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Abstract

Multimodal sentiment analysis is a popular
research area in natural language processing.
Mainstream multimodal learning models barely
consider that the visual and acoustic behaviors
often have a much higher temporal frequency
than words. Therefore, these models lack the
representation capability to accurately model
multimodal interactions. In this paper, we pro-
pose an attachment called Graph-based Fine-
grained Multimodal Attention Mechanism (GF-
MAM), which can utilize the multimodal in-
formation from different subspaces to achieve
accurate multimodal interactions. Firstly, the
attachment further splits the information of ev-
ery modality into multiple subspaces. Then, the
fine-grained multimodal information from dif-
ferent subspaces is converted into multimodal
interaction graphs dominant by the language
modality. The multimodal interaction graph
can capture significant interactions among mul-
tiple modalities at the subspace level. Finally,
the information of nonverbal modalities is addi-
tionally added to compensate for the loss of
continuity caused by the splitting operation.
Embedding GFMAM into BERT, we propose a
new model called GFMAM-BERT that can di-
rectly accept nonverbal modalities in addition
to language modality. We conducted experi-
ments on both publicly available multimodal
sentiment analysis datasets CMU-MOSI and
CMU-MOSEI. The experiment results demon-
strate that GFMAM-BERT exceeds the state-of-
the-art models. Moreover, the proposed model
outperforms humans on most metrics on the
CMU-MOSI dataset.

1 Introduction

People sharing their opinions, stories, and movie
reviews on video sites like YouTube often involve
the information of multiple modalities (language,
visual, and acoustic). Since language may be mis-
leading, a model relying solely on language infor-
mation is insufficient to determine the speaker’s

affective state and correctly convey views and op-
tions (Williams et al., 2018). Therefore, multi-
modal sentiment analysis can provide better per-
formance than the methods using only language
modality, and it has received increasing attention.
The central challenge of multimodal sentiment anal-
ysis is to model the inter-modality dynamics since
the interactions among language, visual, and acous-
tic modalities can change the perception of the
expressed sentiment (Zadeh et al., 2017).

To learn the relationships among modalities,
many previous works summarize the information
among modalities using simple averaging strategies
(Sun et al., 2020; Hazarika et al., 2020; Yu et al.,
2021). However, the visual and acoustic behav-
iors often have a much higher temporal frequency
than language, leading to a sequence of accompa-
nying visual and acoustic "subword" units for each
uttered word (Wang et al., 2019b). Hence, the in-
formation of multimodalities requires fine-grained
analysis. The previous works using the simple
average strategies have not considered the utiliza-
tion of the information from multiple subspaces to
construct multimodal interactions. Although the
simple average strategies may help to model global
characteristics, it lacks its representational capacity
to accurately model the structure of multimodal
interactions at the subspace level. This motivated
us to design a model that accurately captures the
significant multimodal interactions from different
subspaces.

We propose an attachment called GFMAM that
can integrate fine-grained multimodal information
from different subspaces. The attachment splits
multimodal information into small granularities to
obtain multiple feature subspaces. Then the fine-
grained information is converted into multimodal
interaction graphs to produce different sets of atten-
tion weights for different feature subspaces. In the
graph, the fine-grained multimodal information and
potential relationships between different modalities



are represented as nodes and edges, respectively.
The nodes of the language information are the core
of the star-like graph since language modality con-
tains more practical information than nonverbal
modalities (Mai et al., 2019; Sun et al., 2020; Mai
et al., 2021). Each fine-grained language node as a
reference is connected to the nodes of the two other
modalities (acoustic and visual modalities) to con-
struct tri-modal interactions. The rich interaction
between nodes in the graph neural network can help
to capture significant interactions between different
modalities. Moreover, since the splitting operation
breaks the potential continuity within original infor-
mation, we choose to compensate for the continuity
within the nonverbal modalities with a residual ap-
proach. The multimodal sequence data is fed to
GFMAM to obtain compact multimodal represen-
tations for shifting the word position (Wang et al.,
2019b) in the semantic space.

We embed the attachment GFMAM into BERT,
which can only process language modality, to give
BERT the ability to accept and process nonverbal
modalities directly. We evaluate GFMAM-BERT
on two popular benchmark datasets of CMU-MOSI
(Zadeh et al., 2016) and CMU-MOSEI (Zadeh
et al., 2018d). The experiments show that the pro-
posed method can produce better performance than
the state-of-the-art methods, even outperform the
exhibited humans on most metrics.

