
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT AND STABLE GROUPED RL TRAINING FOR
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Group-based reinforcement learning algorithms such as Group Reward Policy
Optimization (GRPO) have proven effective for fine-tuning large language models
(LLMs) with human feedback. However, generating and storing multiple comple-
tions per prompt incurs substantial memory overhead, especially as the sample
group size increases, limiting scalability under constrained hardware. We propose
Infinite Sampling, a framework that enables efficient and stable GRPO training by
decoupling group size from GPU memory usage. It consists of: (1) micro sampling
groups that decomposes large groups into memory-feasible rounds; (2) contin-
uous sampling that interleaves generation across groups to improve utilization;
and (3) a length-aware scheduler combining token-conditioned sequence length
prediction with a two-stage plan: global grouping via fixed-point approximation
scheme (FPTAS) and runtime refill via shortest-job-first (SJF). Experiments show
that our micro sampling groups reduce peak memory usage by over 50% com-
pared to full-group decoding (e.g., from 21.55 GB to 10.64 GB on Qwen3-1.7B).
Building on this, Infinite Sampling improves throughput by over 25% compared
to the sequential micro sampling group method, reducing decoding steps while
maintaining full-length completions and memory usage. Our hybrid scheduling
ensures efficient and stable GRPO training with larger groups under realistic GPU
memory constraints.

1 INTRODUCTION

Large language models (LLMs), like GPT (Radford et al., 2019; Brown et al., 2020), Llama (Touvron
et al., 2023a;b; Grattafiori et al., 2024), or DeepSeek (DeepSeek-AI et al., 2025), fine-tuned with
reinforcement learning from human feedback (RLHF) have achieved state-of-the-art performance in
aligning AI outputs with human intent. A common and effective approach in this setting is Group
Reward Policy Optimization (GRPO) (Shao et al., 2024), which generates multiple completions per
prompt and uses their aggregated rewards to stabilize policy updates. Earlier RLHF pipelines, such
as InstructGPT (Ouyang et al., 2022a), relied on Proximal Policy Optimization (PPO) (Schulman
et al., 2017), but methods like GRPO simplify optimization by using reward baselines across sampled
groups and eliminating the need for critic networks.

However, scaling the group size G — the number of sampled completions per prompt in GRPO
training workflow — is memory-intensive, especially during autoregressive decoding where each
output requires maintaining a separate KV cache. This memory bottleneck often prevents practitioners
from utilizing large group sizes, thereby limiting the effectiveness of GRPO.

To overcome this limitation, we propose Infinite Sampling, a novel framework for enabling large-
group GRPO training under constrained memory. Our approach builds upon the idea of sequential
micro sampling (SMS) groups, where the full group size G is decomposed into smaller subgroups
decoded sequentially. While this technique allows KV cache reuse across micro groups and reduces
memory usage, it introduces idle periods between consecutive decoding stages, harming throughput.

To mitigate these inefficiencies, we introduce continuous sampling, a new decoding paradigm
inspired by continuous batching in LLM inference systems such as vLLM (Kwon et al., 2023) and
SGLang (Zheng et al., 2024). Unlike continuous batching, which dynamically combines multiple
unrelated user requests (Zheng et al., 2025), continuous sampling stitches together outputs from the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the evolution from the Sequential Micro Sampling Group baseline to the final
Infinite Sampling. (a) Sequential Micro Sampling Group: Samples are divided into fixed-size
micro groups, which are decoded sequentially to reuse shared KV cache but underutilize available
compute. (b) Continuous Sampling: Token-level interleaving across micro groups reduces idle
time and improves throughput. (c) Length-Aware Scheduling: A predictive scheduler estimates
prefix-conditioned sequence lengths and reorders decoding, further optimizing throughput. Here, O
indicates a rollout completion, and the sampling steps denote the total number of decoding iterations
across all active slots (i.e., each step corresponds to generating one token per slot). Fewer sampling
steps indicate higher throughput under the same total group size.

same prompt across micro groups using a shared prefill KV cache. This enables interleaved decoding
of multiple micro groups, significantly reducing idle time and improving GPU utilization.

However, sequentially interleaving micro groups can trigger memory spikes when multiple long
sequences are decoded concurrently. To mitigate this, we propose a two-stage length-aware scheduling
strategy. First, we estimate sequence lengths by sampling a short prefix of each completion and
conditioning prediction on these early tokens. This token-conditioned estimation—akin to speculative
decoding (Qiu et al., 2024)—yields significantly reliable length signals. Next, we combine this
with a hybrid scheduling algorithm: a global grouping phase based on a fixed-point approximation
scheme (FPTAS), followed by a slot-level shortest-job-first (SJF) refill policy during decoding. This
design dynamically prioritizes short sequences, achieving a favorable balance between throughput
and memory stability.

Our contributions are summarized as follows:

1. We propose Infinite Sampling, a general framework for efficient GRPO training under memory
constraints. It decouples sample group size from GPU memory usage with two techniques: (1) micro
sampling groups, which decompose large groups into memory-feasible decoding rounds, and (2)
continuous sampling, which interleaves generation across micro groups using a shared prompt cache.

2. We design a length-aware decoding scheduler to address runtime inefficiencies introduced by
micro sampling. It combines prefix-based length prediction with a two-stage scheduling strategy: a
global fixed-point approximation (FPTAS) for balanced group formation, and a slot-level shortest-
job-first (SJF) refill policy for dynamic slot reuse.

3. We implement and evaluate Infinite Sampling on GRPO training with state-of-the-art LLMs
(Qwen3 1.7B/8B). Our Infinite Sampling reduce peak memory usage by over 50% compared to
full-group decoding (e.g., from 21.55 GB to 10.64 GB on Qwen3-1.7B with group size 32), enabling
training with large groups under tight memory budgets. On top of this, sequential micro sampling
improves decoding throughput by avoiding full-group parallelism, while continuous sampling further
reduces decoding steps by mitigating idle time. Finally, our full Infinite Sampling framework—with
slot-level scheduling—achieves up to 45% reduction in decoding steps (e.g., 3250 to 1770 on
GSM8K), while preserving full-length completions to ensure stable GRPO training.

