMENTS

We empirically verify whether our non-transferable examples (NEs) preserve the authorized model’s
utility, retaining clean accuracy and intended task behavior, while rendering unauthorized models
unable. The evaluation proceeds in three parts: (i) cross-model non-transferability covering both
cross model architecture (GA in Section 2.2) transfer and same model architecture with different
weights (TA); (ii) head-to-head comparisons with representative baselines under matched conditions;
and (iii) real-world practicality, including generalization across modalities as well as robustness to
common preprocessing pipelines and reconstruction attacks (AA).

Experimental Setup. We evaluate five widely used ImageNet-pretrained backbones that span
classic to recent designs: ResNet-50 (He et al., 2016) (convolutional neural network),
ViT-base-patch16-22 (Dosovitskiy et al., 2021) (vision transformer with patch-wise tokens),
SwinV2-tiny-patch4-window8-256 (Liu et al., 2021) (hierarchical transformer with pyra-
mid features common in real systems), DeiT-base-patch16-224 (Touvron et al., 2021) (data-
efficient training of a ViT with distillation), and MambaVision-T-1K (Hatamizadeh & Kautz,
2025) (state-space sequence model adapted for vision). Experiments are conducted on CIFAR-
10 and ImageNet-1K; for CIFAR-10, models are fine-tuned for 10 epochs from the ImageNet-1K
checkpoints. “Baseline” entries in the tables denote clean accuracy under our evaluation pipeline.

We also evaluate leading-edge vision-language transformers Qwen2.5-VL-3B-Instruct (Bai
et al., 2025) and InternVL3-1B (Zhu et al., 2025) on the comprehensive MMBench (Liu et al.,
2024b), which covers mathematical reasoning, chart and table understanding, document question
answering, and OCR, to mirror real-world usage, including cross-modality generalization and ro-
bustness to common preprocessing and reconstruction attacks.

5.1 CROSS-MODEL NON-TRANSFERABILITY

NE Construction. To select a suitable perturbation strength that preserves the authorized
model’s accuracy while sharply reducing unauthorized accuracy, we randomly sample 512 im-
ages from ImageNet and generate NEs at multiple perturbation levels, recording top-1 accu-
racy as a function of strength. As a comparator, we use an unauthorized model given by
ResNet-50 fine-tuned for 10 epochs on CIFAR-10, and measure how inputs recoded for differ-
ent target models perform on this same unauthorized model. Results are shown in Figure 1.

Figure 1: Authorized vs. unauthorized accu-
racy on target-recoded inputs across perturba-
tion strength. Visual examples are in Figure 4.

Across all settings, unauthorized accuracy col-
lapses to an unusable level by 25 to 20dB PSNR
(peak-signal-to-noise ratio (Hore & Ziou, 2010),
lower PSNR indicates stronger perturbation and
higher perceptual distortion), while the authorized
network experiences only a negligible drop. Sev-
eral backbones remain stable even at ≤10dB, but
we standardize on 20dB1 for the rest of the exper-
iments to use a conservative setting, as SwinV2-T
shows a slight authorized drop below this point. We
sample a recoding vector z with the same dimen-
sion as the input representation with i.i.d. Gaussian
entries, then project z onto the τ -insensitive direc-
tions with τ = 10−4. For each authorized target
f⋆, we report authorized accuracy on the recoded
inputs x̃ = T (x) and the accuracies of unautho-
rized models f ′ ̸= f⋆ on the same x̃.

5.2 BASELINE COMPARISON

Table 1 reports a 5× 5 cross-architecture matrix on CIFAR-10 and ImageNet. At 20dB PSNR, NEs
keep authorized performance close to clean (e.g., from 98.8% to 98.7% on CIFAR-10; from 80.3%
to 80.2% on ImageNet), while unauthorized models collapse to chance-level utility (off-diagonals
around 5.5–20.6% on CIFAR-10 and 0.0–12.9% on ImageNet). SwinV2 exhibits a slightly larger

1We parameterize perturbation strength by PSNR for interpretability and fair comparison.
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authorized drop on ImageNet (from 80.9% to 71.7%), which we attribute to sensitivity in its patch-
merging pipeline; modest tuning of basis selection fixes this in practice. Crucially, in all cases, the
off-diagonal entries remain at unusable accuracy, demonstrating strong architecture-specific non-
transferability. Holding the architecture fixed but changing the weights, NE constructed with one
weight set does not transfer to the same architecture with a different weight set. Along the diagonal
of Table 2, unauthorized accuracy stays at a completely unusable level on both datasets for all
backbones. Off-diagonal entries (cross-architecture) are shown in grey for completeness and mirror
the behavior in Table 1. These results underscore strong model specificity: non-transferability holds
across different architectures and across weight variants of the same architecture.

Table 1: Cross-model non-transferability on CIFAR-10 and ImageNet. Rows denote the target (au-
thorized) model used to generate NEs; columns denote the evaluated model on the same recoded
inputs. Green diagonal entries mark authorized accuracy; off-diagonals show unauthorized utility.