The contributions of this paper are therefore sum-
marized as:

* We design a new multimodal interaction graph
dominated by language modality. The graph
is capable of capturing significant interactions
between multiple modalities at the subspace
level.

* We propose a Graph-based Fine-grained Mul-
timodal Attention Mechanism (GFMAM) at-
tachment achieving fine-grained multimodal
information integration with the help of mul-
timodal interaction graphs. Then, this attach-
ment is successfully embedded into a large
pre-trained model for the sentiment analysis.

* The proposed model outperforms the state-
of-the-art methods. Furthermore, the results
demonstrate that the proposed model sur-
passes the performance of humans for both
binary classification and regression tasks on
CMU-MOSI.

2 Related Work

2.1 Multimodal Sentiment Analysis

Multimodal sentiment analysis is a popular re-
search area in the field of NLP (Zadeh et al., 2018b).
The expressive power of the single language modal-
ity is limited by the ambiguity of the language
(Williams et al., 2018). The ambiguity usually ap-
pears in scenarios including the use of slang and
sarcasm. To overcome the limitation of the single
language modality, the additional information from
multiple modalities can be a significant comple-
ment. The works of multimodal sentiment analysis
can be divided into two categories according to
whether the language modality is dominant.

Some methods consider the contribution of each
modality is equal for sentiment analysis. Zadeh
et al. (2017) created a multidimensional tensor by
3-fold Cartesian to capture uni-modal, bi-modal,
and tri-modal interactions across three modalities.
The LMF model proposed by Liu et al. (2018) de-
composes the weights into low-rank factors, thus
reducing the number of parameters in the model.
This decomposition can be performed efficiently
by using a parallel decomposition of the low-rank
weight tensor and the input tensor to compute
tensor-based fusion. Hazarika et al. (2020) used
BERT to extract the feature information of the lan-
guage modality and utilized two LSTMs (Hochre-
iter and Schmidhuber, 1997) to extract the acoustic
and visual modality features. Each extracted modal-
ity feature is projected into two different spaces
(modality-invariant and modality-specific). Then
the information obtained from these projections
is concatenated together for the sentiment analy-
sis. However, in multimodal sentiment analysis or
emotion recognition tasks, textual features usually
outperform non-textual features (Sun et al., 2020;
Mai et al., 2021; Sun et al., 2021). Therefore, the
performance of these approaches is limited by the
non-dominant role of the language modality.

The language modality is dominant in some
methods. Wang et al. (2019b) modeled multimodal
human language by shifting interactive word repre-
sentations based on the text-video and text-audio in-
teractions. The work done by Rahman et al. (2020)
is an improvement of pre-trained models. Their
proposed Multimodal Adaptation Gate (MAG) can
change the word representations using both text-
video and text-audio interactions. Then the new
word representations are fed to large pre-trained
transformers. Sun et al. (2020) constructed two



outer product matrices (7'® V and T'® A) to repre-
sent the text-video and text-audio interactions. The
outer product matrices are then fed into a Canon-
ical Correlation Analysis (CCA) network whose
output is used for prediction. However, their cross-
modal interaction is a bi-modal operation that only
accounts for two modalities’ input at a time. Thus,
the proposed GFMAM enables tri-modal interac-
tions in the fine-grained manner. And this interac-
tion establishes the dominance of text features in
multimodal sentiment analysis at the same time.

2.2 Graph Neural Networks

Graphs, a non-Euclidean data structure, have a
great expressive power to model a set of objects
(nodes) and their relationships (edges). Deep learn-
ing methods have succeeded in feature extraction
of Euclidean data (e.g., images, text, and video).
However, the traditional deep learning methods
cannot effectively extract the features from the non-
Euclidean data (Wu et al., 2020). Graph Neural
Networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2008) started to try to extend deep neural networks
to process the graph-structured data. After that,
heterogeneous GNN methods (Wang et al., 2019a;
Wei et al., 2019) are further proposed. Nodes in
heterogeneous graphs represent different entities.

