
Source Code Changes Just-In-Time Update Via
Code Semantics

Anonymous authors

Abstract—To tackle the trouble of incomplete, insufficient, or
misaligned code comments during software development and
maintenance, various techniques are emerged to modify the
comments of plain language in accordance with code alterations.
However, these methods have two significant limitations: ad-
dressing the source code involving non-temporal and long-rang
dependencies poses challenges. With the aim of surpassing these
restrictions, we present a novel approach named Code Com-
ment Update (CCU) model, which incorporates self-attention,
positional encoding, and relative positional representation to
effectively capture the relationships between different source
code tags. This allows it to effectively grasp extended and
non-temporal interdependencies within the source code. The
comment-update module of CCU produces fresh comments by
harnessing the power of existing code alterations and comments.
The results of Experiment demonstrate that CCU outperforms
the three baseline methods in terms of metrics such as exact
match, METEOR, BLEU, and SARI.

Index Terms—Code Changes, Code Comments, Code Semantic
Learning, Code Comment Update

I. INTRODUCTION

During software development, code comments exert a cru-
cial influence [1]. They act as conduits for developers to
document critical details, encompassing the objective, imple-
mentation, and utilization of code segments, alongside the
connections and progression of the codebase. These code
comments aid in enhancing program comprehensibility and
fostering collaboration among developers, underscoring the
significance of attaining a thorough comprehension of the
codebase. However, despite their significance, code comments
are often neglected by developers, and the introduced incon-
sistencies in code comments [2]. As a result, many comments
become inconsistent or outdated, rendering them less useful.
Inconsistencies between comments and code hinder mainte-
nance efforts and can lead to future errors. Poor comments
can raise development and maintenance expenses, and can
represent adverse effect on system fault-tolerance. Therefore,
promptly addressing inadequate comments or avoiding their
introduction altogether is crucial.

Recent advancements in neural machine translation have
spurred research in automatically producing fresh comments
that are activated by code modifications [1]. This approach
presents several benefits, such as the reduction or prevention
of poor comments. The manual creation of code comments
is a time-consuming and labor-intensive task, and ensuring
comment quality can be challenging due to the informal nature
of natural language when compared to source code. As a result,
there is an urgent need for effective methods that automate the
process of updating code comments.

Prior studies have explored various approaches to address
the issue of inconsistent comments. Rule-based methods [2]
have been employed to detect inconsistencies in specific cases.
Other approaches, such as tcomment [3], focus on dynamically
detecting inconsistencies but are limited to specific types of
attribute detection. Comment generation methods [4] have the
capability to produce comments that are derived from code,
but may disregard existing relevant information. Comment
UPdater (CUP) [5], a significant advancement in comment
updating, utilizes NMT and a vast collection of code. In the
realm of code comment updates, Tufano et al. [6] introduced a
RNN based Seq2seq model. Their model aimed to learn code
changes and provide assistance to developers by predicting
potential code modifications that reviewers might suggest.
However, two main hurdles endure in tackling the issue of
code changes when it comes to updating code comments.

Challenge of capturing long-range dependencies. The
challenge is posed by the effective capturing of the intricate
relationships between distant elements in the source code.
The vast size and intricate structure of the code make it
difficult for existing RNN-based sequence-to-sequence models
[6] to fully grasp the long-term dependencies within the code.
The sequential processing of source code tokens hampers the
model’s ability to establish meaningful connections across
distant elements, resulting in an incomplete comprehension of
the source code. Moreover, as the length of the source code
sequence grows, the model struggles to harness the entirety of
the available information and fails to adequately incorporate
the structural attributes of complex data. Consequently, the
learning performance of the model is negatively affected.

Non-timing dependence challenge. During the process of
code comment updates, the modifications made to code seg-
ments are often closely linked to their functionality. However,
existing models encounter difficulties in effectively learning
and incorporating these changes due to non-temporal de-
pendencies arising from non-sequential interactions between
words. Traditional timing-related models, such as RNN, lack
the capability to capture these non-temporal dependencies,
leading to inaccuracies in code comment updates. To overcome
this limitation, it is crucial to develop innovative approaches
that can effectively capture and leverage the non-temporal de-
pendencies in code changes. This would enable more accurate
and dependable updates to code comments.

To address the aforementioned challenges, we introduce a
model named CCU (Code Comment Update), which com-
prises comment revision and code semantic understanding,
to overcome the challenges of long-term and non-temporal

dependencies in code comment updates. We conducted our
model training and evaluation using the same dataset as
Panthaplackel et al. [1], which was constructed from an open-
source Java project on GitHub. We conducted a comparative
analysis of our model against three distinct categories of
baselines, and employed several automated metrics that assess
language generation tasks and tasks related to editing natural
language text.

In summary, the contributions of this work are as follows.
(1) We proposed CCU to solve non-time-based and persis-

tent correlations issues. For editing code with long sequences,
strong structures, and close contextual relationships, the self-
attention mechanism and relative position representation are
used to modeling the correlation between source code tags in
a pairwise manner, which overcomes the constraints of on-
sequential correlation and persistent dependency in the source
code.

