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Abstract

Multimodal sentiment analysis is a popular001
research area in natural language processing.002
Mainstream multimodal learning models barely003
consider that the visual and acoustic behaviors004
often have a much higher temporal frequency005
than words. Therefore, these models lack the006
representation capability to accurately model007
multimodal interactions. In this paper, we pro-008
pose an attachment called Graph-based Fine-009
grained Multimodal Attention Mechanism (GF-010
MAM), which can utilize the multimodal in-011
formation from different subspaces to achieve012
accurate multimodal interactions. Firstly, the013
attachment further splits the information of ev-014
ery modality into multiple subspaces. Then, the015
fine-grained multimodal information from dif-016
ferent subspaces is converted into multimodal017
interaction graphs dominant by the language018
modality. The multimodal interaction graph019
can capture significant interactions among mul-020
tiple modalities at the subspace level. Finally,021
the information of nonverbal modalities is addi-022
tionally added to compensate for the loss of023
continuity caused by the splitting operation.024
Embedding GFMAM into BERT, we propose a025
new model called GFMAM-BERT that can di-026
rectly accept nonverbal modalities in addition027
to language modality. We conducted experi-028
ments on both publicly available multimodal029
sentiment analysis datasets CMU-MOSI and030
CMU-MOSEI. The experiment results demon-031
strate that GFMAM-BERT exceeds the state-of-032
the-art models. Moreover, the proposed model033
outperforms humans on most metrics on the034
CMU-MOSI dataset.035

1 Introduction036

People sharing their opinions, stories, and movie037

reviews on video sites like YouTube often involve038

the information of multiple modalities (language,039

visual, and acoustic). Since language may be mis-040

leading, a model relying solely on language infor-041

mation is insufficient to determine the speaker’s042

affective state and correctly convey views and op- 043

tions (Williams et al., 2018). Therefore, multi- 044

modal sentiment analysis can provide better per- 045

formance than the methods using only language 046

modality, and it has received increasing attention. 047

The central challenge of multimodal sentiment anal- 048

ysis is to model the inter-modality dynamics since 049

the interactions among language, visual, and acous- 050

tic modalities can change the perception of the 051

expressed sentiment (Zadeh et al., 2017). 052

To learn the relationships among modalities, 053

many previous works summarize the information 054

among modalities using simple averaging strategies 055

(Sun et al., 2020; Hazarika et al., 2020; Yu et al., 056

2021). However, the visual and acoustic behav- 057

iors often have a much higher temporal frequency 058

than language, leading to a sequence of accompa- 059

nying visual and acoustic "subword" units for each 060

uttered word (Wang et al., 2019b). Hence, the in- 061

formation of multimodalities requires fine-grained 062

analysis. The previous works using the simple 063

average strategies have not considered the utiliza- 064

tion of the information from multiple subspaces to 065

construct multimodal interactions. Although the 066

simple average strategies may help to model global 067

characteristics, it lacks its representational capacity 068

to accurately model the structure of multimodal 069

interactions at the subspace level. This motivated 070

us to design a model that accurately captures the 071

significant multimodal interactions from different 072

subspaces. 073

We propose an attachment called GFMAM that 074

can integrate fine-grained multimodal information 075

from different subspaces. The attachment splits 076

multimodal information into small granularities to 077

obtain multiple feature subspaces. Then the fine- 078

grained information is converted into multimodal 079

interaction graphs to produce different sets of atten- 080

tion weights for different feature subspaces. In the 081

graph, the fine-grained multimodal information and 082

potential relationships between different modalities 083
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are represented as nodes and edges, respectively.084

