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Abstract

One-vs-rest training is a pervasive optimization regime in001
deep learning, whether the problem is supervised, self-002
supervised, or multi-modal in nature. The real world is003
however not binary, but governed by hierarchies. Hier-004
archies provide key information about the semantic rela-005
tion between concepts, about which mistakes to avoid, and006
about the inherent organization of vision and language it-007
self. Hierarchical learning, therefore, has a long history in008
computer vision and has gained further traction with the009
rise of hyperbolic deep learning. Currently, however, hier-010
archies are not standardized and centrally organized. In-011
stead, such knowledge is scattered around various reposito-012
ries, with inconsistent formatting, organizations, and avail-013
ability. The lack of a central hub for hierarchies in vision014
datasets harms the utility and reproducibility of hierarchi-015
cal learning. This paper introduces HierVision, a central016
hub for hierarchical knowledge in vision datasets. This hub017
contains 60+ hierarchical sources, spanning actions, con-018
cepts, fine-grained categories, vision-language, and more.019
We outline a uniform coding of the hierarchies and proce-020
dures to embed them in existing pipelines. With this hub,021
we hope to positively impact the broad use and re-use of022
hierarchies for deep learning in computer vision.023

1. Introduction024

Hierarchies are ubiquitous data structures across all sci-025
ences; from lesion taxonomies in the medical domain to an-026
imal ontologies in biology and semantic trees in natural lan-027
guage [2, 82]. Such tree-like structures have been used for028
centuries to organize our data and natural phenomena [1].029
Computer vision deals with categorizing concepts from the030
real world, and datasets are therefore commonly organized031
hierarchically. Consider for example the WordNet hierar-032
chy behind ImageNet [26], the biological ontology of birds033
in CUB [117], or the tree of verbs in Kinetics [58].034

Despite the widespread availability of hierarchical infor-035

mation for computer vision, such knowledge is typically ig- 036
nored when training deep networks. Instead, one-versus- 037
rest optimization through cross-entropy and contrastive ob- 038
jectives are default options [21, 50]. Such a setup presents a 039
binary view to categorization, where classes are either pos- 040
itive or (equally) negative. As a result the standard deep 041
learning setup misses crucial hierarchical information about 042
class similarities. The lack of hierarchical usage negatively 043
impacts learning [53, 93, 126], generalization [93], error 044
severity [8], and more. 045

An important reason for the lack of hierarchical inte- 046
gration in modern deep learning for vision is a geomet- 047
ric mismatch. Deep learning is Euclidean by default. Hi- 048
erarchies are, however, exponentially growing structures, 049
which leads to distortion when embedding them in Eu- 050
clidean space [103], as Euclidean volumes grow only poly- 051
nomially with their radius [88]. Recently, hyperbolic learn- 052
ing has rapidly gained traction in computer vision [80], as a 053
natural space for embedding hierarchies [36, 88, 101, 115] 054
and therefore a natural solution for hierarchical computer 055
vision [3, 5, 28, 57, 74]. As a result, there is a growing 056
demand for hierarchical knowledge in vision datasets. 057

An important issue currently is that there is no central 058
hub for storing and sharing hierarchies. This does not align 059
with the best scientific practices and hampers research. Not 060
only are hierarchies arbitrarily hard to find depending on the 061
dataset, but they are also not standardized and can even be 062
altered. As such, it is unnecessarily hard to use hierarchies, 063
and reproducibility is low since it is unknown whether hi- 064
erarchies are identical. This paper introduces HierVision, a 065
central hub for sharing hierarchies in vision datasets. Our 066
goal is simple: create a continuous effort to store hierar- 067
chies for all vision datasets in a single place. Each hierarchy 068
is standardized in a single format for ease of use and repro- 069
ducibility. The hub also contains pipelines for visualization, 070
analysis, and integration in deep learning and hyperbolic 071
embedding pipelines. With HierVision, we want to make 072
the community aware of the broad potential of hierarchi- 073
cal knowledge and the need for a central hub to organized 074
computer vision hierarchically. 075
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2. Related Work076

2.1. Hierarchical Datasets077

For clarity, we categorize prominent dataset hierarchies into078
two groups–those emphasizing semantic ontologies and079
those following biological taxonomies.080