2 PRELIMINARY

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) extends PPO (Schulman
et al., 2017) by removing the value model and estimating advantages from a group of sampled com-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of Infinite Sampling. Given a query, all completions share a prefilled KV
cache. (1) Micro Sampling Groups (colored) partition large groups into memory-feasible rounds.
(2) Continuous Sampling interleaves token-level decoding to maximize slot utilization. (3) Length-
Aware Scheduling predicts prefix-conditioned lengths and orchestrates decoding via global grouping
(FPTAS) and slot-level SJF refill. Generated sequences are scored and updated through standard
GRPO training.

pletions. Larger groups improve estimation quality but proportionally increase memory consumption
due to separate KV caches per sequence. This tension motivates our Infinite Sampling framework,
which decouples G from memory usage via micro-batching, interleaved decoding, and scheduling
strategies.

LLM Decoding via KV Cache. Autoregressive LLMs accelerate decoding by caching key/value
(KV) tensors, but this cache grows linearly with sequence length, depth, and the number of active
sequences. In group-based training, where G completions are sampled per prompt, maintaining G
KV caches quickly dominates GPU memory, forming a critical scalability bottleneck.

Remark. For clarity, we only highlight the essential concepts of KV caching and GRPO here. Full
derivations of the GRPO objective, detailed advantage estimation, and extended discussion of memory
implications are deferred to Appendix C.

3 METHOD

We propose Infinite Sampling, a decoding framework that enables large-group GRPO training under
tight memory budgets. As illustrated in Figure 2, our framework consists of three components: (1)
Micro Sampling Groups, which decompose large groups into memory-feasible decoding rounds;
(2) Continuous Sampling, which streams token-level generation across samples to fully utilize
decoding slots; and (3) a Length-Aware Scheduling module that predicts token-conditioned sequence
lengths and orchestrates both global group planning and reactive runtime scheduling. This design
enables high-throughput sampling while maintaining tight control over KV memory footprint and
sample-level parallelism.

3.1 MICRO SAMPLING GROUP: MEMORY-EFFICIENT SAMPLING

Generating a large number of samples G per prompt, as required in GRPO, incurs a prohibitive
memory cost. This is because autoregressive decoding allocates a separate KV cache buffer for
each sampled sequence, and the memory footprint scales linearly with G. Directly decoding all G
sequences in parallel quickly exceeds the available GPU memory, particularly for long sequences.

To address this challenge, we propose to decompose the full sample group into N smaller micro
sampling groups, each of size g = G/N . Instead of allocating memory for all G samples at once, we
decode only one micro group at a time and reuse a shared memory region for the KV cache across
groups. This approach caps the peak decoding memory at the cost of a single micro group, enabling
us to support larger effective group sizes without exceeding hardware limits.

KV Cache Pooling. We maintain a fixed-size memory pool capable of storing the KV cache for up
to g active sequences. This pool is initialized before sampling begins and reused across all micro
groups. During the decoding of a micro group, its KV cache is dynamically written into this pool.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Once decoding finishes for the current group, its cache is cleared and the memory is reassigned back
to the pool. Importantly, we retain the prefill KV cache for the prompt itself, which is shared by all
groups. This allows us to avoid recomputing the prompt context and only manage memory for the
completion portion of each group.

Figure 1(a) illustrates this process. At each stage, the memory allocated for one micro group is
overwritten by the next, enabling bounded-memory decoding. This scheme offers a simple yet
effective trade-off: although we introduce some sequential processing (one group at a time), we gain
the ability to scale to arbitrarily large group sizes within fixed memory.

3.2 CONTINUOUS SAMPLING: INTERLEAVED GENERATION STRATEGIES

While micro sampling enables memory-efficient decoding, it introduces a fundamental throughput
bottleneck due to its sequential execution pattern. Specifically, in our micro sampling design, each
group is decoded one after another to stay within the memory budget. Although samples within
a micro group are decoded in parallel, inter-group barriers introduce idle GPU slots when short
sequences finish early and must wait for longer ones to complete before proceeding to the next group.
This leads to underutilization of available compute, especially under high sample-length variance.

To address this, we introduce continuous sampling, a decoding paradigm that interleaves token
generation across samples to maintain high utilization of decoding slots while preserving the memory
efficiency of micro sampling. This strategy is enabled by the fact that all completions in GRPO
originate from the same prompt and hence share the same prefill context. Figure 1(b) illustrates the
token-level interleaving enabled by continuous sampling.

Two Modes of Continuous Sampling. Our Continuous sampling can be implemented in two distinct
modes, each with its own trade-offs:

Figure 3: Two Modes of Continuous Sampling.
(a) In Fixed-Slot mode, exactly N sequences will
be generated for each row, maintaining consistent
slot utilization but potentially suffering from idle
slots due to length variance. (b) In Dynamic-Slot
mode, slots are immediately reused as soon as a
sequence finishes, maximizing utilization but sac-
rificing group structure.

(1) Fixed-Slot Continuous Sampling (Fig-
ure 3(a)). In this mode, the total group of size
G is still divided into N micro groups, each of
fixed size g = G/N . Over the N micro-group
rounds, each decoding slot outputs one sequence
per round, thus N sequences in total. As soon
as any sequence in the group completes, a new
sequence is launched in its place, forming the
next micro group in the following decoding step.
This design maintains a uniform group size at
each stage, facilitating micro-batched reward
computation and consistent slot usage. Impor-
tantly, micro groups may overlap in time—there
is no need to wait for the entire group to finish
before starting the next. This design enables
structured yet flexible decoding aligned with
group-based training pipelines.

(2) Dynamic-Slot Continuous Sampling (Fig-
ure 3(b)). In contrast, this mode does not en-
force uniform micro group sizes. Instead, decoding proceeds in a fully streaming fashion: as soon as
a sequence completes, its slot is immediately reassigned to a new sample, regardless of how many are
currently active. The only constraint is that a total of G sequences must be generated in the end. This
strategy maximizes slot throughput but sacrifices structural regularity, making it less compatible with
micro-batched updates. Moreover, dynamic-slot scheduling may introduce length bias, where shorter
sequences are favored due to faster turnover.

Discussion and Implications. Our system supports both fixed-slot and dynamic-slot continuous
sampling. The fixed-slot variant provides consistent micro-batched structure and fairness, but may
suffer from idle compute when short sequences must wait for longer ones in the same group. The
dynamic-slot variant improves responsiveness and throughput by fully interleaving decoding, yet
introduces potential bias favoring shorter sequences. To alleviate the efficiency bottlenecks in
fixed-slot sampling, we introduce a length-aware scheduling strategy in Section 3.3. By estimating

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

sequence lengths ahead of time and balancing group assignments accordingly, this scheduler smooths
per-slot decoding time and maximizes utilization under the fixed-slot setting.