(2) We conducted training and evaluation of the model
using the dataset provided by Panthaplackel et al. [1]. The
experimental results demonstrate that CCU surpasses the per-
formance of the three baseline methods across four evaluation
metrics: BLEU, exact match, SARI, and METEOR. Among
them, the SARI, METEOR, exact match, and BLEU are
respectively increased by 4.9%, 3.195%, 4.67%, 4.9%, and
0.15%, compared to the baselines. The results proves that our
model is effective and practical.

II. THE MODEL

Firstly, we provide a synopsis of CCU framework in Section
II-A. Following that, we proceed to discuss the specifics of the
components encompassed within CCU in Sections II-B and
II-C.

A. Overview

In the context of updating code comments, the objective is to
modify a given comment in accordance with the changes made
to a method. This involves providing the method, its associated
comment, and the updated version of the method. To ensure
that the updated comment accurately reflects the modifications
in the code, we introduce CCU, which accounts for both
the code modifications and the pre-existing comments. By
simultaneously learning the representations of code changes
and old comments, the CCU model effectively captures the
relationship between them. The CCU model produces a se-
quence of revisions that can be applied to the initial comments,
effectively reflecting the modifications made in the source
code. Essentially, the model undergoes training to generate
editing actions that steer the creation of a fresh comment by
considering the changes made to the original code.

In Figure 1, A detailed overview of the CCU model for
code comment updating is presented. The model comprises
two main components: comment updating and code meaning
learning. The code meaning learning component comprises of
a decoder and two encoders. To encode the current comments,
a bidirectional GRU is employed, considering the typically
short length of comments. The contextual information of the

comments is captured by this encoder. For code changes,
which often involve longer sequences and inter dependencies,
a transformer encoder is utilized. The relationships between
the code changes are effectively modeled by the transformer
encoder, allowing long-term dependencies to be captured by
the model. A series of editing actions based on the en-
coded information from the encoders is generated by the
decoder, implemented as a GRU. These editing actions serve
as guidance for updating the comment. The initial state of
the decoder is formed by combining the concluding states of
the two encoders, creating a comprehensive representation that
encapsulates the code’s information modifications and prior
comments. In summary, the semantic relationship between
code changes and existing comments is effectively learned by
the CCU model, enabling accurate and informative updates
to the comments based on the modifications in the source
code. Subsequently, the GRU is employed to generate and train
a sequence of comment modification operations, facilitating
the execution of the comment editing process.The process
of updating comments involves subsequently reranking them
and parsing the editing sequence. The comment revision
component examines and reorganizes the output of comment
update operations generated by the code meaning learning
component, resulting in the generation of refined and polished
comments.While preserving the content that should remain
unchanged,the existing comments’ style attributes are retained,
and new comments are generated accordingly.

Algorithm 1 CCU For Comment Update Algorithm
Input: code edit t, old comment x
Output: new comment X ′

1: for each t and x do
2: Let h1 ← t, Transformer as an encoder, input t and

output context vector h1;
3: Let h2 ← x, bidirectional-GRU as an encoder, input x

and output context vector h2;
4: Let H ′ ← h1, h2. h1 and h2 are connected to form H ′;
5: Let T ′ ← H ′, GRU as an decoder, input H ′ and output

comment edit T ′;
6: end for
7: Update comment based on old comment x and comment

edit T ′;
8: for each T ′ do
9: Let X ′ ← T ′ , parse edit sequence and reranker to get

X ′;
10: end for
11: return X ′

Algorithm 1 describes this process of ode comment updating
in detail. The input is the code edit t and the old comment x,
and the output is a new comment X ′ after the update. The first
step is to train the model to generate comment edits. Through
the encoder-decoder structure, source code changes and their
relationships to existing comments are learned, so as to train a
model to generate comment update operations related to code
changes, thus the output is a comment update-related editing of

Fig. 1. Overall framework diagram of the code comment update model

comments. As an Encoder, the Transformer takes the code edit
t as input and outputs the context vector h1. The bidirectional
GRU, serving as another Encoder, takes the old comment x
as input and outputs the context vector h2. The two vectors
are concatenated to form a vector H ′, which contains both the
code edit and old comment information. This vector is then
fed into a GRU for decoding, producing the edited comment
T ′. T ′ is parsed into an edit sequence and reranking to obtain
a new comment X ′.

B. Code Semantic Learning Component

The code semantic learning bomponent consists of a cou-
ple of crucial components: a Transformer encoder and a
bidirectional GRU, working in tandem. The reciprocal GRU
is utilized for encoding preexisting comments, whereas the
transformer focuses on encoding code modifications. The
Transformer integrates a robust self-attentiveness mechanism
that adeptly harnesses contextual details within sequences.

To capture the interactions between source code tokens
and overcome the obstacles presented by extended and non-
temporal dependencies, we employ the position-based encod-
ing mechanism of the transformer and self-attention mecha-
nism. Within each layer of the transformer model, there are
two sub-layers, forming its architectural structure: the mech-
anism of multi-head self-attention and the feedback network
with full connectivity.