CIFAR10 ImageNet
ResNet-50 ViT-B SwinV2-T DeiT-B MambaVision-T ResNet-50 ViT-B SwinV2-T DeiT-B MambaVision-T

Baseline 98.2% 98.8% 96.1% 96.1% 96.9% 80.3% 81.6% 80.9% 79.9% 82.4%
ResNet-50 97.7% 12.5% 13.6% 9.4% 10.0% 80.2% 0.0% 0.1% 0.1% 0.1%
ViT-B 10.5% 98.7% 9.3% 12.1% 9.7% 0.0% 81.3% 0.0% 0.0% 0.0%
SwinV2-T 15.6% 11.7% 88.4% 20.6% 18.8% 9.1% 4.3% 71.7% 7.4% 12.9%
DeiT-B 9.4% 9.8% 9.8% 96.1% 5.5% 0.0% 0.0% 0.0% 79.3% 1.0%
MambaVision-T 17.6% 7.0% 13.7% 11.3% 94.5% 5.8% 0.0% 1.5% 0.7% 81.0%

Table 2: Model-specific non-transferability. Diagonal entries compare the same model architecture
with different weights; shaded off-diagonals are cross-architecture and included for completeness.

CIFAR10 ImageNet
ResNet-50 ViT-B SwinV2-T DeiT-B MambaVision-T ResNet-50 ViT-B SwinV2-T DeiT-B MambaVision-T

ResNet-50

Im
ag

eN
et 13.3% 9.4% 8.2% 9.4% 7.8%

C
IF

A
R

10

1.2% 0.0% 4.4% 0.0% 0.0%
ViT-B 10.1% 9.6% 10.1% 11.5% 9.8% 0.0% 0.0% 0.0% 0.0% 0.0%
SwinV2-T 10.5% 10.2% 21.0% 11.3% 14.5% 0.0% 0.0% 0.0% 0.0% 0.0%
DeiT-B 12.5% 9.3% 7.0% 14.8% 10.9% 0.0% 0.0% 0.0% 0.0% 0.0%
MambaVision-T 14.5% 5.1% 12.5% 9.8% 8.2% 0.0% 0.0% 1.9% 0.0% 0.0%

Table 3: Comparison with other authentication methods.
CIFAR-10 ImageNet

Plain DP FHE3 ALGOSPEC NE (Ours) Plain DP FHE3 ALGOSPEC NE (Ours)

ResNet-50 98.2% 59.8%1 87.8%3 6.4% 97.7% 80.3% 63.1%1 – 0.1% 80.2%
ViT-B 98.8% –1 – 10.0% 98.7% 81.6% –1 – 0.0% 81.3%

Protection ✗ ✗2 ✓ ✗2 ✓ ✗ ✗2 ✓ ✗2 ✓
1 DP struggles with batch norm and does not support multi-head attention in Transformers.
2 The authorized model performance is significantly impacted.
3 Due to too long execution time, we only provide data of accuracy that we can find in public papers.

We compare the NE with authorization-oriented baselines that restrict model use by altering training,
encrypting inference, or constraining the computation itself. Specifically, we include Differential
Privacy (DP) (Dwork, 2006), which injects calibrated noise during training to limit extractable in-
formation; Fully Homomorphic Encryption (FHE), which executes inference over encrypted inputs
and weights to protect access without changing model behavior; and ALGOSPEC (Liu et al., 2024a),
a specification-style approach that replaces nonlinear components with low-degree polynomial sur-
rogates so the end-to-end pipeline conforms to a prescribed algorithmic specification intended to
gate unauthorized use. Results for ResNet-50 and ViT-B on CIFAR-10 and ImageNet appear in
Table 3. For DP training, we follow the setting of Li et al. (2024) and implement it with IBM
DiffPrivLib (Holohan et al., 2019). In our setup, authorized accuracy drops markedly, with
more than 30% loss on CIFAR-10 and around 20% on ImageNet for ResNet-50, largely due to inter-
actions with batch normalization, and our DP pipeline does not support transformer variants, which
limits applicability in this setting. For FHE, we adopt a CKKS encrypted-inference configuration
following TenSEAL (Benaissa et al., 2021); However, running it at our model and dataset scale was
computationally infeasible: processing a single image took more than 30 minutes. We therefore
cite published ResNet-20 CIFAR-10 results (Meftah et al., 2021), which preserve clean authorized
accuracy but incur heavy computational cost, highlighting the practicality gap of FHE at scale. For
ALGOSPEC, polynomial approximation of modern deep networks accumulates approximation error
with depth and width, which in our experiments drives authorized accuracy toward random guess on
both datasets. In sharp contrast, NE is a lightweight input-side recoding tied to the target model that
adds negligible inference overhead, and under matched conditions preserves authorized accuracy
while driving mean unauthorized accuracy to chance on both datasets.
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Qwen2.5-VL Response (clean):
The image depicts a serene beach scene with a person and a dog. The person is sitting on the sandy beach, facing the
ocean. They are wearing a plaid shirt and dark pants, and they have long hair. The dog, which appears to be a Labrador
Retriever, is sitting on the sand and is interacting with the person by placing its paw on their hand. The dog is wearing a
harness with a colorful collar. The background shows the ocean with gentle waves, and the sky is clear with a soft light,
suggesting it might be early morning or late afternoon. The overall atmosphere of the image is peaceful and joyful.

