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Abstract

One-vs-rest training is a pervasive optimization regime in
deep learning, whether the problem is supervised, self-
supervised, or multi-modal in nature. The real world is
however not binary, but governed by hierarchies. Hier-
archies provide key information about the semantic rela-
tion between concepts, about which mistakes to avoid, and
about the inherent organization of vision and language it-
self. Hierarchical learning, therefore, has a long history in
computer vision and has gained further traction with the
rise of hyperbolic deep learning. Currently, however, hier-
archies are not standardized and centrally organized. In-
stead, such knowledge is scattered around various reposito-
ries, with inconsistent formatting, organizations, and avail-
ability. The lack of a central hub for hierarchies in vision
datasets harms the utility and reproducibility of hierarchi-
cal learning. This paper introduces HierVision, a central
hub for hierarchical knowledge in vision datasets. This hub
contains 60+ hierarchical sources, spanning actions, con-
cepts, fine-grained categories, vision-language, and more.
We outline a uniform coding of the hierarchies and proce-
dures to embed them in existing pipelines. With this hub, we
hope to positively impact the broad use and re-use of hierar-
chies for deep learning in computer vision. The HierVision
hub is available at: https://github.com/tkasarla/

HierVision

1. Introduction
Hierarchies are ubiquitous data structures across all sci-
ences; from lesion taxonomies in the medical domain to an-
imal ontologies in biology and semantic trees in natural lan-
guage [2, 82]. Such tree-like structures have been used for
centuries to organize our data and natural phenomena [1].
Computer vision deals with categorizing concepts from the
real world, and datasets are therefore commonly organized

hierarchically. Consider for example the WordNet hierar-
chy behind ImageNet [27], the biological ontology of birds
in CUB [117], or the tree of verbs in Kinetics [58].

Despite the widespread availability of hierarchical infor-
mation for computer vision, such knowledge is typically ig-
nored when training deep networks. Instead, one-versus-
rest optimization through cross-entropy and contrastive ob-
jectives are default options [22, 50]. Such a setup presents a
binary view to categorization, where classes are either pos-
itive or (equally) negative. As a result the standard deep
learning setup misses crucial hierarchical information about
class similarities. The lack of hierarchical usage negatively
impacts learning [53, 93, 126], generalization [93], error
severity [8], and more.

An important reason for the lack of hierarchical inte-
gration in modern deep learning for vision is a geomet-
ric mismatch. Deep learning is Euclidean by default. Hi-
erarchies are, however, exponentially growing structures,
which leads to distortion when embedding them in Eu-
clidean space [103], as Euclidean volumes grow only poly-
nomially with their radius [88]. Recently, hyperbolic learn-
ing has rapidly gained traction in computer vision [80], as a
natural space for embedding hierarchies [36, 88, 101, 115]
and therefore a natural solution for hierarchical computer
vision [3, 5, 29, 57, 74]. As a result, there is a growing
demand for hierarchical knowledge in vision datasets.

An important issue currently is that there is no central
hub for storing and sharing hierarchies. This does not align
with the best scientific practices and hampers research. Not
only are hierarchies arbitrarily hard to find depending on the
dataset, but they are also not standardized and can even be
altered. As such, it is unnecessarily hard to use hierarchies,
and reproducibility is low since it is unknown whether hi-
erarchies are identical. This paper introduces HierVision, a
central hub for sharing hierarchies in vision datasets. Our
goal is simple: create a continuous effort to store hierar-
chies for all vision datasets in a single place. Each hierar-
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chy is standardized in a single format for ease of use and
reproducibility. The hub also contains pipelines for visual-
ization, analysis, and integration in deep learning and hy-
perbolic embedding pipelines. With HierVision, we want to
make the community aware of the broad potential of hierar-
chical knowledge and the need for a central hub to organize
computer vision hierarchically.

2. Related Work

2.1. Hierarchical Datasets
For clarity, we categorize prominent dataset hierarchies into
two groups–those emphasizing semantic ontologies and
those following biological taxonomies.

Semantic hierarchies are typically derived from human-
defined knowledge bases or lexical resources. A founda-
tional example is the use of WordNet [82], a large lexical
database of English, to structure the ImageNet dataset [27].
This provided a rich, structured ontology that has been
instrumental in the development of deep learning mod-
els. Other prominent datasets include CIFAR-100 [61],
PASCAL-VOC [32], and OpenImages [62]. The BREEDS
benchmark, derived from ImageNet, explicitly uses the
class hierarchy to study robustness [102]. Such semantic
structures are not limited to object recognition and extend
to domains like medical imaging with datasets like CheX-
pert [109] and scene understanding with ADE20K [133].

The second category of datasets follows formal biolog-
ical taxonomies, providing a scientifically grounded struc-
ture for fine-grained visual categorization. These datasets
are critical for applications in biodiversity and conservation.
For example, iNaturalist [114] organizes species observa-
tions according to the taxonomic rank (kingdom, phylum,
class, etc.), ensuring that classes have a hierarchical rela-
tionship. TreeOfLife-10M and Rare Species [110], Classic
fine-grained benchmarks CUB [117] and NABirds [113] are
built on the taxonomy of species and genera, and datasets
like AutoArborist [7] structure tree images by botanical tax-
onomy.