Self-attention mechanism: Here, we focus on describing
the self-attention mechanism, which is also the core compo-

nent of CCU. It is also a multi-head attention mechanism
[7], and the semantic representation of the basic code for
the masked self-attention mechanism does not depend on the
absolute position of the mark; in contrast, the interaction
between them affects the meaning of the source code. For
example, the meanings of the expressions a+b and b+a are
identical. The self-attention mechanism abandons a time-series
form and focuses on each parameter in the hidden layer.
To capture the interdependencies between the input elements,
we expand upon the self-attention mechanism to encode the
pairwise relationships. For each attention, the source code
sequence x is transformed into an output vector sequence
O = {o1, . . . , oi, . . . , on}, where oi ∈ Rdk , and the expression
for oi is

oi =

n∑
j=1

αij

(
xj WV + aVij

)
(1)

where αij =
exp eij∑n

k=1 exp eik
and WV ∈ Rdmodal×dv are the

parameters that are unique to each layer and the attention head,
aVij is the relative position representation of positions i, eij is
computed using a compatibility function that compares two
input elements, and the expression for eij is

eij =
xiW

Q
(
xj WK + aKij

)T
√
dk

(2)

where aKij is the relative position representation of position
j,and the equation is

aKij = wK
clip(j−i,k) (3)

where aVij is the relative position representation of position i,
and the equation for aVij is

aVij = wV
clip(j−i,k) (4)

When dealing with linear sequences, edges have the capa-
bility to encompass intricate details concerning the positional
discrepancies among input elements. The upper limit for the
maximum relative position is confined to the absolute value
of k. The equation for clip(x, k) is

clip(x, k) = max(−k,min(k, x)) (5)

The advantage of the self-attention mechanism is that the
model can help to examine other positions in the input
sequence when processing each word. Unlike RNN, self-
attention mechanism only focuses on words with temporal re-
lationships with the current input, thereby solving the problem
of the persistent dependence in source code.

Multi-head attention mechanism: The multi-head atten-
tion mechanism enables the model to concurrently learn
multiple self-attention operations, empowering it to highlight
diverse facets of information within the source code. The
equation for headi is

headi = Attention(QWQ
i ,KWK

i , V WV
i) (6)

where headi is the intermediate encoding representation of a
node in one of the Transformer headers, and the final encoding
vector of this node is expressed as MultiHead(Q,K, V).
Subsequently, multiple self-attentions are spliced to accurately
represent the source code, as shown in Equation 7. The
equation for MultiHead(Q,K, V) is

MultiHead(Q,K, V) = Concat(headi, ..., headh)W
O

(7)
where WO ∈ Rhdv×dmodel .

Position coding: The position-coding mechanism uses rela-
tive position representation to simulate the paired relationship
between source code tags, thereby improving the learning of
the source code tags. A sine code is used in the even position.
Positional encoding can be formulated as

PE(pos, 2i) = sin
(
pos /100002i/dmodel

)
(8)

A cosine code is used in the odd position. The formula is

PE(pos, 2i+ 1) = cos
(
pos /100002i/dmodel

)
(9)

where pos refers to the position of the current word in the
sentence and is the index for each value in the pointing
quantity.

The Transformer is an encoder, and its input is a code edit-
ing sequence. The code editing reflects change to the code, and
CCU must capture this change. Each pair of editing operations
makes it easier for us to capture code information. Owing to
the existence of the editing operation pair, the input Trans-
former sequence has a back-and-forth connection. For ex-
ample, in (keep)public Boolean is unspecified
()(keepEnd), the (keep) and (keepEnd) are related to

one another and constitute is a non-continuous word interac-
tion. The word interaction allows the Transformer model to
learn the non-timing dependence of code editing, so that the
model can better learn source code changes. A code edit is a
long sequence, and the self-attention mechanism and position
coding used by the Transformer can capture any long-term
dependency. The code edit is encoded by a Transformer, and
the output is a context vector containing the code editing
information.

The bidirectional GRU is an encoder, and its input consists
of old comments. After the bidirectional GRU encodes, the
output is a context vector that contains the original comment
information.

The code semantic learning module comprises a decoder
component, alongside other elements. This decoder is a GRU,
which consists of an update gate and a reset gate. These gates
determine how much previous information should be ignored,
and how much new information should be added. The formula
for the update gate is

zt = σ (wz [ht−1; x̃t] + bz) (10)

where zt ∈ Rm represents the update gate, σ is the sigmoid
function, and wz ∈ Rm×(m+n′) and bz ∈ Rm represent
trainable parameters. x̃t ∈ Rn′

is the adjustment input at time
step t. The expression for the reset gate is

rt = σ (wr [ht−1; x̃t] + br) (11)

where rt ∈ Rm, wr ∈ Rm×(m+n′),br ∈ Rm and the
expression for ht is

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (12)

where ht ∈ Rm is the hidden state, ⊙ is the element-wise
multiplication, and the expression for h̃t is

h̃t = tanh (wh [rt ⊙ ht−1; x̃t] + bh) (13)

where wh ∈ Rm×(m+n′) and bh ∈ Rm are trainable parame-
ters.