InternVL3 Response (Authorized): 
In the image, a person is sitting on a sandy beach, smiling and playing with a dog. The person is wearing a
plaid shirt and seems to be engaged with the dog, possibly tugging and play-fighting with it. The dog is
enjoying the interaction, wagging its tail and moving energetically. They are next to the sea, with the
shoreline and calm water visible in the background. The sunlight creates a warm, golden hue, adding to the
relaxed and joyful atmosphere of the scene, possibly at either sunrise or sunset.

InternVL3 Response (clean): 
The image captures a serene beach scene during what appears to be sunset. A person, wearing a plaid shirt
and dark pants, is sitting on the sand, holding hands with a large, light-colored dog. The dog is attentively
playing with the person, reaching out its paw with joy and companionship. The water is calm, with gentle
waves visible in the background. The sunlight casts a warm glow over the scene, highlighting the tranquility
and affection between the two. There is a small object nearby on the sand, likely related to their interaction.

Prompt: Please describe the image in detail. 

Qwen2.5-VL Response (Unauthorized): 
The image appears to be a pixelated or low-resolution representation of a square object. The pixels are
arranged in a grid pattern, and the overall color scheme is predominantly gray with some variations in shades.
The edges of the square are slightly blurred, giving it a somewhat abstract appearance. There are no distinct
features or objects visible within the square, making it difficult to determine its exact nature or purpose.

Prompt: Please describe the image in detail. 

Figure 2: Illustrative visualization of effective on data authorization on VLM.

5.3 REAL-WORLD PRACTICALITY

Beyond standard backbones, we extend NE to state-of-the-art vision-language models. We evalu-
ate InternVL3 (authorized) and Qwen2.5-VL (unauthorized) on the comprehensive benchmark
MMBench (Liu et al., 2024b), across capability dimensions AR, CP, FP-C, FP-S, LR, and RR; see
Table 4. The authorized model remains essentially unchanged, while the unauthorized model is con-
sistently low and remains unusable across settings. An illustrative example is shown in Figure 2 (see
more in Appendix 7), recoded inputs preserve authorized performance and suppress unauthorized
utility, where the unauthorized model sees it as completely random noise pixels.

Table 4: VLMs on MMBench.
InternVL3-1B (authorized) Qwen2.5-VL-3B (unauthorized)

Overall AR CP FP-C FP-S LR RR Overall AR CP FP-C FP-S LR RR
Baseline 72.7% 77.4% 82.4% 58.7% 79.4% 50.3% 66.8% 78.8% 81.3% 83.1% 69.2% 84.9% 66.5% 75.4%
NE (Ours) 72.6% 77.8% 82.0% 58.3% 78.9% 50.9% 67.3% 18.3% 29.2% 15.6% 17.0% 12.8% 17.3% 22.3%

While we have shown that NE withstands common preprocessing (resize, center and random crop,
JPEG compression, mild blur) and reconstruction attacks (e.g., classical denoising, SR-ResNet)
throughout the above experiments, the rationale is straightforward: for the authorized model, the
recoding lies in low-sensitivity directions and is effectively neutralized after the first layer, regardless
of such preprocessing. Notably, preprocessing in the above VLM settings is more complicated (refer
to Appendix D.1), yet we have likewise demonstrated robustness under these pipelines. We further
examine super-resolution-based reconstruction attacks on VDSR (Vedaldi & Lenc, 2015) using SR-
ResNet (Li et al., 2018) under two attacker settings; implementation details are in Appendix D.2. We
consider a black-box setting trained on perturbed inputs and targets and a white-box setting trained
with clean targets; in both cases, reconstructions are visually uninformative (≤0.6dB improvement)
and fail to restore downstream utility, while authorized performance remains essentially unchanged.

6 RELATED WORK

Training-time Defenses. Anti-learnability perturbs released data so standard training fails while
human perception is preserved (Ye & Wang, 2024; Wang et al., 2025). Non-transferable training
modifies objectives or parameters to suppress transfer in designated domains (Wang et al., 2022;
Hong et al., 2025). Both act during training and do not control inference once the content is public.
Algorithmic Authorization. This line of work binds data utility to a chosen algorithmic class.
AlgoSpec applies polynomial approximation so that only a designated algorithm family recovers
accuracy on transformed inputs (Liu et al., 2024a). In practice, it is only limited to simple classifiers
such as Naive Bayes (Rish et al., 2001) and does not extend to neural networks.
Differential Privacy and Encrypted Inference. DP limits training-time leakage from individual
examples into the learned model (Dwork et al., 2014), but it does not control who can run inference
on public inputs. Fully homomorphic encryption enables encrypted inference with strong confiden-
tiality (Gentry, 2009) but incurs substantial latency and memory overheads (Ribeiro et al., 2015;
Meftah et al., 2021). We instead pursue lightweight, practical, model-specific authorization.