Shared Prompt KV and Sample-Level Cache Lifecycle. As in Section 3.1, all completions share
the same prompt KV cache computed during the prefill phase. Each active sample maintains a
separate KV buffer for its completion tokens, which is recycled upon completion to support new
samples within bounded memory.

Algorithm 1 Two-Stage Length-Aware Scheduling for Fixed-Slot Sampling

Require: Estimated lengths {l̂1, . . . , l̂G}, number of slots g
Ensure: Decoding execution plan under fixed-slot sampling with g active slots

1: Phase 1: Static Micro Group Assignment
2: Apply FPTAS-Based Group Assignment (Algorithm 2): mask[i]← (n, j)

3: Phase 2: Runtime Decoding with SJF Refill
4: Initialize active slots S ← first g samples from mask
5: while not all samples are completed do
6: for each active slot s ∈ S in parallel do
7: Decode one token for current sample
8: if sample in slot s finishes then
9: Mark sample as completed and release s

10: Apply Slot-Level SJF Refill (Algorithm 3) to select next sample for s
11: end if
12: end for
13: end while

Comparison with Continuous Batching. At first glance, our continuous sampling method (Fig-
ure 5b) may appear similar to continuous batching techniques (Figure 6) developed for LLM inference
systems, such as vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). However, the two differ
in both purpose and implementation. Continuous batching targets multi-user inference workloads
where each request originates from a distinct prompt. These systems merge unrelated prompts and
decode them in shared compute steps, relying on asynchronous request arrival. In contrast, our setting
is tailored for training-time sampling in GRPO, where all completions are derived from a single
prompt. This enables us to compute the prompt KV cache once and reuse it across all samples—an
optimization that is not applicable in inference batching. Furthermore, we maintain full control over
the sampling loop and cache lifecycle, allowing for token-aware, per-sample scheduling and cache
recycling. These characteristics enable more aggressive memory reuse and scheduling strategies,
beyond what continuous batching systems support.

3.3 LENGTH-AWARE SCHEDULING: FROM STATIC GROUP PRE-PLANNING TO ADAPTIVE
RUNTIME SCHEDULING

While continuous sampling interleaves decoding across micro groups to improve throughput, it
introduces a new challenge: simultaneous decoding of multiple long sequences can still lead to
memory spikes due to cumulative KV cache usage. Compared to the micro group strategy described
in Section 3.1, the fixed-slot continuous sampling mode in Section 3.2 improves GPU utilization
by filling all slots continuously. However, it remains limited by the “longest sequence” effect—i.e.,
shorter sequences must wait for the longest one in the end, constraining overall throughput. To address
this, we propose a two-stage scheduling strategy that combines offline prefix-based global planning
with online memory-aware dynamic scheduling, explicitly designed to mitigate this bottleneck under
the fixed-slot constraint.

Prefix Sampling and Length Estimation. To estimate completion lengths before full decoding,
we first sample a short prefix (e.g., the first k tokens) for each output and predict its final length
using a token-conditioned estimator. In contrast to inference-time length prediction—where prompts
vary across samples—our setting generates multiple completions from the same prompt. Therefore,
prompt-only predictors fail to distinguish among different completions. To address this, we con-
catenate the prefix to the original prompt to form a pseudo-prompt, preserving the individuality of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

each sample. This pseudo-prompt is then passed to the predictor. This design provides lightweight
yet informative length signals for scheduling. We defer detailed implementation of the predictor to
Section 4.

Algorithm 2 FPTAS-Based Micro Group Assignment

Require: Estimated lengths {l̂1, . . . , l̂G}, number of groups N , tolerance ϵ
Ensure: Mapping mask[i]← (n, j) assigning sample i to group n at position j

1: S ←
∑G

i=1 l̂i, K ← ϵ · S/N
2: for i = 1 to G do
3: l̃i ← ⌈l̂i/K⌉
4: end for
5: C̃ ← ⌈

∑G
i=1 l̃i/N⌉

6: Initialize Ln ← 0 (total load of group n), Gn ← ∅ for n = 1 to N
7: for each sample i sorted by descending l̃i do
8: for n = 1 to N do
9: if Ln + l̃i ≤ C̃ then

10: Assign i to Gn with position j ← |Gn|
11: Set mask[i]← (n, j)

12: Update Ln ← Ln + l̃i
13: break
14: end if
15: end for
16: end for

Stage 1: Static Group Pre-Planning via FPTAS. To construct memory-efficient decoding plans prior
to generation, we formulate micro group assignment as a classical multiprocessor scheduling problem:
given a set of tasks (samples) with estimated execution costs {l̂1, . . . , l̂G}, we aim to partition them
into N bins (micro groups) such that the total cost in each bin remains below a predefined memory
threshold, and the overall makespan—i.e., the maximum memory load across groups—is minimized.
To this end, we adapt a fixed-point approximation scheme (FPTAS) (Algorithm 2) for bin packing
with additive error tolerance ϵ. This produces a near-optimal grouping plan that balances memory
usage across groups while respecting system constraints. Unlike heuristic clustering (e.g., greedy or
round-robin), FPTAS ensures formal guarantees on group balance and minimizes the risk of decoding
bottlenecks due to misaligned group assignments. This stage produces a static execution plan that
guides the initial sampling order and provides a strong baseline for memory-bounded decoding.

Stage 2: Runtime Adjustment via Shortest-Job-First (SJF). While the FPTAS provides a globally
optimized plan, static scheduling cannot account for runtime variability such as early termination or
mispredicted sequence lengths. To handle these dynamics, we introduce a slot-level online adjustment
mechanism based on a shortest-job-first (SJF) (Algorithm 3) policy. During continuous sampling,
decoding proceeds in an interleaved fashion, and the number of active slots is bounded by available
memory. Whenever a sequence completes and releases its KV cache, we immediately dispatch a new
sample into the freed slot. The SJF policy ranks all pending samples by their predicted lengths l̂i,
prioritizing shorter samples to maximize slot turnover and reduce memory contention. Importantly,
this adjustment is non-blocking and globally aware: samples from future micro groups may be
promoted early if they fit the current memory profile. This transforms the decoding process into a
fluid, slot-level stream scheduler that adapts to actual completion signals, amortizes memory spikes,
and exploits idle compute across groups.