Recently, a few works have attempted to bring
multimodal sequence data into graphs as a way
to capture significant interactions among multi-
modalities. Mai et al. (2020) employed graph
convolutional networks for each modality to learn
intra-modal dynamics. But it does not explicitly
deal with cross-modality information. Wu et al.
(2021) modeled multimodal sequence information
with the graph-based neural model and capsule net-
work. However, their cross-modal interaction is
a bi-modal operation that only accounts for two
modalities’ input at a time. Based on these works,
the natural dependency that exists between differ-
ent modalities can be introduced to the graph struc-
ture. The most relevant work of this paper is the
work proposed by Vaswani et al. (2017). They
proposed Graph Attention Networks (GATSs) using
an attention mechanism to determine the weights
of node neighborhoods when aggregating feature
information. All multimodal information at the
subspace level is converted into the heterogeneous
nodes of the multimodal interaction graphs. Then
the attention mechanism is used to find the attention
coefficients between neighboring nodes to establish
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Figure 1: Overview of GFMAM attachment. Using
language, visual and acoustic modalities of information
as input, a representation of integrated multimodal in-
formation is obtained to shift the position of word in the
semantic space. & denotes element-wise sum.

the dependencies between modalities.

3 Graph-based Fine-grained Multimodal
Attention Mechanism (GFMAM)

This section first introduces the splitting process
of the multimodal information. Then, the con-
struction of the multimodal interaction graph using
fine-grained data is described in detail. Finally,
we describe the complement of the modal inter-
nal continuity. The complete flow of the Graph-
based Fine-grained Multimodal Attention Mecha-
nism (GFMAM) is shown in Figure 1.

3.1 Fine-grained Multimodal Information

The GFMAM attachment accepts input from the
three modalities language, visual, and acoustic
modalities. The combination of these three modali-
ties can reflect the emotional state of the speaker.
Because the visual and acoustic behaviors often
have a much higher temporal frequency than words.
To capture the subtle variations among modalities,
we separately split the information of three modali-
ties into multiple subspaces.

We denote the multimodal information corre-
sponding to the i-th word by a triple (L;, V;, A;),
where L denotes language features, V' denotes vi-
sual features, and A denotes acoustic features. The
language features are obtained by the embedding
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Figure 2: Examples of the multimodal interaction graph. Each modality information is split by N = 2. Then,
the split results are integrated using the multimodal interaction graph. The final orange node h} denotes a new
multimodal representation obtained after the operation. || denotes concatenation.

layer. We use two subnets to extract visual and
acoustic features, respectively. These extraction op-
erations ensure that the features of the three modal-
ities are in the same dimension. After extraction,
a splitting operation is performed on the features
of the three modalities. The multimodal features at
the word level will be sequentially split into N parts.
The fine-grained features of language modality are
denoted as: L; = {Li]_,_L—ZQ), -+, LiN}, where N
represents the number of split nodes. Similarly,
the split results of visual and acoustic modalities

can be denoﬂi as: V; {Vzl, _15, . 7\?} and
A; = {é}h 27 _;v} The GFM)AM acg}ts
hz_{L’Lla" LZNa‘/’Lla' ‘/7,N;A7,17 zN}

as an input. To facilitate the representation, we use
hi =4 ﬁ, ﬁ, . f_l\}} instead of the above equa-
tion, where M = 3 N. The range [1, N] indicates
language modality information, [(N + 1), 2N] in-
dicates visual modality information, and [(2N +
1),3N] indicates acoustic modality information.
We use the adjacency matrix in the implementa-
tion to control the connection relationship between
nodes.

3.2 Multimodal Interaction Graph

After splitting the multimodal information into
a smaller granularity, we convert the feature at
the subspace level into the multimodal interaction
graph. In this graph, the language modality can pay
attention to the nonverbal modality features of its
neighborhood. Then, the dependencies, which are
the attention coefficient between nonverbal modali-
ties and language modalities, are computed using

the attention mechanism.

The importance of node j to node 7 is repre-
sented by e;;, and a weight matrix W € R4
is multiplied with each node to enhance the rep-
resentation of nodes. The node-to-node atten-
tion coefficient is calculated using the function
a(-): RY x R* — R4,

eij = a(W fi, W f;), (1)

where the range of values of i is 7 € [1, N]. We
only compute e;; for node j € X, where &; is
some neighborhood of node ¢ in the graph (includ-
ing 1). To make coefficients easily comparable
across different nodes, we normalize them across
all choices of j using the softmax function:

exp(eij)

—_ 2
ZkGX exp(ei) @

a;j = softmax;(e;;) =

Since a is a single-layer feedforward neural net-
work, we add a nonlinear activation function R(-),
which can be expressed as:

exp(R(a” (W F|IW £3])
Chex, cxp(R(aT (W Fil[W fi]))

3)

ij =

where .7 represents transposition and || is the con-
catenation operation. The attention coefficients
among nodes are then used to update each node
that represents the language modality information.
The ¢-th language modality node can be represented
as: .

