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ABSTRACT

Group-based reinforcement learning algorithms such as Group Reward Policy
Optimization (GRPO) have proven effective for fine-tuning large language models
(LLMs) with human feedback. However, generating and storing multiple comple-
tions per prompt incurs substantial memory overhead, especially as the sample
group size increases, limiting scalability under constrained hardware. We propose
Infinite Sampling, a framework that enables efficient and stable GRPO training by
decoupling group size from GPU memory usage. It consists of: (1) micro sampling
groups that decomposes large groups into memory-feasible rounds; (2) contin-
uous sampling that interleaves generation across groups to improve utilization;
and (3) a length-aware scheduler combining token-conditioned sequence length
prediction with a two-stage plan: global grouping via fixed-point approximation
scheme (FPTAS) and runtime refill via shortest-job-first (SJF). Experiments show
that our micro sampling groups reduce peak memory usage by over 50% com-
pared to full-group decoding (e.g., from 21.55 GB to 10.64 GB on Qwen3-1.7B).
Building on this, Infinite Sampling improves throughput by over 25% compared
to the sequential micro sampling group method, reducing decoding steps while
maintaining full-length completions and memory usage. Our hybrid scheduling
ensures efficient and stable GRPO training with larger groups under realistic GPU
memory constraints.

1 INTRODUCTION

Large language models (LLMs), like GPT (Radford et al., 2019; Brown et al., 2020), Llama (Touvron
et al., 2023a;b; Grattafiori et al., 2024), or DeepSeek (DeepSeek-AI et al., 2025), fine-tuned with
reinforcement learning from human feedback (RLHF) have achieved state-of-the-art performance in
aligning AI outputs with human intent. A common and effective approach in this setting is Group
Reward Policy Optimization (GRPO) (Shao et al., 2024), which generates multiple completions per
prompt and uses their aggregated rewards to stabilize policy updates. Earlier RLHF pipelines, such
as InstructGPT (Ouyang et al., 2022a), relied on Proximal Policy Optimization (PPO) (Schulman
et al., 2017), but methods like GRPO simplify optimization by using reward baselines across sampled
groups and eliminating the need for critic networks.

However, scaling the group size G — the number of sampled completions per prompt in GRPO
training workflow — is memory-intensive, especially during autoregressive decoding where each
output requires maintaining a separate KV cache. This memory bottleneck often prevents practitioners
from utilizing large group sizes, thereby limiting the effectiveness of GRPO.

To overcome this limitation, we propose Infinite Sampling, a novel framework for enabling large-
group GRPO training under constrained memory. Our approach builds upon the idea of sequential
micro sampling (SMS) groups, where the full group size G is decomposed into smaller subgroups
decoded sequentially. While this technique allows KV cache reuse across micro groups and reduces
memory usage, it introduces idle periods between consecutive decoding stages, harming throughput.

To mitigate these inefficiencies, we introduce continuous sampling, a new decoding paradigm
inspired by continuous batching in LLM inference systems such as vLLM (Kwon et al., 2023) and
SGLang (Zheng et al., 2024). Unlike continuous batching, which dynamically combines multiple
unrelated user requests (Zheng et al., 2025), continuous sampling stitches together outputs from the
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Figure 1: Illustration of the evolution from the Sequential Micro Sampling Group baseline to the final
Infinite Sampling. (a) Sequential Micro Sampling Group: Samples are divided into fixed-size
micro groups, which are decoded sequentially to reuse shared KV cache but underutilize available
compute. (b) Continuous Sampling: Token-level interleaving across micro groups reduces idle
time and improves throughput. (c) Length-Aware Scheduling: A predictive scheduler estimates
prefix-conditioned sequence lengths and reorders decoding, further optimizing throughput. Here, O
indicates a rollout completion, and the sampling steps denote the total number of decoding iterations
across all active slots (i.e., each step corresponds to generating one token per slot). Fewer sampling
steps indicate higher throughput under the same total group size.

same prompt across micro groups using a shared prefill KV cache. This enables interleaved decoding
of multiple micro groups, significantly reducing idle time and improving GPU utilization.

However, sequentially interleaving micro groups can trigger memory spikes when multiple long
sequences are decoded concurrently. To mitigate this, we propose a two-stage length-aware scheduling
strategy. First, we estimate sequence lengths by sampling a short prefix of each completion and
conditioning prediction on these early tokens. This token-conditioned estimation—akin to speculative
decoding (Qiu et al., 2024)—yields significantly reliable length signals. Next, we combine this
with a hybrid scheduling algorithm: a global grouping phase based on a fixed-point approximation
scheme (FPTAS), followed by a slot-level shortest-job-first (SJF) refill policy during decoding. This
design dynamically prioritizes short sequences, achieving a favorable balance between throughput
and memory stability.

Our contributions are summarized as follows:

1. We propose Infinite Sampling, a general framework for efficient GRPO training under memory
constraints. It decouples sample group size from GPU memory usage with two techniques: (1) micro
sampling groups, which decompose large groups into memory-feasible decoding rounds, and (2)
continuous sampling, which interleaves generation across micro groups using a shared prompt cache.

2. We design a length-aware decoding scheduler to address runtime inefficiencies introduced by
micro sampling. It combines prefix-based length prediction with a two-stage scheduling strategy: a
global fixed-point approximation (FPTAS) for balanced group formation, and a slot-level shortest-
job-first (SJF) refill policy for dynamic slot reuse.

3. We implement and evaluate Infinite Sampling on GRPO training with state-of-the-art LLMs
(Qwen3 1.7B/8B). Our Infinite Sampling reduce peak memory usage by over 50% compared to
full-group decoding (e.g., from 21.55 GB to 10.64 GB on Qwen3-1.7B with group size 32), enabling
training with large groups under tight memory budgets. On top of this, sequential micro sampling
improves decoding throughput by avoiding full-group parallelism, while continuous sampling further
reduces decoding steps by mitigating idle time. Finally, our full Infinite Sampling framework—with
slot-level scheduling—achieves up to 45% reduction in decoding steps (e.g., 3250 to 1770 on
GSM8K), while preserving full-length completions to ensure stable GRPO training.