2.2. Hierarchies enhance vision tasks
The use of hierarchies as a source of prior knowledge is
a long-standing concept in computer vision [27, 66, 78].
Classical approaches from the pre-deep learning era explic-
itly modeled the compositional nature of objects and scenes.
Part-based approaches, such as pictorial structures [35] and
grammar-based models [135], organize objects and scenes
into parts to improve image recognition and interpretability.
[34, 35, 75, 107, 135].

In the modern deep learning era, hierarchical knowledge
is integrated through various mechanisms such as class tax-
onomies, structured loss functions, and specialized archi-
tectures [8, 9, 38, 85]. These approaches improve many

tasks such including image classification [20, 53, 93], ac-
tion classification [43, 74], and robustness to distribution
shifts [102]. Hierarchical approaches were also used to
measure the severity of classification mistakes, where mis-
classifying an object as a close relative in the hierarchy is
penalized less severely [8, 9, 38, 39]. Furthermore, hierar-
chical information has been successfully incorporated into
contrastive learning [13, 14, 46], and vision-language mod-
els [37, 90]. The utility of hierarchical methods also ex-
tends to applied domains such as medical imaging [19] and
autonomous driving [83]. A common theme of these works
is their reliance on Euclidean geometry to model these hier-
archical relationships.

2.3. Hyperbolic learning
Hyperbolic learning has emerged as a powerful paradigm
for encoding and exploiting hierarchical relationships in vi-
sual data. Owing to the constant negative curvature of hy-
perbolic space, it can be thought of as a continuous version
of a tree, making it a good choice to accommodates tree-
like structures while preserving distances [48, 112]. In re-
cent years, hierarchical embeddings have been performed in
hyperbolic space [88], leading to successfully embedding
complex trees with low distortions [36, 63, 89, 101, 115,
129].

Many computer vision tasks inherently involve hierar-
chies, for example, semantic grouping or biological tax-
onomies (Sec. 2.1). A wide range of works have recently
shown the potential and effectiveness of using a hyper-
bolic embedding space for both supervised and unsuper-
vised learning [80]. Specifically, in supervised settings, the
hierarchical prior knowledge of the datasets can be embed-
ded in hyperbolic space, after which the visual representa-
tions can be mapped to the same space and optimized to
match this hierarchical organization [5, 57, 74]. Hyper-
bolic embeddings have shown benefits in classification [41,
45, 116], segmentation [3, 18], out-of-distribution detec-
tion [36, 57, 116], uncertainty quantification [3, 18], zero-
shot learning [4, 51, 69], continual learning [5, 25, 111],
hierarchical representation learning [29, 30, 72, 74], con-
trastive learning [40, 130], generative models [64, 95], and
vision-language models [28, 54, 92, 94]. Recently Ay-
oughi et al. [6] discussed optimal tree structure for hyper-
bolic embeddings.

3. Hierarchies
While the benefits of hierarchical information in computer
vision are well-established, its practical adoption has been
limited by fragmented and inconsistent hierarchy manage-
ment across datasets. Hierarchies exist in various formats,
from simple text files and custom XML/JSON to folder-
based organizations, which require custom parsing for each
data set. This fragmentation hinders reproducibility and the



development of hierarchical computer vision methods. To
address this, we introduce HierVision, a centralized hub that
standardizes hierarchy representation and enables seamless
integration with existing tools. In the following sections,
we first define a common hierarchy format that can be used
with graph processing library like NetworkX [47] (Sec-
tion 3.1). Then we briefly discuss our standardization pro-
cess (Section 3.2. We then discuss in detail the current
datasets (Section 3.3) and finally present some dataset hi-
erarchy statistics (Section 3.4).

3.1. Hierarchy format
To enable standardized storage and use of hierarchical infor-
mation across diverse vision datasets, we adopt a uniform
graph-based representation format. Each hierarchy is mod-
eled as a directed, rooted tree encoded in JSON. Formally,
we represent a hierarchy as a graph, G = (V,E), where
V is the set of nodes (e.g. dataset classes or parents) and
E ∈ V × V is the set of directed edges, such that an edge
(u, v) ∈ E denotes a parent-child relationship and node v
is a subclass of node u. In practice, each hierarchy is stored
in a JSON with the following components:
• "nodes": A list of nodes, each with an integer "id"

and a human-readable "label". These define the con-
cepts in the hierarchy.

• "links": A list of directed edges, each represented as a
with "source" and "target" keys indicating parent
and child node IDs, respectively.

• "directed": A boolean flag, always set to true.
• "multigraph": A boolean flag, always set to false,

enforcing at most one edge between any pair of nodes.
An excerpt of a simplified hierarchy is shown below:

1 {
2 "directed": true,
3 "multigraph": false,
4 "nodes": [
5 {"id": 3, "label": "root"},
6 {"id": 2, "label": "animal"},
7 {"id": 1, "label": "dog"},
8 {"id": 0, "label": "cat"}
9 ],

10 "links": [
11 {"source": 3, "target": 2},
12 {"source": 2, "target": 0},
13 {"source": 2, "target": 1}
14 ]
15 }

Listing 1. A sample JSON format of simple hierarchy. All
hierarchies in Hiervision follow this structure, allowing easy
visualization and use in downstream applications

In this example, "root" is the global ancestor of
all nodes, "animal" is a direct child of "root", and
both "cat" and "dog" are subclasses of "animal".
This structure is fully compatible with standard graph-
processing libraries, particularly NetworkX [47], which we

use throughout our implementation. Hierarchies can be di-
rectly loaded as networkx.DiGraph objects, enabling
efficient hierarchy traversal, visualization, validation, and
integration into hierarchical deep learning pipelines, includ-
ing those that rely on hyperbolic embeddings or hierarchy-
aware loss functions.