= R(D> aWfj) )

JEX;



All nodes are then concatenated to obtain a com-
pact multimodal representation.

=LAl )

The example as shown in Figure 2 demonstrates
this operation for us.

3.3 Compensation of the Continuity within
Modalities

The fine-grained multimodalities feature informa-
tion from different subspaces can help to effectively
capture the subtle variations. However, nonver-
bal modalities are usually presented continuously.
Splitting operation may destroy the potential conti-
nuity within the nonverbal modalities. Therefore,
we compensate for the continuity within the vi-
sual and acoustic modalities by a scaling factor
B(B < 1) to decrease the influence on the attention
mechanism operation.

S = hi+ B(V; ® A;) (6)

where @ denotes element-wise sum and 3 is
a hyper-parameter selected through the cross-
validation process. The obtained new multimodal
information .S; is then used to shift the position of
the word in the semantic space.

Lg =L, +5; (7)
4 GFMAM-BERT

GFMAM-BERT is GFMAM embedded between
the embedding layer and the transformer layers
of the BERT network. Recently, BERT (Bidirec-
tional Encoder Representations from Transformers)
(Devlin et al., 2019), Transformer-based (Vaswani
et al., 2017) contextual word representations, has
shown excellent performance in multiple disci-
plines within NLP (Rahman et al., 2020). There-
fore, BERT is chosen as the basis for sentiment
analysis tasks in our work.

Figure 3 clearly shows the exact location of
the GFMAM attachment embedded in the BERT.
There are no changes to the BERT structure ex-
cept for the attachment of GFMAM. The input
to BERT is the original words in the language
modality. A special token ([C'LS]) is added in
front of each sentence of the input, which is pro-
cessed by the transformer layers and used for down-
stream tasks. Assuming that there are N words,
the embedding layer input can be expressed as:

Transformer Layers

Embedding Layer

as) [(w)

Figure 3: Simplified diagram of the Graph-based Fine-
grained Multimodal Attention Mechanism (GFMAM)
embedded in the specific location of the BERT.

W = {CLS, Wl, Wg, Ty WN}. The W, af-
ter WordPiece (Sennrich et al., 2016) embedding
operation, will get token embeddings. In addi-
tion, segment embeddings and position embed-
dings need to be added to obtain embedding layer
output: L = {Lcrs, L1, Lo, -+, Ly}. To keep
the same length of the three modalities, add 0 as
padding (P) in front of acoustic and visual, re-
spectively. Visual modality can be denoted by
V ={P,V1,Va,---,Vn}. And, acoustic modality
can be denoted by A = {P, A1, Ag, -+, Ax}. To
bring these modal information together, we prepare
a sequence of triplets [(L;, Vi, A;) : V; € [1, N]] by
pairing L; with the corresponding (V;, 4;). Each
triplet will pass through the attachment GFMAM,
which is capable of converting each triplet into
new multimodal information of the correspond-
ing word embedding. Nonverbal modalities (vi-
sual and acoustic) can dynamically adjust the po-
sition of words in the semantic space (Wang et al.,
2019b). These compact multimodal representations
are used to change the position of words in the se-
mantic space. These shifted word representations
can be denoted as L' = {L¢crs, Ly, L, - -+, L'y }.
L’ is fed into the transformer layers that follow, and
the last transformer layer of output [C'LS] is used
as a label for multimodal sentiment analysis.



S Experiments

This section introduces our experimental settings,
including the experimental datasets, evaluations,
preprocessing, baselines, results, and analysis.

5.1 Datasets

The proposed algorithm is tested using two pub-
lic benchmark multimodal sentiment analysis
and emotion recognition datasets: CMU-MOSI
and CMU-MOSEI. These datasets provide word-
aligned multimodal signals (language, visual, and
acoustic) for each utterance.