Semantic hierarchies are typically derived from human-081
defined knowledge bases or lexical resources. A founda-082
tional example is the use of WordNet [82], a large lexical083
database of English, to structure the ImageNet dataset [26].084
This provided a rich, structured ontology that has been085
instrumental in the development of deep learning mod-086
els. Other prominent datasets include CIFAR-100 [61],087
PASCAL-VOC [31], and OpenImages [62]. The BREEDS088
benchmark, derived from ImageNet, explicitly uses the089
class hierarchy to study robustness [102]. Such semantic090
structures are not limited to object recognition and extend091
to domains like medical imaging with datasets like CheX-092
pert [109] and scene understanding with ADE20K [133].093

The second category of datasets follows formal biolog-094
ical taxonomies, providing a scientifically grounded struc-095
ture for fine-grained visual categorization. These datasets096
are critical for applications in biodiversity and conservation.097
For example, iNaturalist [114] organizes species observa-098
tions according to the taxonomic rank (kingdom, phylum,099
class, etc.), ensuring that classes have a hierarchical rela-100
tionship. TreeOfLife-10M and Rare Species [110], Classic101
fine-grained benchmarks CUB [117] and NABirds [113] are102
built on the taxonomy of species and genera, and datasets103
like AutoArborist [7] structure tree images by botanical tax-104
onomy.105

2.2. Hierarchies enhance vision tasks106

The use of hierarchies as a source of prior knowledge is107
a long-standing concept in computer vision [26, 66, 78].108
Classical approaches from the pre-deep learning era explic-109
itly modeled the compositional nature of objects and scenes.110
Part-based approaches, such as pictorial structures [35] and111
grammar-based models [134], organize objects and scenes112
into parts to improve image recognition and interpretability.113
[34, 35, 75, 107, 134].114

In the modern deep learning era, hierarchical knowledge115
is integrated through various mechanisms such as class tax-116
onomies, structured loss functions, and specialized archi-117
tectures [8, 9, 38, 85]. These approaches improve many118
tasks such including image classification [19, 53, 93], ac-119
tion classification [43, 74], and robustness to distribution120
shifts [102]. Hierarchical approaches were also used to121
measure the severity of classification mistakes, where mis-122
classifying an object as a close relative in the hierarchy is123
penalized less severely [8, 9, 38, 39]. Furthermore, hierar-124
chical information has been successfully incorporated into125
contrastive learning [12, 13, 46], and vision-language mod-126

els [37, 90]. The utility of hierarchical methods also ex- 127
tends to applied domains such as medical imaging [18] and 128
autonomous driving [83]. A common theme of these works 129
is their reliance on Euclidean geometry to model these hier- 130
archical relationships. 131

2.3. Hyperbolic learning 132

Hyperbolic learning has emerged as a powerful paradigm 133
for encoding and exploiting hierarchical relationships in vi- 134
sual data. Owing to the constant negative curvature of hy- 135
perbolic space, it can be thought of as a continuous version 136
of a tree, making it a good choice to accommodates tree- 137
like structures while preserving distances [48, 112]. In re- 138
cent years, hierarchical embeddings have been performed in 139
hyperbolic space [88], leading to successfully embedding 140
complex trees with low distortions [36, 63, 89, 101, 115, 141
129]. 142

Many computer vision tasks inherently involve hierar- 143
chies, for example, semantic grouping or biological tax- 144
onomies (Sec. 2.1). A wide range of works have recently 145
shown the potential and effectiveness of using a hyper- 146
bolic embedding space for both supervised and unsuper- 147
vised learning [80]. Specifically, in supervised settings, the 148
hierarchical prior knowledge of the datasets can be embed- 149
ded in hyperbolic space, after which the visual representa- 150
tions can be mapped to the same space and optimized to 151
match this hierarchical organization [5, 57, 74]. Hyper- 152
bolic embeddings have shown benefits in classification [41, 153
45, 116], segmentation [3, 17], out-of-distribution detec- 154
tion [36, 57, 116], uncertainty quantification [3, 17], zero- 155
shot learning [4, 51, 69], continual learning [5, 24, 111], 156
hierarchical representation learning [28, 29, 72, 74], con- 157
trastive learning [40, 130], generative models [64, 95], and 158
vision-language models [27, 54, 92, 94]. Recently Ay- 159
oughi et al. [6] discussed optimial tree structure for hyper- 160
bolic embeddings. 161