The nodes of the language information are the core085

of the star-like graph since language modality con-086

tains more practical information than nonverbal087

modalities (Mai et al., 2019; Sun et al., 2020; Mai088

et al., 2021). Each fine-grained language node as a089

reference is connected to the nodes of the two other090

modalities (acoustic and visual modalities) to con-091

struct tri-modal interactions. The rich interaction092

between nodes in the graph neural network can help093

to capture significant interactions between different094

modalities. Moreover, since the splitting operation095

breaks the potential continuity within original infor-096

mation, we choose to compensate for the continuity097

within the nonverbal modalities with a residual ap-098

proach. The multimodal sequence data is fed to099

GFMAM to obtain compact multimodal represen-100

tations for shifting the word position (Wang et al.,101

2019b) in the semantic space.102

We embed the attachment GFMAM into BERT,103

which can only process language modality, to give104

BERT the ability to accept and process nonverbal105

modalities directly. We evaluate GFMAM-BERT106

on two popular benchmark datasets of CMU-MOSI107

(Zadeh et al., 2016) and CMU-MOSEI (Zadeh108

et al., 2018d). The experiments show that the pro-109

posed method can produce better performance than110

the state-of-the-art methods, even outperform the111

exhibited humans on most metrics.112

The contributions of this paper are therefore sum-113

marized as:114

• We design a new multimodal interaction graph115

dominated by language modality. The graph116

is capable of capturing significant interactions117

between multiple modalities at the subspace118

level.119

• We propose a Graph-based Fine-grained Mul-120

timodal Attention Mechanism (GFMAM) at-121

tachment achieving fine-grained multimodal122

information integration with the help of mul-123

timodal interaction graphs. Then, this attach-124

ment is successfully embedded into a large125

pre-trained model for the sentiment analysis.126

• The proposed model outperforms the state-127

of-the-art methods. Furthermore, the results128

demonstrate that the proposed model sur-129

passes the performance of humans for both130

binary classification and regression tasks on131

CMU-MOSI.132

2 Related Work 133

2.1 Multimodal Sentiment Analysis 134

Multimodal sentiment analysis is a popular re- 135

search area in the field of NLP (Zadeh et al., 2018b). 136

The expressive power of the single language modal- 137

ity is limited by the ambiguity of the language 138

(Williams et al., 2018). The ambiguity usually ap- 139

pears in scenarios including the use of slang and 140

sarcasm. To overcome the limitation of the single 141

language modality, the additional information from 142

multiple modalities can be a significant comple- 143

ment. The works of multimodal sentiment analysis 144

can be divided into two categories according to 145

whether the language modality is dominant. 146

Some methods consider the contribution of each 147

modality is equal for sentiment analysis. Zadeh 148

et al. (2017) created a multidimensional tensor by 149

3-fold Cartesian to capture uni-modal, bi-modal, 150

and tri-modal interactions across three modalities. 151

The LMF model proposed by Liu et al. (2018) de- 152

composes the weights into low-rank factors, thus 153

reducing the number of parameters in the model. 154

This decomposition can be performed efficiently 155

by using a parallel decomposition of the low-rank 156

weight tensor and the input tensor to compute 157

tensor-based fusion. Hazarika et al. (2020) used 158

BERT to extract the feature information of the lan- 159

guage modality and utilized two LSTMs (Hochre- 160

iter and Schmidhuber, 1997) to extract the acoustic 161

and visual modality features. Each extracted modal- 162

ity feature is projected into two different spaces 163

(modality-invariant and modality-specific). Then 164

the information obtained from these projections 165

is concatenated together for the sentiment analy- 166

sis. However, in multimodal sentiment analysis or 167

emotion recognition tasks, textual features usually 168

outperform non-textual features (Sun et al., 2020; 169

Mai et al., 2021; Sun et al., 2021). Therefore, the 170

performance of these approaches is limited by the 171

non-dominant role of the language modality. 172

The language modality is dominant in some 173

methods. Wang et al. (2019b) modeled multimodal 174

human language by shifting interactive word repre- 175

sentations based on the text-video and text-audio in- 176

teractions. The work done by Rahman et al. (2020) 177

is an improvement of pre-trained models. Their 178

proposed Multimodal Adaptation Gate (MAG) can 179

change the word representations using both text- 180

video and text-audio interactions. Then the new 181

word representations are fed to large pre-trained 182

transformers. Sun et al. (2020) constructed two 183
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outer product matrices (T ⊗V and T ⊗A) to repre-184

sent the text-video and text-audio interactions. The185

outer product matrices are then fed into a Canon-186

ical Correlation Analysis (CCA) network whose187

output is used for prediction. However, their cross-188

modal interaction is a bi-modal operation that only189

accounts for two modalities’ input at a time. Thus,190

the proposed GFMAM enables tri-modal interac-191

tions in the fine-grained manner. And this interac-192

tion establishes the dominance of text features in193

multimodal sentiment analysis at the same time.194

2.2 Graph Neural Networks195

Graphs, a non-Euclidean data structure, have a196

great expressive power to model a set of objects197

(nodes) and their relationships (edges). Deep learn-198

ing methods have succeeded in feature extraction199

of Euclidean data (e.g., images, text, and video).200

However, the traditional deep learning methods201

cannot effectively extract the features from the non-202

Euclidean data (Wu et al., 2020). Graph Neural203

Networks (GNNs) (Gori et al., 2005; Scarselli et al.,204

2008) started to try to extend deep neural networks205

to process the graph-structured data. After that,206

heterogeneous GNN methods (Wang et al., 2019a;207

Wei et al., 2019) are further proposed. Nodes in208

heterogeneous graphs represent different entities.209

Recently, a few works have attempted to bring210

multimodal sequence data into graphs as a way211

to capture significant interactions among multi-212

modalities. Mai et al. (2020) employed graph213

convolutional networks for each modality to learn214

intra-modal dynamics. But it does not explicitly215

deal with cross-modality information. Wu et al.216

(2021) modeled multimodal sequence information217

with the graph-based neural model and capsule net-218

work. However, their cross-modal interaction is219

a bi-modal operation that only accounts for two220

modalities’ input at a time. Based on these works,221

the natural dependency that exists between differ-222

ent modalities can be introduced to the graph struc-223

ture. The most relevant work of this paper is the224

work proposed by Vaswani et al. (2017). They225

proposed Graph Attention Networks (GATs) using226

an attention mechanism to determine the weights227

of node neighborhoods when aggregating feature228

information. All multimodal information at the229

subspace level is converted into the heterogeneous230

nodes of the multimodal interaction graphs. Then231

the attention mechanism is used to find the attention232

coefficients between neighboring nodes to establish233

𝐿𝑖 𝐴𝑖 𝑉𝑖

𝐿𝑖
′

Shifting

⊕

𝑆𝑖

Split

Figure 1: Overview of GFMAM attachment. Using
language, visual and acoustic modalities of information
as input, a representation of integrated multimodal in-
formation is obtained to shift the position of word in the
semantic space. ⊕ denotes element-wise sum.