CMU-MOSI: The CMU-MOSI is a commonly
used dataset for human multimodal sentiment anal-
ysis. It consists of 2,198 short monologue video
clips (each clip lasts for the duration of one sen-
tence) expressing the opinion of the speaker inside
the video on a topic such as movies. The utterances
are manually annotated with a continuous opin-
ion score between [—3, +3], [—3: highly negative,
—2 negative, —1 weakly negative, 0 neutral, +1
weakly positive, 42 positive, +3 highly positive].

CMU-MOSEI: The CMU-MOSEI is an im-
proved version of CMU-MOSI. It contains 23,453
annotated video clips (about 10 times more than
CMU-MOSI) from 5,000 videos, 1,000 different
speakers, and 250 different topics. The number of
discourses, samples, speakers, and topics is also
larger compared to CMU-MOSI. The range of la-
bels taken for each discourse is consistent with
CMU-MOSI.

5.2 Preprocessing

We utilize the standard low-level features that are
provided by the respective benchmarks.
Language Modality: Traditionally, language
modality features have been GloVe (Pennington
et al., 2014) embeddings for each token in the utter-
ance. GloVe features are 300 dimension token em-
beddings. However, recent works (Rahman et al.,
2020; Hazarika et al., 2020) have demonstrated that
BERT can provide better performance than GloVe
in feature extraction. Therefore, BERT is used to
obtain the features of language modality in the pro-
posed method. We utilize the bert-base-uncased
and bert-large-uncased pre-trained models.
Visual Modality: CMU-MOSI and CMU-MOSEI
use Facet to extract facial expression features, in-
cluding facial action units and facial gestures based
on a Facial Action Coding System (FACS) (Ekman
and Rosenberg, 1997). This process is repeated

for each sampled frame within the utterance video
sequence. The final visual feature dimensions, d,,
are 47 for CMU-MOSI, 35 for CMU-MOSEI.
Acoustic Modality: COVAREP (Degottex et al.,
2014) is used to extract the following relevant
features: fundamental frequency, quasi-open quo-
tient, normalized amplitude quotient, glottal source
parameters (H1H2, Rd, Rd conf), VUV, MDQ,
the first 3 formants, PSP, HMPDM 0-24 and
HM-PDD 0-12, spectral tilt/slope of wavelet re-
sponses(peak/slope), MCEP 0-24. The final acous-
tic feature dimension, d,, is 74 for MOSI/MOSEI.

For each word, we align all three modalities fol-
lowing the convention established in (Chen et al.,
2017). Assuming that there are T words in the
video, the features for language can be denoted as
T x dj, for visual as T' x d,, and for acoustic as
T x dg,.

5.3 Evaluation Criteria

The evaluation metrics of MISA are referred to
in the experiments(Hazarika et al., 2020). There
are five evaluation metrics, namely Mean Abso-
lute Error (MAE), Pearson Correlation (Corr), Bi-
nary Accuracy (Acc-2), F1-Score, and Seven-class
Accuracy (Acc-7). MAE and Corr are regression
tasks. Acc-2, F1-Score, and Acc-7 are classifica-
tion tasks. For the calculation of Acc-2, two dif-
ferent evaluation methods are included. The first
one is negative/non-negative classification (Zadeh
et al., 2018c), where non-negative includes neutral
sentiment information. The second one is nega-
tive/positive classification (Tsai et al., 2019), ex-
cluding neutral sentiments information. The results
of all evaluation metrics mentioned above are re-
ported.

5.4 Baselines

The various state-of-the-art models introduced fol-
lowing are used as the baseline for comparison.
TFN: Tensor Fusion Network (TFN) (Zadeh et al.,
2017) performs an outer product of the output vec-
tors after encoding the three modes to learn the
intra- and inter-modal dynamics in an end-to-end
manner and can capture uni-, bi-, and tri-modal
interactions.

MFN: Memory Fusion Network (MFN) (Zadeh
et al., 2018a) uses three separate LSTMs to model
each modality and uses Delta-memory attention
and Multi-View Gated Memory to capture both
temporal and inter-modal interactions.