C. Comment Update Component

The process of updating comments can be categorized
into two primary phases: reevaluating their rankings and
parsing the sequence of edits. During parsing, the output of
the comment-editing from the decoder is used to perform
operations like inserting, deleting, and replacing on the old
comments. This process transforms the code edit into a
modified comment. Reranking is then performed to generate
refined edited comments that preserve the original content and
style attributes. To achieve this, two heuristics are employed
to reorder candidate sequences during the beam search, and
additional priors that are challenging to backpropagate are
incorporated.

1) Generation possibilities: Since the modification model
is exclusively trained on modification operations, it lacks the
capability to evaluate the overall coherence and appropriate-
ness of the resultant comments for the modified method. To
address this limitation, we incorporated a pre-trained comment

TABLE I
CODE COMMENTS UPDATE DATASET STATISTICS.

Kinds Train dataset Valid dataset Test dataset
Unique(Code) 7,271 2,473 2,690
Mean(Code) 86.4 87.4 97.4

Median(Code) 46 49 50
Unique(Comment) 4,823 1,695 1,737
Mean(Comment) 10.8 11.2 11.1

Median(Comment) 8 9 9
Examples 5,791 712 736

Edit Actions 8,350 1,038 1,046

generation model into our approach. Trained on a vast corpus
of data, this comment generation model is adept at generating
novel comments by leveraging provided code snippets. By
leveraging this pre-trained model, we can ensure that the gen-
erated comments are not only aligned with the code changes
but also exhibit high fluency and relevance.

2) Similarity to old comments: Until now, the primary
focus of CCU’s training has revolved around generating
accurate modifications for comment updates. However, we
also adhere to the principle of minimal modifications in the
editing process. To prioritize predictions that efficiently modify
comments with minimal alterations, we employed a reranking
heuristic based on the similarity to the original comments.
Specifically, we utilized the METEOR metric to quantify the
resemblance between the candidate parsing predictions and
the existing comments. This allows us to prioritize and select
candidate edits that closely align with the original comments
while achieving the necessary updates.

III. EXPERIMENT SETUP

A. Dataset

The dataset used for training and evaluating our model was
introduced by Panthaplackel et al. [1] It consists of examples
extracted from popular open-source Java projects. The dataset
was created by analyzing the submission history of these
projects on GitHub. To annotate the old and new code, the
javalang library was employed, resulting in a code edit based
on the classification of the code segments. As for the com-
ments, they were represented using spaces and punctuation,
while HTML tags and ”@return” annotations were removed.
Code tags were sub-tokenized to handle their presence within
comments appropriately. Through these preprocessing steps,
the golden editing action sequence for comment editing was
derived.

To prevent using examples that are quite similar to each
other in training and testing, the items in the training, testing,
and validation sets are disjoint, similar to Movshovitz-Attias
and Cohen [8]. Of the 7,239 examples in the final dataset,
833 are extracted from the diffs used by Panthaplackel et al.
[1]. Table I presents the statistics for the dataset. Including
the code and comment tokens that appear at least twice in the
training data and the predefined editing keywords, the code and
comment vocabulary sizes are 5,945 and 3,642, respectively.

B. Evaluation Metrics

To assess the quality of generated candidate comments, we
employed established performance metrics commonly used in
neural machine translation tasks.

Exact Match. Exact match pertains to the percentage of
cases where the comment generated by the model precisely
matches the reference comment, without any disparities. It is a
commonly used metric to evaluate tasks related to source code
editing. By assessing the exact match rate, we can determine
how accurately the model is able to generate comments that
align with the desired reference comments, indicating the
precision and correctness of the code comment update process
[9]. And the equation is

xMatch =

{
0, ifSpred ̸= Sref

1, ifSpred = Sref
(14)

Where xMatch represents Exact Match, where Spred repre-
sents the generated code comment, and Sref represents the
correct code comment.

BLEU-4. BLEU [10] is a metric originally used for eval-
uating the performance of neural machine translation models.
It has subsequently gained widespread usage in code-related
tasks [11]. BLEU measures the alignment of N-grams between
candidate and reference texts. It examines lower-level N-grams
to assess word translation accuracy, while higher-level N-
grams are utilized to evaluate sentence fluency. BLEU-4 is a
variant of the BLEU metric, which calculates the exact match
of n-grams of four different lengths. And the equation is

BLEU − 4 = BP · exp(
4∑

n=1

wn log pn) (15)

where, BP represents the penalty factor, pn represents the n-
gram precision, and wn represents the weights corresponding
to the n-gram precision.