3. Hierarchies 162

While the benefits of hierarchical information in computer 163
vision are well-established, its practical adoption has been 164
limited by fragmented and inconsistent hierarchy manage- 165
ment across datasets. Hierarchies exist in various formats, 166
from simple text files and custom XML/JSON to folder- 167
based organizations, which require custom parsing for each 168
data set. This fragmentation hinders reproducibility and the 169
development of hierarchical computer vision methods. To 170
address this, we introduce HierVision, a centralized hub that 171
standardizes hierarchy representation and enables seamless 172
integration with existing tools. In the following sections, 173
we first define a common hierarchy format that can be used 174
with graph processing library like NetworkX [47] (Sec- 175
tion 3.1). Then we briefly discuss describe our standardiza- 176
tion process (Section 3.2. We then discuss in detail the cur- 177
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rent datasets (Section 3.3) and finally present some dataset178
hierarchy statistics (Section 3.4).179

3.1. Hierarchy format180

To enable standardized storage and use of hierarchical infor-181
mation across diverse vision datasets, we adopt a uniform182
graph-based representation format. Each hierarchy is mod-183
eled as a directed, rooted tree encoded in JSON. Formally,184
we represent a hierarchy as a graph, G = (V,E), where185
V is the set of nodes (e.g. dataset classes or parents) and186
E ∈ V × V is the set of directed edges, such that an edge187
(u, v) ∈ E denotes a parent-child relationship and node v188
is a subclass of node u. In practice, each hierarchy is stored189
in a JSON with the following components:190

• "nodes": A list of nodes, each with an integer "id"191
and a human-readable "label". These define the con-192
cepts in the hierarchy.193

• "links": A list of directed edges, each represented as a194
with "source" and "target" keys indicating parent195
and child node IDs, respectively.196

• "directed": A boolean flag, always set to true.197
• "multigraph": A boolean flag, always set to false,198

enforcing at most one edge between any pair of nodes.199

An excerpt of a simplified hierarchy is shown below:200

1 {201
2 "directed": true,202
3 "multigraph": false,203
4 "nodes": [204
5 {"id": 3, "label": "root"},205
6 {"id": 2, "label": "animal"},206
7 {"id": 1, "label": "dog"},207
8 {"id": 0, "label": "cat"}208
9 ],209

10 "links": [210
11 {"source": 3, "target": 2},211
12 {"source": 2, "target": 0},212
13 {"source": 2, "target": 1}213
14 ]214
15 }215

Listing 1. A sample JSON format of simple hierarchy. All
hierarchies in Hiervision follow this structure, allowing easy
visualization and use in downstream applications

In this example, "root" is the global ancestor of216
all nodes, "animal" is a direct child of "root", and217
both "cat" and "dog" are subclasses of "animal".218
This structure is fully compatible with standard graph-219
processing libraries, particularly NetworkX [47], which we220
use throughout our implementation. Hierarchies can be di-221
rectly loaded as networkx.DiGraph objects, enabling222
efficient hierarchy traversal, visualization, validation, and223
integration into hierarchical deep learning pipelines, includ-224
ing those that rely on hyperbolic embeddings or hierarchy-225
aware loss functions.226

3.2. Standardizing the dataset hierarchies 227

We collect hierarchies from over 61 vision datasets span- 228
ning various domains such as object recognition, fine- 229
grained classification, action understanding, scene interpre- 230
tation, video analysis, and medical imaging. These hierar- 231
chies originate from either the dataset creators themselves 232
or other papers that construct or refine hierarchies of exist- 233
ing datasets for specific tasks. Across these sources, we ob- 234
serve significant variation in format: some hierarchies are 235
in graph-structured files (e.g., JSON, XML trees). Others 236
use flat lists with indentation or prefix-based identifiers to 237
imply structure. Some are only documented visually or em- 238
bedded in figures or tables in papers. These sources vary 239
significantly in format, structure, and accessibility, requir- 240
ing a standardization process. 241

To unify these into a standardized format, we add 242
each hierarchy into the JSON graph structure described in 243
Sec. 3.1. We parse and extract the node and edge structure. 244
We resolve any label inconsistences and add a single root 245
node. We validate the resulting graph using NetworkX to 246
ensure it forms a connect, directed tree. 247

In cases where multiple versions of a hierarchy exist 248
(e.g., fine vs. coarse levels), we store each version explic- 249
itly. This ensures that downstream tasks can choose the 250
level of abstraction best suited to their needs. 251