2 PRELIMINARY

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) extends PPO (Schulman
et al., 2017) by removing the value model and estimating advantages from a group of sampled com-
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Figure 2: Overview of Infinite Sampling. Given a query, all completions share a prefilled KV
cache. (1) Micro Sampling Groups (colored) partition large groups into memory-feasible rounds.
(2) Continuous Sampling interleaves token-level decoding to maximize slot utilization. (3) Length-
Aware Scheduling predicts prefix-conditioned lengths and orchestrates decoding via global grouping
(FPTAS) and slot-level SJF refill. Generated sequences are scored and updated through standard
GRPO training.

pletions. Larger groups improve estimation quality but proportionally increase memory consumption
due to separate KV caches per sequence. This tension motivates our Infinite Sampling framework,
which decouples G from memory usage via micro-batching, interleaved decoding, and scheduling
strategies.

LLM Decoding via KV Cache. Autoregressive LLMs accelerate decoding by caching key/value
(KV) tensors, but this cache grows linearly with sequence length, depth, and the number of active
sequences. In group-based training, where G completions are sampled per prompt, maintaining G
KV caches quickly dominates GPU memory, forming a critical scalability bottleneck.

Remark. For clarity, we only highlight the essential concepts of KV caching and GRPO here. Full
derivations of the GRPO objective, detailed advantage estimation, and extended discussion of memory
implications are deferred to Appendix C.

3 METHOD

We propose Infinite Sampling, a decoding framework that enables large-group GRPO training under
tight memory budgets. As illustrated in Figure 2, our framework consists of three components: (1)
Micro Sampling Groups, which decompose large groups into memory-feasible decoding rounds;
(2) Continuous Sampling, which streams token-level generation across samples to fully utilize
decoding slots; and (3) a Length-Aware Scheduling module that predicts token-conditioned sequence
lengths and orchestrates both global group planning and reactive runtime scheduling. This design
enables high-throughput sampling while maintaining tight control over KV memory footprint and
sample-level parallelism.

3.1 MICRO SAMPLING GROUP: MEMORY-EFFICIENT SAMPLING

Generating a large number of samples G per prompt, as required in GRPO, incurs a prohibitive
memory cost. This is because autoregressive decoding allocates a separate KV cache buffer for
each sampled sequence, and the memory footprint scales linearly with G. Directly decoding all G
sequences in parallel quickly exceeds the available GPU memory, particularly for long sequences.

To address this challenge, we propose to decompose the full sample group into N smaller micro
sampling groups, each of size g = G/N . Instead of allocating memory for all G samples at once, we
decode only one micro group at a time and reuse a shared memory region for the KV cache across
groups. This approach caps the peak decoding memory at the cost of a single micro group, enabling
us to support larger effective group sizes without exceeding hardware limits.

KV Cache Pooling. We maintain a fixed-size memory pool capable of storing the KV cache for up
to g active sequences. This pool is initialized before sampling begins and reused across all micro
groups. During the decoding of a micro group, its KV cache is dynamically written into this pool.
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Once decoding finishes for the current group, its cache is cleared and the memory is reassigned back
to the pool. Importantly, we retain the prefill KV cache for the prompt itself, which is shared by all
groups. This allows us to avoid recomputing the prompt context and only manage memory for the
completion portion of each group.

Figure 1(a) illustrates this process. At each stage, the memory allocated for one micro group is
overwritten by the next, enabling bounded-memory decoding. This scheme offers a simple yet
effective trade-off: although we introduce some sequential processing (one group at a time), we gain
the ability to scale to arbitrarily large group sizes within fixed memory.

3.2 CONTINUOUS SAMPLING: INTERLEAVED GENERATION STRATEGIES

While micro sampling enables memory-efficient decoding, it introduces a fundamental throughput
bottleneck due to its sequential execution pattern. Specifically, in our micro sampling design, each
group is decoded one after another to stay within the memory budget. Although samples within
a micro group are decoded in parallel, inter-group barriers introduce idle GPU slots when short
sequences finish early and must wait for longer ones to complete before proceeding to the next group.
This leads to underutilization of available compute, especially under high sample-length variance.

To address this, we introduce continuous sampling, a decoding paradigm that interleaves token
generation across samples to maintain high utilization of decoding slots while preserving the memory
efficiency of micro sampling. This strategy is enabled by the fact that all completions in GRPO
originate from the same prompt and hence share the same prefill context. Figure 1(b) illustrates the
token-level interleaving enabled by continuous sampling.

Two Modes of Continuous Sampling. Our Continuous sampling can be implemented in two distinct
modes, each with its own trade-offs:

Figure 3: Two Modes of Continuous Sampling.
(a) In Fixed-Slot mode, exactly N sequences will
be generated for each row, maintaining consistent
slot utilization but potentially suffering from idle
slots due to length variance. (b) In Dynamic-Slot
mode, slots are immediately reused as soon as a
sequence finishes, maximizing utilization but sac-
rificing group structure.

(1) Fixed-Slot Continuous Sampling (Fig-
ure 3(a)). In this mode, the total group of size
G is still divided into N micro groups, each of
fixed size g = G/N . Over the N micro-group
rounds, each decoding slot outputs one sequence
per round, thus N sequences in total. As soon
as any sequence in the group completes, a new
sequence is launched in its place, forming the
next micro group in the following decoding step.
This design maintains a uniform group size at
each stage, facilitating micro-batched reward
computation and consistent slot usage. Impor-
tantly, micro groups may overlap in time—there
is no need to wait for the entire group to finish
before starting the next. This design enables
structured yet flexible decoding aligned with
group-based training pipelines.