Together, the global planning of FPTAS and the fine-grained responsiveness of SJF yield a decoding
pipeline that is both stable and agile—achieving near-optimal memory distribution while remaining
robust to length prediction noise and sampling variance.

Benefits. This hybrid strategy balances structured planning with runtime flexibility. Prefix-
conditioned predictions allow approximate scheduling without requiring deterministic sampling
trajectories, while SJF adjustment ensures robustness to length prediction errors. The combination
allows us to scale to large group sizes with stable memory usage, fast slot refill, and high throughput.

A schematic overview of our two-stage scheduling results is shown in Figure 1(c). We summarize the
complete procedure in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 3 Shortest-Job-First (SJF) Refill

Require: Finished slot s, estimated lengths {l̂i}, finished set F , mask mask
Ensure: Assign next sample to slot s

1: C ← {i | i /∈ F ∧ i /∈ mask}
2: if C = ∅ then
3: return no refill
4: end if
5: Select j ← argmini∈C l̂i
6: Assign j to slot s at next position pos[s]
7: Update mask[j]← (s,pos[s]); increment pos[s]

4 SAMPLING LENGTH PREDICTION

4.1 MOTIVATION AND DIFFERENCE FROM PRIOR WORK

Existing work on sequence length prediction (e.g., Qiu et al. (2024); Choi et al. (2025); Guldogan
et al. (2024)) primarily focuses on inference settings, where the output length is predicted from the
input prompt. These methods assume a one-to-one mapping between prompt and output, which does
not hold in our training scenario. In Group Reward Policy Optimization (GRPO), all samples within
a group share the same prompt, and the variation arises only from the stochastic sampling process.
As a result, prompt-only predictors fail to distinguish among different completions. To address this,
we introduce a token-conditioned estimation strategy that accounts for each sample’s early generation
trajectory.

4.2 TOKEN-CONDITIONED PREDICTION VIA PSEUDO-PROMPTS

To obtain per-sample predictions, we first decode a short prefix of k tokens from the current policy for
each sample. These tokens are then concatenated to the original prompt, forming a pseudo-prompt:

l̂i = freg(BERT([x;O1:k]))

where x is the original prompt, and O1:k denotes the first k tokens decoded from the policy for sample
i. The pseudo-prompt is passed to a pretrained BERT encoder, and the [CLS] token embedding is
projected by a regression head to estimate the expected length l̂i.

We fine-tune a length prediction model using the LMSYS-Chat dataset (Zheng et al., 2023), and adopt
a standard BERT encoder architecture (Devlin et al., 2019) for token-conditioned pseudo-prompts
regression. During decoding, the BERT model is used in frozen inference mode to estimate lengths
with negligible runtime overhead. This setup yields accurate and efficient scheduling signals in
practice.

Prefix Reuse Optimization. Since the first k tokens have already been decoded during length
estimation, we reuse them during actual decoding to avoid redundant computation. For each sample,
decoding resumes from token k+1, with its KV cache initialized from the prefix. This design
eliminates wasted computation and ensures consistency between estimation and execution.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate Infinite Sampling on three tasks: GSM8K (Cobbe et al., 2021), MATH (Lightman et al.,
2023), and KK (Xie et al., 2025). All experiments are run on NVIDIA A100-80GB GPUs using
Qwen3 (Yang et al., 2025) models of size 1.7B and 8B.

Unless otherwise noted, we set prompt batch size B = 1, group Size G = 32, Micro Group Size
g = 4, maximum generation length to 1024 tokens, and generation temperature is 0.8. All reported
metrics are averaged over all prompts from all datasets. Memory refers to the peak GPU memory
usage during decoding (lower is better), and Sampling Steps denotes the total number of decoding
steps required to complete all sequences (lower indicates faster decoding). Each sampling step
corresponds to one token-generation round across all g active decoding slots—that is, g tokens

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

are generated in parallel in each step. Therefore, the total number of sampling steps reflects how
efficiently the decoding slots are utilized. Fewer steps indicate better throughput under fixed memory
and compute budgets. Due to space limitations, we leave more experiments in Appendix Section E.

5.2 MAIN RESULTS

8 16 32
Group Size

8
10
12
14
16
18
20
22

M
em

or
y

(G
B) Infinite (Micro Size=1)

Infinite (Micro Size=2)
Infinite (Micro Size=4)
Baseline

(a) Qwen3-1.7B: Infinite Sampling consistently
reduces memory usage across micro group sizes.

8 16 32
Group Size

30
32
34
36
38
40
42
44
46

M
em

or
y

(G
B)

Infinite (Micro Size=1)
Infinite (Micro Size=2)
Infinite (Micro Size=4)
Baseline

(b) Qwen3-8B: Even for larger models, Infinite
Sampling maintains significant memory savings.

Figure 4: Peak memory usage comparison under different group sizes and micro group configurations
for Infinite Sampling. The baseline refers to directly decoding all G sequences in parallel. Infinite
Sampling achieves substantial memory savings across models.

Our primary goal is to reduce memory overhead in group-based reinforcement learning by decompos-
ing large sampling groups into memory-efficient micro groups. We compare the peak GPU memory
usage of Infinite Sampling under different micro group sizes (g = 1, 2, 4) against the baseline vLLM
that decodes all G = 8, 16, 32 samples in parallel.

Figure 4 reports results on Qwen3-1.7B and Qwen3-8B. Across all configurations, Infinite Sampling
consistently reduces memory consumption, with smaller micro groups yielding greater savings. For
example, on Qwen3-1.7B with G = 32, the baseline requires 21.55 GB of memory, while Infinite
Sampling with g = 1 reduces this to 10.64 GB, a 51% reduction. Importantly, baseline memory
usage grows nearly linearly with the group size G, reflecting the additive cost of KV caches per
sample. In contrast, Infinite Sampling maintains almost constant memory usage across different G,
as decoding is bounded by the fixed micro group size g. These results confirm that micro sampling
enables scaling to large group sizes without exceeding hardware memory limits.

5.3 ABLATION STUDY

We compare four decoding strategies introduced in Section 3: Sequential Micro Group (Section 3.1),
Fixed-slot (Section 3.2), Dynamic-slot (Section 3.2), and Infinite-sampling (Section 3.3). Here,
“Infinite-sampling *” represents a theoretical oracle performance or a reference lower bound, where
all completions, with known length, are scheduled post hoc after generation, allowing the shortest
possible sampling steps.

