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Abstract

Function-space priors in Bayesian Neural Networks (BNNs) provide a more in-
tuitive approach to embedding beliefs directly into the model’s output, thereby
enhancing regularization, uncertainty quantification, and risk-aware decision-
making. However, imposing function-space priors on BNNs is challenging. We
address this task through optimization techniques that explore how trainable ac-
tivations can accommodate higher-complexity priors and match intricate target
function distributions. We investigate flexible activation models, including Pade
functions and piecewise linear functions, and discuss the learning challenges re-
lated to identifiability, loss construction, and symmetries. Our empirical findings
indicate that even BNNs with a single wide hidden layer when equipped with flex-
ible trainable activation, can effectively achieve desired function-space priors.

1 Introduction

Models trained in a function-space rather than in the space of weights and biases (parameters space)
exhibit flatter minima, better generalization, and improved robustness to overfitting (Qiu et al.,
2024). Better properties achieved by focusing directly on the output space are particularly advanta-
geous in scenarios where the relationship between parameters and function behavior is not straight-
forward, especially for Bayesian Neural Networks (BNNs). Moreover, function-space priors offer a
direct method of specifying beliefs about the functions being modeled by BNNs, rather than just the
parameters, leading to intuitive and often more meaningful representation of prior knowledge (Tran
et al., 2022).

Finding accurate posteriors for deep and complex models such as BNNs is notoriously challeng-
ing due to their high-dimensional parameter spaces and complex likelihood surfaces. On the other
hand, for single-hidden-layer wide BNNs, it has been recently shown that posterior sampling via
Markov Chain Monte Carlo (MCMC) can be performed efficiently (Hron et al., 2022). Moreover,
research has demonstrated that the exact posterior of a wide BNN weakly converges to the posterior
corresponding to the Gaussian Process (GP) that matches the BNN’s prior (Hron et al., 2020). This
allows BNNs to inherit GP-like properties while preserving their advantages. For example, BNNs
scale better to large datasets as they can also leverage deep learning methods, reducing computa-
tional burden compared to GPs. The relation between NNs and BNNs has been a topic of significant
research interest, which we briefly discuss in Section A.

A classic result by Neal (1996); Williams (1996), later extended to deep NNs by Lee et al. (2017);
Matthews et al. (2018), shows that infinitely wide layers in NNs behave a priori like GPs by identi-
fying the kernel of a GP that matches covariance of a (B)NN. The past studies were conducted for
better understanding of NNs. We are interested in a similar setting, but our objective is the opposite:
we aim to implement the function-space priors (in particular, GP-like behavior) in BNNs, by match-
ing both their priors on parameters and activations. GP prior specification generally offers greater
interpretability compared to the prior applied to the weights of a BNN. This is because the kernel
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clearly governs key characteristics of the prior functions, such as shape, variability, and smoothness.
We provide an extended reasoning on BNNs mitigating GPs behaviour in Appendix B.

Finding BNNs that exhibit the behavior of GPs is a notoriously difficult problem, with analytical
solutions existing for only a few GP kernels. For example, Meronen et al. (2020) found a solution
(a BNN’s activation function) for the popular Matern kernel. To address the challenge of impos-
ing function-space a priori behavior to BNNs, Flam-Shepherd et al. (2017), Flam-Shepherd et al.
(2018), and especially Tran et al. (2022), attempted to find both parameters and priors on parame-
ters by using gradient-based optimization. Their approach, which requires deep networks equipped
with complex priors, presents an additional undisclosed challenge in learning posteriors. Instead,
we demonstrate that by learning also activations, we can achieve faithful function-space priors using
just a shallow, wide BNN. In this work, we establish a practical and straightforward alternative to
finding closed-form solutions (activations) to impose function-space priors on BNNs.

Results in the paper are supplemented in the Appendix, which covers Related Work (Section A), a
discussion on the relationship between BNNs and GPs (Section B), challenges in optimization (e.g.,
identifiability; Section C), and details of the Experimental Setting followed by Additional Results.