the dependencies between modalities. 234

3 Graph-based Fine-grained Multimodal 235

Attention Mechanism (GFMAM) 236

This section first introduces the splitting process 237

of the multimodal information. Then, the con- 238

struction of the multimodal interaction graph using 239

fine-grained data is described in detail. Finally, 240

we describe the complement of the modal inter- 241

nal continuity. The complete flow of the Graph- 242

based Fine-grained Multimodal Attention Mecha- 243

nism (GFMAM) is shown in Figure 1. 244

3.1 Fine-grained Multimodal Information 245

The GFMAM attachment accepts input from the 246

three modalities language, visual, and acoustic 247

modalities. The combination of these three modali- 248

ties can reflect the emotional state of the speaker. 249

Because the visual and acoustic behaviors often 250

have a much higher temporal frequency than words. 251

To capture the subtle variations among modalities, 252

we separately split the information of three modali- 253

ties into multiple subspaces. 254

We denote the multimodal information corre- 255

sponding to the i-th word by a triple (Li, Vi, Ai), 256

where L denotes language features, V denotes vi- 257

sual features, and A denotes acoustic features. The 258

language features are obtained by the embedding 259
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Figure 2: Examples of the multimodal interaction graph. Each modality information is split by N = 2. Then,
the split results are integrated using the multimodal interaction graph. The final orange node h′

i denotes a new
multimodal representation obtained after the operation. || denotes concatenation.

layer. We use two subnets to extract visual and260

acoustic features, respectively. These extraction op-261

erations ensure that the features of the three modal-262

ities are in the same dimension. After extraction,263

a splitting operation is performed on the features264

of the three modalities. The multimodal features at265

the word level will be sequentially split into N parts.266

The fine-grained features of language modality are267

denoted as: Li = {−→Li1,
−→
Li2, · · · ,

−−→
LiN}, where N268

represents the number of split nodes. Similarly,269

the split results of visual and acoustic modalities270

can be denoted as: Vi = {−→Vi1,
−→
Vi2, · · · ,

−−→
ViN} and271

Ai = {−→Ai1,
−→
Ai2, · · · ,

−−→
AiN}. The GFMAM accepts272

hi = {−→Li1, · · · ,
−−→
LiN ,

−→
Vi1, · · · ,

−−→
ViN ,

−→
Ai1, · · · ,

−−→
AiN}273

as an input. To facilitate the representation, we use274

hi = {f⃗1, f⃗2, · · · , f⃗M} instead of the above equa-275

tion, where M = 3∗N . The range [1, N ] indicates276

language modality information, [(N + 1), 2N ] in-277

dicates visual modality information, and [(2N +278

1), 3N ] indicates acoustic modality information.279

We use the adjacency matrix in the implementa-280

tion to control the connection relationship between281

nodes.282

3.2 Multimodal Interaction Graph283

After splitting the multimodal information into284

a smaller granularity, we convert the feature at285

the subspace level into the multimodal interaction286

graph. In this graph, the language modality can pay287

attention to the nonverbal modality features of its288

neighborhood. Then, the dependencies, which are289

the attention coefficient between nonverbal modali-290

ties and language modalities, are computed using291

the attention mechanism. 292

The importance of node j to node i is repre- 293

sented by eij , and a weight matrix W ∈ Rd×d 294

is multiplied with each node to enhance the rep- 295

resentation of nodes. The node-to-node atten- 296

tion coefficient is calculated using the function 297

a(·) : Rd ×Rd −→ Rd. 298

eij = a(Wf⃗i,W f⃗j), (1) 299

where the range of values of i is i ∈ [1, N ]. We 300

only compute eij for node j ∈ Xi, where Xi is 301

some neighborhood of node i in the graph (includ- 302

ing i). To make coefficients easily comparable 303

across different nodes, we normalize them across 304

all choices of j using the softmax function: 305

αij = softmaxj(eij) =
exp(eij)∑

k∈Xi
exp(eik)

(2) 306

Since a is a single-layer feedforward neural net- 307

work, we add a nonlinear activation function R(·), 308

which can be expressed as: 309

αij =
exp(R(aT [Wf⃗i||Wf⃗j ]))∑

k∈Xi
exp(R(aT [Wf⃗i||Wf⃗k]))

(3) 310

where .T represents transposition and || is the con- 311

catenation operation. The attention coefficients 312

among nodes are then used to update each node 313

that represents the language modality information. 314

The i-th language modality node can be represented 315

as: 316

f⃗ ′
i = R(

∑
j∈Xi

αijWf⃗j) (4) 317
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All nodes are then concatenated to obtain a com-318