3.3. Dataset coverage 252

Our HierVision hub currently covers over 50 vision datasets 253
spanning a wide range of domains and recognition tasks. 254
The collection includes image classification datasets such as 255
CIFAR-100, ImageNet-100, ImageNet-1K, ImageNet-21K, 256
and iNaturalist; semantic segmentation datasets including 257
ADE20K and Cityscapes; action recognition datasets such 258
as Kinetics, ActivityNet, and FineSports; fine-grained cat- 259
egorization with CUB, FGVC-Aircraft, and TreeOfLife- 260
10M; and medical imaging datasets like CheXpert and 261
DeepLesion. Hierarchies in these datasets range from shal- 262
low groupings of a few categories to deeply nested struc- 263
tures with thousands of classes, reflecting both semantic and 264
biological taxonomies. Further details, including taxonomy 265
type and hierarchy source, are summarized in Table 1. 266

Figure 1 shows visualizations of the hierarchical struc- 267
tures for six representative datasets: CIFAR-100 (semantic 268
object classification with a two-level hierarchy), Cityscapes 269
(urban scene segmentation with a class grouping tree), 270
RareSpecies (a deeply nested biological taxonomy), Ac- 271
tivityNet (action recognition with a hierarchical verb on- 272
tology), Moments in Time (an action dataset with a flat 273
class structure), and COCO-Stuff-10k (scene parsing with a 274
multi-level segmentation hierarchy). These examples high- 275
light the diversity in both the structure and scale of the hi- 276
erarchies, ranging from compact, balanced trees to large, 277
irregular graphs with hundreds or thousands of nodes. 278
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(a) CIFAR-100 (b) ActivityNet (c) Cityscapes

(d) RareSpecies (e) Moments in Time (f) COCO-Stuff-10k

Figure 1. Hierarchy visualizations for a selection of datasets form HierVision. The coverage in the repository hub ranges from small
number of classes and shallow trees to very large number of classes and deep trees.

3.4. Hierarchy Statistics279

We visualize statistics across all collected hierarchies to as-280
sess their structural diversity. Figure 2 summarizes four key281
aspects: node count, maximum depth, the relationship be-282
tween node count and depth, and average branching factor.283

Most hierarchies contain fewer than 1,000 classes,284
though there is a long tail of large-scale taxonomies such285
as TreeOfLife-10M [110], ImageNet-21K [98], and Bam-286
boo [132], that reach tens or hundreds of thousands of nodes287
(Figure 2a).288

The majority of hierarchies are shallow, with depths of289
2 or 3, as seen in datasets like CIFAR-100 and ADE20K290
(Figure 2b). However, a subset—including TreeOfLife-291
10M [110] and Visual Genome [60]—features deeply292
nested structures, with depths exceeding 10. The scat-293
ter plot of node count versus maximum depth (Figure 2c)294
highlights this diversity: some datasets combine high node295
counts and depth, while others are both small and shallow.296

Average branching factor calculates the average number297

of children for each node, which also varies widely (Fig- 298
ure 2d). Biological taxonomies tend to be deep and bal- 299
anced, with low branching factors (1–3), while semantic hi- 300
erarchies such as ADE20K [133] and Objects-365 [104] are 301
broad and flat, with extremely high branching at the root. 302

4. Integration into Deep Learning Pipelines 303

The standardized graph-based format adopted by HierVi- 304
sion enables seamless integration of hierarchical informa- 305
tion into modern deep learning workflows. In this section, 306
we outline typical approaches for incorporating hierarchies, 307
ranging from data loading and label preprocessing to ad- 308
vanced hierarchical loss design and representation learning. 309

310

Hierarchies stored in our JSON format can be loaded 311
directly using widely adopted graph libraries such as Net- 312
workX: 313
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Table 1. All hierarchies available currently in HierVision. Datasets with multiple hierarchy versions (e.g., coarse/fine) are marked with ∗.
If the hierarchy was sourced from another paper, it is cited in the “Hierarchy Source” column.