3.2. Standardizing the dataset hierarchies
We collect hierarchies from over 61 vision datasets span-
ning various domains such as object recognition, fine-
grained classification, action understanding, scene interpre-
tation, video analysis, and medical imaging. These hierar-
chies originate from either the dataset creators themselves
or other papers that construct or refine hierarchies of exist-
ing datasets for specific tasks. Across these sources, we ob-
serve significant variation in format: some hierarchies are
in graph-structured files (e.g., JSON, XML trees). Others
use flat lists with indentation or prefix-based identifiers to
imply structure. Some are only documented visually or em-
bedded in figures or tables in papers. These sources vary
significantly in format, structure, and accessibility, requir-
ing a standardization process.

To unify these into a standardized format, we add
each hierarchy into the JSON graph structure described in
Sec. 3.1. We parse and extract the node and edge structure.
We resolve any label inconsistences and add a single root
node. We validate the resulting graph using NetworkX to
ensure it forms a connected, directed tree.

In cases where multiple versions of a hierarchy exist
(e.g., fine vs. coarse levels), we store each version explic-
itly. This ensures that downstream tasks can choose the
level of abstraction best suited to their needs.

3.3. Dataset coverage
Our HierVision hub currently covers over 50 vision datasets
spanning a wide range of domains and recognition tasks.
The collection includes image classification datasets such as
CIFAR-100, ImageNet-100, ImageNet-1K, ImageNet-21K,
and iNaturalist; semantic segmentation datasets including
ADE20K and Cityscapes; action recognition datasets such
as Kinetics, ActivityNet, and FineSports; fine-grained cate-
gorization like CUB, FGVC-Aircraft, and TreeOfLife-10M;
and medical imaging datasets like CheXpert and DeepLe-
sion. Hierarchies in these datasets range from shallow
groupings of a few categories to deeply nested structures
with thousands of classes, reflecting both semantic and bi-
ological taxonomies. Further details, including taxonomy
type and hierarchy source, are summarized in Table 1.

Figure 1 shows visualizations of the hierarchical struc-
tures for six representative datasets: CIFAR-100 (semantic
object classification with a two-level hierarchy), Cityscapes
(urban scene segmentation with a class grouping tree),
RareSpecies (a deeply nested biological taxonomy), Ac-



tivityNet (action recognition with a hierarchical verb on-
tology), Moments in Time (an action dataset with a flat
class structure), and COCO-Stuff-10k (scene parsing with a
multi-level segmentation hierarchy). These examples high-
light the diversity in both the structure and scale of the hi-
erarchies, ranging from compact, balanced trees to large,
irregular graphs with hundreds or thousands of nodes.
ImageNet sources. For ImageNet-100, ImageNet-1K,, we
reproduce the hierarchies as published by their sources [6,
27, 67]. We do not alter labels, add or remove edges, or
resolve multiple inheritance beyond what is fixed upstream;
we re-encode the published structure in our JSON.

3.4. Hierarchy Statistics
We visualize statistics across all collected hierarchies to as-
sess their structural diversity. Figure 2 summarizes four key
aspects: node count, maximum depth, the relationship be-
tween node count and depth, and average branching factor.

Most hierarchies contain fewer than 1,000 classes,
though there is a long tail of large-scale taxonomies such
as TreeOfLife-10M [110], ImageNet-21K [98], and Bam-
boo [132], that reach tens or hundreds of thousands of nodes
(Figure 2a).

The majority of hierarchies are shallow, with depths of 2
or 3, as seen in datasets like CIFAR-100 and ADE20K (Fig-
ure 2b). However, a subset of datasets such as TreeOfLife-
10M [110] and Visual Genome [60] feature deeply nested
structures, with depths exceeding 10. The scatter plot of
node count versus maximum depth (Figure 2c) highlights
this diversity: some datasets combine high node counts and
depth, while others are both small and shallow.

Average branching factor calculates the average number
of children for each node, which also varies widely (Fig-
ure 2d). Biological taxonomies tend to be deep and bal-
anced, with low branching factors (1–3), while semantic hi-
erarchies such as ADE20K [133] and Objects-365 [104] are
broad and flat, with extremely high branching at the root.

3.5. Licensing & Maintenance
We redistribute hierarchical metadata only (class names
and edges), never images or videos. For each dataset we cite
the license and source (URL/DOI). To support reproducibil-
ity, we maintain semantic versioning at the hub level, at the
per-dataset hierarchy level, and for the JSON schema used
to encode them. Releases include a changelog, source ci-
tations, and integrity checks. Hierarchies are distributed in
a JSON graph format; users can compress or convert very
large files to Parquet, HDF5 locally if desired.

4. Integration into Deep Learning Pipelines
The standardized graph-based format adopted by HierVi-
sion enables seamless integration of hierarchical informa-
tion into modern deep learning workflows. In this section,

we outline typical approaches for incorporating hierarchies,
ranging from data loading and label preprocessing to ad-
vanced hierarchical loss design and representation learning.