Models CMU-MOSI
MAE| Corrt  Acc-2t  Fl-Scoret Acc-71
TEN 0.970  0.633 73.9/- 73.4/- 32.1
MFN 0.965 0.662 77.4/- 77.3/- 34.1
RMFN 0.922  0.681 78.4/- 78.0/- 38.3
MulT 0.871 0.698 -/83.0 -/82.8 40.0
MTAG 0.889 0.686 -/82.1 -/82.3 38.9
MG 0.933 0.684 -/80.6 -/80.5 32.1
TEN(B)! 0.901  0.698 -/80.8 -/80.7 34.9
MFN(B)1 0.877 0.706 -/81.7 -/81.6 35.4
RMFN(B)? | 0.878 0.712 79.6/89.7 78.9/79.1 -
MulT(B)? | 0.861 0.711 81.5/84.1 80.6/83.9 -
ICCN 0.862 0.714  -/83.07 -/83.02 39.01
MISA 0.783 0.761 81.8/83.4 81.7/83.6 42.3
MAG 0.712  0.796 84.2/86.1 84.1/36.0 -
Ours* 0.689 0.809 84.3/86.4 84.2/86.2 48.6
Human 0.710  0.820 85.7/- 87.5/- 53.9
Ours! 0.651 0.835 86.0/88.2 86.0/88.2 50.6

Table 1: Performances of multimodal models on CMU-
MOSI. Best results are highlighted in bold. NOTE:
(B) means the language features are based on BERT;
- means the result is not given in the paper; * means
the text feature is based on bert-base-uncased; T means
the text feature is based on bert-large-uncased, Lis
from (Sun et al., 2020) and ? is from (Rahman et al.,
2020). Human performance for CMU-MOSI is reported
as (Zadeh et al., 2018c). In Acc-2 and F1-Score, the left
of the “/”” is calculated as “negative/non-negative” and
the right is calculated as “negative/positive”.

RMFN: Multimodal Language Analysis with Re-
current Multistage Fusion (RMFN) (Liang et al.,
2018) can automatically decompose the multi-
modal fusion problem into multiple recursive
stages. At each stage, a subset of the multimodal
signals is highlighted and fused with the previous
fusion representation.

MulT: Multimodal Transformer for Unaligned
Multimodal Language Sequence (MulT) (Tsai
et al., 2019) extends the multimodal transformer
architecture by using directional paired cross-
attention to transform one modality into another.

ICCN: For Learning Relationships between Text,
Audio, and Video via Deep Canonical Correlation
for Multimodal Language Analysis, Interaction
Canonical Correlation Network (ICCN) (Sun et al.,
2020) first extracts features from audio and video
modalities, and then fuses them with text embed-
dings to get two outer products, text-audio, and
text-video. Finally, the external products are fed
into CCA network, and their output is used to pre-
dict.

MG: Analyzing Unaligned Multimodal Sequence
via Graph Convolution and Graph Pooling Fusion
MG) (Mai et al., 2020) first uses a graph convolu-

Models CMU-MOSEI
MAE| Corrt  Acc-21  Fl1-Scoref Acc-71
TEN(B)' | 0.901 0.698 -/80.8 -/80.7 349
MFN(B)! | 0.568 0.717 -/84.4 -/84.3 354
MG 0.608 0.675 -/81.4 -/81.7 49.7
MulT 0.580 0.703 -/82.5 -/82.3 51.8
ICCN 0.565 0.713 -/84.2 -/84.2 51.6
MISA 0.555 0.756 83.6/85.5 83.8/85.3 522
MAG? 0.539 0.753 83.7/85.2 83.7/85.0 -
Ours’ ‘ 0.517 0.786 85.2/86.9 85.0/86.8 54.9

Table 2: Performances of multimodal models on CMU-
MOSEIL Best results are highlighted in bold. NOTE:
(B) means the language features are based on BERT; -
means the result is not given in the paper; ! is from (Sun
et al., 2020) and 3 is from (Yu et al., 2021).

tional network to learn intra-modal dynamics for
each modality. Then, a graph pooling fusion net-
work is devised to automatically learn the associa-
tions between various nodes from different modali-
ties.

MISA: Modality-Invariant and -Specific Represen-
tations for Multimodal Sentiment Analysis (MISA)
(Hazarika et al., 2020) combines various losses,
including distribution similarity, orthogonal loss,
reconstruction loss, and task prediction loss, to
learn modality-invariant and modality-specific rep-
resentations.