pact multimodal representation.319

h′i = {f⃗ ′
1||f⃗ ′

2|| · · · ||f⃗ ′
N} (5)320

The example as shown in Figure 2 demonstrates321

this operation for us.322

3.3 Compensation of the Continuity within323

Modalities324

The fine-grained multimodalities feature informa-325

tion from different subspaces can help to effectively326

capture the subtle variations. However, nonver-327

bal modalities are usually presented continuously.328

Splitting operation may destroy the potential conti-329

nuity within the nonverbal modalities. Therefore,330

we compensate for the continuity within the vi-331

sual and acoustic modalities by a scaling factor332

β(β < 1) to decrease the influence on the attention333

mechanism operation.334

Si = h′i + β(Vi ⊕Ai) (6)335

where ⊕ denotes element-wise sum and β is336

a hyper-parameter selected through the cross-337

validation process. The obtained new multimodal338

information Si is then used to shift the position of339

the word in the semantic space.340

L′
i = Li + Si (7)341

4 GFMAM-BERT342

GFMAM-BERT is GFMAM embedded between343

the embedding layer and the transformer layers344

of the BERT network. Recently, BERT (Bidirec-345

tional Encoder Representations from Transformers)346

(Devlin et al., 2019), Transformer-based (Vaswani347

et al., 2017) contextual word representations, has348

shown excellent performance in multiple disci-349

plines within NLP (Rahman et al., 2020). There-350

fore, BERT is chosen as the basis for sentiment351

analysis tasks in our work.352

Figure 3 clearly shows the exact location of353

the GFMAM attachment embedded in the BERT.354

There are no changes to the BERT structure ex-355

cept for the attachment of GFMAM. The input356

to BERT is the original words in the language357

modality. A special token ([CLS]) is added in358

front of each sentence of the input, which is pro-359

cessed by the transformer layers and used for down-360

stream tasks. Assuming that there are N words,361

the embedding layer input can be expressed as:362

Transformer Layers

Embedding Layer

𝐶𝐿𝑆 𝑊𝑁𝑊1 ……

𝐿1𝐴1 𝑉1

GFMAM

…… 𝐿𝑁𝐴𝑁 𝑉𝑁

GFMAM

𝐿1
′ 𝐿𝑁

′……

Figure 3: Simplified diagram of the Graph-based Fine-
grained Multimodal Attention Mechanism (GFMAM)
embedded in the specific location of the BERT.

W = {CLS,W1,W2, · · · ,WN}. The W , af- 363

ter WordPiece (Sennrich et al., 2016) embedding 364

operation, will get token embeddings. In addi- 365

tion, segment embeddings and position embed- 366

dings need to be added to obtain embedding layer 367

output: L = {LCLS , L1, L2, · · · , LN}. To keep 368

the same length of the three modalities, add 0 as 369

padding (P) in front of acoustic and visual, re- 370

spectively. Visual modality can be denoted by 371

V = {P, V1, V2, · · · , VN}. And, acoustic modality 372

can be denoted by A = {P,A1, A2, · · · , AN}. To 373

bring these modal information together, we prepare 374

a sequence of triplets [(Li, Vi, Ai) : ∀i ∈ [1, N ]] by 375

pairing Li with the corresponding (Vi, Ai). Each 376

triplet will pass through the attachment GFMAM, 377

which is capable of converting each triplet into 378

new multimodal information of the correspond- 379

ing word embedding. Nonverbal modalities (vi- 380

sual and acoustic) can dynamically adjust the po- 381

sition of words in the semantic space (Wang et al., 382

2019b). These compact multimodal representations 383

are used to change the position of words in the se- 384

mantic space. These shifted word representations 385

can be denoted as L′ = {LCLS , L
′
1, L

′
2, · · · , L′

N}. 386

L′ is fed into the transformer layers that follow, and 387

the last transformer layer of output [CLS] is used 388

as a label for multimodal sentiment analysis. 389
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5 Experiments390