Hierarchies stored in our JSON format can be loaded
directly using widely adopted graph libraries such as Net-
workX:

1 import json, networkx as nx
2 with open(’hierarchy.json’) as f:
3 graph_dict = json.load(f)
4 G = nx.node_link_graph(graph_dict)

Listing 2. Loading a hierarchy into networkx.

Once loaded as a graph object, the hierarchy can be
queried to obtain ancestor or descendant sets for each class,
compute semantic distances between nodes, or extract sub-
hierarchies for specialized tasks. Below, we discuss the rel-
evance of hierarchies to deep learning in euclidean space
(Section 4.1) and hyperbolic space (Section 4.2. Addition-
ally in hyperbolic learning, we show how the few of the
hierarchies can be embedded into hyperbolic space.

4.1. Relevance to Hierarchy-Aware Supervision
4.1.1. Hierarchy-Aware Label Representations and

Multi-Level Outputs
HierVision enables augmenting dataset labels with hierar-
chical context by allowing straightforward retrieval of par-
ent and ancestor labels for any fine-grained class. This
facilitates multi-task learning, where models predict class
probabilities at multiple hierarchical levels (e.g., object
category and super-category) simultaneously, typically via
auxiliary output heads and backpropagating loss at each
level [118, 126]. Such coarse-to-fine supervision guides
feature learning: high-level layers discern broad distinc-
tions, while deeper layers refine for fine-grained classifica-
tion.

Alternatively, hierarchical classification [106] predicts
sequentially, predicting a coarse category before spe-
cializing to specific subclasses [17, 70, 93, 118]. In
both approaches, HierVision’s standardized graph simpli-
fies retrieving relevant ancestor or child classes, ensuring
hierarchy-consistent predictions and providing interpretable
outputs at multiple levels of detail.

4.1.2. Hierarchy-Aware Loss Functions
HierVision facilitates the design of loss functions that ac-
count for inter-class relationships, moving beyond standard
cross-entropy’s uniform error penalty. By leveraging the hi-
erarchy, errors can be weighted by their distance in the tree
or reflected in structured objectives.

A classic example is hierarchical softmax [85], which
factors the prediction over a tree of classes. Instead of a



(a) CIFAR-100 (b) ActivityNet (c) Cityscapes

(d) RareSpecies (e) Moments in Time (f) COCO-Stuff-10k

Figure 1. Hierarchy visualizations for a selection of datasets form HierVision. The coverage in the repository hub ranges from small
number of classes and shallow trees to very large number of classes and deep trees.

flat N -class prediction, the model predicts a path from root
to leaf, decomposing the problem into a sequence of smaller
binary classification tasks. For a tree with internal nodes N ,
let y denote the true class and z the logits. The hierarchical
softmax decomposes the probability of class y as:

P (y | z) =
∏

n∈path(y)

P (n | parent(n), z) (1)

where path(y) is the sequence of nodes from the root to y.
The loss is then computed as the negative log-probability
along this path:

Lhier−softmax = − logP (y | z) (2)

This approach not only reduces computational cost for large
N but also implicitly aligns internal representations with the
taxonomy.

Beyond hierarchical softmax, cost-sensitive losses pe-
nalize mistakes according to taxonomy distance, e.g., based

on the length of the shortest path or the depth of the lowest
common ancestor (LCA) between the predicted class ŷ and
true class y [8]. Let d(y, ŷ) denote the tree distance between
classes. The loss can be defined as:

Lhier−LCA =

N∑
i=1

d(yi, ŷi) · ℓ(yi, ŷi) (3)

where ℓ is the standard loss (e.g., cross-entropy), and d(y, ŷ)
is typically the path length or a normalized form thereof.

Similarly, hierarchy-based label smoothing replaces one-
hot targets with soft distributions, assigning higher proba-
bility mass to classes near the ground truth in the hierar-
chy [8, 97, 99]. For each target y, define the smoothed label
ỹ as:

ỹj =
exp(−λ · d(y, j))∑N
k=1 exp(−λ · d(y, k))

(4)

where d(y, j) is the distance in the hierarchy between y and
j, and λ > 0 is a hyperparameter controlling the smooth-



Table 1. All hierarchies currently available in HierVision. Datasets with multiple hierarchy versions (e.g., coarse/fine) are marked with ∗

(reported version). If the hierarchy was sourced from another paper, it is cited in the “Hierarchy Source” column.

Dataset Hierarchy Source Original Format Nodes Edges Depth Classes

A
ctions/V

ideo

ActivityNet [15] - JSON 245 244 3 200
CMU MoCap [26] - WEB 306 305 3 280
FineSports [124] - PKL 65 64 2 52
HDM05 [86] - JSON 26 25 2 20
HowTo100M [81] - JSON 142 141 2 129
HumanAct12 [44] - NPY 47 46 2 34
Mini-Kinetics-200 [58, 123] - JSON 240 239 3 200
MIntRec∗ (all categories) [131] - TSV 25 24 2 22
Moments in Time [84] - JSON 486 485 4 339
Pseudo-Adverbs (ActivityNet) [31] - CSV 758 757 2 643
Pseudo-Adverbs (MSRVTT) [31] - CSV 571 570 2 464
Pseudo-Adverbs (VATEX) [31] - CSV 1686 1685 2 1550
Something-Something V2∗ (coarse to fine) [42, 76] [76] JSON 225 224 2 174
UCF101 [108] - CSV 127 126 3 101