Dataset Hierarchy Source Original Format Nodes Edges Depth Classes

A
ctions/V

ideo

ActivityNet [14] - JSON 245 244 3 200
DLD3V-10K [68] - JSON 81 80 2 64
FineSports [124] - PKL 65 64 2 52
HDM05 [86] - JSON 26 25 2 20
HowTo100M [81] - JSON 142 141 2 129
HumanAct12 [44] - NPY 47 46 2 34
MAdVerse [100] - JSON 653 655 4 578
Matador [10] - WEB 82 81 5 59
Mini-Kinetics-200 [58, 123] - JSON 240 239 3 200
MIntRec∗ [131] - TSV 25 24 2 22
Moments in Time [84] - JSON 486 485 4 339
Pseudo-Adverbs (ActivityNet) [30] - CSV 758 757 2 643
Pseudo-Adverbs (MSRVTT) [30] - CSV 571 570 2 464
Pseudo-Adverbs (VATEX) [30] - CSV 1686 1685 2 1550
Something-Something V2∗ [42, 76] [76] JSON 225 224 2 174
UCF101 [108] - CSV 127 126 3 100

B
iological

AwA2 [120] - TXT 86 85 3 50
BioTrove-Balanced [127] - CSV 818 823 7 292
BioTrove-LifeStages [127] - CSV 19 18 6 5
BioTrove-Unseen [127] - CSV 4413 4703 7 1918
CUB-200-2011 [117] - JSON 251 250 3 200
iNaturalist [114] - CSV 4214 4213 2 4200
MammalNet [20] - TSV 260 264 3 173
Marine Tree [11] - CSV 79 78 5 62
NABirds [113] - TXT 1011 1010 4 555
Rare Species [110] - CSV 1009 1023 6 385
Tree of Life [110] - CSV 635463 635462 22 537235
VegFru-Fru92 [52] - JSON 103 102 2 92
VegFru-Veg200 [52] - JSON 216 215 2 200

M
edical

CheXpert [55] - CSV 15 15 2 11
DeepLesion [125] - CSV 172 273 2 117
MIMIC-CXR [55] - CSV 15 15 2 11
OpenCell [22] - CSV 17 16 3 11

O
bjects/G

eneral

Bamboo [132] - JSON 298307 245557 2 285340
Caltech-101 [65] - Folder 113 113 4 102
CIFAR-100 [61] - PKL 121 120 2 100
CMU MoCap [25] - WEB 306 305 3 280
COCO-10K [15] [3] JSON 234 233 8 171
COD10K [32] - JSON 75 74 2 69
CORe50-Balanced [71] - TXT 70 69 4 50
CORe50-Unbalanced [71] - TXT 66 65 5 50
EgoObjects [33] - JSON 1665 1664 14 1179
FGVC-Aircraft [77] - TXT 201 200 3 100
Fashionpedia-Attributes [56] - JSON 306 305 2 294
Fashionpedia-Categories [56] - JSON 62 61 3 46
IP102 [119] - TXT 113 112 3 102
ImageNet-100∗ [26] [67] Folder 121 120 2 100
ImageNet-1K [26] - Folder 1763 1776 13 1010
ImageNet-21K∗ [98] - Folder 10891 11734 18 7414
ImageNet-OOD∗ [128] [98] Folder 954 967 13 630
Objects365 [104] - WEB 377 376 2 365
OpenLORIS [105] - JSON 98 97 7 69
OpenImages [62] - JSON 603 648 5 525
PASCAL VOC [31] [3] XML 36 35 6 21
Portrait Mode 400 [49] - CSV 446 445 3 400
Stanford Cars [59] - Folder 206 205 2 196
Stanford Online Products [91] - Folder 22634 22633 2 22622

Scenes/Places

ADE20K∗ [133] [3] JSON 1116 1115 2 1105
Cityscapes [23] - WEB 39 38 2 30
Grocery [79] - CSV 125 124 2 81
Mapillary Vistas [87] - JSON 81 80 3 66
Million-AID [73] - XML 74 73 3 51
PACO-EGO4D [96] - JSON 515 514 2 441
PACO-LVIS [96] - JSON 532 531 2 458
SUN360 [122] - WEB 378 377 3 356
SUN397 [121] - CSV 418 544 3 397
SUN908 [121] - WEB 925 1088 3 904
Visual Genome [60] - JSON 10503 10502 18 6114
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(a) Node Count Distribution (b) Max Depth Distribution

(c) Node count vs Max Depth (d) Average Branching Factor

Figure 2. Statistics and distributions of hierarchies in our HierVision collection.

1 import json, networkx as nx314
2 with open(’hierarchy.json’) as f:315
3 graph_dict = json.load(f)316
4 G = nx.node_link_graph(graph_dict)317

Listing 2. Loading a hierarchy into networkx.