MAG: Integrating Multimodal Information in
Large Pretrained Transformers (MAGT) (Rahman
et al., 2020) is an improved work on RAVEN,
which applies Multimodal Adaptive Gate (MAG)
on different layers of the BERT backbone.
MTAG: Modal-Temporal Attention Graph for Un-
aligned Human Multimodal Language Sequences
(Yang et al., 2021) first convert unaligned multi-
modal sequence data into a graph. Then, an op-
eration called MTAG is designed to capture the
various interactions among multimodalities.

For TFN, MFEN, RMFN, and MulT, the language
features are based on GloVe, while ICCN, MISA,
MAG, Self-MM, and our model use language fea-
tures based on BERT. For the sake of fairness,
we also provide the results of these models using
BERT to obtain language features.

5.5 Comparison with Baselines

Table 1 shows the results of our model in compar-
ison with other models and humans on the CMU-
MOSI dataset. It can be observed that the model
proposed in this paper works better, and all the
evaluation metrics are better than other models.
As compared to other work that relies on graph



CMU-MOSI
MAE| Corrt Acc-2T  Fl-ScoreT Acc-71

0.652 0.820 85.7/88.2 85.7/88.2 50.2
0.651 0.835 86.0/88.2 86.0/88.2 50.6

Data View

No Compensate
Compensate

Table 3: Results for experiments on CMU-MOSI. We
compare the best results obtained with and without the
compensation operation on the CMU-MOSI dataset.

neural networks, like MTAG and GM, our model
exhibits excellent performance. The reason is that
our model takes into account the use of information
from different subspaces to construct tri-modal in-
teractions. And a text-dominant multimodal fusion
scheme is designed. Also, Zadeh et al. (2018¢)
reported human performance results on the CMU-
MOSI dataset. We can observe that performance
results outperform human performance in binary
classification (Acc-2) and regression tasks (MAE,
Corr). To the best of our knowledge, the accuracy
of binary classification exceeds that of humans for
the first time.

Table 2 shows the performance results of our
model on the CMU-MOSEI dataset, where all eval-
uation metrics outperform the other models. The
performance exhibited by our model validates the
usefulness of constructing multimodal interactions
at the subspace level. Based on the evaluation re-
sults of two publicly available datasets, our pro-
posed model is successful for multimodal senti-
ment analysis.

5.6 Ablation Studies

To verify the effectiveness of the proposed model,
the following ablation experiments are designed.
There are two questions.

Question 1: Is it useful to compensate for the
continuity within the modalities?

Question 2: Is the splitting processing effective
for multimodal sentiment analysis?

For Question 1, we compare our proposed
model on the CMU-MOSI dataset in different cases.
These cases include the model with and without
continuity complement. As shown in Table 3, the
result of the model with complement is a little bet-
ter than the model without complement. The ex-
periment results demonstrate that although the im-
provement of the complement is not obvious, the
information of the modality continuity is disrupted
by the splitting operation. Therefore, the comple-
ment of internal continuity is required when the
splitting operation is performed on modal informa-
tion.
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Figure 4: Results for experiments on CMU-MOSI and
CMU-MOSEIL. The performance exhibited by our model
under different fine-grained multimodal information. N
denotes the number of splits for each modality.

For Question 2, during the experiments, we split
multimodal information into different granularities,
keeping the rest of the hyper-parameters constant.
Figure 4 shows the results of the binary classifica-
tion obtained after splitting each modality for the
CMU-MOSI and CMU-MOSEI datasets, where N
denotes the number of nodes. And when N=1, it
means that the modal information will not be split,
that is, the original sampling rate will be main-
tained. The cases of N>1 are significantly better
than those for N=1. The results validate that in-
tegrating multimodal information at the subspace
level can improve the performance of sentiment
analysis.

6 Conclusion

In this paper, we propose a novel GFMAM attach-
ment, which can effectively fuse fine-grained mul-
timodal information at the subspace level for senti-
ment analysis. Without changing the architecture of
the original BERT, the fine-grained multimodal in-
formation is effectively fused with the graph struc-
ture. Furthermore, we demonstrate that multimodal
information is necessary for fine-grained interac-
tions by conducting ablation studies in our models.
The experimental results demonstrate the effective-
ness of the proposed method when doing sentiment
analysis tasks and show the best performance on
public datasets.

In the future, the fine-grained multimodal inter-
actions across multiple moments will be considered
to further improve the performance of the sentiment
analysis.
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