B
iological

AwA2 [120] - TXT 86 85 3 50
BioTrove-Balanced [127] - CSV 826 825 7 300
BioTrove-LifeStages [127] - CSV 19 18 6 5
BioTrove-Unseen [127] - CSV 2497 2496 6 1672
CUB-200-2011 [117] - JSON 251 250 3 200
iNaturalist [114] - CSV 4214 4213 2 4200
MammalNet [21] - TSV 260 259 3 173
Marine Tree [11, 12] - CSV 79 78 5 62
NABirds [113] - TXT 1011 1010 4 555
Rare Species [110] - CSV 1024 1023 6 400
Tree of Life [110] - CSV 635463 635462 22 537235
VegFru-Fru92 [52] - JSON 103 102 2 92
VegFru-Veg200 [52] - JSON 216 215 2 200

M
edical

CheXpert [55] - CSV 15 14 3 11
DeepLesion [125] - CSV 172 171 5 117
MIMIC-CXR [55] - CSV 15 14 3 11
OpenCell [23] - CSV 17 16 3 11

O
bjects/G

eneral

Bamboo [132] - JSON 298307 298306 10 285340
Caltech-101 [65] - Folder 112 111 4 102
CIFAR-100 [61] - PKL 121 120 2 100
COCO-10K [16] [3] JSON 234 233 8 171
COD10K [33] - JSON 75 74 2 69
CORe50-Balanced [71] [5] TXT 70 69 4 50
CORe50-Unbalanced [71] [5] TXT 66 65 5 50
EgoObjects [134] [5] JSON 1665 1664 14 1179
FGVC-Aircraft [77] - TXT 201 200 3 100
Fashionpedia-Attributes [56] - JSON 306 305 2 294
Fashionpedia-Categories [56] - JSON 62 61 3 46
IP102 [119] - TXT 113 112 3 102
ImageNet-100∗ (ImageNet-100) [27] [67] Folder 121 120 2 100
ImageNet-1K [27] - Folder 1778 1777 8 1343
ImageNet-21K∗ (ImageNet-21K-P) [98] - Folder 74402 74401 19 57919
ImageNet-OOD∗ (ImageNet-21K-P) [128] [98] Folder 844 843 3 634
MAdVerse [100] - JSON 656 655 4 578
Matador [10] - WEB 82 81 5 59
Objects365 [104] - WEB 377 376 2 365
OpenLORIS [105] [5] JSON 98 97 7 69
OpenImages [62] - JSON 602 601 5 525
PASCAL VOC [32] [3] XML 36 35 6 21
Portrait Mode 400 [49] - CSV 446 445 3 400
Stanford Cars [59] - Folder 206 205 2 196
Stanford Online Products [91] - Folder 22634 22633 2 22622

Scenes/Places

ADE20K∗ (scene graph) [133] [3] JSON 1116 1115 2 1105
Cityscapes [24] - WEB 39 38 2 30
DLD3V-10K [68] - JSON 81 80 2 64
Grocery [79] - CSV 125 124 2 81
Mapillary Vistas [87] - JSON 81 80 3 66
Million-AID [73] - XML 74 73 3 51
PACO-EGO4D [96] - JSON 515 514 2 441
PACO-LVIS [96] - JSON 532 531 2 458
SUN360 [122] - WEB 378 377 3 356
SUN397 [121] - CSV 418 417 3 397
SUN908 [121] - WEB 925 924 3 904
Visual Genome [60] - JSON 10503 10502 18 6114



(a) Node Count Distribution (b) Max Depth Distribution

(c) Node count vs Max Depth (d) Average Branching Factor

Figure 2. Statistics and distributions of hierarchies in our HierVision collection.

ing. The loss is then the standard cross-entropy between the
prediction and ỹ:

Lhier−smooth = −
N∑
j=1

ỹj log pj (5)

where pj is the predicted probability for class j.
These hierarchy-aware objectives guide models to make

semantically meaningful predictions, improve error robust-
ness, and support finer-grained evaluation of learning per-
formance.

4.2. Hyperbolic Learning
Hyperbolic learning uses the properties of hyperbolic
space to better represent hierarchical relationships in vision
datasets. Unlike Euclidean space, hyperbolic space expands
exponentially, making it ideal for embedding tree-like tax-
onomies with minimal distortion. In practice, both class
labels and image features are embedded as points in a hy-
perbolic manifold (e.g., the Poincaré ball), so that distances
between points correspond to semantic or taxonomic prox-
imity in the hierarchy.

For hyperbolic learning with vision datasets, a typical
process has two main steps. Step 1 is embedding the hierar-

chy itself: the class tree is mapped into hyperbolic space
so that classes which are close in the hierarchy are also
close together in the embedding. This is usually done using
methods such as Poincaré embeddings [88] or entailment-
based approaches [36], which are specifically designed to
preserve the distances and relationships from the original
tree. The effectiveness of this embedding is measured
by two metrics following the hyperbolic learning litera-
ture [88, 101, 103]: distortion, which captures how well the
hyperbolic distances match the true tree structure (lower is
better), and mean average precision (mAP), which reflects
how well nearest neighbors in the embedding correspond to
true neighbors in the hierarchy (higher is better).

Step 2, as done in works like [5, 57, 74], involves learn-
ing: projecting image features produced by a neural net-
work into hyperbolic space and training them to align with
their respective class embeddings. This allows the model
to make predictions that are consistent with the structure of
the hierarchy.