(2) Dynamic-Slot Continuous Sampling (Fig-
ure 3(b)). In contrast, this mode does not en-
force uniform micro group sizes. Instead, decoding proceeds in a fully streaming fashion: as soon as
a sequence completes, its slot is immediately reassigned to a new sample, regardless of how many are
currently active. The only constraint is that a total of G sequences must be generated in the end. This
strategy maximizes slot throughput but sacrifices structural regularity, making it less compatible with
micro-batched updates. Moreover, dynamic-slot scheduling may introduce length bias, where shorter
sequences are favored due to faster turnover.

Discussion and Implications. Our system supports both fixed-slot and dynamic-slot continuous
sampling. The fixed-slot variant provides consistent micro-batched structure and fairness, but may
suffer from idle compute when short sequences must wait for longer ones in the same group. The
dynamic-slot variant improves responsiveness and throughput by fully interleaving decoding, yet
introduces potential bias favoring shorter sequences. To alleviate the efficiency bottlenecks in
fixed-slot sampling, we introduce a length-aware scheduling strategy in Section 3.3. By estimating
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sequence lengths ahead of time and balancing group assignments accordingly, this scheduler smooths
per-slot decoding time and maximizes utilization under the fixed-slot setting.

Shared Prompt KV and Sample-Level Cache Lifecycle. As in Section 3.1, all completions share
the same prompt KV cache computed during the prefill phase. Each active sample maintains a
separate KV buffer for its completion tokens, which is recycled upon completion to support new
samples within bounded memory.

Algorithm 1 Two-Stage Length-Aware Scheduling for Fixed-Slot Sampling

Require: Estimated lengths {l̂1, . . . , l̂G}, number of slots g
Ensure: Decoding execution plan under fixed-slot sampling with g active slots

1: Phase 1: Static Micro Group Assignment
2: Apply FPTAS-Based Group Assignment (Algorithm 2): mask[i]← (n, j)

3: Phase 2: Runtime Decoding with SJF Refill
4: Initialize active slots S ← first g samples from mask
5: while not all samples are completed do
6: for each active slot s ∈ S in parallel do
7: Decode one token for current sample
8: if sample in slot s finishes then
9: Mark sample as completed and release s

10: Apply Slot-Level SJF Refill (Algorithm 3) to select next sample for s
11: end if
12: end for
13: end while

Comparison with Continuous Batching. At first glance, our continuous sampling method (Fig-
ure 5b) may appear similar to continuous batching techniques (Figure 6) developed for LLM inference
systems, such as vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). However, the two differ
in both purpose and implementation. Continuous batching targets multi-user inference workloads
where each request originates from a distinct prompt. These systems merge unrelated prompts and
decode them in shared compute steps, relying on asynchronous request arrival. In contrast, our setting
is tailored for training-time sampling in GRPO, where all completions are derived from a single
prompt. This enables us to compute the prompt KV cache once and reuse it across all samples—an
optimization that is not applicable in inference batching. Furthermore, we maintain full control over
the sampling loop and cache lifecycle, allowing for token-aware, per-sample scheduling and cache
recycling. These characteristics enable more aggressive memory reuse and scheduling strategies,
beyond what continuous batching systems support.

3.3 LENGTH-AWARE SCHEDULING: FROM STATIC GROUP PRE-PLANNING TO ADAPTIVE
RUNTIME SCHEDULING

While continuous sampling interleaves decoding across micro groups to improve throughput, it
introduces a new challenge: simultaneous decoding of multiple long sequences can still lead to
memory spikes due to cumulative KV cache usage. Compared to the micro group strategy described
in Section 3.1, the fixed-slot continuous sampling mode in Section 3.2 improves GPU utilization
by filling all slots continuously. However, it remains limited by the “longest sequence” effect—i.e.,
shorter sequences must wait for the longest one in the end, constraining overall throughput. To address
this, we propose a two-stage scheduling strategy that combines offline prefix-based global planning
with online memory-aware dynamic scheduling, explicitly designed to mitigate this bottleneck under
the fixed-slot constraint.

Prefix Sampling and Length Estimation. To estimate completion lengths before full decoding,
we first sample a short prefix (e.g., the first k tokens) for each output and predict its final length
using a token-conditioned estimator. In contrast to inference-time length prediction—where prompts
vary across samples—our setting generates multiple completions from the same prompt. Therefore,
prompt-only predictors fail to distinguish among different completions. To address this, we con-
catenate the prefix to the original prompt to form a pseudo-prompt, preserving the individuality of
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each sample. This pseudo-prompt is then passed to the predictor. This design provides lightweight
yet informative length signals for scheduling. We defer detailed implementation of the predictor to
Section 4.

Algorithm 2 FPTAS-Based Micro Group Assignment

Require: Estimated lengths {l̂1, . . . , l̂G}, number of groups N , tolerance ϵ
Ensure: Mapping mask[i]← (n, j) assigning sample i to group n at position j

1: S ←
∑G

i=1 l̂i, K ← ϵ · S/N
2: for i = 1 to G do
3: l̃i ← ⌈l̂i/K⌉
4: end for
5: C̃ ← ⌈

∑G
i=1 l̃i/N⌉

6: Initialize Ln ← 0 (total load of group n), Gn ← ∅ for n = 1 to N
7: for each sample i sorted by descending l̃i do
8: for n = 1 to N do
9: if Ln + l̃i ≤ C̃ then

10: Assign i to Gn with position j ← |Gn|
11: Set mask[i]← (n, j)

12: Update Ln ← Ln + l̃i
13: break
14: end if
15: end for
16: end for

Stage 1: Static Group Pre-Planning via FPTAS. To construct memory-efficient decoding plans prior
to generation, we formulate micro group assignment as a classical multiprocessor scheduling problem:
given a set of tasks (samples) with estimated execution costs {l̂1, . . . , l̂G}, we aim to partition them
into N bins (micro groups) such that the total cost in each bin remains below a predefined memory
threshold, and the overall makespan—i.e., the maximum memory load across groups—is minimized.
To this end, we adapt a fixed-point approximation scheme (FPTAS) (Algorithm 2) for bin packing
with additive error tolerance ϵ. This produces a near-optimal grouping plan that balances memory
usage across groups while respecting system constraints. Unlike heuristic clustering (e.g., greedy or
round-robin), FPTAS ensures formal guarantees on group balance and minimizes the risk of decoding
bottlenecks due to misaligned group assignments. This stage produces a static execution plan that
guides the initial sampling order and provides a strong baseline for memory-bounded decoding.