Table 1 reports sampling steps and average sequence length across three datasets and two model sizes.
We make the following key observations: Decoding Latency: Across all tasks, Sequential Micro
Group consistently results in the highest number of decoding steps. For instance, on the MATH
dataset with Qwen3-1.7B, it requires 7005 steps, while Infinite-sampling reduces this to only 5203
steps (a 25.7% improvement). On KK, the reduction is even more pronounced—7037 (Sequential)
to 5200 (Infinite-sampling), a 26.1% gain. Sequence Length Preservation: Infinite-sampling and
Fixed-slot both preserve the average sequence length, matching that of the Sequential Micro Group.
For example, on the GSM8K dataset with Qwen3-8B, all three strategies produce an average of 186
tokens, ensuring sample quality is not sacrificed. Dynamic-Slot Tradeoff: Although Dynamic-slot
achieves the fewest decoding steps (e.g., 360 steps on GSM8K with Qwen3-8B), it substantially
shortens the generated sequences (e.g., only 21 tokens on average). As discussed in Section 3.2,
this is due to length bias introduced by streaming generation and greedy slot reuse, which may
negatively impact training stability and reward quality. Offline Scheduling Optimality: On KK with
Qwen3-8B, Infinite-sampling* achieves 2586 steps compared to 2599 for the actual Infinite-sampling
implementation—demonstrating that the practical scheduling is near-optimal (only 0.5% higher).
Stability vs. Efficiency: Infinite-sampling provides a balanced trade-off, maintaining long outputs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Ablation Study. Sampling steps and average sequence length of different proposed
components. This serves as a lower-bound reference rather than a practical decoding strategy. All
subsequent tables include this reference for comparison.

Dataset Method Qwen3-1.7B Qwen3-8B
Sampling Steps Avg Length Sampling Steps Avg Length

GSM8K

SMS Group 3250 186 3250 186
Fixed-slot 2467 (x0.75) 186 (x1.00) 2467 (x0.75) 186 (x1.00)
Dynamic-slot 748 (x0.23) 72 (x0.39) 360 (x0.11) 21 (x0.11)
Infinite-sampling * 1739 (x0.53) 186 (x1.00) 1739 (x0.53) 186 (x1.00)
Infinite-sampling 1770 (x0.54) 186 (x1.00) 1769 (x0.54) 186 (x1.00)

MATH

SMS Group 7005 602 5051 395
Fixed-slot 6098 (x0.87) 602 (x1.00) 4190 (x0.83) 395 (x1.00)
Dynamic-slot 1395 (x0.20) 143 (x0.23) 1626 (x0.32) 172 (x0.43)
Infinite-sampling * 5126 (x0.73) 602 (x1.00) 3492 (x0.69) 395 (x1.00)
Infinite-sampling 5203 (x0.74) 602 (x1.00) 3533 (x0.70) 395 (x1.00)

KK

SMS Group 7037 591 4682 282
Fixed-slot 6129 (x0.87) 591 (x1.00) 3550 (x0.75) 282 (x1.00)
Dynamic-slot 1104 (x0.16) 102 (x0.17) 696 (x0.15) 38 (x0.13)
Infinite-sampling * 5089 (x0.72) 591 (x1.00) 2586 (x0.55) 282 (x1.00)
Infinite-sampling 5200 (x0.74) 591 (x1.00) 2599 (x0.56) 282 (x1.00)

while reducing latency. In contrast, Dynamic-slot aggressively optimizes for throughput at the cost
of sequence quality, which may be unsuitable for reward-based learning. These results highlight
the trade-offs between decoding efficiency and sequence quality. While Dynamic-slot is fastest,
Infinite-sampling offers a better balance between speed and GRPO effectiveness.

6 RELATED WORK

RLHF has become the standard paradigm for aligning LLMs, with early pipelines such as Instruct-
GPT relying on PPO (Ouyang et al., 2022b; Schulman et al., 2017). Recent methods including
DPO (Rafailov et al., 2024) and GRPO (Shao et al., 2024) simplify training by removing critic
networks and normalizing rewards across sampled groups. While effective, scaling group size G is
often limited by KV cache memory overhead. System-level work has focused on efficient RLHF
infrastructures (Sheng et al., 2025; Zhong et al., 2025; Fu et al., 2025) and inference-oriented batching
with KV cache reuse (Kwon et al., 2023; Zheng et al., 2025). Orthogonal efforts such as ZeRO (Rajb-
handari et al., 2020), ZeRO-Infinity (Rajbhandari et al., 2021), and FlashAttention (Dao et al., 2022;
Dao, 2023) target memory efficiency during training. However, none directly address decoding-time
memory in group-based RLHF. Our work is the first to combine micro sampling, continuous decoding,
and length-aware scheduling to enable large-group GRPO training under strict memory budgets. For
a complete survey and positioning, please refer to the full related work in Appendix F.

7 CONCLUSION

We present Infinite Sampling, a framework for enabling large-group GRPO training under con-
strained GPU memory. By decomposing full sample groups into memory-feasible micro groups,
interleaving decoding across groups, and applying token-conditioned length-aware scheduling, our
method substantially reduces peak memory usage while preserving sample quality. While our ap-
proach introduces partial serialization and does not match the theoretical latency of fully parallel
decoding, we design continuous sampling and hybrid scheduling (FPTAS + SJF) to mitigate the
overhead. This achieves a favorable trade-off between memory efficiency and decoding throughput,
enabling stable and scalable GRPO training with large group sizes under realistic hardware constraints.
While Infinite Sampling achieves strong memory efficiency and decoding performance, our current
implementation assumes all completions originate from a single prompt. Extending our framework to
support multi-prompt batches or integrating with more advanced KV cache compression techniques
is an interesting direction for future work. We hope this work offers a practical foundation for
memory-efficient group-based RLHF optimization at scale.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on improving the efficiency of reinforcement learning algorithms for large language
models. We do not introduce new data or modify reward functions, but rather optimize the sampling
and scheduling process. As such, the ethical risks are similar to those already present in RLHF training,
including potential biases or harmful outputs learned from underlying datasets. We emphasize that
our contributions are system-level optimizations and do not directly alter model behavior. Future
deployment should follow established best practices for safe data curation, alignment, and responsible
use of LLMs.

REPRODUCIBILITY STATEMENT

We aim to ensure reproducibility by (1) providing detailed algorithmic descriptions of Infinite
Sampling (Sections 3–4 and Appendix) and (2) reporting full experimental settings including datasets,
model sizes, hyperparameters, and evaluation metrics (Section 5 and Appendix).