METEOR. METEOR [12] is a metric that builds upon
the foundation of BLEU but introduces several improvements.
METEOR employs a weighted harmonic mean and word recall
rate to address certain limitations of the BLEU metric. It
first determines the optimal alignment between the candidate
sentence and the reference sentence, then calculates precision
(P) and recall (R), and finally derives the Fmean. And the
equation is

Fmean =
P ·R

α · P + (1− α)R
(16)

where P is the precision, R is the recall, and α is set as
a parameter. Then, we calculate the penalty factor, and the
calculation of the penalty factor pen is

pen = γ
(c

m

)β

(17)

where β and γ are the configurable parameters. It can be seen
that when there is no phrase match between the candidate
sentence and the reference sentence, a single-word match,
c = m, and the penalty factor is the largest. When the chunk

becomes longer, c decreases and the penalty factor becomes
smaller. Therefore, the METEOR is

METEOR = (1− pen) · Fmean (18)

SARI. SARI [13] was initially introduced for assessing text
simplification tasks, where it represents the average N-gram F1
scores [14] associated with the delete, add, and retain editing
operations. We utilize SARI to gauge the proficiency of our
system in learning the editing process. The expression of SARI
is

SARI = d1Fadd + d2Fkeep + d3Pdel (19)

where d1 = d2 = d3 = 1
3 and the precision of N-gram matches

is Poperation . The formula for Poperation is

Poperation =
1

k

∑
n=[1,...,k]

poperation (n) (20)

where the expression for recall Roperation is

Roperation =
1

k

∑
n=[1,...,k]

Roperation (n) (21)

where the expression for Foperation is

Foperation =
2× Poperation ×Roperation

Roperation + Poperation
(22)

where operation ∈ [del, keep, add], k is the highest N-
gram order; this value is set to 4 in our experiments.

C. Baselines
In this work, we employed three different baselines to

compare against our proposed CCU.
(1) Origin. Origin directly outputs the old comments with-

out any modifications.
(2) Unreranking and Bidirectional GRU. Both the de-

coder and encoder employ bidirectional GRU. However, the
revised comments are not reevaluated and reordered through-
out the process.

(3) Reranking and Bidirectional GRU. Similar to the
second baseline, both the encoder and decoder employ bidi-
rectional GRU.

D. Training Details
The training process employed the Adam optimizer with

an initial learning rate of 0.0001. A batch size of 100 and
a dropout rate of 0.6 were used during training. The latent
dimensions of the encoder and decoder were configured as
64 and 128, respectively, whereas both comment embedding
dimensions and the code were designated as 64. The training
objective aimed to minimize the values of negative logarithm.
To address the issue of overfitting, we monitored the vali-
dation loss, and if there was no decrease observed for ten
continuous epochs, we concluded the training process. During
the inference stage, a beam search with a width of 20 was
utilized to generate potential comments. Our model was im-
plemented in Python 3.6, leveraging the PyTorch framework,
and trained using the MindSpore framework. The simulations
were conducted on the MindSpore platform, ensuring efficient
computation and performance.

TABLE II
DIFFERENT METRICS BLEU, METEOR, SARI, AND EXACT MATCH IN

DIFFERENT BASELINES AND CCU.

Kinds BLEU-4 METEOR SARI xMatch
Origin 19.282 34.611 46.218 0.000

No-reranking 32.109 43.359 51.16 13.723
Reranking 45.486 44.698 50.717 18.433

CCU 47.715 46.126 50.793 19.293

IV. EXPERIMENTAL RESULTS

A. Comparisons to baselines

Motivation. The effect of different natural language pro-
cessing models in dealing with comment updating may vary
due to algorithm, implementation, dataset and other factors.
Therefore, it is necessary to design experiments to compare the
performance of multiple models in order to find the optimal
model to solve the problem.

Approach. To assess the effectiveness of CCU, we con-
ducted a comparative analysis with three baselines: Origin
(baseline 1), Unreranking and Bidirectional GRU (baseline 2),
and Reranking and Bidirectional GRU (baseline 3). To ensure
consistency, we retained the original experimental configura-
tions for the baselines, and the chosen evaluation metrics were
exact match, BLEU, METEOR, and SARI.

Results. We assessed the performance of CCU using four
evaluation metrics: exact match, BLEU, METEOR, and SARI.
The experimental results are summarized in Table II, which
showcases the impact of CCU on these evaluation metrics.
Across all metrics, CCU outperformed the other baseline mod-
els. For instance, in terms of METEOR, the Origin baseline
achieved a score of 34.611, the unreranking baseline achieved
a score of 43.359, the reranking baseline achieved a score of
44.698, and CCU achieved a score of 46.126. This represents
an improvement of approximately 33.3% over Origin, 6.4%
over unreranking, and 3.2% over reranking. The similar results
could be achieved in terms of SARI, BLEU-4 and xMatch.
These results substantiate the efficacy of CCU in enhancing the
quality of revised comments, as it consistently outperformed
the baselines, in terms of all four evaluation metrics: BLEU,
exact match, METEOR and SARI. This further emphasizes
the significance of CCU’s capability to effectively model
non-temporal dependencies long-term and long-term in code,
resulting in enhanced quality of the generated comments.

Conclusion. In summary, the results obtained from the three
baselines support the argument that CCU is a reasonable and
effective approach. The unique attention mechanism integrated
into CCU enables it to overcome limitations in capturing
complex code relationships, ultimately leading to improved
performance across the evaluation metrics.

B. Effect of Different Numbers of Layers and Embedding Size

Motivation. Parameter settings have a significant impact
on the training performance of deep learning models, so
it is important to explore the impact of different network
parameters (such as Embedding Size, Layer Number, etc.) on
model performance.