Stage 2: Runtime Adjustment via Shortest-Job-First (SJF). While the FPTAS provides a globally
optimized plan, static scheduling cannot account for runtime variability such as early termination or
mispredicted sequence lengths. To handle these dynamics, we introduce a slot-level online adjustment
mechanism based on a shortest-job-first (SJF) (Algorithm 3) policy. During continuous sampling,
decoding proceeds in an interleaved fashion, and the number of active slots is bounded by available
memory. Whenever a sequence completes and releases its KV cache, we immediately dispatch a new
sample into the freed slot. The SJF policy ranks all pending samples by their predicted lengths l̂i,
prioritizing shorter samples to maximize slot turnover and reduce memory contention. Importantly,
this adjustment is non-blocking and globally aware: samples from future micro groups may be
promoted early if they fit the current memory profile. This transforms the decoding process into a
fluid, slot-level stream scheduler that adapts to actual completion signals, amortizes memory spikes,
and exploits idle compute across groups.

Together, the global planning of FPTAS and the fine-grained responsiveness of SJF yield a decoding
pipeline that is both stable and agile—achieving near-optimal memory distribution while remaining
robust to length prediction noise and sampling variance.

Benefits. This hybrid strategy balances structured planning with runtime flexibility. Prefix-
conditioned predictions allow approximate scheduling without requiring deterministic sampling
trajectories, while SJF adjustment ensures robustness to length prediction errors. The combination
allows us to scale to large group sizes with stable memory usage, fast slot refill, and high throughput.

A schematic overview of our two-stage scheduling results is shown in Figure 1(c). We summarize the
complete procedure in Algorithm 1.
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Algorithm 3 Shortest-Job-First (SJF) Refill

Require: Finished slot s, estimated lengths {l̂i}, finished set F , mask mask
Ensure: Assign next sample to slot s

1: C ← {i | i /∈ F ∧ i /∈ mask}
2: if C = ∅ then
3: return no refill
4: end if
5: Select j ← argmini∈C l̂i
6: Assign j to slot s at next position pos[s]
7: Update mask[j]← (s,pos[s]); increment pos[s]

4 SAMPLING LENGTH PREDICTION

4.1 MOTIVATION AND DIFFERENCE FROM PRIOR WORK

Existing work on sequence length prediction (e.g., Qiu et al. (2024); Choi et al. (2025); Guldogan
et al. (2024)) primarily focuses on inference settings, where the output length is predicted from the
input prompt. These methods assume a one-to-one mapping between prompt and output, which does
not hold in our training scenario. In Group Reward Policy Optimization (GRPO), all samples within
a group share the same prompt, and the variation arises only from the stochastic sampling process.
As a result, prompt-only predictors fail to distinguish among different completions. To address this,
we introduce a token-conditioned estimation strategy that accounts for each sample’s early generation
trajectory.

4.2 TOKEN-CONDITIONED PREDICTION VIA PSEUDO-PROMPTS

To obtain per-sample predictions, we first decode a short prefix of k tokens from the current policy for
each sample. These tokens are then concatenated to the original prompt, forming a pseudo-prompt:

l̂i = freg(BERT([x;O1:k]))

where x is the original prompt, and O1:k denotes the first k tokens decoded from the policy for sample
i. The pseudo-prompt is passed to a pretrained BERT encoder, and the [CLS] token embedding is
projected by a regression head to estimate the expected length l̂i.

We fine-tune a length prediction model using the LMSYS-Chat dataset (Zheng et al., 2023), and adopt
a standard BERT encoder architecture (Devlin et al., 2019) for token-conditioned pseudo-prompts
regression. During decoding, the BERT model is used in frozen inference mode to estimate lengths
with negligible runtime overhead. This setup yields accurate and efficient scheduling signals in
practice.

Prefix Reuse Optimization. Since the first k tokens have already been decoded during length
estimation, we reuse them during actual decoding to avoid redundant computation. For each sample,
decoding resumes from token k+1, with its KV cache initialized from the prefix. This design
eliminates wasted computation and ensures consistency between estimation and execution.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate Infinite Sampling on three tasks: GSM8K (Cobbe et al., 2021), MATH (Lightman et al.,
2023), and KK (Xie et al., 2025). All experiments are run on NVIDIA A100-80GB GPUs using
Qwen3 (Yang et al., 2025) models of size 1.7B and 8B.

Unless otherwise noted, we set prompt batch size B = 1, group Size G = 32, Micro Group Size
g = 4, maximum generation length to 1024 tokens, and generation temperature is 0.8. All reported
metrics are averaged over all prompts from all datasets. Memory refers to the peak GPU memory
usage during decoding (lower is better), and Sampling Steps denotes the total number of decoding
steps required to complete all sequences (lower indicates faster decoding). Each sampling step
corresponds to one token-generation round across all g active decoding slots—that is, g tokens
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are generated in parallel in each step. Therefore, the total number of sampling steps reflects how
efficiently the decoding slots are utilized. Fewer steps indicate better throughput under fixed memory
and compute budgets. Due to space limitations, we leave more experiments in Appendix Section E.

5.2 MAIN RESULTS
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(a) Qwen3-1.7B: Infinite Sampling consistently
reduces memory usage across micro group sizes.
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(b) Qwen3-8B: Even for larger models, Infinite
Sampling maintains significant memory savings.

Figure 4: Peak memory usage comparison under different group sizes and micro group configurations
for Infinite Sampling. The baseline refers to directly decoding all G sequences in parallel. Infinite
Sampling achieves substantial memory savings across models.

Our primary goal is to reduce memory overhead in group-based reinforcement learning by decompos-
ing large sampling groups into memory-efficient micro groups. We compare the peak GPU memory
usage of Infinite Sampling under different micro group sizes (g = 1, 2, 4) against the baseline vLLM
that decodes all G = 8, 16, 32 samples in parallel.