This section introduces our experimental settings,391

including the experimental datasets, evaluations,392

preprocessing, baselines, results, and analysis.393

5.1 Datasets394

The proposed algorithm is tested using two pub-395

lic benchmark multimodal sentiment analysis396

and emotion recognition datasets: CMU-MOSI397

and CMU-MOSEI. These datasets provide word-398

aligned multimodal signals (language, visual, and399

acoustic) for each utterance.400

CMU-MOSI: The CMU-MOSI is a commonly401

used dataset for human multimodal sentiment anal-402

ysis. It consists of 2,198 short monologue video403

clips (each clip lasts for the duration of one sen-404

tence) expressing the opinion of the speaker inside405

the video on a topic such as movies. The utterances406

are manually annotated with a continuous opin-407

ion score between [−3,+3], [−3: highly negative,408

−2 negative, −1 weakly negative, 0 neutral, +1409

weakly positive, +2 positive, +3 highly positive].410

CMU-MOSEI: The CMU-MOSEI is an im-411

proved version of CMU-MOSI. It contains 23,453412

annotated video clips (about 10 times more than413

CMU-MOSI) from 5,000 videos, 1,000 different414

speakers, and 250 different topics. The number of415

discourses, samples, speakers, and topics is also416

larger compared to CMU-MOSI. The range of la-417

bels taken for each discourse is consistent with418

CMU-MOSI.419

5.2 Preprocessing420

We utilize the standard low-level features that are421

provided by the respective benchmarks.422

Language Modality: Traditionally, language423

modality features have been GloVe (Pennington424

et al., 2014) embeddings for each token in the utter-425

ance. GloVe features are 300 dimension token em-426

beddings. However, recent works (Rahman et al.,427

2020; Hazarika et al., 2020) have demonstrated that428

BERT can provide better performance than GloVe429

in feature extraction. Therefore, BERT is used to430

obtain the features of language modality in the pro-431

posed method. We utilize the bert-base-uncased432

and bert-large-uncased pre-trained models.433

Visual Modality: CMU-MOSI and CMU-MOSEI434

use Facet to extract facial expression features, in-435

cluding facial action units and facial gestures based436

on a Facial Action Coding System (FACS) (Ekman437

and Rosenberg, 1997). This process is repeated438

for each sampled frame within the utterance video 439

sequence. The final visual feature dimensions, dv, 440

are 47 for CMU-MOSI, 35 for CMU-MOSEI. 441

Acoustic Modality: COVAREP (Degottex et al., 442

2014) is used to extract the following relevant 443

features: fundamental frequency, quasi-open quo- 444

tient, normalized amplitude quotient, glottal source 445

parameters (H1H2, Rd, Rd conf), VUV, MDQ, 446

the first 3 formants, PSP, HMPDM 0-24 and 447

HM-PDD 0-12, spectral tilt/slope of wavelet re- 448

sponses(peak/slope), MCEP 0-24. The final acous- 449

tic feature dimension, da, is 74 for MOSI/MOSEI. 450

For each word, we align all three modalities fol- 451

lowing the convention established in (Chen et al., 452

2017). Assuming that there are T words in the 453

video, the features for language can be denoted as 454

T × dl, for visual as T × dv, and for acoustic as 455

T × da. 456

5.3 Evaluation Criteria 457

The evaluation metrics of MISA are referred to 458

in the experiments(Hazarika et al., 2020). There 459

are five evaluation metrics, namely Mean Abso- 460

lute Error (MAE), Pearson Correlation (Corr), Bi- 461

nary Accuracy (Acc-2), F1-Score, and Seven-class 462

Accuracy (Acc-7). MAE and Corr are regression 463

tasks. Acc-2, F1-Score, and Acc-7 are classifica- 464

tion tasks. For the calculation of Acc-2, two dif- 465

ferent evaluation methods are included. The first 466

one is negative/non-negative classification (Zadeh 467

et al., 2018c), where non-negative includes neutral 468

sentiment information. The second one is nega- 469

tive/positive classification (Tsai et al., 2019), ex- 470

cluding neutral sentiments information. The results 471

of all evaluation metrics mentioned above are re- 472

ported. 473

5.4 Baselines 474

The various state-of-the-art models introduced fol- 475

lowing are used as the baseline for comparison. 476

TFN: Tensor Fusion Network (TFN) (Zadeh et al., 477

2017) performs an outer product of the output vec- 478

tors after encoding the three modes to learn the 479

intra- and inter-modal dynamics in an end-to-end 480

manner and can capture uni-, bi-, and tri-modal 481

interactions. 482

MFN: Memory Fusion Network (MFN) (Zadeh 483

et al., 2018a) uses three separate LSTMs to model 484

each modality and uses Delta-memory attention 485

and Multi-View Gated Memory to capture both 486

temporal and inter-modal interactions. 487
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Models
CMU-MOSI

MAE↓ Corr↑ Acc-2↑ F1-Score↑ Acc-7↑

TFN 0.970 0.633 73.9/- 73.4/- 32.1
MFN 0.965 0.662 77.4/- 77.3/- 34.1

RMFN 0.922 0.681 78.4/- 78.0/- 38.3
MulT 0.871 0.698 -/83.0 -/82.8 40.0

MTAG 0.889 0.686 -/82.1 -/82.3 38.9
MG 0.933 0.684 -/80.6 -/80.5 32.1

TFN(B)1 0.901 0.698 -/80.8 -/80.7 34.9
MFN(B)1 0.877 0.706 -/81.7 -/81.6 35.4

RMFN(B)2 0.878 0.712 79.6/89.7 78.9/79.1 -
MulT(B)2 0.861 0.711 81.5/84.1 80.6/83.9 -

ICCN 0.862 0.714 -/83.07 -/83.02 39.01
MISA 0.783 0.761 81.8/83.4 81.7/83.6 42.3
MAG 0.712 0.796 84.2/86.1 84.1/86.0 -

Ours∗ 0.689 0.809 84.3/86.4 84.2/86.2 48.6

Human 0.710 0.820 85.7/- 87.5/- 53.9
Ours† 0.651 0.835 86.0/88.2 86.0/88.2 50.6

Table 1: Performances of multimodal models on CMU-
MOSI. Best results are highlighted in bold. NOTE:
(B) means the language features are based on BERT;
- means the result is not given in the paper; ∗ means
the text feature is based on bert-base-uncased; † means
the text feature is based on bert-large-uncased; 1 is
from (Sun et al., 2020) and 2 is from (Rahman et al.,
2020). Human performance for CMU-MOSI is reported
as (Zadeh et al., 2018c). In Acc-2 and F1-Score, the left
of the “/” is calculated as “negative/non-negative” and
the right is calculated as “negative/positive”.

RMFN: Multimodal Language Analysis with Re-488

current Multistage Fusion (RMFN) (Liang et al.,489

2018) can automatically decompose the multi-490

modal fusion problem into multiple recursive491

stages. At each stage, a subset of the multimodal492

signals is highlighted and fused with the previous493

fusion representation.494

MulT: Multimodal Transformer for Unaligned495

Multimodal Language Sequence (MulT) (Tsai496

et al., 2019) extends the multimodal transformer497

architecture by using directional paired cross-498

attention to transform one modality into another.499

ICCN: For Learning Relationships between Text,500

Audio, and Video via Deep Canonical Correlation501

for Multimodal Language Analysis, Interaction502

Canonical Correlation Network (ICCN) (Sun et al.,503

2020) first extracts features from audio and video504

modalities, and then fuses them with text embed-505

dings to get two outer products, text-audio, and506

text-video. Finally, the external products are fed507

into CCA network, and their output is used to pre-508

dict.509

MG: Analyzing Unaligned Multimodal Sequence510

via Graph Convolution and Graph Pooling Fusion511

(MG) (Mai et al., 2020) first uses a graph convolu-512

Models
CMU-MOSEI

MAE↓ Corr↑ Acc-2↑ F1-Score↑ Acc-7↑

TFN(B)1 0.901 0.698 -/80.8 -/80.7 34.9
MFN(B)1 0.568 0.717 -/84.4 -/84.3 35.4

MG 0.608 0.675 -/81.4 -/81.7 49.7
MulT 0.580 0.703 -/82.5 -/82.3 51.8
ICCN 0.565 0.713 -/84.2 -/84.2 51.6
MISA 0.555 0.756 83.6/85.5 83.8/85.3 52.2
MAG3 0.539 0.753 83.7/85.2 83.7/85.0 -