2 Finding weights and activations to match function-space priors

The covariance between two inputs x and x′ of a (single-hidden layer wide) BNN is

cov(f l(x), f l(x′)) = κlf (x, x
′) = σlb

2
+ σlw

2 · Ef l−1
j

[ϕ(f l−1
j (x))ϕ(f l−1

j (x′))] (1)

where l reads here as last (or output) and l − 1 as input layer. The BNN matches, a priori, a GP with
an appropriate kernel κ realised by the covariance cov. In this work, we focus on zero-centered i.i.d.
priors for weights and biases, e.g., E[w] = 0 and E[b] = 0. To ensure that the asymptotic variance
neither vanishes nor explodes, marginal variances are assumed to be inversely proportional to layer

width, i.e., V[wlij ] =
σl
w

2

Hl
. For the full discussion, please see Section B.

We consider the inverse problem of imposing behavior akin to a GP(0, κ) on a BNN. The task
is to identify hyperparameters in Eq. 1, i.e., priors on w, b (where f l−1 is also expressed via
wl−1 and bl−1) and activation ϕ, to align them with the desired GP, such that on an input sub-
space (=index set) X , the covariance would match the kernel. Ideally, f l ∼ GP(0, κ)[X ], i.e.,
pnn(f

l(X)) = pgp(f
l
i (X)) for any X ⊂ X . However, in practice we strive for the approximate

similarity: pnn(f li (X)) ≈ pgp(f
l
i (X)). The matching is performed on an input subspace denoted

here by the functional-space measurement set X (=N input points of dimensionality F , which can
generally be defined in multiple ways (Sun et al., 2019)) and is posed as an optimization task:
p∗nn = argminpnn

1
S

∑
X∼pX D(pnn(f

l
i (X)), pgp(f

l
i (X)), where D is an arbitrary (but in our case

differentiable) divergence measure, and we average over S samples from the input space. While pgp
can be both sampled and evaluated (for fixed inputs X , the GP reduces to a Gaussian distribution),
pnn is known only implicitly, which means that we can sample from it but its density cannot be
evaluated directly.

We proceed by reparameterizing the prior distributions on model weights and biases. In particular,
we use the basic zero-centered factorized Gaussians with learned variances, e.g., p(w|σ2

w), p(b|σ2
b ).

However, we assume additionally, parametric and differentiable activations ϕ(·|η). Thus, pnn is fully
specified by λ = {σ, η}, leading to the final optimization objective:

λ∗ = argminλ
1

S

∑
X∼pX

D(pnn(f
l(X)|λ), pgp(f l(X))) (2)

which we address through gradient-based optimization with respect to λ. This formulation involves
deciding on the loss function D and the model for ϕ.

The problem of learning activations for NNs involves designing functions that enable networks to
capture complex and non-linear relationships effectively. In principle, any function ϕ : R → R
can serve as an activation, but the choice significantly impacts the network’s expressiveness and
training dynamics. We explore several models for ϕ, including Rational (Pade) (Molina et al., 2019),
Piece-wise linear (PWL)1, and activations realized by a NN with a single narrow hidden layer and

1https://pypi.org/project/torchpwl/
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ReLU/SiLU own activations. These functions are efficient to compute and introduce desirable non-
linear properties, striking a balance between efficiency and the capacity to model intricate patterns.

The loss D measures the divergence between two distributions over functions. Due to the implicit
nature of pnn, it must be specified between sets of samples {fi} (we used 512 samples from each
distribution) and approximated using Monte Carlo. We discovered that the standard losses, including
KL-divergence, fail for this task. For example, in KL, estimating the empirical entropy term presents
a challenge. Consequently, we followed Tran et al. (2022) and relied on the Wasserstein distance:

D =

(
inf

γ∈Γ(pnn,pgp)

∫
F×F

d(f, f ′)pγ(f, f ′)dfdf ′
)1/p

= sup
|ψ|L≤1

Epnn [ψ(f)]− Epgp [ψ(f)] (3)