Figure 4 reports results on Qwen3-1.7B and Qwen3-8B. Across all configurations, Infinite Sampling
consistently reduces memory consumption, with smaller micro groups yielding greater savings. For
example, on Qwen3-1.7B with G = 32, the baseline requires 21.55 GB of memory, while Infinite
Sampling with g = 1 reduces this to 10.64 GB, a 51% reduction. Importantly, baseline memory
usage grows nearly linearly with the group size G, reflecting the additive cost of KV caches per
sample. In contrast, Infinite Sampling maintains almost constant memory usage across different G,
as decoding is bounded by the fixed micro group size g. These results confirm that micro sampling
enables scaling to large group sizes without exceeding hardware memory limits.

5.3 ABLATION STUDY

We compare four decoding strategies introduced in Section 3: Sequential Micro Group (Section 3.1),
Fixed-slot (Section 3.2), Dynamic-slot (Section 3.2), and Infinite-sampling (Section 3.3). Here,
“Infinite-sampling *” represents a theoretical oracle performance or a reference lower bound, where
all completions, with known length, are scheduled post hoc after generation, allowing the shortest
possible sampling steps.

Table 1 reports sampling steps and average sequence length across three datasets and two model sizes.
We make the following key observations: Decoding Latency: Across all tasks, Sequential Micro
Group consistently results in the highest number of decoding steps. For instance, on the MATH
dataset with Qwen3-1.7B, it requires 7005 steps, while Infinite-sampling reduces this to only 5203
steps (a 25.7% improvement). On KK, the reduction is even more pronounced—7037 (Sequential)
to 5200 (Infinite-sampling), a 26.1% gain. Sequence Length Preservation: Infinite-sampling and
Fixed-slot both preserve the average sequence length, matching that of the Sequential Micro Group.
For example, on the GSM8K dataset with Qwen3-8B, all three strategies produce an average of 186
tokens, ensuring sample quality is not sacrificed. Dynamic-Slot Tradeoff: Although Dynamic-slot
achieves the fewest decoding steps (e.g., 360 steps on GSM8K with Qwen3-8B), it substantially
shortens the generated sequences (e.g., only 21 tokens on average). As discussed in Section 3.2,
this is due to length bias introduced by streaming generation and greedy slot reuse, which may
negatively impact training stability and reward quality. Offline Scheduling Optimality: On KK with
Qwen3-8B, Infinite-sampling* achieves 2586 steps compared to 2599 for the actual Infinite-sampling
implementation—demonstrating that the practical scheduling is near-optimal (only 0.5% higher).
Stability vs. Efficiency: Infinite-sampling provides a balanced trade-off, maintaining long outputs

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Ablation Study. Sampling steps and average sequence length of different proposed
components. This serves as a lower-bound reference rather than a practical decoding strategy. All
subsequent tables include this reference for comparison.

Dataset Method Qwen3-1.7B Qwen3-8B
Sampling Steps Avg Length Sampling Steps Avg Length

GSM8K

SMS Group 3250 186 3250 186
Fixed-slot 2467 (x0.75) 186 (x1.00) 2467 (x0.75) 186 (x1.00)
Dynamic-slot 748 (x0.23) 72 (x0.39) 360 (x0.11) 21 (x0.11)
Infinite-sampling * 1739 (x0.53) 186 (x1.00) 1739 (x0.53) 186 (x1.00)
Infinite-sampling 1770 (x0.54) 186 (x1.00) 1769 (x0.54) 186 (x1.00)

MATH

SMS Group 7005 602 5051 395
Fixed-slot 6098 (x0.87) 602 (x1.00) 4190 (x0.83) 395 (x1.00)
Dynamic-slot 1395 (x0.20) 143 (x0.23) 1626 (x0.32) 172 (x0.43)
Infinite-sampling * 5126 (x0.73) 602 (x1.00) 3492 (x0.69) 395 (x1.00)
Infinite-sampling 5203 (x0.74) 602 (x1.00) 3533 (x0.70) 395 (x1.00)

KK

SMS Group 7037 591 4682 282
Fixed-slot 6129 (x0.87) 591 (x1.00) 3550 (x0.75) 282 (x1.00)
Dynamic-slot 1104 (x0.16) 102 (x0.17) 696 (x0.15) 38 (x0.13)
Infinite-sampling * 5089 (x0.72) 591 (x1.00) 2586 (x0.55) 282 (x1.00)
Infinite-sampling 5200 (x0.74) 591 (x1.00) 2599 (x0.56) 282 (x1.00)

while reducing latency. In contrast, Dynamic-slot aggressively optimizes for throughput at the cost
of sequence quality, which may be unsuitable for reward-based learning. These results highlight
the trade-offs between decoding efficiency and sequence quality. While Dynamic-slot is fastest,
Infinite-sampling offers a better balance between speed and GRPO effectiveness.

6 RELATED WORK

RLHF has become the standard paradigm for aligning LLMs, with early pipelines such as Instruct-
GPT relying on PPO (Ouyang et al., 2022b; Schulman et al., 2017). Recent methods including
DPO (Rafailov et al., 2024) and GRPO (Shao et al., 2024) simplify training by removing critic
networks and normalizing rewards across sampled groups. While effective, scaling group size G is
often limited by KV cache memory overhead. System-level work has focused on efficient RLHF
infrastructures (Sheng et al., 2025; Zhong et al., 2025; Fu et al., 2025) and inference-oriented batching
with KV cache reuse (Kwon et al., 2023; Zheng et al., 2025). Orthogonal efforts such as ZeRO (Rajb-
handari et al., 2020), ZeRO-Infinity (Rajbhandari et al., 2021), and FlashAttention (Dao et al., 2022;
Dao, 2023) target memory efficiency during training. However, none directly address decoding-time
memory in group-based RLHF. Our work is the first to combine micro sampling, continuous decoding,
and length-aware scheduling to enable large-group GRPO training under strict memory budgets. For
a complete survey and positioning, please refer to the full related work in Appendix F.