7 CONCLUSION

We presented non-transferable examples (NEs), a lightweight mechanism that preserves data utility
for an authorized model while denying it to unauthorized ones. Our theory guarantees utility reten-
tion and quantifies degradation, and our experiments confirm robustness across diverse architectures
and modalities. Together, these results show that NEs offer a practical path to model-level usage
control, ensuring data serves its intended purpose without enabling misuse.
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ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive
datasets. Our method, non-transferable examples (NEs), is developed to mitigate unauthorized
model use while preserving utility for intended applications. While usage-control mechanisms nat-
urally intersect with broader discussions of openness and accessibility, our focus is on preventing
misuse and supporting responsible AI practice. This work is intended to complement emerging
regulatory and community standards for trustworthy AI.

REPRODUCIBILITY STATEMENT

We provide full details of our method, including theoretical foundations, algorithms, and hyperpa-
rameters. Experiments are run on standard datasets (CIFAR-10, ImageNet, MMBench) and widely
used architectures (ResNet, ViT, Swin, DeiT, MambaVision, Qwen2.5-VL, InternVL3). Code, pre-
processing scripts, and a demo showcasing non-transferable examples on representative models will
be made available at: https://github.com/model-specific/non-transferable-
examples.git.
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APPENDIX

A THREAT MODEL ASSUMPTIONS

Our approach assumes that the defender has white-box access to the authorized model’s first-layer
weights. This is reasonable in server-side deployments, where providers retain full control over the
inference stack (e.g., Google AutoML, AWS SageMaker, Microsoft Azure ML). Similar assump-
tions are standard in adversarial ML defenses such as randomized smoothing (Cohen et al., 2019)
and spectral regularization (Zhang et al., 2020), which likewise rely on internal model access. This is
also aligned with regulatory expectations (e.g., EU AI Act, NIST AI RMF), where model owners are
held responsible for ensuring compliance and thus are expected to enforce usage control internally.

We further assume that adversaries cannot reliably estimate the insensitivity subspace of the au-
thorized model. Recovering such information would require either access to first-layer weights or
large-scale probing with structured queries. Prior work on model extraction (Tramèr et al., 2016)
and property inference (Ganju et al., 2018) demonstrates that approximating hidden representations
typically requires millions of queries, which is unrealistic under commercial API rate limits and
cost constraints. Moreover, because our perturbations lie in directions of negligible sensitivity for
the authorized model, they are indistinguishable from natural input variance to unauthorized models,
making subspace approximation even harder in practice.

B SUPPLEMENTARY PRELIMINARIES

B.1 NEURAL NETWORKS

Neural networks are a class of machine learning models inspired by the structure and function of
the human brain. They consist of interconnected layers of neurons (nodes), which process input
data to produce an output. Each neuron applies a mathematical function to its inputs, typically
involving weights and biases, along with an activation function that is adjusted during training to
minimize the difference between the predicted and actual outputs. A neural network is typically
structured as a series of stacked linear transformations, followed by nonlinear activation functions.
Formally, a neural network can be represented as a function f : Rn → Rm, where n is the number
of input features and m is the number of output classes or values. Here, we take the feedback
neural network as an example (e.g., fully connected or convolutional neural networks). Because
convolutional operations are linear transformations that can be unfolded into fully connected layers,
we focus on fully connected neural networks. Further, the bias terms b(i) can be taken as part of the
weight matrix W (i) of the i-th layer by appending a constant input of 1 to the input vector x, so we
can simplify and rewrite the notation for theoretical convenience as

y = f(x) = ϕ(W (n) · ϕ(W (n−1) · · · ·ϕ(W (2) · ϕ(W (1)x)) · · · )),

where ϕ is the activation function, which introduces non-linearity into the model. Common activa-
tion functions include the rectified linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh).

B.2 EIGENDECOMPOSITION AND PRINCIPAL COMPONENT ANALYSIS

A neural network is trained on a dataset to learn the underlying patterns and relationships in the
data. Principal component analysis (PCA) is a technique used to analyze the learned representations
of data by transforming it into a new coordinate system. It performs the eigendecomposition of
the data’s covariance matrix to identify the directions (principal components) that maximize the
variance in the data. It is a linear transformation that projects the data onto a lower-dimensional
subspace defined by the principal components, which are determined by the eigen decomposition of
the covariance matrix of the data. The eigen vectors of the covariance matrix represent the directions
of maximum variance, while the eigenvalues indicate the amount of variance along those directions.