Unlike Tran et al. (2022), we used the 2-Wasserstein metric, which for Multivariate Gaussians (ap-
plicable in the case of GPs and wide BNNs, at least approximately) has a closed-form solution
(Mallasto and Feragen, 2017):

D = ||µ1 − µ2||22 + Tr
(
Σ1 +Σ2 − 2

√√
Σ1Σ2

√
Σ1

)
,

where µ1/2, Σ1/2 are respectively expectations and covariance matrices estimated for pnn and pgp
from samples {f l(X)} obtained at finite input sets X . Not only we avoid the internal optimisation
due to sup|ψ|, but additionallyD can be efficiently computed based on results by Buzuti and Thomaz
(2023). For experiments, we report numerical values of D normalized by number of elements in X .
If the assumptions cannot be fulfilled, we can always revert back to the nested optimization for |ψ|L
in Eq. 3.

3 Learning activations enables more accurate function-space priors.

To map GP function-space priors to a BNN, we can: train its priors on parameters, train both
priors and activation, or learn just the activation function. We empirically show that learning
also activations provides better solutions to the inverse problem of imposing function-space pri-
ors on BNNs. Figure 1 illustrates the results of an extensive study where we compare the qual-
ity of the GP prior fit for various models of parameters’ priors and activations. The target was
GP (0,Matern(ν = 5/2, l = 1)). For each configuration, we conducted several training iterations
and measured the final (converged) loss value multiple times. Generally, learning activations alone
is not sufficient for good fits, but when combined with learning priors, it significantly improves the
solutions.

10 2 10 1 100

loss/divergence

a+w: NN

a+w: PWL(5)

a+w: Rational(5,4,B)

a: NN

a: PWL(5)

a: Rational(5,4,B)

w: Matern(5/2,0.5)

w: Matern(5/2,1)

w: ReLU

w: TanH

1004 × 10 1 6 × 10 1 2 × 100

loss/divergence

a+w: NN

a+w: PWL(5)

a+w: Rational(5,4,B)

a: NN

a: PWL(5)

a: Rational(5,4,B)

w: Matern(5/2,1)

w: ReLU

Figure 1: Quality of matching BNNs to the prior of a GP with a Matern kernel (ν = 5/2, length
scale=1.0) for 1D inputs (left) and 16D inputs (right). We evaluate models with trained parameter
priors (denoted by w), activations (denoted by a), and both (denoted by a+w). Each label specifies
whether a fixed activation (e.g., ReLU) or a specific activation model (e.g., Rational) was employed.
Gaussian parameter priors were used by default. If not trained, we set variances to 1., and for the
hidden layer, we normalized the variance by its width. The label w: Matern refers to a BNN with
the closed-form (fixed) activation as derived by Meronen et al. (2020).
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4 Do expressive function-space priors require networks to be deep?

Tran et al. (2022) takes a practical approach to learning function-space priors. Instead of considering
BNNs with wide layers, they postulate that a deep network as a whole can model a functional prior.
They then tune its parameters to reflect this functional prior. This involves modeling complex priors
on all weights considered jointly, for example, using Normalizing Flows (Rezende and Mohamed,
2015) to ensure sufficient fidelity. This approach reveals a challenge in finding posteriors for deep
networks. While MCMC (Chen et al., 2014; Del Moral et al., 2006) algorithms are computationally
expensive, approximate posteriors (Hoffman et al., 2013; Ritter et al., 2018) do not possess suf-
ficient expressiveness to adapt to such complex priors. We demonstrate that a BNN with a single
wide hidden layer, basic Gaussian priors, and learned activation can match or even outperform the
results of Tran et al. (2022), both in terms of priors and posteriors quality. For the description of the
experimental setting, see Appendix D. We present the results in Fig. 2 and in Tab. 1 (in Appendix).

Figure 2: Prior ((a)) and posterior ((b)) predictive distributions for a BNN with trained parameters
priors and activations (ours; 4th column), and for Tran et al. (2022) approach with different prior
realizations (Gaussian - 3rd column and Normalizing Flow - 2nd). The first column illustrates the
ground truth (GP). Numerical results complementing the figures we provide in Tab. 1 in Appendix.