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Seungbeom Choi, Jeonghoe Goo, Eunjoo Jeon, Mingyu Yang, and Minsung Jang. Elis: Efficient llm
iterative scheduling system with response length predictor, 2025. URL https://arxiv.org/
abs/2505.09142.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,

10

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2505.09142
https://arxiv.org/abs/2505.09142
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Ozgur Guldogan, Jackson Kunde, Kangwook Lee, and Ramtin Pedarsani. Multi-bin batching for
increasing llm inference throughput, 2024. URL https://arxiv.org/abs/2412.04504.

W Keith Hastings. Monte carlo sampling methods using markov chains and their applications. 1970.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.04504

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.06180.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American
statistical association, 44(247):335–341, 1949.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022a. URL
https://arxiv.org/abs/2203.02155.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022b.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022. URL https://arxiv.org/abs/2211.05102.

Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha, Chen Wang, Hubertus Franke,
Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. Efficient interactive llm serving
with proxy model-based sequence length prediction, 2024. URL https://arxiv.org/abs/
2404.08509.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning, 2021. URL https://arxiv.
org/abs/2104.07857.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation, 2018. URL https://arxiv.org/
abs/1506.02438.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

13

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2404.08509
https://arxiv.org/abs/2404.08509
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’ s kv-cache consumption, 2024. URL https://arxiv.org/abs/
2407.18003.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning, 2025.
URL https://arxiv.org/abs/2410.23123.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou, Chuanjie Liu, and Gang Peng. Batchllm:
Optimizing large batched llm inference with global prefix sharing and throughput-oriented token
batching, 2025. URL https://arxiv.org/abs/2412.03594.

Yinmin Zhong, Zili Zhang, Xiaoniu Song, Hanpeng Hu, Chao Jin, Bingyang Wu, Nuo Chen, Yukun
Chen, Yu Zhou, Changyi Wan, et al. Streamrl: Scalable, heterogeneous, and elastic rl for llms with
disaggregated stream generation. arXiv preprint arXiv:2504.15930, 2025.

14

https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2407.18003
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2412.03594

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed for grammar correction and text refinement to
improve the clarity and readability of this paper.

B MORE FIGURES

(a) Sequential Micro Sampling Group. Each micro group is decoded after
the previous one finishes. This allows KV memory reuse but results in under-
utilization due to sequential execution.

(b) Continuous Sampling. We interleave micro group completions using a
shared prompt KV cache, avoiding idle time and improving memory efficiency.

(c) Length-Aware Scheduling. Samples are first length-predicted using token-
conditioned prefixes, then dynamically scheduled to smooth memory usage
and improve slot turnover.

Figure 5: Illustration of the three key components in Infinite Sampling. (a) Sequential Micro
Sampling Group: Samples are divided into fixed-size micro groups, which are decoded sequentially
to reuse shared KV cache but underutilize available compute. (b) Continuous Sampling: Token-level
interleaving across micro groups reduces idle time and improves throughput. (c) Length-Aware
Scheduling: A predictive scheduler estimates prefix-conditioned sequence lengths and reorders
sequences decoding, further optimizing memory usage and latency.

C FULL PRELIMINARY

C.1 LLM DECODING VIA KV CACHE

Autoregressive language models decode text token-by-token by attending to previously generated
tokens. To avoid recomputing attention over the entire prefix at each step, modern LLMs cache
key and value (KV) tensors from past layers during decoding. This mechanism, known as the KV
cache (Pope et al., 2022; Shi et al., 2024), significantly accelerates inference by reusing previously
computed attention states.

During decoding, each new token requires a forward pass through all transformer layers, where the
current token attends to both cached and current representations. As a result, the KV cache grows
linearly with the sequence length and model depth. In typical LLM implementations, each completion
maintains a dedicated KV buffer across all decoder layers and heads.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Inference

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3

Inference

…

…

O1

O2

O3

O𝑔

𝑂1

𝑂2

𝑂3

𝑂𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

O1

O2

O3

O𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

𝑂1

𝑂2

𝑂3

𝑂𝑔

O1

O2

O3

O𝑔

𝑄𝑢𝑒𝑟𝑦1

𝑄𝑢𝑒𝑟𝑦2

𝑄𝑢𝑒𝑟𝑦𝑔

𝑄𝑢𝑒𝑟𝑦3
…

O1

O2

O3

O𝑔

Figure 6: Continuous Batching in inference merges unrelated prompts and completions to eliminate
bubbles. Not directly usable in GRPO.

While KV caching improves efficiency, it introduces substantial memory overhead when decoding
multiple sequences concurrently. In GRPO-style training, where G completions are generated per
prompt, the total memory footprint scales linearly with G, sequence length, and model size. This
makes KV cache the primary memory bottleneck when training with large sample groups.

C.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO) FOR LLMS

Group Reward Policy Optimization (GRPO) (Shao et al., 2024) is an enhanced variant of the widely
used policy gradient reinforcement learning algorithm, Proxy Policy Gradient (PPO) (Schulman et al.,
2017), which is specially designed to improve memory and computation efficiency. PPO relies on a
value model to predict the state value of a generated completion for advantage calculation (Schulman
et al., 2018), where the value model is often initialized with a pretrained LLM of comparable size to
the policy model and jointly trained in using supervised learning. Instead, GRPO eliminates the need
for a value model by estimating advantages using a Monte Carlo method. It calculates advantages
based on the rewards of a group of randomly sampled outputs, significantly reducing memory and
computational overhead while ensuring effective policy optimization.

Specifically, GRPO generates a group of outputs for a given prompt x by randomly sampling from
the policy πθ:

{O1, O2, . . . , OG} ∼ πθ(· | x), (1)
where, G is a hyperparameter that determines the group size, i.e., the number of outputs sampled for
each prompt x. The advantages are estimated using the normalized rewards within the group as:

Ai =
ri − r̄
σ(r)

, i ∈ {1, 2, . . . , G}, (2)

where r = {r1, r2, . . . , rG} represents the rewards corresponding to the group of sampled outputs.
These rewards can be derived either from a rule-based reward function or a learned reward model. r̄
and σ(r) denote the mean and standard deviation of the rewards in the group, respectively. Based
on the estimated advantages, the policy model in GRPO is optimized similarly to PPO, using the
following optimization objective

JGRPO(θ) =
1

G

G∑
i=1

1

|Oi|

|Oi|∑
t=1

{
min

[
λt(θ)Ai,t, clip

(
λt(θ), 1−ε, 1+ε

)
Ai,t

]
− β DKL

[
πθ ∥πref

]}
,

(3)

where λt(θ) =
πθ(oi,t|x,Oi,<t)

πθold (Oi,t|x,Oi,<t)
is the ratio of predicted probability of token oi,t under the current

policy model θ to that under the old policy model θold, which was used to sample the output group.
Ai,t = Ai for t ∈ {1, 2, . . . , |Oi|}, where |Oi| is the number of tokens in output Oi. ε is a
hyperparameter controlling the clipping range for conservative updates, and β is a hyperparameter
controlling the weight of the KL-divergence constraint with respect to a reference policy model πref.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For further details on the optimization objective, we recommend referring to the PPO and GRPO
paper.