In this section, we focus on Step 1 and analyze how well
different hyperbolic embedding methods can represent the
hierarchy itself in Table 2. Using standardized trees from
HierVision, we evaluate and compare several approaches



Poincaré [88] Entailment [36] BHE [57]

Dist mAP Dist mAP Dist mAP

CIFAR-100 [61] 0.713 0.162 0.18 0.623 0.026 0.885
ImageNet-100 [27] 0.450 0.119 0.20 65.91 0.095 0.746
CityScapes [24] 0.540 0.173 0.250 72.41 0.050 0.967
PASCAL-VOC [32] 0.477 0.122 0.182 0.692 0.05 0.837

Table 2. Hyperbolic embeddings of CIFAR-100, ImageNet-100,
Cityscapes and PASCAL-VOC in using different hyperbolic em-
bedding methods. Distortion and mAP [101] of the embeddings
measure how well the tree distances are embedded in the hyper-
bolic space.

on CIFAR-100, ImageNet-1k, ActivityNet, and CUB. For
each dataset, we report distortion and mAP scores to as-
sess how faithfully the class relationships are captured in
hyperbolic space. We use the hyperparameters defined in
Kasarla et al. [57] for generating the hyperbolic embeddings
of the methods, keeping hyperbolic dim = 64. In Table 2,
BHE [57] show better faithful tree embeddings. However,
for downstream tasks, any of these embeddings can be used
depending on the utility for the task.

The standardized JSON hierarchies in our hub make it
easy to plug in such methods – for example, one can directly
use NetworkX to compute ancestor relations or to feed the
graph into a Poincaré embedding algorithm to obtain initial
class vectors. The result is an integrated hyperbolic pipeline
where both the data and the output of the model are easily
integrated in the hyperbolic space.
Note on end-to-end usage. The HierVision hub pro-
vides reference training scripts for hyperbolic pipelines
that are intended as reproducible starting points, instan-
tiating common hyperbolic design choices on top of our
standardized hierarchies (e.g., CIFAR-100, ImageNet-100,
Cityscapes). Extensive empirical gains for hierarchy-aware
and hyperbolic learning have already been reported else-
where [3, 45, 57, 74, 116]; our contribution is to make
the underlying hierarchical resources easy to find, load, and
reuse.

5. Conclusion
We introduce HierVision, a hub for standardized hierarchi-
cal knowledge across a broad spectrum of visual recognition
datasets. By consolidating and curating over 61 hierarchies
from diverse domains and encoding them in a unified graph-
based format, we provide consistent, reproducible access to
structured label information. Our framework supports di-
rect integration with graph libraries like NetworkX and en-
ables hierarchical loss design, hyperbolic embeddings, and
large-scale benchmarking. Recently, Ayoughi et al. [6] dis-
cussed optimial tree structure for hyperbolic embeddings,
which can be further used to refine the existing hierarchies.

We believe that HierVision serves as a critical resource

for the vision community, promoting reproducibility, accel-
erating hierarchy-informed research, and enabling rigorous
benchmarking across a wide range of hierarchical struc-
tures. We shortlisted 40+ more hierarchies in the pipeline
to be added in the future. We invite community contribu-
tions to further expand and refine HierVision, and we hope
this hub will catalyze advances in hierarchical representa-
tion learning, benchmarking, and structured visual under-
standing at scale.
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ner, Kibeom Kim, André C Michaelis, Preethi Raghavan,
Hirofumi Kobayashi, Laura Savy, Jason Y Li, Hera Canaj,
et al. Opencell: Endogenous tagging for the cartography of
human cellular organization. Science, 375(6585):eabi6983,
2022. 6

[24] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, 2016. 6, 8

[25] Yawen Cui, Zitong Yu, Wei Peng, Qi Tian, and Li Liu. Re-
thinking few-shot class-incremental learning with open-set
hypothesis in hyperbolic geometry. IEEE Transactions on
Multimedia, 26:5897–5910, 2023. 2

[26] Fernando De la Torre, Jessica Hodgins, Adam Bargteil,
Xavier Martin, Justin Macey, Alex Collado, and Pep Bel-
tran. Guide to the carnegie mellon university multimodal
activity (cmu-mmac) database. 2009. 6

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255. IEEE, 2009. 1, 2,
4, 6, 8

[28] Karan Desai, Maximilian Nickel, Tanmay Rajpurohit,
Justin Johnson, and Shanmukha Ramakrishna Vedan-
tam. Hyperbolic image-text representations. In Interna-
tional Conference on Machine Learning, pages 7694–7731.
PMLR, 2023. 2

[29] Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario
Pavllo, Michael Greeff, and Andreas Krause. Hierarchical
image classification using entailment cone embeddings. In
CVPR Workshop on Differential Geometry in Computer Vi-
sion and Machine Learning, 2020. 1, 2

[30] Lars Doorenbos, Pablo Márquez-Neila, Raphael Sznitman,
and Pascal Mettes. Hyperbolic random forests. arXiv
preprint arXiv:2308.13279, 2023. 2

[31] Hazel Doughty and Cees G. M. Snoek. How Do You Do It?
Fine-Grained Action Understanding with Pseudo-Adverbs.
In The IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2022. 6

[32] Mark Everingham, Luc Van Gool, Christopher KI
Williams, John Winn, and Andrew Zisserman. The pascal
visual object classes (voc) challenge. International Journal
of Computer Vision, 88(2):303–338, 2010. 2, 6, 8