5 Can learned activations match performance of the closed-form ones?

Complexity of deriving suitable neural activations makes matching BNNs to GPs a formidable chal-
lenge. We instead propose a gradient-based learning method that adapts both activations and pa-
rameters priors. This approach departs from the traditional methods that rely on fixed, analytically
derived activations, offering instead a flexible alternative that empirically can match or even surpass
the performance of the more conventional approaches.

The empirical evaluation we performed for a problem of 2D data classification following Meronen
et al. (2020), with a GP, where the authors derived analytical activation to match the Matern kernel
exactly. For our method, we used a BNN with Gaussian priors with trained variances, where the
activation function was modeled by a NN with a single hidden layer consisting of 5 neurons us-
ing SiLU activation. Posterior distributions were generally obtained using a HMC sampler. For the
comprehensive description of the setting, please see Appendix D.

Tab. 2 and Fig. 3 demonstrate that our method enhances the match between the posteriors of a BNN
and the desired target GP. Note that Meronen et al. (2020) originally used MC Dropout to obtain the
posteriors, achieving much worse results than those obtained with HMC. For fairness in compari-
son, we tested both MC Dropout and HMC.In terms of performance, our model not only captures
class probabilities accurately but also adeptly handles the total variance in class predictions and the
epistemic uncertainty component, which are crucial for robust decision-making under uncertainty.
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BNN: 1000 MCMC posterior samples

Meronen et al. (2020)

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt( E[Var[y|p]] + Var[E[y|p]]) )

x

y
Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

Dropout MC: Mean and Std from 1000 MC samples

Meronen et al. (2020) + HMC posterior

x

y

Predictive E[y] (=E[p])

x

y

Predictive Std(E[y])

x

y

Predictive Std[p]

x

y

Std[y] (=sqrt( E[Var[y|p]] + Var[E[y|p]]) )

x

y

Predictive E[Std[y|p]]

x

y

Predictive Std[E[y|p]]

0.0

0.2

0.4

0.6

0.8

1.0

E[
y]

 (=
E[

p]
)

0.0

0.1

0.2

0.3

0.4

0.5

St
d(

E[
y]

)
0.0

0.1

0.2

0.3

0.4

0.5

St
d[

p]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

E[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

E[
St

d[
y|

p]
]

0.0

0.1

0.2

0.3

0.4

0.5

St
d[

y]

BNN: 1000 MCMC posterior samples

Figure 3: Posterior predictive distributions for a BNN with trained parameters priors and activations
(ours; 2nd row), and for a BNN with analytically derived activations with posteriors determined us-
ing MC Dropout (3rd row) and HMC (4th row). The first column illustrates class probabilities, the
second column shows the total variance in class predictions, and the last column depicts the epis-
temic uncertainty component of the total uncertainty. Numerical results complementing the figures
we provide in Tab. 2 in Appendix.

6 Conclusion

In this paper, we addressed the problem of transferring functional priors for wide Bayesian Neu-
ral Networks to replicate desired a priori properties of Gaussian Processes. Previous approaches
typically focused on learning distributions over weights and biases, often requiring deep BNNs for
sufficient flexibility. We proposed an alternative approach by also learning activations, providing
greater adaptability even for shallow models and eradicating the need for task-specific architectural
designs. To the best of our knowledge, we are the first to explore learning activations in this context.
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A Related work

The relation between NNs/BNNs has been a topic of significant research interest. For example,
Meronen et al. (2021) explored periodic activation functions in BNNs to connect network weight
priors with translation-invariant GP priors. Pearce et al. (2020) derived BNN architectures to mir-
ror GP kernel combinations, showcasing how BNNs can produce periodic kernels. Furthermore,
Karaletsos and Bui (2020) introduced a hierarchical model using GP for weights to encode corre-
lated weight structures and input-dependent weight priors, aimed at regularizing the function space.
Matsubara et al. (2021) proposed using ridgelet transforms to approximate GP function-space dis-
tributions with BNN weight-space distributions, providing a non-asymptotic analysis with finite
sample-size error bounds. Finally, Tsuchida et al. (2019) extended the convergence of NN function
distributions to GPs under broader conditions, including partially exchangeable priors. For a more
detailed discussion of related topics see for example, Sections 2.3 and 4.2 in Fortuin (2021). Here,
we included just a brief review of the selected works.