Once loaded as a graph object, the hierarchy can be318
queried to obtain ancestor or descendant sets for each class,319
compute semantic distances between nodes, or extract sub-320
hierarchies for specialized tasks. Below, we discuss the rel-321
evance of hierarchies to deep learning in euclidean space322
(Section 4.1) and hyperbolic space (Section 4.2. Addition-323
ally in hyperbolic learning, we show how the few of the324
hierarchies can be embedded into hyperbolic space.325

4.1. Relevance to Hierarchy-Aware Supervision326

4.1.1. Hierarchy-Aware Label Representations and327
Multi-Level Outputs328

HierVision enables augmenting dataset labels with hierar-329
chical context by allowing straightforward retrieval of par-330
ent and ancestor labels for any fine-grained class. This331
facilitates multi-task learning, where models predict class332
probabilities at multiple hierarchical levels (e.g., object333
category and super-category) simultaneously, typically via334

auxiliary output heads and backpropagating loss at each 335
level [118, 126]. Such coarse-to-fine supervision guides 336
feature learning: high-level layers discern broad distinc- 337
tions, while deeper layers refine for fine-grained classifica- 338
tion. 339

Alternatively, hierarchical classification [106] predicts 340
sequentially, predicting a coarse category before spe- 341
cializing to specific subclasses [16, 70, 93, 118]. In 342
both approaches, HierVision’s standardized graph simpli- 343
fies retrieving relevant ancestor or child classes, ensuring 344
hierarchy-consistent predictions and providing interpretable 345
outputs at multiple levels of detail. 346

4.1.2. Hierarchy-Aware Loss Functions 347

HierVision facilitates the design of loss functions that ac- 348
count for inter-class relationships, moving beyond standard 349
cross-entropy’s uniform error penalty. By leveraging the hi- 350
erarchy, errors can be weighted by their distance in the tree 351
or reflected in structured objectives. 352

A classic example is hierarchical softmax [85], which 353
factors the prediction over a tree of classes. Instead of a 354
flat N -class prediction, the model predicts a path from root 355
to leaf, decomposing the problem into a sequence of smaller 356
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binary classification tasks. For a tree with internal nodes N ,357
let y denote the true class and z the logits. The hierarchical358
softmax decomposes the probability of class y as:359

P (y | z) =
∏

n∈path(y)

P (n | parent(n), z) (1)360

where path(y) is the sequence of nodes from the root to y.361
The loss is then computed as the negative log-probability362
along this path:363

Lhier−softmax = − logP (y | z) (2)364

This approach not only reduces computational cost for large365
N but also implicitly aligns internal representations with the366
taxonomy.367

Beyond hierarchical softmax, cost-sensitive losses pe-368
nalize mistakes according to taxonomy distance, e.g., based369
on the length of the shortest path or the depth of the lowest370
common ancestor (LCA) between the predicted class ŷ and371
true class y [8]. Let d(y, ŷ) denote the tree distance between372
classes. The loss can be defined as:373

Lhier−LCA =

N∑
i=1

d(yi, ŷi) · ℓ(yi, ŷi) (3)374

where ℓ is the standard loss (e.g., cross-entropy), and d(y, ŷ)375
is typically the path length or a normalized form thereof.376

Similarly, hierarchy-based label smoothing replaces one-377
hot targets with soft distributions, assigning higher proba-378
bility mass to classes near the ground truth in the hierar-379
chy [8, 97, 99]. For each target y, define the smoothed label380
ỹ as:381

ỹj =
exp(−λ · d(y, j))∑N
k=1 exp(−λ · d(y, k))

(4)382

where d(y, j) is the distance in the hierarchy between y and383
j, and λ > 0 is a hyperparameter controlling the smooth-384
ing. The loss is then the standard cross-entropy between the385
prediction and ỹ:386

Lhier−smooth = −
N∑
j=1

ỹj log pj (5)387

where pj is the predicted probability for class j.388
These hierarchy-aware objectives guide models to make389

semantically meaningful predictions, improve error robust-390
ness, and support finer-grained evaluation of learning per-391
formance.392

4.2. Hyperbolic Learning393

Hyperbolic learning uses the properties of hyperbolic394
space to better represent hierarchical relationships in vision395
datasets. Unlike Euclidean space, hyperbolic space expands396

Poincaré [88] Entailment [36] BHE [57]