Ours† 0.517 0.786 85.2/86.9 85.0/86.8 54.9

Table 2: Performances of multimodal models on CMU-
MOSEI. Best results are highlighted in bold. NOTE:
(B) means the language features are based on BERT; -
means the result is not given in the paper; 1 is from (Sun
et al., 2020) and 3 is from (Yu et al., 2021).

tional network to learn intra-modal dynamics for 513

each modality. Then, a graph pooling fusion net- 514

work is devised to automatically learn the associa- 515

tions between various nodes from different modali- 516

ties. 517

MISA: Modality-Invariant and -Specific Represen- 518

tations for Multimodal Sentiment Analysis (MISA) 519

(Hazarika et al., 2020) combines various losses, 520

including distribution similarity, orthogonal loss, 521

reconstruction loss, and task prediction loss, to 522

learn modality-invariant and modality-specific rep- 523

resentations. 524

MAG: Integrating Multimodal Information in 525

Large Pretrained Transformers (MAGT) (Rahman 526

et al., 2020) is an improved work on RAVEN, 527

which applies Multimodal Adaptive Gate (MAG) 528

on different layers of the BERT backbone. 529

MTAG: Modal-Temporal Attention Graph for Un- 530

aligned Human Multimodal Language Sequences 531

(Yang et al., 2021) first convert unaligned multi- 532

modal sequence data into a graph. Then, an op- 533

eration called MTAG is designed to capture the 534

various interactions among multimodalities. 535

For TFN, MFN, RMFN, and MulT, the language 536

features are based on GloVe, while ICCN, MISA, 537

MAG, Self-MM, and our model use language fea- 538

tures based on BERT. For the sake of fairness, 539

we also provide the results of these models using 540

BERT to obtain language features. 541

5.5 Comparison with Baselines 542

Table 1 shows the results of our model in compar- 543

ison with other models and humans on the CMU- 544

MOSI dataset. It can be observed that the model 545

proposed in this paper works better, and all the 546

evaluation metrics are better than other models. 547

As compared to other work that relies on graph 548
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Data View CMU-MOSI
MAE↓ Corr↑ Acc-2↑ F1-Score↑ Acc-7↑

No Compensate 0.652 0.820 85.7/88.2 85.7/88.2 50.2
Compensate 0.651 0.835 86.0/88.2 86.0/88.2 50.6

Table 3: Results for experiments on CMU-MOSI. We
compare the best results obtained with and without the
compensation operation on the CMU-MOSI dataset.

neural networks, like MTAG and GM, our model549

exhibits excellent performance. The reason is that550

our model takes into account the use of information551

from different subspaces to construct tri-modal in-552

teractions. And a text-dominant multimodal fusion553

scheme is designed. Also, Zadeh et al. (2018c)554

reported human performance results on the CMU-555

MOSI dataset. We can observe that performance556

results outperform human performance in binary557

classification (Acc-2) and regression tasks (MAE,558

Corr). To the best of our knowledge, the accuracy559

of binary classification exceeds that of humans for560

the first time.561

Table 2 shows the performance results of our562

model on the CMU-MOSEI dataset, where all eval-563

uation metrics outperform the other models. The564

performance exhibited by our model validates the565

usefulness of constructing multimodal interactions566

at the subspace level. Based on the evaluation re-567

sults of two publicly available datasets, our pro-568

posed model is successful for multimodal senti-569

ment analysis.570

5.6 Ablation Studies571

To verify the effectiveness of the proposed model,572

the following ablation experiments are designed.573

There are two questions.574

Question 1: Is it useful to compensate for the575

continuity within the modalities?576

Question 2: Is the splitting processing effective577

for multimodal sentiment analysis?578

For Question 1, we compare our proposed579

model on the CMU-MOSI dataset in different cases.580

These cases include the model with and without581

continuity complement. As shown in Table 3, the582

result of the model with complement is a little bet-583

ter than the model without complement. The ex-584

periment results demonstrate that although the im-585

provement of the complement is not obvious, the586

information of the modality continuity is disrupted587

by the splitting operation. Therefore, the comple-588

ment of internal continuity is required when the589

splitting operation is performed on modal informa-590

tion.591

Figure 4: Results for experiments on CMU-MOSI and
CMU-MOSEI. The performance exhibited by our model
under different fine-grained multimodal information. N
denotes the number of splits for each modality.