B On BNNs imitating GPs

Behavior akin to GPs has been observed or postulated within neural networks. In particular, let’s
consider a Multilayer Perceptron:

f0i (x) =

I∑
j

w0
ijxj + b0i , i = 1 . . . H0; f li (x) =

Hl∑
j

wlijϕ(f
l−1
j (x)) + bli, i = 1 . . . Hl (4)

where x denotes I-dimensional input, and fL denotes O-dimensional output. In BNNs, zij(x) =

wlijϕ(f
l−1
j (x)) is a r.v. and assuming common prior distributions for w and b, f li (x) becomes a sum

of i.i.d r.v.-s. Then, from Central Llimit Theorem follows p(f li (x))
Hl−→∞
−−−−−−→ N (µ(x), σ2(x)). For two

different inputs x, x′ we can write p(f l(x), f l(x′)) H
l−→∞

−−−−−−→ N (µlf [x, x
′], κlf [x, x

′]) where we use [·]
to denote that we limit the mean and covariance potentially specified on a bigger space to these two
inputs. In particular, by Kolmogorov extension theorem, the prior distribution of functions induced

in the l-th layer, weakly converges to a GP as p(f l) Hl−→∞−−−−−→ GP(µlf , κ
l
f ).

We focus on zero-centered i.i.d. priors for weights and biases, e.g., E[wlij ] = 0 and E[bl] = 0.
Furthermore, to ensure that asymptotic variance neither vanishes nor explodes, marginal variances

are assumed to be inversely proportional to layer width, i.e., V[wlij ] =
σl
w

2

Hl
. Then, following from

the definition, the covariance for two inputs x and x′ can be obtained as (we repeat here Eq. 1)

cov(f l(x), f l(x′)) = κlf (x, x
′) = σlb

2
+ σlw

2 · Ef l−1
j

[ϕ(f l−1
j (x))ϕ(f l−1

j (x′))]

The expectation is taken over realisations of the r.v. f l−1
i . We write Ef l−1

j
meaning

Ep(f l−1
j (x)),p(f l−1

j (x′)) to signify r.v.-s which are integrated out.

MLPs consisting of several (wide) hidden layers were considered by Lee et al. (2017) and Matthews
et al. (2018). Such the network can be considered a compound GP, where outputs of each layer are
modeled by a GP. Then, f l−1

i ∼ GP(0, κl−1) and subsequent (l-th) layer pre-activations (f lj , f
l
k)
T ∼

N (0,Σl·δjk) where Σl = κlf (x, x
′) = σlb

2
+σlw

2·Ef l−1
i ∼GP(0,κl−1)[ϕ(f

l−1
i (x))ϕ(f l−1

i (x′))]. For an
even more basic network with only one wide hidden layer, as considered by Neal (1996); Williams
(1996), the behavior converges to that of a single individual GP, inheriting its capacity for arbitrary
function approximation (Rasmussen and Williams, 2005). The approximation capability will depend
on the chosen activation function, the nature and scale of the prior distributions on the weights and
biases, and the width of the layer. For this case, the r.v.-s f0i are expressed with w0 and b0 and the
expectation in Eq.(1) is taken over these variables as Ef0

i
[·] = Ew0∼p0w,b0i∼p0b [·].

C Selected challenges in optimizing BNNs with learnable activations

Models with a larger number of hyperparameters and a higher degree of freedom allow for achieving
more complex distributions and potentially better solutions to Eq.(2). On the other hand, overparam-
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eterization and complication of shape of the optimization manifold, may create identifiability prob-
lems or increase the risk of getting stuck in a local optimum for the steepest-gradient optimization.