Before giving the formal definition of PCA, we first introduce the classical eigendecomposition of a
real-valued matrix without proof for simplicity.
Definition 2 (Eigendecomposition). The eigendecomposition of a square matrix C ∈ Rn×n is a
factorization of the form C = V ΛV ⊤, where V ∈ Rn×n is a orthogonal matrix whose columns
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are the eigen vectors of C, and Λ ∈ Rn×n is a diagonal matrix whose diagonal entries are the
eigenvalues of C. The eigenvalues are the scalars λi such that Cvi = λivi, where vi is the i-th
eigen vector of C.

In this work, the eigenvalues are arranged in ascending order along the diagonal of Λ by default.
Geometrically, V ⊤ represents the rotation of the coordinate system, Λ scales the axes of the new
coordinate system according to the eigenvalues, and V rotates the data back to the original coordinate
system. Formally, given a dataset represented as a matrix x ∈ Rn, where n is the input dimension,
PCA can be performed as follows.

Definition 3 (Principal Component Analysis (PCA)). The covariance matrix is C = E[x⊤x], where
E denotes the expectation operator. The eigen decomposition of the covariance matrix is given by
C = VpcaΛV

⊤
pca, where Vpca is the matrix of eigen vectors (column vectors) and Λ is the diago-

nal matrix of eigenvalues. The principal components are the columns of the matrix Vpca, and the
projection of the data onto the principal components is given by V ⊤

pcax.

PCA is widely used for dimensionality reduction by selecting the top k principal components, where
k is the desired number of dimensions. However, here we focus on analyzing the learned represen-
tations of the data using all principal components.

PCA in neural networks. PCA can be applied as a valuable tool to analyze the learned representa-
tions of data in neural networks. It describes the patterns and relationships of data input dimensions
in the learned representations, e.g., several input dimensions are enough to represent the data for a
specific classification task.

B.3 SINGULAR VALUE DECOMPOSITION

Since the trainable parameters of a neural network comprise the weight matrices and biases, we
introduce the singular value decomposition (SVD) to decompose these matrices for further analysis.
Considering the merged weight matrix in the previous Appendix B.1, we focus on the weight matrix
W without the bias terms for simplicity. The SVD of a matrix is defined as the following lemma,
where we only consider the case of real-valued matrices and only provide this typical result without
proof for simplicity.

Lemma 1 (Singular Value Decomposition (SVD)). For any matrix W ∈ Rm×n, there exist or-
thogonal matrices U ∈ Rm×m and V ∈ Rn×n, and a diagonal matrix Σ ∈ Rm×n such that
W = UΣV ⊤. The diagonal entries of Σ are the singular values of W , and the columns of U and V
are the left and right singular vectors, respectively.

The singular values are non-negative and arranged in ascending order along the diagonal of Σ.
Geometrically, the SVD decomposes the matrix W into three components: U represents the rotation
of the input space, Σ scales the axes according to the singular values, and V ⊤ represents the rotation
of the output space. The diagonal entries of Σ are the singular values, which indicate the importance
of each corresponding singular vector in the decomposition. The smaller the singular value, the less
important the corresponding singular vector is in representing the original matrix.

SVD in neural networks. In neural networks, applying SVD to a layer’s weight matrix reveals how
inputs are prioritized. The singular vectors indicate influential directions in the input space, and the
singular values quantify their relative strength. For the first layer, this analysis is closely related to
PCA of the input data: dominant data components often align with the layer’s most responsive input
directions (up to whitening and scaling). Because the first layer extracts features from raw inputs,
SVD offers a clear view of how input dimensions are transformed into learned representations.

B.4 NULLSPACE

When we take a matrix as a linear transformation, the null space of a matrix refers to the set of
vectors that are mapped to the zero vector by that matrix. Formally, we have the following definition.

Definition 4 (Null Space). The null space of a matrix W ∈ Rm×n, denoted as Null(W ), is defined
as Null(W ) = {x ∈ Rn |Wx = 0}.
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The null space of a matrix W ∈ Rm×n is the subspace of Rn containing all vectors that W maps
to the zero vector. Its dimension is the nullity of W , and by the rank–nullity theorem the sum of the
rank and nullity equals n, the number of columns.

Nullspace in neural networks. For a linear layer with weight matrix W , the null space consists of
input directions that produce no change at that layer’s output (i.e., directions the layer is effectively
insensitive to). In a multilayer network, such directions are suppressed before subsequent processing
and thus have negligible downstream influence. This is especially intuitive in early vision layers,
where convolutional filters emphasize specific spatial–frequency patterns; inputs orthogonal to those
patterns lie (approximately) in low-response or null directions.