The group size G is a critical hyperparameter that significantly impacts the estimation of advantages,
thereby influencing the optimization stability and the performance of the resulting policy model.
According to standard Monte Carlo principles (Metropolis & Ulam, 1949; Hastings, 1970), increasing
the group size typically improves the accuracy of advantage estimation by incorporating more samples.
However, scaling up the group size G introduces substantial overhead. In particular, larger G leads
to higher memory consumption during autoregressive decoding, as each sample requires a separate
KV cache. These constraints place significant pressure on GPU memory, often making large-group
training impractical in real-world settings. To overcome this limitation, we propose Infinite Sampling,
a framework that decouples the group size G from memory usage by introducing micro-batching,
token-level interleaving, and dynamic scheduling strategies.

D REWARD COMPUTATION AND MICRO-BATCHED POLICY UPDATE

While our main focus is on efficient decoding, the subsequent stages—reward computation, advantage
normalization, and policy gradient updates—must also be adapted to the micro sampling setup. Both
the reward aggregation and the backward pass are executed in micro batches aligned with the decoding
schedule. This ensures consistent memory usage throughout the full GRPO pipeline (Figure 2).

However, the decoding stage remains the dominant cost, especially when generating long sequences.
As a result, our method section emphasizes decoding-side optimizations. For completeness, we
describe the reward and training stages in detail.

After decoding, each sampled sequence Oi is scored with a scalar reward ri, computed as a combina-
tion of a reward model score and a KL penalty relative to a reference policy πθref :

ri = RM(Oi, x)− β · log πθ(Oi | x)
πθref(Oi | x)

As mentioned before, we decompose the full sample group of size G into N micro groups:

G = N · g, where g is the micro group size.

We compute rewards {ri}Gi=1 and corresponding advantages in a streaming fashion, processing each
micro group G(n) = {Oin , . . . , Oin+g−1} independently.

Group-Normalized Advantage per Micro Batch. Although micro groups are processed sequentially,
the GRPO formulation requires group-wide normalization. Therefore, we cache per-sample rewards
from each micro group and compute the full-group mean reward after all N micro batches, as done
in normal GRPO:

Ai = ri −
1

G

G∑
j=1

rj .

This ensures that gradient updates still reflect the entire sample group distribution.

Micro-Batched Backpropagation. After computing Ai for all i ∈ [1, G], we launch backpropagation
in micro batches. For each micro group G(n), we compute the token-level GRPO loss:

J (n)
GRPO(θ) =

1

g

∑
Oi∈G(n)

1

|Oi|

|Oi|∑
t=1

{
min

[
λt(θ)Ai,t, clip

(
λt(θ), 1−ε, 1+ε

)
Ai,t

]
− β · DKL

[
πθ ∥πθref

]}
,

(4)

where λt(θ) =
πθ(oi,t|x,oi,<t)
πθold (oi,t|x,oi,<t)

is the token-level importance weight.

Backpropagation is performed incrementally on each J (n)
GRPO(θ), enabling memory-efficient training

with arbitrarily large group size G.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The total loss can be calculated across all micro groups:

JGRPO(θ) =
1

N

N∑
n=1

J (n)
GRPO(θ).

Memory Efficiency. This micro-batched pipeline ensures that neither decoding, reward computation,
nor backpropagation requires instantiating all G completions in memory simultaneously. It comple-
ments Infinite Sampling’s decoding design and enables end-to-end GRPO training with large group
sizes under tight memory budgets.

E MORE EXPERIMENTS

E.1 SCHEDULER CHOICE

Table 2: Sampling steps of different scheduling methods.

Dataset Schedule Method Qwen3-1.7B Qwen3-8B
Sampling Steps Sampling Steps

GSM8K

Fixed-slot 2467 2467
Infinite-sampling * 1739 (x0.70) 1739 (x0.70)
FPTAS only 2100 (x0.85) 2100 (x0.85)
SJF only 1775 (x0.72) 1774 (x0.72)
Infinite-sampling 1770 (x0.72) 1769 (x0.72)

MATH

Fixed-slot 6098 4190
Infinite-sampling * 5126 (x0.84) 3492 (x0.83)
FPTAS only 6021 (x0.98) 4154 (x0.99)
SJF only 5380 (x0.88) 3624 (x0.86)
Infinite-sampling 5203 (x0.85) 3533 (x0.84)

KK

Fixed-slot 6129 3550
Infinite-sampling * 5089 (x0.83) 2586 (x0.72)
FPTAS only 6014 (x0.98) 3531 (x0.99)
SJF only 5219 (x0.85) 2695 (x0.76)
Infinite-sampling 5200 (x0.84) 2599 (x0.73)

We study the impact of different scheduling components introduced in Section 3.3. Table 2 reports the
number of sampling steps under the Fixed-slot setting, using four variants: Fixed-slot (no scheduling),
FPTAS only (only uses static pre-grouping), SJF only (only uses slot-level dynamic refill), and
Infinite (FPTAS + SJF).

We make the following key observations:

Slot-Level Scheduling Dominates: SJF-only consistently yields the greatest reduction in decoding
steps among all individual strategies. For instance, on GSM8K with Qwen3-1.7B, SJF reduces the
steps from 2467 (Fixed-slot) to 1775, a 28.1% improvement. Similar trends are observed across other
datasets, confirming that online dynamic refill is the key factor in improving efficiency.