TABLE III
VARIOUS EVALUATION METRICS INCLUDING BLEU, EXACT MATCH,

METEOR, AND SARI IN DIFFERENT NUMBER OF LAYERS (FIXED
EMBEDDINGSIZE IS 512)

Number of layers BLEU-4 METEOR SARI xMatch
2 50.641 44.460 40.323 16.984
3 50.793 46.126 47.715 19.293
4 50.285 44.782 45.819 18.750
6 49.555 44.174 45.981 18.342

TABLE IV
VARIOUS EVALUATIONS INCLUDING BLEU, EXACT MATCH, METEOR,

AND SARI IN DIFFERENT EMBEDDING SIZE (FIXED LAYER IS 3)

Embedding size BLEU-4 METEOR SARI xMatch
64 49.653 44.639 45.939 18.214

128 49.889 44.624 46.212 18.342
256 49.995 44.715 46.527 18.342
512 50.793 46.126 47.715 19.293

Approach. We analyzed the influence of parameters on
CCU using the following methods, and we selected the op-
tional hyperparameter values for the model with embedding
sizes of 64, 128, 256, and 512, and number of layers of 2, 3, 4,
and 6. We used a single variable that remained unchanged, and
we adjusted another variable method to determine the influence
of the two parameters on the model.

Results. It can be observed from the results presented in
Tables III and IV that the values of exact match, BLEU,
METEOR, and SARI increase as the embedding size increases,
under the condition where the control layers remain un-
changed. As the embedding size increases, the size of the word
embedding becomes larger, so the effect of generating long
codes is better, such as longer function names; however, as
the embedding size increases, the training time also increases,
especially for larger datasets. At times, a larger embedding size
may not be optimal. As the size of the layers increases, the per-
formance of the model generally exhibits a downward trend,
indicating that more feedforward neural network layers may
not necessarily lead to better results, although this increases
the complexity of the model. The specific experimental result
is that, when the embedding size is 512, the number of layers is
2, 3, 4, and 6, and the best result is obtained when the number
of layers is 3. With a fixed layer of 3, when the embedding
size is augmented from 64 to 512, there is an improvement in
performance across different metrics. The exact match metric
shows an increase from 18.214 to 19.293, BLEU rises from
49.653 to 50.793, METEOR sees an increase from 44.639 to
46.126, and SARI improves from 45.939 to 47.715.

Conclusion. In summary, the larger the embedding size,
the better the performance of the model. In most cases, an
increase in the number of layers will cause the performance
of the model to degrade slightly.

C. Swapping the Order of Transformer and GRU in Code
Semantic Learning

Motivation. Different semantic learning structures could
produced various results, so it is necessary to compare the

TABLE V
VARIOUS EVALUATION METRICS INCLUDING EXACT MATCH, BLEU,

METEOR, AND SARI IN DIFFERENT CODE SEMANTIC LEARNING
STRUCTURES

Different structures METEOR BLEU-4 SARI xMatch
Code editing as input
to bidirectional GRU 44.639 49.653 45.939 18.214
Code editing as input

to Transformer 46.126 50.793 47.715 19.293

long-term dependency and non-temporal dependency learning
capabilities of Transformers and bidirectional GRUs.

Approach. We conducted two sets of experiments. In the
first set, the Transformer received old comments as input,
while the bidirectional GRU received code editing as input. In
the second set, the bidirectional GRU received old comments
as input, while the Transformer received code edits as input.

Results. We can deduce from Table V that the outcomes
derived from inputting code edits into the transformer sur-
pass those obtained from inputting code edits into the dual-
directional GRU. The specific results of experiment show that
code edits are used as the input for the bidirectional GRU,
and code edits are used as the input for the Transformer. A
noticeable improvement can be noticed in the accurate match
metric, which raise from 18.824 to 19.293. The similar results
can be got by the metrics of BLEU, METEOR and SARI.

Long-term dependency problem has always been a common
problem in sequence data, especially in the NLP field. LSTM,
GRU, and Transformer are commonly used models to solve
long term dependency problems. GRU is a highly effective
variant of LSTM networks, with a simpler structure and better
performance compared to LSTM networks. Therefore it is
currently a very manifold neural network model. While GRU
shares similarities with LSTM and can address the issue of
long-term dependency in recurrent neural networks (RNNs),
it is important to note that previous RNN structures, including
LSTM and GRU, have partially mitigated the problem of
long-term dependence. However, these structures have not
completely resolved the challenge of long-term dependency
beyond a specific range.

Conclusion. The Transformer can better learn the long-term
dependency and non-temporal dependency of code edits, for
some long sequences or for sequences with close correlations.

V. RELATED WORKS

This section discusses the consistency check for code and
comments, automatic comment generation, and comment qual-
ity.

A. The Consistency Check For Code And Comments

Code-comment coherence pertains to the extent to which
the comment corresponds with the code, ensuring that the
comment precisely portrays the functionality of the code.
This aspect has garnered significant attention from researchers,
particularly in the context of code modifications and main-
taining up-to-date comments. The objective is to ensure that

the comments remain relevant and synchronized with the
corresponding code changes.