7 CONCLUSION

We present Infinite Sampling, a framework for enabling large-group GRPO training under con-
strained GPU memory. By decomposing full sample groups into memory-feasible micro groups,
interleaving decoding across groups, and applying token-conditioned length-aware scheduling, our
method substantially reduces peak memory usage while preserving sample quality. While our ap-
proach introduces partial serialization and does not match the theoretical latency of fully parallel
decoding, we design continuous sampling and hybrid scheduling (FPTAS + SJF) to mitigate the
overhead. This achieves a favorable trade-off between memory efficiency and decoding throughput,
enabling stable and scalable GRPO training with large group sizes under realistic hardware constraints.
While Infinite Sampling achieves strong memory efficiency and decoding performance, our current
implementation assumes all completions originate from a single prompt. Extending our framework to
support multi-prompt batches or integrating with more advanced KV cache compression techniques
is an interesting direction for future work. We hope this work offers a practical foundation for
memory-efficient group-based RLHF optimization at scale.
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Our work focuses on improving the efficiency of reinforcement learning algorithms for large language
models. We do not introduce new data or modify reward functions, but rather optimize the sampling
and scheduling process. As such, the ethical risks are similar to those already present in RLHF training,
including potential biases or harmful outputs learned from underlying datasets. We emphasize that
our contributions are system-level optimizations and do not directly alter model behavior. Future
deployment should follow established best practices for safe data curation, alignment, and responsible
use of LLMs.

REPRODUCIBILITY STATEMENT

We aim to ensure reproducibility by (1) providing detailed algorithmic descriptions of Infinite
Sampling (Sections 3–4 and Appendix) and (2) reporting full experimental settings including datasets,
model sizes, hyperparameters, and evaluation metrics (Section 5 and Appendix).
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed for grammar correction and text refinement to
improve the clarity and readability of this paper.

B MORE FIGURES

(a) Sequential Micro Sampling Group. Each micro group is decoded after
the previous one finishes. This allows KV memory reuse but results in under-
utilization due to sequential execution.

(b) Continuous Sampling. We interleave micro group completions using a
shared prompt KV cache, avoiding idle time and improving memory efficiency.

(c) Length-Aware Scheduling. Samples are first length-predicted using token-
conditioned prefixes, then dynamically scheduled to smooth memory usage
and improve slot turnover.

Figure 5: Illustration of the three key components in Infinite Sampling. (a) Sequential Micro
Sampling Group: Samples are divided into fixed-size micro groups, which are decoded sequentially
to reuse shared KV cache but underutilize available compute. (b) Continuous Sampling: Token-level
interleaving across micro groups reduces idle time and improves throughput. (c) Length-Aware
Scheduling: A predictive scheduler estimates prefix-conditioned sequence lengths and reorders
sequences decoding, further optimizing memory usage and latency.

C FULL PRELIMINARY

C.1 LLM DECODING VIA KV CACHE

Autoregressive language models decode text token-by-token by attending to previously generated
tokens. To avoid recomputing attention over the entire prefix at each step, modern LLMs cache
key and value (KV) tensors from past layers during decoding. This mechanism, known as the KV
cache (Pope et al., 2022; Shi et al., 2024), significantly accelerates inference by reusing previously
computed attention states.

During decoding, each new token requires a forward pass through all transformer layers, where the
current token attends to both cached and current representations. As a result, the KV cache grows
linearly with the sequence length and model depth. In typical LLM implementations, each completion
maintains a dedicated KV buffer across all decoder layers and heads.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Inference

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

…

O1

O2

O3

O𝑔

𝑂1

𝑂2

𝑂3

𝑂𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

O1

O2

O3

O𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

𝑂1

𝑂2

𝑂3

𝑂𝑔

O1

O2

O3

O𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

O1

O2

O3

O𝑔

Figure 6: Continuous Batching in inference merges unrelated prompts and completions to eliminate
bubbles. Not directly usable in GRPO.

While KV caching improves efficiency, it introduces substantial memory overhead when decoding
multiple sequences concurrently. In GRPO-style training, where G completions are generated per
prompt, the total memory footprint scales linearly with G, sequence length, and model size. This
makes KV cache the primary memory bottleneck when training with large sample groups.

C.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO) FOR LLMS

Group Reward Policy Optimization (GRPO) (Shao et al., 2024) is an enhanced variant of the widely
used policy gradient reinforcement learning algorithm, Proxy Policy Gradient (PPO) (Schulman et al.,
2017), which is specially designed to improve memory and computation efficiency. PPO relies on a
value model to predict the state value of a generated completion for advantage calculation (Schulman
et al., 2018), where the value model is often initialized with a pretrained LLM of comparable size to
the policy model and jointly trained in using supervised learning. Instead, GRPO eliminates the need
for a value model by estimating advantages using a Monte Carlo method. It calculates advantages
based on the rewards of a group of randomly sampled outputs, significantly reducing memory and
computational overhead while ensuring effective policy optimization.

Specifically, GRPO generates a group of outputs for a given prompt x by randomly sampling from
the policy πθ:

{O1, O2, . . . , OG} ∼ πθ(· | x), (1)
where, G is a hyperparameter that determines the group size, i.e., the number of outputs sampled for
each prompt x. The advantages are estimated using the normalized rewards within the group as:

Ai =
ri − r̄
σ(r)

, i ∈ {1, 2, . . . , G}, (2)

where r = {r1, r2, . . . , rG} represents the rewards corresponding to the group of sampled outputs.
These rewards can be derived either from a rule-based reward function or a learned reward model. r̄
and σ(r) denote the mean and standard deviation of the rewards in the group, respectively. Based
on the estimated advantages, the policy model in GRPO is optimized similarly to PPO, using the
following optimization objective

JGRPO(θ) =
1

G

G∑
i=1

1

|Oi|

|Oi|∑
t=1

{
min

[
λt(θ)Ai,t, clip

(
λt(θ), 1−ε, 1+ε

)
Ai,t

]
− β DKL

[
πθ ∥πref

]}
,

(3)

where λt(θ) =
πθ(oi,t|x,Oi,<t)

πθold (Oi,t|x,Oi,<t)
is the ratio of predicted probability of token oi,t under the current

policy model θ to that under the old policy model θold, which was used to sample the output group.
Ai,t = Ai for t ∈ {1, 2, . . . , |Oi|}, where |Oi| is the number of tokens in output Oi. ε is a
hyperparameter controlling the clipping range for conservative updates, and β is a hyperparameter
controlling the weight of the KL-divergence constraint with respect to a reference policy model πref.
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For further details on the optimization objective, we recommend referring to the PPO and GRPO
paper.