B.5 CONVOLUTION

This section clarifies that the convolution operation, which is commonly used in famous convo-
lutional neural networks (CNNs), is a linear transformation that can be represented as a matrix
multiplication. We first define the convolution as follows. We refer to a multi-dimensional matrix
as a tensor, and omit commonly used arguments in the current code implementation, such as batch
size, padding, stride, dilation, and group, for simplicity, as they can be easily extended by adding
extra zero dimensions to the input tensor or kernel.
Definition 5 (Convolution). The convolution takes inputs including an input tensor X ∈ Rc1×h×w

and a kernel (filter) K ∈ Rc1×c2×kh×kw with the kernel bias b ∈ Rc2 , where c1 and c2 are the
number of channels in the input tensor and kernel, respectively, and h, w, kh, and kw are the
height and width of the input tensor and kernel. The convolution operation outputs a tensor Y ∈
Rc2×h′×w′

, where h′ and w′ are the height and width of the output tensor, and each element of the
output tensor is computed as follows,

Yc2,i,h′
i,w

′
i
=

c1∑
c1,j=1

kh∑
h′
j=1

kw∑
w′

j=1

Kc1,j ,c2,i,h′
j ,w

′
j
·Xc1,j ,h′

i+h′
j−1,w′

i+w′
j−1 + bc2,i ,

Convolution as matrix multiplication. The convolution operation can be represented as a matrix
multiplication by unfolding the input tensor into a matrix and the kernel into a matrix and then
performing the matrix multiplication. The resulting matrix can be folded back into a tensor to obtain
the output of the convolution operation. Due to the application of convolution in image processing,
the unfolding and folding operations are also known as im2col and col2im, respectively.
Lemma 2 (Convolution as Matrix Multiplication). The convolution operation can be represented
as a matrix multiplication by unfolding the input tensor x into a matrix X ′ ∈ Rc1khkw×h′w′

and
the kernel k into a matrix K ′ ∈ Rc2×c1khkw , where h′ and w′ are the height and width of the
output tensor. By processing matrix multiplication Y ′ = K ′X ′ + b, we can obtain the output tensor
Y ′ ∈ Rc2×h′w′

and then fold it back into a tensor Y ∈ Rc2×h′×w′
.

Proof. We provide only a sketch of the proof here, which can be easily verified by the definition
of the convolution operation. For the input tensor X and its unfolded matrix X ′, we only need to
extract each local patch of the input tensor that corresponds to the kernel size and reshape it into a
column vector, which is called a Toeplitz matrix. The kernel K can be reshaped into a matrix K ′

by stacking the kernel channels and kernel dimensions into a single dimension. The output tensor Y
can be obtained by performing the matrix multiplication Y ′ = K ′X ′. Finally, we reshape the output
matrix Y ′ back into a tensor Y by folding it into the original shape of the output tensor. Note that
in this simple scenario, we only need to reshape the output matrix Y ′ into a tensor Y . However, a
more complex scenario requires folding the output matrix.

B.6 TOKEN EMBEDDING

Token embedding is a technique used in natural language processing (NLP) to convert discrete
tokens (such as words or subwords) into continuous vector representations. This is essential for
enabling neural networks to process text data, as neural networks typically operate on continuous
numerical data. Token embedding maps each token to a high-dimensional vector space, where
similar tokens are represented by vectors that are close to each other in that space. In the context of
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neural networks, token embedding is taken as a linear transformation that maps the input tokens to
a continuous vector space. Formally, we define the token embedding as follows.

Definition 6 (Token Embedding). The token embedding is a linear transformation that maps a
discrete token t ∈ Rd to a continuous vector representation e ∈ Rm using a weight matrix W ∈
Rm×d and a bias vector b ∈ Rm. The token embedding is defined as e = Wt + b, where W is the
weight matrix that maps the input token to the continuous vector space, and b is the bias vector that
shifts the output vector.

C SUPPLEMENTARY ASSUMPTIONS

This section summarizes assumptions made in the paper, which are crucial for understanding the
theoretical framework and implications of the results. We refer to the spectral distribution of a
matrix as its eigenvalues or singular values, depending on the context.

C.1 SPECTRAL FLATNESS OF DATA REPRESENTATIONS

The spectral distribution of a matrix is said to be flat if the eigenvalues or singular values are uni-
formly distributed across a certain range, i.e., several eigenvalues or singular values are close to each
other in magnitude. Such property is often satisfied in high-dimensional practical applications. For
instance, high-resolution images in computer vision introduce a flat spectral distribution because
adjacent pixels are highly correlated; similarly, word embeddings in natural language processing
exhibit a flat spectral distribution, as words are often used in similar contexts.

Formally, we make the following assumption about the spectral distribution of the data representa-
tions.

Assumption 1 (Spectral Flatness of Data Representations). Given a dataset for a specific task, the
PCA of the data has a flat spectral distribution, i.e., there are several eigenvalues, σk, σk+1, σk+2,
. . ., that are close to each other in magnitude,

σ1 ≤ σ2 ≤ · · · ≤ σk ⪅ σk+1 ⪅ σk+2 ⪅ · · · ≤ σn,

where ⪅ denotes that the values are close to each other in magnitude, and σi are the singular values
of the data matrix.