For Question 2, during the experiments, we split 592

multimodal information into different granularities, 593

keeping the rest of the hyper-parameters constant. 594

Figure 4 shows the results of the binary classifica- 595

tion obtained after splitting each modality for the 596

CMU-MOSI and CMU-MOSEI datasets, where N 597

denotes the number of nodes. And when N=1, it 598

means that the modal information will not be split, 599

that is, the original sampling rate will be main- 600

tained. The cases of N>1 are significantly better 601

than those for N=1. The results validate that in- 602

tegrating multimodal information at the subspace 603

level can improve the performance of sentiment 604

analysis. 605

6 Conclusion 606

In this paper, we propose a novel GFMAM attach- 607

ment, which can effectively fuse fine-grained mul- 608

timodal information at the subspace level for senti- 609

ment analysis. Without changing the architecture of 610

the original BERT, the fine-grained multimodal in- 611

formation is effectively fused with the graph struc- 612

ture. Furthermore, we demonstrate that multimodal 613

information is necessary for fine-grained interac- 614

tions by conducting ablation studies in our models. 615

The experimental results demonstrate the effective- 616

ness of the proposed method when doing sentiment 617

analysis tasks and show the best performance on 618

public datasets. 619

In the future, the fine-grained multimodal inter- 620

actions across multiple moments will be considered 621

to further improve the performance of the sentiment 622

analysis. 623

8



References624

Minghai Chen, Sen Wang, Paul Pu Liang, Tadas Bal-625
trušaitis, Amir Zadeh, and Louis-Philippe Morency.626
2017. Multimodal sentiment analysis with word-627
level fusion and reinforcement learning. In Proceed-628
ings of the 19th ACM International Conference on629
Multimodal Interaction, pages 163–171.630

Gilles Degottex, John Kane, Thomas Drugman, Tuomo631
Raitio, and Stefan Scherer. 2014. Covarep—a collab-632
orative voice analysis repository for speech technolo-633
gies. In 2014 ieee international conference on acous-634
tics, speech and signal processing (icassp), pages635
960–964. IEEE.636

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and637
Kristina Toutanova. 2019. BERT: Pre-training of638
deep bidirectional transformers for language under-639
standing. In Proceedings of the 2019 Conference of640
the North American Chapter of the Association for641
Computational Linguistics: Human Language Tech-642
nologies, Volume 1 (Long and Short Papers), pages643
4171–4186, Minneapolis, Minnesota. Association for644
Computational Linguistics.645

Paul Ekman and Erika L Rosenberg. 1997. What the646
face reveals: Basic and applied studies of sponta-647
neous expression using the Facial Action Coding Sys-648
tem (FACS). Oxford University Press, USA.649

Marco Gori, Gabriele Monfardini, and Franco Scarselli.650
2005. A new model for learning in graph domains.651
In Proceedings. 2005 IEEE International Joint Con-652
ference on Neural Networks, 2005., volume 2, pages653
729–734. IEEE.654

Devamanyu Hazarika, Roger Zimmermann, and Sou-655
janya Poria. 2020. Misa: Modality-invariant and-656
specific representations for multimodal sentiment657
analysis. In Proceedings of the 28th ACM Interna-658
tional Conference on Multimedia, pages 1122–1131.659

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long660
short-term memory. Neural computation, 9(8):1735–661
1780.662

Paul Pu Liang, Ziyin Liu, AmirAli Bagher Zadeh, and663
Louis-Philippe Morency. 2018. Multimodal lan-664
guage analysis with recurrent multistage fusion. In665
Proceedings of the 2018 Conference on Empirical666
Methods in Natural Language Processing, pages 150–667
161.668

Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshmi-669
narasimhan, Paul Pu Liang, Amir Zadeh, and Louis-670
Philippe Morency. 2018. Efficient low-rank multi-671
modal fusion with modality-specific factors. arXiv672
preprint arXiv:1806.00064.673

Sijie Mai, Haifeng Hu, and Songlong Xing. 2019. Di-674
vide, conquer and combine: Hierarchical feature fu-675
sion network with local and global perspectives for676
multimodal affective computing. In Proceedings of677
the 57th Annual Meeting of the Association for Com-678
putational Linguistics, pages 481–492.679

Sijie Mai, Songlong Xing, Jiaxuan He, Ying Zeng, and 680
Haifeng Hu. 2020. Analyzing unaligned multimodal 681
sequence via graph convolution and graph pooling 682
fusion. arXiv preprint arXiv:2011.13572. 683

Sijie Mai, Songlong Xing, and Haifeng Hu. 2021. Ana- 684
lyzing multimodal sentiment via acoustic-and visual- 685
lstm with channel-aware temporal convolution net- 686
work. IEEE/ACM Transactions on Audio, Speech, 687
and Language Processing, 29:1424–1437. 688

Jeffrey Pennington, Richard Socher, and Christopher D 689
Manning. 2014. Glove: Global vectors for word rep- 690
resentation. In Proceedings of the 2014 conference 691
on empirical methods in natural language processing 692
(EMNLP), pages 1532–1543. 693

Wasifur Rahman, Md Kamrul Hasan, Sangwu Lee, 694
Amir Zadeh, Chengfeng Mao, Louis-Philippe 695
Morency, and Ehsan Hoque. 2020. Integrating multi- 696
modal information in large pretrained transformers. 697
In Proceedings of the conference. Association for 698
Computational Linguistics. Meeting, volume 2020, 699
page 2359. NIH Public Access. 700

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus 701
Hagenbuchner, and Gabriele Monfardini. 2008. The 702
graph neural network model. IEEE transactions on 703
neural networks, 20(1):61–80. 704

Rico Sennrich, Barry Haddow, and Alexandra Birch. 705
2016. Neural machine translation of rare words with 706
subword units. In Proceedings of the 54th Annual 707
Meeting of the Association for Computational Lin- 708
guistics (Volume 1: Long Papers), pages 1715–1725. 709

Zhongkai Sun, Prathusha Sarma, William Sethares, and 710
Yingyu Liang. 2020. Learning relationships between 711
text, audio, and video via deep canonical correlation 712
for multimodal language analysis. In Proceedings 713
of the AAAI Conference on Artificial Intelligence, 714
volume 34, pages 8992–8999. 715