Dist mAP Dist mAP Dist mAP

CIFAR-100 [61] 0.713 0.162 0.18 0.623 0.026 0.885
ImageNet-100 [26] 0.450 0.119 0.20 65.91 0.095 0.746
CityScapes [23] 0.540 0.173 0.250 72.41 0.050 0.967
PASCAL-VOC [31] 0.477 0.122 0.182 0.692 0.05 0.837

Table 2. Hyperbolic embeddings of CIFAR-100, ImageNet-100,
Cityscapes and PASCAL-VOC in using different hyperbolic em-
bedding methods. Distortion and mAP [101] of the embeddings
measure how well the tree distances are embedded in the hyper-
bolic space.

exponentially, making it ideal for embedding tree-like tax- 397
onomies with minimal distortion. In practice, both class 398
labels and image features are embedded as points in a hy- 399
perbolic manifold (e.g., the Poincaré ball), so that distances 400
between points correspond to semantic or taxonomic prox- 401
imity in the hierarchy. 402

For hyperbolic learning with vision datasets, a typical 403
process has two main steps. Step 1 is embedding the hierar- 404
chy itself: the class tree is mapped into hyperbolic space 405
so that classes which are close in the hierarchy are also 406
close together in the embedding. This is usually done using 407
methods such as Poincaré embeddings [88] or entailment- 408
based approaches [36], which are specifically designed to 409
preserve the distances and relationships from the original 410
tree. The effectiveness of this embedding is measured 411
by two metrics following the hyperbolic learning litera- 412
ture [88, 101, 103]: distortion, which captures how well the 413
hyperbolic distances match the true tree structure (lower is 414
better), and mean average precision (mAP), which reflects 415
how well nearest neighbors in the embedding correspond to 416
true neighbors in the hierarchy (higher is better). 417

Step 2, as done in works like [5, 57, 74], involves learn- 418
ing: projecting image features produced by a neural net- 419
work into hyperbolic space and training them to align with 420
their respective class embeddings. This allows the model 421
to make predictions that are consistent with the structure of 422
the hierarchy. 423

In this section, we focus on Step 1 and analyze how well 424
different hyperbolic embedding methods can represent the 425
hierarchy itself in Table 2. Using standardized trees from 426
HierVision, we evaluate and compare several approaches 427
on CIFAR-100, ImageNet-1k, ActivityNet, and CUB. For 428
each dataset, we report distortion and mAP scores to as- 429
sess how faithfully the class relationships are captured in 430
hyperbolic space. We use the hyperparameters defined in 431
Kasarla et al. [57] for generating the hyperbolic embeddings 432
of the methods, keeping hyperbolic dim = 64. In Table 2, 433
BHE [57] show better faithful tree embeddings. However, 434
for downstream tasks, any of these embeddings can be used 435
depending on the utility for the task. 436
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The standardized JSON hierarchies in our hub make it437
easy to plug in such methods – for example, one can directly438
use NetworkX to compute ancestor relations or to feed the439
graph into a Poincaré embedding algorithm to obtain initial440
class vectors. The result is an integrated hyperbolic pipeline441
where both the data and the output of the model are easily442
intergrated in the hyperbolic space.443

5. Conclusion444

We introduce HierVision, a hub for standardized hierarchi-445
cal knowledge across a broad spectrum of visual recognition446
datasets. By consolidating and curating over 61 hierarchies447
from diverse domains and encoding them in a unified graph-448
based format, we provide consistent, reproducible access to449
structured label information. Our framework supports di-450
rect integration with graph libraries like NetworkX and en-451
ables hierarchical loss design, hyperbolic embeddings, and452
large-scale benchmarking.453

We believe that HierVision serves as a critical resource454
for the vision community, promoting reproducibility, accel-455
erating hierarchy-informed research, and enabling rigorous456
benchmarking across a wide range of hierarchical struc-457
tures.458

We will make the GitHub repo for HierVision public af-459
ter the review period. We shortlisted 40+ more hierarchies460
in the pipeline to be added in the future. Recently, Ay-461
oughi et al. [6] discussed optimial tree structure for hyper-462
bolic embeddings, which can be further used to refine the463
existing hierarchies. We invite community contributions to464
further expand and refine HierVision, and we hope this hub465
will catalyze advances in hierarchical representation learn-466
ing, benchmarking, and structured visual understanding at467
scale.468
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