To alleviate this, the optimization task in Eq.2 can be slightly simplified by appropriately fixing
parameters in Eq.(1). In particular, bias bli can be removed (set to 0) and variance of weights between
layer l − 1 and l can be set to V[wlij ] = 1

Hl
effectively simplifying Eq.(1) to

cov(f l(x), f l(x′)) = κl(x, x′) = Ef l−1
i

[ϕ(f l−1
i (x))ϕ(f l−1

i (x′))] (5)

We cannot fix the weights as we propose to do for biases as this would mean that f li (x) = f lj(x)
effectively reducing such the layer to a single output.

On the other hand, the problem of finding BNNs behaving like GPs (e.g. inverting covariance equa-
tion) in unidenfiable. There exist multiple solutions assuring similar quality of the final match. In
particular, activations ϕ solving Eq.(2) are not unique, regardless if pnn is given by Eq.(1) or Eq.(5)
(below). For example:

• The solutions are symmetric w.r.t activity values (y-axis), i.e., for ϕ′(f) = −ϕ(f), values
of covariance given by Eq.(1) or Eq.(5) are not changed, simply because (−1)2 = 1.

• For p(f l−1
i (x)) symmetric around 0 (for example, Gaussians), activations with flipped ar-

guments ϕ′(f) = ϕ(−f) result in the same covariances.
• Scaling activations ϕ′(f) = αϕ(f) leads to the same covariances as scaling variances of

the output weights as (σlw)
′ = α · σlw

Given a sufficiently flexible model (like a neural network itself), one can learn to approximate any
target activation function to an arbitrary degree of accuracy on a compact domain. This is in line
with the universal approximation theorem. However, in practice there are multiple limitations and
challenges. A model may require an impractically large number of parameters to approximate cer-
tain complex functions to a desired level of accuracy. More complex models may be harder to fit
and may require more training data. Some functions might require high numerical precision to be
approximated effectively, and even if a model can fit a target activation function on a compact set,
it might not generalize well outside the training domain. Overall, one needs to consider factors like
the gradient behavior (for backpropagation), computational efficiency, and numerical stability. These
factors can limit the practicality of using certain models of activations.

D Experimental setting

1-dimensional regression - comparison with Tran et al. (2022)

In order to show the abilities of our approach on a standard regression task and for a fair comparison
with another method optimizing Wasserstein distance, we follow the exact experimental setting pre-
sented in Tran et al. (2022). We used a GP with RBF kernel (length scale=0.6, amplitude=1.0 and
noise variance=0.1) as the ground truth.

For a baseline, we used a method from Tran et al. (2022) consisting of a BNN (3 layers with 50
neurons each) with TanH activation function. We consider all three priors realizations presented in
that work: simple Gaussian prior, hierarchical prior and prior given by a Normalizing Flow. On the
other hand, our model configuration consists of a BNN with Gaussian priors centered in 0 with
trained variances, where the activation function was modeled by a NN with a single hidden layer
consisting of 5 neurons using SiLU activation. Posterior distributions were obtained using a HMC
sampler.

We find that our approach allows for achieving the same or better results than Tran et al. (2022)
baseline both by visual and numerical comparisons. In general, we obtain better results in terms of
distributional metrics as presented in Tab. 1 and getting better (visually) posterior distributions (see
Fig.2) without utilizing any specific activation function or computationally heavy prior realization
(like, e.g., Normalizing Flow).

Classification - comparison with Meronen et al. (2020)

For the comparison against Meronen et al. (2020), we followed their experimental setting and used
a GP with Matern kernel (ν = 5/2, length scale=1) as the ground truth. For a baseline we utilized
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the method by Meronen et al. (2020), where the authors derived analytical activation to match the
Matern kernel. Our model configuration consists of a BNN with Gaussian priors with trained vari-
ances, where the activation function was modeled by a NN with a single hidden layer consisting of
5 neurons using SiLU activation. Posterior distributions were generally obtained using a HMC sam-
pler, except in the case of (Meronen et al., 2020), where the original implementation employed MC
Dropout to approximate the posterior. However, for completeness and fairness in comparison, we
also generated results using a HMC-derived posterior for the model by Meronen et al. (2020). Ad-
ditional tests (see Tab. 2) were conducted on BNNs with fixed parameters priors (Default=Gaussian
priors with variance of 1, and Normal=Gaussian priors normalized by the hidden layer width) and
with activation functions including ReLU and TanH.