For instance, Jiang et al. [15] conducted a study on function
comments in different releases of PostgreSQL spanning from
1996 to mid-2005. Their findings indicated that a decreasing
proportion of function comments with titles suggests a lack of
timely updates to the documentation interface by developers.
In another study, Fluri et al. [16] concentrated on examining
the alterations and retentions of source code functions in
diverse releases. They employed tree editing operations within
the abstract syntax tree (AST) to analyze these changes. They
aimed to explore the discrepancies between comments in
historical software versions and the source code.

Tan et al. [3] divided comments into two types: comments
describing the internal workings of the method in the method
body, and comments describing the function specifications of
the method in the method header. Sridhara et al. [17] found that
the source code itself was correct, and the Javadoc description
of the error did not affect the normal execution of the code;
however, it would mislead the code user to introduce errors
in the use process. To remedy this, Tan et al. [3] proposed a
new method for detecting Javadoc comments called tcomment,
which dynamically detects comments during software testing.
However, this method focuses on the detection of null values
and related abnormal method attributes, which are one-sided.
Zhou et al. [18] utilized a constraint solver to detect defects
in the directives of API documents. In a study conducted
by Alghamdi et al. [19], they examined the significance
of primitive variable identifiers within comments. A more
recent study by Huang et al. [20] introduced a method for
automatically identifying outdated source code comments to
verify the consistency between the code and its comments.

While existing techniques primarily concentrate on identify-
ing inconsistent or outdated comments, our approach aims to
automatically update comments by leveraging code changes.
This approach is designed to prevent the introduction of incon-
sistent and obsolete comments. Therefore, our approach serves
as a complementary method to these existing techniques, rather
than a direct competitor.

B. Automatic Comment Generation

Automated comment-generation technology has emerged as
a valuable tool for assisting developers in updating comments.
This technology enables the generation of new comments di-
rectly from modified code.During the initial phases of research
in this domain, the primary emphasis was on approaches based
on templates and information retrieval. These approaches
involved using heuristic rules to extract relevant information
from the code and synthesize comments based on natural
language descriptions.

Nevertheless, as deep learning technology has advanced
and larger code comment datasets have become available,
deep learning-based approaches [21] have emerged as the
predominant research direction in addressing this challenge.
The application of these methods has resulted in notable
enhancements in the precision of automatically generated

comments [22]–[25]. Earlier investigations have put forward
diverse approaches based on rules and information retrieval
for the generation of comments [26], [27]. As an illustration,
Sridhara et al. [17] introduced a method that utilizes summary
information embedded in Java source code and predefined
templates to generate comments.Another approach, known as
ColCom [28], retrieves similar code snippets from open-source
projects and utilizes their comments, either reusing them as-is
or customizing them, to generate comments for code snippets.

In recent years, there has been a growing trend among
researchers to employ probabilistic models for comment gen-
eration. For example, Iyer et al. [29] proposed CODE-NN, a
neural attention model that generates summaries for C# and
SQL code snippets.

LeClair et al. [30] also developed a similar model employing
two different encoders to represent code text and SBT se-
quences for comment generation. Subsequent research has fo-
cused on leveraging advances in neural machine translation to
address the implicit relationship between code structure infor-
mation and natural language descriptions, achieving improved
comment generation. Yang et al. [31] introduced ComFormer,
a novel method based on the Transformer model and fusion
hybrid code. Nagata et al. [32] proposed a generation challenge
called feedback-comment generation for language learners.
Ramin et al. [33] presented API2Com, a model that utilizes
application programming interface documentation (API Docs)
as a valuable knowledge resource for comment generation.
These recent advancements in probabilistic models for com-
ment generation demonstrate a focus on learning the implicit
relationship between code structure information and natural
language descriptions, leading to notable improvements in
comment generation effectiveness.

Prior studies in automatic commit message generation have
primarily focused on learning from code changes to produce
natural language summaries of those changes [34]. In contrast,
our approach centers on applying edits to existing natural
language text. Furthermore, we demonstrate that generating
comments from scratch is less effective compared to our
proposed edit model in the context of comment updates.
Kuang et al. [35] introduced a Graph Neural Network-
enhanced Transformer model, known as GTrans, to enhance
code representation and improve code comprehension. Li et al.
[36] proposed an innovative approach based on an enhanced
Transformer model for comment generation. This approach
effectively addresses long-term dependencies and extracts both
textual and structural information from program code.

Compared to previous work, our method enables comments
to update with code changes. During the comment update
process, in order to better capture the semantic and structural
information of the source code, our method uses self atten-
tion mechanism and positional encoding mechanism to better
improve the quality of comments.By capturing the semantic
information of the code, we can understand how the key
parts of the code work, and provide more detailed and useful
information in the comments. For example, we can capture
the input and output of a function, as well as the purpose

and purpose of the function. This helps us better understand
the code and manage it better. By capturing the structural
information of the code, we can grasp the hierarchical structure
and organization of the code. This helps us write better
comments and better understand the code.