The group size G is a critical hyperparameter that significantly impacts the estimation of advantages,
thereby influencing the optimization stability and the performance of the resulting policy model.
According to standard Monte Carlo principles (Metropolis & Ulam, 1949; Hastings, 1970), increasing
the group size typically improves the accuracy of advantage estimation by incorporating more samples.
However, scaling up the group size G introduces substantial overhead. In particular, larger G leads
to higher memory consumption during autoregressive decoding, as each sample requires a separate
KV cache. These constraints place significant pressure on GPU memory, often making large-group
training impractical in real-world settings. To overcome this limitation, we propose Infinite Sampling,
a framework that decouples the group size G from memory usage by introducing micro-batching,
token-level interleaving, and dynamic scheduling strategies.

D REWARD COMPUTATION AND MICRO-BATCHED POLICY UPDATE

While our main focus is on efficient decoding, the subsequent stages—reward computation, advantage
normalization, and policy gradient updates—must also be adapted to the micro sampling setup. Both
the reward aggregation and the backward pass are executed in micro batches aligned with the decoding
schedule. This ensures consistent memory usage throughout the full GRPO pipeline (Figure 2).

However, the decoding stage remains the dominant cost, especially when generating long sequences.
As a result, our method section emphasizes decoding-side optimizations. For completeness, we
describe the reward and training stages in detail.

After decoding, each sampled sequence Oi is scored with a scalar reward ri, computed as a combina-
tion of a reward model score and a KL penalty relative to a reference policy πθref :

ri = RM(Oi, x)− β · log πθ(Oi | x)
πθref(Oi | x)

As mentioned before, we decompose the full sample group of size G into N micro groups:

G = N · g, where g is the micro group size.

We compute rewards {ri}Gi=1 and corresponding advantages in a streaming fashion, processing each
micro group G(n) = {Oin , . . . , Oin+g−1} independently.

Group-Normalized Advantage per Micro Batch. Although micro groups are processed sequentially,
the GRPO formulation requires group-wide normalization. Therefore, we cache per-sample rewards
from each micro group and compute the full-group mean reward after all N micro batches, as done
in normal GRPO:

Ai = ri −
1

G

G∑
j=1

rj .

This ensures that gradient updates still reflect the entire sample group distribution.

Micro-Batched Backpropagation. After computing Ai for all i ∈ [1, G], we launch backpropagation
in micro batches. For each micro group G(n), we compute the token-level GRPO loss:

J (n)
GRPO(θ) =

1

g

∑
Oi∈G(n)

1

|Oi|

|Oi|∑
t=1

{
min

[
λt(θ)Ai,t, clip

(
λt(θ), 1−ε, 1+ε

)
Ai,t

]
− β · DKL

[
πθ ∥πθref

]}
,

(4)

where λt(θ) =
πθ(oi,t|x,oi,<t)
πθold (oi,t|x,oi,<t)

is the token-level importance weight.

Backpropagation is performed incrementally on each J (n)
GRPO(θ), enabling memory-efficient training

with arbitrarily large group size G.
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The total loss can be calculated across all micro groups:

JGRPO(θ) =
1

N

N∑
n=1

J (n)
GRPO(θ).

Memory Efficiency. This micro-batched pipeline ensures that neither decoding, reward computation,
nor backpropagation requires instantiating all G completions in memory simultaneously. It comple-
ments Infinite Sampling’s decoding design and enables end-to-end GRPO training with large group
sizes under tight memory budgets.

E MORE EXPERIMENTS

E.1 SCHEDULER CHOICE

Table 2: Sampling steps of different scheduling methods.

Dataset Schedule Method Qwen3-1.7B Qwen3-8B
Sampling Steps Sampling Steps

GSM8K

Fixed-slot 2467 2467
Infinite-sampling * 1739 (x0.70) 1739 (x0.70)
FPTAS only 2100 (x0.85) 2100 (x0.85)
SJF only 1775 (x0.72) 1774 (x0.72)
Infinite-sampling 1770 (x0.72) 1769 (x0.72)

MATH

Fixed-slot 6098 4190
Infinite-sampling * 5126 (x0.84) 3492 (x0.83)
FPTAS only 6021 (x0.98) 4154 (x0.99)
SJF only 5380 (x0.88) 3624 (x0.86)
Infinite-sampling 5203 (x0.85) 3533 (x0.84)

KK

Fixed-slot 6129 3550
Infinite-sampling * 5089 (x0.83) 2586 (x0.72)
FPTAS only 6014 (x0.98) 3531 (x0.99)
SJF only 5219 (x0.85) 2695 (x0.76)
Infinite-sampling 5200 (x0.84) 2599 (x0.73)

We study the impact of different scheduling components introduced in Section 3.3. Table 2 reports the
number of sampling steps under the Fixed-slot setting, using four variants: Fixed-slot (no scheduling),
FPTAS only (only uses static pre-grouping), SJF only (only uses slot-level dynamic refill), and
Infinite (FPTAS + SJF).

We make the following key observations:

Slot-Level Scheduling Dominates: SJF-only consistently yields the greatest reduction in decoding
steps among all individual strategies. For instance, on GSM8K with Qwen3-1.7B, SJF reduces the
steps from 2467 (Fixed-slot) to 1775, a 28.1% improvement. Similar trends are observed across other
datasets, confirming that online dynamic refill is the key factor in improving efficiency.