E Numerical evaluation

In this section, we present the comprehensive numerical evaluation for the experiments from the
main paper. The results for regression experiments are presented in Tab. 1, whereas the results for
classification are presented in Tab. 2.

Table 1: Comparison of the similarity of trained (function-space) priors and posteriors in a 1D re-
gression task between Tran et al. (2022) and our method. Whereas Tran et al. (2022) considered
three different prior (on parameters) models (including Gaussian, Hierarchical, and Normalizing
Flow) for deep BNNs, our implementation consists of a single-hidden-layer BNN with standard
Gaussian priors with learned variances and trained activation. The methods were compared using
a set of distributional metrics against the ground truth provided by a GP (following the code by
Tran et al. (2022)). We compared both prior and posterior predictive distributions of functions over
a range of X covering regions with and without data (to account also for overconfidence far from
data). The lower, the better.
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Priors:
Gaussian prior 7.49 7.55 -3.48 1.225 0.033 0.003 0.055 0.048 0.007 0.084 0.070
Hierarchical prior 8.14 8.37 0.22 1.421 0.027 0.004 0.064 0.059 0.008 0.090 0.074
Normalizing Flow prior 7.76 8.16 -2.36 0.388 0.021 0.005 0.071 0.057 0.006 0.076 0.057
ours 7.02 7.21 -8.68 0.088 0.008 0.004 0.062 0.053 0.007 0.086 0.074

Posteriors:
Gaussian prior 6.59 6.78 23.45 5.272 0.26 0.259 0.509 0.332 0.294 0.542 0.354
Hierarchical prior 5.61 5.84 15.12 3.1 0.153 0.112 0.335 0.216 0.122 0.349 0.219
Normalizing Flow prior 6.81 7.00 34.19 7.044 0.263 0.275 0.524 0.383 0.368 0.607 0.423
ours 10.76 10.91 78.66 8.133 0.739 0.781 0.883 0.703 0.794 0.891 0.713
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Table 2: Similarity of the posterior predictive distributions of BNNs with a single wide hidden layer
to the posterior of a GP, considered as ground truth. Calculations were performed for a test grid that
includes regions both with and without training data to account for overconfidence far from data.
The posteriors were obtained using the HMC sampler in all cases, except for (Meronen et al., 2020),
where the original code was used (however, results for this model with a HMC-derived posterior
are also included below). The lower, the better. For our method, we present results using weights
and priors pretrained for 1D inputs, as well as those trained on functional priors for 1D/2D inputs
matched to the task on X (see Fig. 3).
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Default with TanH 38 38 595 0.22 0.24 0.058 0.3 0.32 0.11 4181 0.15
Normal with ReLU 31 32 603 0.21 0.25 0.061 0.22 0.26 0.069 3093 0.47
Normal with TanH 25 25 314 0.14 0.18 0.031 0.15 0.18 0.034 1721 0.55

(Meronen et al., 2020) 36 36 777 0.24 0.28 0.078 0.28 0.32 0.1 7311 0.24
Normal + HMC 21 21 72 0.07 0.09 0.007 0.071 0.094 0.009 435 0.24
Default + HMC 42 42 284 0.14 0.16 0.026 0.32 0.34 0.12 1867 0.11

Ours: pretrained 1D 25 25 73 0.06 0.09 0.008 0.076 0.1 0.011 771 0.07
Ours: trained 1D 23 23 6 0.03 0.03 0.001 0.029 0.035 0.001 45 0.03
Ours: trained 2D 23 23 13 0.03 0.03 0.001 0.028 0.035 0.001 74 0.02
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