[33] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming
Cheng, Jianbing Shen, and Ling Shao. Camouflaged object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2777–2787,
2020. 6

[34] Clement Farabet, Camille Couprie, Laurent Najman, and
Yann LeCun. Learning hierarchical features for scene la-
beling. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1915–1929, 2012. 2

[35] Pedro F Felzenszwalb, Ross B Girshick, and David
McAllester. Cascade object detection with deformable part
models. In 2010 IEEE Computer society conference on
computer vision and pattern recognition, pages 2241–2248.
Ieee, 2010. 2

[36] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann.
Hyperbolic entailment cones for learning hierarchical em-
beddings. In International conference on machine learning,
pages 1646–1655. PMLR, 2018. 1, 2, 7, 8

[37] Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li,
Rongrong Ji, and Chunhua Shen. Pyramidclip: Hierarchi-
cal feature alignment for vision-language model pretrain-
ing. Advances in neural information processing systems,
35:35959–35970, 2022. 2

[38] Ashima Garg, Depanshu Sani, and Saket Anand. Learning
hierarchy aware features for reducing mistake severity. In
European Conference on Computer Vision, pages 252–267.
Springer, 2022. 2

[39] Ashima Garg, Depanshu Sani, and Saket Anand. Learning
hierarchy aware features for reducing mistake severity. In
European Conference on Computer Vision, pages 252–267.
Springer, 2022. 2

[40] Songwei Ge, Shlok Mishra, Simon Kornblith, Chun-Liang
Li, and David Jacobs. Hyperbolic contrastive learning for
visual representations beyond objects. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 6840–6849, 2023. 2

[41] Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal
Mettes. Hyperbolic busemann learning with ideal proto-
types. Advances in neural information processing systems,
34:103–115, 2021. 2

[42] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common sense.
In Proceedings of the IEEE international conference on
computer vision, pages 5842–5850, 2017. 6

[43] Sadaf Gulshad, Teng Long, and Nanne van Noord. Hier-
archical explanations for video action recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3703–3708, 2023. 2

[44] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2motion: Conditioned generation of 3d human motions.
In Proceedings of the 28th ACM International Conference
on Multimedia, pages 2021–2029, 2020. 6

[45] Yunhui Guo, Xudong Wang, Yubei Chen, and Stella X Yu.
Clipped hyperbolic classifiers are super-hyperbolic classi-

fiers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11–20, 2022.
2, 8

[46] Yuanfan Guo, Minghao Xu, Jiawen Li, Bingbing Ni, Xu-
anyu Zhu, Zhenbang Sun, and Yi Xu. Hcsc: Hierarchi-
cal contrastive selective coding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9706–9715, 2022. 2

[47] Aric Hagberg, Pieter J Swart, and Daniel A Schult. Explor-
ing network structure, dynamics, and function using net-
workx. Technical report, Los Alamos National Laboratory
(LANL), Los Alamos, NM (United States), 2008. 3

[48] Matthias Hamann. On the tree-likeness of hyperbolic
spaces. In Mathematical proceedings of the cambridge
philosophical society, pages 345–361. Cambridge Univer-
sity Press, 2018. 2

[49] Mingfei Han, Linjie Yang, Xiaojie Jin, Jiashi Feng, Xiao-
jun Chang, and Heng Wang. Video recognition in portrait
mode. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21831–
21841, 2024. 6

[50] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1

[51] Jie Hong, Zeeshan Hayder, Junlin Han, Pengfei Fang,
Mehrtash Harandi, and Lars Petersson. Hyperbolic audio-
visual zero-shot learning. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 7873–
7883, 2023. 2

[52] Qiwei Hou, Hongzhi Wu, Zilei Ye, Qian Qiu, Xiaokang
Yang, and Meng Wang Tang. Vegfru: A domain-specific
dataset for fine-grained visual categorization. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 541–549, 2017. 6

[53] Thomas Hoyoux, Antonio J Rodrı́guez-Sánchez, and Jus-
tus H Piater. Can computer vision problems benefit from
structured hierarchical classification? Machine Vision and
Applications, 27(8):1299–1312, 2016. 1, 2

[54] Sarah Ibrahimi, Mina Ghadimi Atigh, Nanne Van Noord,
Pascal Mettes, and Marcel Worring. Intriguing properties of
hyperbolic embeddings in vision-language models. Trans-
actions on Machine Learning Research, 2024. 2

[55] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,
Silviana Ciurea-Ilcus, Christopher Chute, Henrik Mark-
lund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,
Jake Seekins, David Mong, Safwan Halabi, Jacob Sand-
berg, Russell Jones, David Larson, Curtis Langlotz, B Patel,
and Matthew Lungren. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison. Ra-
diology: Artificial Intelligence, 1(1):e180057, 2019. 6

[56] Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui,
Claire Cardie, Bharath Hariharan, Hartwig Adam, and
Serge Belongie. Fashionpedia: Ontology, segmentation,
and an attribute localization dataset. In Computer vision–
ECCV 2020: 16th European conference, glasgow, UK, Au-
gust 23–28, 2020, proceedings, part i 16, pages 316–332.
Springer, 2020. 6



[57] Tejaswi Kasarla, Max van Spengler, and Pascal Mettes.
Balanced hyperbolic embeddings are natural out-of-
distribution detectors. arXiv preprint arXiv:2506.10146,
2025. 1, 2, 7, 8