This assumption holds broadly in practice: e.g., in vision and language, where data (or early feature)
representations exhibit relatively flat spectra with clustered eigenvalues. In many real datasets, mul-
tiple flats (plateaus) appear, each reflecting a distinct group of features or patterns. We empirically
verify this in Figure 3: for each model, we report the minimum number of singular components
needed to capture 95% (P95) and 99% (P99) of total spectral energy. ResNet-50 (He et al., 2016)
reaches 95.4% with 23 components (P95@23) and 99.0% with 32 (P99@32). ViT-Base (Dosovit-
skiy et al., 2021), despite a higher-dimensional patch projection, requires 90 and 106 components to
attain 95.4% and 99.0%, respectively.

C.2 ALIGNMENT OF SINGULAR VECTORS AND PRINCIPAL COMPONENTS

Training a neural network amounts to optimizing parameters to minimize a task loss. In this pro-
cess, the right singular vectors of the first-layer weight matrix emphasize directions that are most
predictive for the task, whereas the principal components of input (or early-feature) representations
summarize dominant data variability. Empirically, these two families of directions often exhibit
notable alignment in practical settings (Hacohen & Weinshall, 2022). This section formalizes that
observation by relating first-layer right singular vectors to the principal components of data repre-
sentations, and proceeds under the following alignment assumption.

Assumption 2 (Alignment of Singular Vectors and Principal Components). Given a dataset and a
neural network trained on this dataset, the first layer’s weight matrix is denoted as W ∈ Rm×n,
where n is the number of input dimensions and m is the number of output dimensions, and the
covariance matrix of the data representations is denoted as C ∈ Rn×n. Let UΣV T

svd be the singular
value decomposition (SVD) of the first layer’s weight matrix W , where U ∈ Rm×m is the left
singular vector matrix, Σ ∈ Rm×n is the diagonal matrix of singular values, and Vsvd ∈ Rn×n
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Figure 3: The spectral structure of the first-layer weight matrices in ResNet-50 and ViT-Base via
singular value decomposition.

is the right singular vector matrix. Let VpcaΛV
T
pca be the eigendecomposition of the covariance

matrix C, where Vpca ∈ Rn×n is the eigen vector matrix and Λ ∈ Rn×n is the diagonal matrix of
eigenvalues. The assumption states that the right singular vectors of the first layer’s weight matrix
are aligned with the principal components of the data representations, that is

Vsvd = Vpca.

This assumption is satisfied in many practical applications, where the right singular vectors of the
first layer weight matrix are aligned with the principal components of the data representations. The
alignment between the right singular vectors and the principal components is crucial for the neural
network to learn the most important features from the data for the task. In some special models,
such as linear models, the alignment is exact, i.e., Vsvd = Vpca.

Table 5: Numerical experiment on first-layer singular-value.
Max Min Mean Median

ResNet-50 3.8203 7.77×10−8 1.0242 0.5904
ViT-Base 9.5686 3.68×10−5 0.5666 0.0482

D SUPPLEMENTARY EXPERIMENTS AND RESULTS

This section provides additional experimental results. All experiments use Python 3.12.3, PyTorch
2.3.0, and Transformers 4.44.2 (CUDA 12.3) on a workstation with an AMD Ryzen Threadripper
PRO 5965WX (24 cores), 256 GB RAM, and two NVIDIA RTX A6000 GPUs.

Table 6 presents the performance of different models on the GLUE benchmark to demonstrate that
our approach is generic. Figure 4 illustrates the effect of perturbation strength on an example image.

Table 6: Performance across GLUE benchmark for different models.
BERT-base RoBERTa-base

CoLA MNLI QNLI QQP RTE SST2 STSB CoLA MNLI QNLI QQP RTE SST2 STSB

Baseline 54.2 83.4 90.5 90.1 60.3 91.6 87.1 53.8 87.7 92.8 90.9 66.1 94.5 87.5
NE (Ours) 54.5 82.9 89.5 89.6 60.3 89.6 86.9 55.5 87.5 92.4 90.8 65.3 94.6 87.2
Unauthorized 33.4 31.8 50.5 36.8 47.3 50.9 60.2 37.1 35.4 49.5 63.2 52.7 49.1 63.5

D.1 ROBUSTNESS AGAINST PREPROCESSING IN VLMS

Vision-language models apply multi-stage, model-specific preprocessing that can scramble input
space recoding before it reaches early features, which makes inference time usage control difficult.
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Figure 4: Effect of perturbation strength (PSNR, dB). Visual examples across increasing strength.
Authorized models remain stable even at 10dB; at 0dB, ResNet-50 on ImageNet loses only 0.1%
accuracy.

In practice images are decoded to RGB and converted to floats, resized to model specific canvases
such as 448, 512, 896 or 1024 with aspect ratio preserved and letterbox padding, optionally center
or random cropped, normalized with per channel means and standard deviations similar to CLIP or
EVA, partitioned into patches or tiles to form visual tokens with padding aligned to stride and patch
size, projected into the language model embedding space and augmented with resolution dependent
positional encodings, with occasional multi image packing and implementation dependent interpola-
tion and JPEG rounding. Although InternVL3 and Qwen2.5 VL differ in exact choices, they follow
this general pattern. Despite these complications, our experiments show that NE remains robust on
MMBench across AR, CP, FP C, FP S, LR, and RR, where authorized performance for InternVL3
is essentially unchanged and unauthorized utility for Qwen2.5 VL remains low as summarized in
Table 4 and illustrated in Figure 2.