FPTAS Provides Secondary Gains: The FPTAS-only strategy offers moderate gains over Fixed-
slot (e.g., 2100 vs. 2467 on GSM8K), but consistently underperforms SJF. This aligns with its
design: FPTAS statically balances load before decoding, which improves average-case slot utilization
but cannot adapt to runtime variation. These results suggest that FPTAS is useful but insufficient
on its own, because, as discussed in Section 3.3, it cannot adapt to runtime variability such as
early termination or prediction noise. In contrast, SJF dynamically corrects these deviations during
decoding, quickly filling idle slots with short sequences. These results highlight that runtime
correction is crucial for achieving high decoding throughput and robust memory usage.

Infinite Matches the Lower Bound: The full Infinite scheduling strategy (FPTAS + SJF) consistently
performs within 1% of the oracle Infinite-sampling *, which assumes access to all completions before
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scheduling. For example, on KK with Qwen3-8B, Infinite achieves 2599 steps, while the oracle
baseline reaches 2586. This demonstrates that combining global planning with runtime reactivity
nearly closes the gap to optimality.

E.2 EFFECT OF PREFIX LENGTH k ON PREDICTION ACCURACY

To investigate the impact of prefix length on the accuracy of length prediction (Section 4), we evaluate
our BERT-based length predictor under different values of k ∈ {1, 2, 4, 8, 16, 32}, where k denotes
the number of initial tokens sampled from the policy model before estimation.

Figure 7 reports the prediction error across two model scales: Qwen3-1.7B and Qwen3-8B. We
observe that increasing k consistently improves prediction accuracy up to a point, with diminishing
returns beyond k = 16. Notably, the Qwen3-8B model achieves better accuracy than Qwen3-1.7B at
every k, likely due to its more consistent output distributions.

Based on these results, we use k = 16 as the default prefix length for length prediction in all Infinite
Sampling experiments reported in the main paper.

Figure 7: Length prediction error vs. prefix length k. Qwen3-8B consistently achieves lower error,
and accuracy improves as more tokens are included for prediction, up to k = 16.

F FULL RELATED WORK

RLHF and Grouped Sampling Optimization. Reinforcement Learning from Human Feedback
(RLHF) has become the de facto approach for aligning large language models (LLMs) with human
preferences. Early pipelines such as InstructGPT (Ouyang et al., 2022b) rely on Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to fine-tune policies using scalar rewards from a learned
reward model. However, PPO introduces complexity due to the use of critic networks and unstable
advantage estimation. To mitigate these issues, recent methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024) and Group Reward Policy Optimization (GRPO) propose critic-
free, group-normalized objectives. GRPO in particular improves training stability by aggregating
scores over multiple sampled completions per prompt. Our work builds directly on group-based
reinforcement learning algorithms, such as GRPO, and tackles the underexplored question of how
to support large group sizes G under strict memory constraints—a challenge not addressed in prior
GRPO literature.

Efficient RLHF Frameworks. Recent RLHF frameworks focus on building general-purpose and
efficient infrastructure for running RLHF pipelines. HybridFlow (Sheng et al., 2025) introduces a
hybrid programming model that decouples intra-node model computation (using multi-controller
execution) and inter-node data orchestration (using a centralized controller), achieving efficient
model placement and resharding across training and generation stages. StreamRL (Zhong et al.,
2025) and AReaL (Fu et al., 2025) further streamline RLHF actor rollout by improving token-level
parallelism and offloading efficiency. In contrast, Infinite-sampling does not propose a general-
purpose RLHF framework. Instead, it focuses on decoding efficiency by introducing micro sampling
groups and continuous scheduling to maximize GPU utilization and memory throughput during actor
rollout. While existing frameworks aim to optimize end-to-end RLHF pipelines through system-level
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modularity and flexibility, our work complements them by proposing fine-grained decoding strategies
that can be integrated into these infrastructures. Our techniques are lightweight and inference-centric,
designed to decrease sampling memory usage without requiring changes to reward modeling, training
loops, or inter-model protocols.

Batching and KV Cache Optimization. A growing body of work focuses on improving memory
efficiency and throughput in LLM inference through KV cache management and dynamic batching.
Notably, vLLM (Kwon et al., 2023) introduces PagedAttention and continuous batching to reuse
KV cache and maximize hardware utilization. BatchLLM (Zheng et al., 2025) further enhances
cache reuse through prefix-aware batching and reorder-based scheduling. However, these systems
are inference-centric and assume independent user requests. Our work adapts these ideas to the
training-time setting of RLHF, where all completions originate from the same prompt and must
be grouped for reward aggregation. We propose a continuous sampling mechanism tailored for
such homogeneous input settings, while also incorporating length-aware scheduling for memory
control—something not explored in existing batched decoding systems.

Memory-Efficient LLM Training. Orthogonal to inference efficiency, many efforts have improved
memory utilization during training, such as ZeRO (Rajbhandari et al., 2020), ZeRO-Infinity (Rajbhan-
dari et al., 2021), and FlashAttention (Dao et al., 2022; Dao, 2023). These methods target optimizer
state sharding, parameter offloading, and fused GPU kernels to reduce memory and bandwidth
overheads. Our approach is complementary: rather than optimizing backpropagation or attention
itself, we focus on reducing decoding-time memory during RLHF training by restructuring how
and when sample completions are generated. To our knowledge, we are the first to combine micro
sampling, continuous sampling, and slot-level scheduling to support large-group GRPO training
under fixed memory budgets.

Summary. In sum, while prior work has studied reward aggregation in RLHF, sequence length
prediction for inference, and memory-efficient model execution, none have addressed the unique
combination of challenges posed by large-group GRPO training. Our method, Infinite Sampling, is
the first to jointly address group-level decoding, token-interleaved generation, and adaptive sample
scheduling, offering a unified framework for scalable and stable RLHF under memory constraints.
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