FPTAS Provides Secondary Gains: The FPTAS-only strategy offers moderate gains over Fixed-
slot (e.g., 2100 vs. 2467 on GSM8K), but consistently underperforms SJF. This aligns with its
design: FPTAS statically balances load before decoding, which improves average-case slot utilization
but cannot adapt to runtime variation. These results suggest that FPTAS is useful but insufficient
on its own, because, as discussed in Section 3.3, it cannot adapt to runtime variability such as
early termination or prediction noise. In contrast, SJF dynamically corrects these deviations during
decoding, quickly filling idle slots with short sequences. These results highlight that runtime
correction is crucial for achieving high decoding throughput and robust memory usage.

Infinite Matches the Lower Bound: The full Infinite scheduling strategy (FPTAS + SJF) consistently
performs within 1% of the oracle Infinite-sampling *, which assumes access to all completions before

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

scheduling. For example, on KK with Qwen3-8B, Infinite achieves 2599 steps, while the oracle
baseline reaches 2586. This demonstrates that combining global planning with runtime reactivity
nearly closes the gap to optimality.

E.2 EFFECT OF PREFIX LENGTH k ON PREDICTION ACCURACY

To investigate the impact of prefix length on the accuracy of length prediction (Section 4), we evaluate
our BERT-based length predictor under different values of k ∈ {1, 2, 4, 8, 16, 32}, where k denotes
the number of initial tokens sampled from the policy model before estimation.

Figure 7 reports the prediction error across two model scales: Qwen3-1.7B and Qwen3-8B. We
observe that increasing k consistently improves prediction accuracy up to a point, with diminishing
returns beyond k = 16. Notably, the Qwen3-8B model achieves better accuracy than Qwen3-1.7B at
every k, likely due to its more consistent output distributions.

Based on these results, we use k = 16 as the default prefix length for length prediction in all Infinite
Sampling experiments reported in the main paper.

Figure 7: Length prediction error vs. prefix length k. Qwen3-8B consistently achieves lower error,
and accuracy improves as more tokens are included for prediction, up to k = 16.

F FULL RELATED WORK

RLHF and Grouped Sampling Optimization. Reinforcement Learning from Human Feedback
(RLHF) has become the de facto approach for aligning large language models (LLMs) with human
preferences. Early pipelines such as InstructGPT (Ouyang et al., 2022b) rely on Proximal Policy
Optimization (PPO) (Schulman et al., 2017) to fine-tune policies using scalar rewards from a learned
reward model. However, PPO introduces complexity due to the use of critic networks and unstable
advantage estimation. To mitigate these issues, recent methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024) and Group Reward Policy Optimization (GRPO) propose critic-
free, group-normalized objectives. GRPO in particular improves training stability by aggregating
scores over multiple sampled completions per prompt. Our work builds directly on group-based
reinforcement learning algorithms, such as GRPO, and tackles the underexplored question of how
to support large group sizes G under strict memory constraints—a challenge not addressed in prior
GRPO literature.

Efficient RLHF Frameworks. Recent RLHF frameworks focus on building general-purpose and
efficient infrastructure for running RLHF pipelines. HybridFlow (Sheng et al., 2025) introduces a
hybrid programming model that decouples intra-node model computation (using multi-controller
execution) and inter-node data orchestration (using a centralized controller), achieving efficient
model placement and resharding across training and generation stages. StreamRL (Zhong et al.,
2025) and AReaL (Fu et al., 2025) further streamline RLHF actor rollout by improving token-level
parallelism and offloading efficiency. In contrast, Infinite-sampling does not propose a general-
purpose RLHF framework. Instead, it focuses on decoding efficiency by introducing micro sampling
groups and continuous scheduling to maximize GPU utilization and memory throughput during actor
rollout. While existing frameworks aim to optimize end-to-end RLHF pipelines through system-level

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

modularity and flexibility, our work complements them by proposing fine-grained decoding strategies
that can be integrated into these infrastructures. Our techniques are lightweight and inference-centric,
designed to decrease sampling memory usage without requiring changes to reward modeling, training
loops, or inter-model protocols.

Batching and KV Cache Optimization. A growing body of work focuses on improving memory
efficiency and throughput in LLM inference through KV cache management and dynamic batching.
Notably, vLLM (Kwon et al., 2023) introduces PagedAttention and continuous batching to reuse
KV cache and maximize hardware utilization. BatchLLM (Zheng et al., 2025) further enhances
cache reuse through prefix-aware batching and reorder-based scheduling. However, these systems
are inference-centric and assume independent user requests. Our work adapts these ideas to the
training-time setting of RLHF, where all completions originate from the same prompt and must
be grouped for reward aggregation. We propose a continuous sampling mechanism tailored for
such homogeneous input settings, while also incorporating length-aware scheduling for memory
control—something not explored in existing batched decoding systems.

Memory-Efficient LLM Training. Orthogonal to inference efficiency, many efforts have improved
memory utilization during training, such as ZeRO (Rajbhandari et al., 2020), ZeRO-Infinity (Rajbhan-
dari et al., 2021), and FlashAttention (Dao et al., 2022; Dao, 2023). These methods target optimizer
state sharding, parameter offloading, and fused GPU kernels to reduce memory and bandwidth
overheads. Our approach is complementary: rather than optimizing backpropagation or attention
itself, we focus on reducing decoding-time memory during RLHF training by restructuring how
and when sample completions are generated. To our knowledge, we are the first to combine micro
sampling, continuous sampling, and slot-level scheduling to support large-group GRPO training
under fixed memory budgets.

Summary. In sum, while prior work has studied reward aggregation in RLHF, sequence length
prediction for inference, and memory-efficient model execution, none have addressed the unique
combination of challenges posed by large-group GRPO training. Our method, Infinite Sampling, is
the first to jointly address group-level decoding, token-interleaved generation, and adaptive sample
scheduling, offering a unified framework for scalable and stable RLHF under memory constraints.

20

	Introduction
	Preliminary
	Method
	Micro Sampling Group: Memory-Efficient Sampling
	Continuous Sampling: Interleaved Generation Strategies
	Length-Aware Scheduling: From Static Group Pre-Planning to Adaptive Runtime Scheduling

	Sampling Length Prediction
	Motivation and Difference from Prior Work
	Token-Conditioned Prediction via Pseudo-Prompts

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Related Work
	Conclusion
	The Use of Large Language Models (LLMs)
	More Figures
	Full Preliminary
	LLM Decoding via KV Cache
	Group Relative Policy Optimization (GRPO) for LLMs

	Reward Computation and Micro-Batched Policy Update
	More Experiments
	Scheduler Choice
	Effect of Prefix Length k on Prediction Accuracy

	Full Related Work