D.2 RECONSTRUCTION ATTACK

Table 7 summarizes super-resolution reconstruction attempts on VDSR using SR-ResNet in black-
box (Noise2Noise) and white-box (Noise2Clean) settings. As a sanity check, standard Gaussian
noise is largely removable (33.5–35.9dB after SR-ResNet). In contrast, NE resists recovery: re-
constructions stay near the input level (about 10–11dB) in both settings, including the strongest
white-box variant with all layers. Thus, recoding remains effectively non-invertible for attackers
while leaving authorized performance essentially unchanged.

Table 7: PSNR (dB) on VDSR under super-resolution reconstruction attempts.

Method x̃ SR-ResNet (black box)1 SR-ResNet (white box)2

Gaussian 15.8 33.5 35.9
NE (Ours) 10.2 10.5 10.9
NE (Ours)3 10.7 10.8 11.1
1 Noise2Noise: train on recoded → recoded pairs.
2 Noise2Clean: train on recoded → clean pairs.
3 Attacker has the white box access to the model.

E DISCUSSION OF LIMITATIONS

Our setting grants the defender white-box access to f⋆ and a probe source to estimate an insensitivity
subspace used for recoding. Against a method-aware or parameter-aware adversary (GA/TA/AA in
Section 2.2), the perturbation itself becomes an attack surface. If the confining subspace (or a close
approximation) is recovered, an input-side projector that reweights toward principal directions can
partially cancel the recoding and raise m(f ′, x̃′). This is realistic: linear projection does not require
access to f⋆, only an estimate of the basis. However, recovery is imperfect in practice because
acquisition and preprocessing (resize, compression, normalization, tokenization) generally do not
commute with a fixed projector, and the authorized benignity relies on f⋆’s internal representations
rather than pure input-space orthogonality. Thus, projection-back can reduce effect size but does not
guarantee full restoration on arbitrary f ′.
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A stronger adversary with training-time control can counter-adapt by regularizing sensitivity (e.g.,
encouraging larger singular components or Jacobian norms along estimated bases) so that the insen-
sitivity directions shrink after training. This can realistically recover non-target utility, especially
when the task admits redundancy. The trade-off is empirical rather than guaranteed: making all di-
rections sensitive tends to increase brittleness and harms calibration/robustness on common corrup-
tions, but such side effects may be acceptable to an attacker optimizing only m(f ′, x̃′). Additional
practical limits include dependence on a modest probe budget for estimating the spectral basis; at-
tenuation under aggressive acquisition pipelines (heavy crops or compression) or domain shift that
changes early-layer geometry; and detectability, supervised or self-supervised detectors can learn
to flag or strip structured, low-energy recodings when the basis is static. Finally, our analysis fo-
cuses on early layers and linearized views; extending guarantees to deeper Jacobians and temporally
coupled modalities (audio/video) remains open.

InternVL3 Response (Authorized): 
The image depicts a bustling urban street scene, likely in a major city
like New York. Here are the details:

1. Traffic: Numerous yellow taxis are navigating the busy street,
suggesting this is a typical busy day in a metropolitan area.

2. Buildings: Tall multi-story buildings line both sides of the street. The
architecture is urban, with many buildings displaying commercial
signage.

3. Traffic Lights: Traffic lights are visible at various intersections, with
the central location featuring a green light.

4. Signage: A variety of street signs, both local and directional, are
displayed. Key signs include:
- "One Way"
- "Pine St. Route S6E"
- "Don't Block The Box"
- "Fine +2 Points"
- "New York State Highway 575"
- Several blue and white street signs pointing directions.
- "Buses Only" next to "Red Zone"
- Traffic signs indicating restrictions on road lighting.

5. American Flags: Colorful American flags are mounted on the
buildings and display at various intersections.

6. People: People are visible on the sidewalks, suggesting the area is
pedestrian-friendly. The crowd appears to be busy with vehicles.

7. Bus: A green bus is visible, heading in the direction indicated by one
of the signs.

8. Urban Environment: The street is flanked by numerous shops and
businesses, contributing to a dense commercial atmosphere.

9. Weather: The weather seems overcast, with a muted color palette
predominantly in greys, blues, and golds.

This depiction captures the dense, bustling energy of a major city's
busy street, typical of New York City.

Qwen2.5-VL Response (Unauthorized): 

The image appears to be a pixelated or low-resolution
photograph of a person standing in front of a building. The
person is wearing a dark-colored top and light-colored
pants, and the background features a structure with
multiple windows. The overall quality of the image is poor,
making it difficult to discern finer details.

Prompt: Please describe the image in detail. 

Figure 5: Illustrative visualization of effective on data authorization on VLM.
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