[58] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950, 2017. 1, 6

[59] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
2013 IEEE International Conference on Computer Vision
Workshops, 2013. 6

[60] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David Shamma, Michael Bernstein, and Li
Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International
Journal of Computer Vision, 123(1):32–73, 2017. 4, 6

[61] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 2, 6, 8

[62] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui-
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Ste-
fan Popov, Marco Malloci, Alexander Kolesnikov, Tom
Duerig, et al. The open images dataset v4: Unified image
classification, object detection, and visual relationship de-
tection at scale. International Journal of Computer Vision,
128(7):1956–1981, 2020. 2, 6

[63] Marc Law, Renjie Liao, Jake Snell, and Richard Zemel.
Lorentzian distance learning for hyperbolic representations.
In International Conference on Machine Learning, pages
3672–3681. PMLR, 2019. 2

[64] Diego Lazcano, Nicolás Fredes Franco, and Werner Creix-
ell. Hgan: Hyperbolic generative adversarial network.
IEEE Access, 9:96309–96320, 2021. 2

[65] Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and
Pietro Perona. Caltech 101, 2022. 6

[66] Li-Jia Li, Chong Wang, Yongwhan Lim, David M Blei,
and Li Fei-Fei. Building and using a semantivisual im-
age hierarchy. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 3336–
3343. IEEE, 2010. 2

[67] Randolph Linderman, Jingyang Zhang, Nathan Inkawhich,
Hai Li, and Yiran Chen. Fine-grain inference on out-of-
distribution data with hierarchical classification. In Confer-
ence on Lifelong Learning Agents, pages 162–183. PMLR,
2023. 4, 6

[68] Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin,
Kun Wan, Lantao Yu, Qianyu Guo, Zixun Yu, Yawen Lu,
et al. Dl3dv-10k: A large-scale scene dataset for deep
learning-based 3d vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 22160–22169, 2024. 6

[69] Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah
Ngo, Tat-Seng Chua, and Yu-Gang Jiang. Hyperbolic visual
embedding learning for zero-shot recognition. In Proceed-

ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9273–9281, 2020. 2

[70] Yang Liu, Lei Zhou, Pengcheng Zhang, Xiao Bai, Lin Gu,
Xiaohan Yu, Jun Zhou, and Edwin R Hancock. Where to
focus: Investigating hierarchical attention relationship for
fine-grained visual classification. In European Conference
on Computer Vision, pages 57–73. Springer, 2022. 4

[71] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
dataset and benchmark for continuous object recognition.
In Conference on Robot Learning, pages 17–26, 2017. 6

[72] Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM
Snoek. Searching for actions on the hyperbole. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1141–1150, 2020. 2

[73] Yang Long, Gui-Song Xia, Shengyang Li, Wen Yang,
Michael Ying Yang, Xiao Xiang Zhu, Liangpei Zhang, and
Deren Li. On creating benchmark dataset for aerial image
interpretation: Reviews, guidances, and million-aid. IEEE
Journal of selected topics in applied earth observations and
remote sensing, 14:4205–4230, 2021. 6

[74] Zhitao Long, Deng Cai, and Wenqian Gan. Searching for
an effective and efficient hyperbolic representation for su-
pervised learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 18776–18788, 2020. 1,
2, 7, 8

[75] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan
Yang. Hierarchical convolutional features for visual track-
ing. In Proceedings of the IEEE international conference
on computer vision, pages 3074–3082, 2015. 2

[76] Farzaneh Mahdisoltani, Guillaume Berger, Waseem Ghar-
bieh, David Fleet, and Roland Memisevic. On the effective-
ness of task granularity for transfer learning. arXiv preprint
arXiv:1804.09235, 2018. 6

[77] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 6

[78] Marcin Marszalek and Cordelia Schmid. Semantic hierar-
chies for visual object recognition. In 2007 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
1–7. IEEE, 2007. 2

[79] Patricia Martinez-Gonzalez, Hedvig Kjellstrom, and
Javier J Romero. A grocery store image dataset with vi-
sual and semantic labels for object recognition. In 2019
IEEE Winter Conference on Applications of Computer Vi-
sion (WACV), 2019. 6

[80] Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel,
Jeffrey Gu, and Serena Yeung. Hyperbolic deep learning in
computer vision: A survey. International Journal of Com-
puter Vision, 132(9):3484–3508, 2024. 1, 2

[81] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTo100M: Learning a Text-Video Embedding by
Watching Hundred Million Narrated Video Clips. In ICCV,
2019. 6

[82] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995. 1, 2

[83] Safaa Abdullahi Moallim Mohamud, Minjin Baek, and
Dong Seog Han. Hierarchical question-answering for



driving scene understanding using vision-language models.
arXiv preprint arXiv:2506.02615, 2025. 2

[84] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan
Ramakrishnan, Sarah Bargal, Tian Yan, Yinan Lin, Lisa
Brown, Qingqiu Fan, Daniel Gutfruend, Carl Vondrick,
Aude Oliva, and Antonio Torralba. Moments in time
dataset: one million videos for event understanding. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 739–748, 2019. 6

[85] F Morin and Y Bengio. Hierarchical probabilistic neural
network language model. In Proceedings of the Tenth Inter-
national Workshop on Artificial Intelligence and Statistics
(AISTATS), pages 246–252, 2005. 2, 4
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