Zhongkai Sun, Prathusha K Sarma, Yingyu Liang, and 716
William Sethares. 2021. A new view of multi-modal 717
language analysis: Audio and video features as text 718
“styles”. In Proceedings of the 16th Conference of the 719
European Chapter of the Association for Computa- 720
tional Linguistics: Main Volume, pages 1956–1965. 721

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, 722
J Zico Kolter, Louis-Philippe Morency, and Ruslan 723
Salakhutdinov. 2019. Multimodal transformer for un- 724
aligned multimodal language sequences. In Proceed- 725
ings of the 57th Annual Meeting of the Association 726
for Computational Linguistics, pages 6558–6569. 727

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 728
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 729
Kaiser, and Illia Polosukhin. 2017. Attention is all 730
you need. In Advances in neural information pro- 731
cessing systems, pages 5998–6008. 732

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang 733
Ye, Peng Cui, and Philip S Yu. 2019a. Heterogeneous 734
graph attention network. In The World Wide Web 735
Conference, pages 2022–2032. 736

9

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Yansen Wang, Ying Shen, Zhun Liu, Paul Pu Liang,737
Amir Zadeh, and Louis-Philippe Morency. 2019b.738
Words can shift: Dynamically adjusting word repre-739
sentations using nonverbal behaviors. In Proceedings740
of the AAAI Conference on Artificial Intelligence, vol-741
ume 33, pages 7216–7223.742

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He,743
Richang Hong, and Tat-Seng Chua. 2019. Mmgcn:744
Multi-modal graph convolution network for person-745
alized recommendation of micro-video. In Proceed-746
ings of the 27th ACM International Conference on747
Multimedia, pages 1437–1445.748

Jennifer Williams, Steven Kleinegesse, Ramona Co-749
manescu, and Oana Radu. 2018. Recognizing emo-750
tions in video using multimodal DNN feature fusion.751
In Proceedings of Grand Challenge and Workshop752
on Human Multimodal Language (Challenge-HML),753
pages 11–19, Melbourne, Australia. Association for754
Computational Linguistics.755

Jianfeng Wu, Sijie Mai, and Haifeng Hu. 2021. Graph756
capsule aggregation for unaligned multimodal se-757
quences. In Proceedings of the 2021 International758
Conference on Multimodal Interaction, pages 521–759
529.760

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong761
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-762
prehensive survey on graph neural networks. IEEE763
transactions on neural networks and learning sys-764
tems, 32(1):4–24.765

Jianing Yang, Yongxin Wang, Ruitao Yi, Yuying Zhu,766
Azaan Rehman, Amir Zadeh, Soujanya Poria, and767
Louis-Philippe Morency. 2021. MTAG: Modal-768
temporal attention graph for unaligned human mul-769
timodal language sequences. In Proceedings of the770
2021 Conference of the North American Chapter of771
the Association for Computational Linguistics: Hu-772
man Language Technologies, pages 1009–1021, On-773
line. Association for Computational Linguistics.774

Wenmeng Yu, Hua Xu, Ziqi Yuan, and Jiele Wu. 2021.775
Learning modality-specific representations with self-776
supervised multi-task learning for multimodal sen-777
timent analysis. In Proceedings of the AAAI Con-778
ference on Artificial Intelligence, volume 35, pages779
10790–10797.780

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cam-781
bria, and Louis-Philippe Morency. 2017. Tensor782
fusion network for multimodal sentiment analysis.783
arXiv preprint arXiv:1707.07250.784

Amir Zadeh, Paul Pu Liang, Navonil Mazumder,785
Soujanya Poria, Erik Cambria, and Louis-Philippe786
Morency. 2018a. Memory fusion network for multi-787
view sequential learning. In Proceedings of the AAAI788
Conference on Artificial Intelligence, volume 32.789

Amir Zadeh, Paul Pu Liang, Louis-Philippe Morency,790
Soujanya Poria, Erik Cambria, and Stefan Scherer.791

2018b. Proceedings of grand challenge and work- 792
shop on human multimodal language (challenge- 793
hml). In Proceedings of Grand Challenge and Work- 794
shop on Human Multimodal Language (Challenge- 795
HML). 796

Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij, 797
Erik Cambria, and Louis-Philippe Morency. 2018c. 798
Multi-attention recurrent network for human com- 799
munication comprehension. In Thirty-Second AAAI 800
Conference on Artificial Intelligence. 801

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis- 802
Philippe Morency. 2016. Mosi: multimodal cor- 803
pus of sentiment intensity and subjectivity anal- 804
ysis in online opinion videos. arXiv preprint 805
arXiv:1606.06259. 806

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, 807
Erik Cambria, and Louis-Philippe Morency. 2018d. 808
Multimodal language analysis in the wild: Cmu- 809
mosei dataset and interpretable dynamic fusion graph. 810
In Proceedings of the 56th Annual Meeting of the As- 811
sociation for Computational Linguistics (Volume 1: 812
Long Papers), pages 2236–2246. 813

10

https://doi.org/10.18653/v1/W18-3302
https://doi.org/10.18653/v1/W18-3302
https://doi.org/10.18653/v1/W18-3302
https://www.aclweb.org/anthology/2021.naacl-main.79
https://www.aclweb.org/anthology/2021.naacl-main.79
https://www.aclweb.org/anthology/2021.naacl-main.79
https://www.aclweb.org/anthology/2021.naacl-main.79
https://www.aclweb.org/anthology/2021.naacl-main.79