C. Comment Quality

Apart from uncovering information encapsulated within the
comments, evaluating comments from alternative viewpoints
has garnered significant interest among researchers in recent
years. For instance, evaluating the quality of comments [37],
[38], identifying inconsistencies between code and comments
[39], [40], and investigating the co-evolution of comments
[41] and code have been areas of focus. The main aim has
been to guarantee the consistency between comments and
the corresponding code, while upholding a high standard of
quality. In recent years, various tools and techniques have
been proposed to automatically assess comments based on
specific quality attributes and metrics [42]. Nevertheless, there
is still a need for a comprehensive model that encompasses
the essential quality attributes and metrics for evaluating com-
ments. While previous literature reviews have proposed quality
models for software documentation [43]–[45], our focus is
specifically on code comments. We aim to develop a unified
model that specifically addresses the unique characteristics
and requirements of code comments. In assisting developers
and researchers to build comment quality assessment tools,
Rani [46] provided: (1) a taxonomy for comment convention-
related inquiries, which has been empirically validated using
data from diverse community forums; (2) a taxonomy of
comment information types, also empirically validated, that
encompasses various programming languages; (3) a language-
agnostic method for automatically detecting these information
types; (4) lastly, a comprehensive comment quality taxonomy
based on a systematic literature review.

Compared to previous work, our comment quality assess-
ment is more advanced. We adopt a combination of automatic
and manual evaluation methods. In the manual evaluation
stage, evaluation is conducted from three aspects: fluency,
accuracy, and consistency to ensure the scientific nature of
comment evaluation.

VI. CONCLUSION

In this paper, we introduce a novel method named CCU,
which addresses the task of automatically updating comments
to ensure consistency with code changes. To evaluate the per-
formance of CCU, we conducted comprehensive experiments,
employing quantitative analysis as the basis. The experimental
results demonstrate that CCU surpasses baseline methods in
accurately predicting code transformations.

DATA AVAILABILITY STATEMENTS

The datasets generated in this work are publicly accessible
in the corresponding GitHub repository, and the URL is [47].

REFERENCES

[1] S. Panthaplackel, P. Nie, M. Gligoric, J. J. Li, and R. J. Mooney,
“Learning to update natural language comments based on code changes,”
arXiv preprint arXiv:2004.12169, 2020.

[2] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[3] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad
comments?*,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 145–158.

[4] Y. Liang and K. Zhu, “Automatic generation of text descriptive com-
ments for code blocks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[5] Z. Liu, X. Xia, M. Yan, and S. Li, “Automating just-in-time comment
updating,” in Proceedings of the 35th IEEE/ACM International Confer-
ence on Automated Software Engineering, 2020, pp. 585–597.

[6] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). IEEE, 2019, pp. 25–36.

[7] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A
literature review,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 883–909, 2016.

[8] D. Movshovitz-Attias and W. Cohen, “Natural language models for
predicting programming comments,” in Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2013, pp. 35–40.

[9] R. Shin, I. Polosukhin, and D. Song, “Towards specification-directed
program repair,” 2018.

[10] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[11] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018.

[12] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for
machine translation and/or summarization, 2005, pp. 65–72.

[13] W. Xu, C. Napoles, E. Pavlick, Q. Chen, and C. Callison-Burch, “Op-
timizing statistical machine translation for text simplification,” Trans-
actions of the Association for Computational Linguistics, vol. 4, pp.
401–415, 2016.

[14] Y. Dong, Z. Li, M. Rezagholizadeh, and J. C. K. Cheung, “Editnts: An
neural programmer-interpreter model for sentence simplification through
explicit editing,” arXiv preprint arXiv:1906.08104, 2019.

[15] Z. M. Jiang and A. E. Hassan, “Examining the evolution of code
comments in postgresql,” in Proceedings of the 2006 international
workshop on Mining software repositories, 2006, pp. 179–180.

[16] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70–79.

[17] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in 2011 33rd Inter-
national Conference on Software Engineering (ICSE). IEEE, 2011, pp.
101–110.

[18] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 2017, pp. 27–37.

[19] M. Alghamdi, S. Hayashi, T. Kobayashi, and C. Treude, “Characterising
the knowledge about primitive variables in java code comments,” in
2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 460–470.

[20] Y. Huang, Y. Chen, X. Chen, and X. Zhou, “Are your
comments outdated? towards automatically detecting code-comment
consistency,” CoRR, vol. abs/2403.00251, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2403.00251

[21] X. Zhang, L. Chen, W. Zou, Y. Cao, H. Ren, Z. Wang, Y. Li,
and Y. Zhou, “ICG: A machine learning benchmark dataset and
baselines for inline code comments generation task,” Int. J. Softw. Eng.
Knowl. Eng., vol. 34, no. 2, pp. 331–356, 2024. [Online]. Available:
https://doi.org/10.1142/S0218194023500547

[22] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-
hension (ICPC). IEEE, 2013, pp. 23–32.

[23] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng,
S. Huang, Y. Chen, Q. Zhang, H. Qian, Y. Liu, and
Z. Chen, “Automatic code summarization via chatgpt: How far
are we?” CoRR, vol. abs/2305.12865, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2305.12865

[24] J. Zhao, X. Chen, G. Yang, and Y. Shen, “Automatic smart contract
comment generation via large language models and in-context learning,”
Inf. Softw. Technol., vol. 168, p. 107405, 2024. [Online]. Available:
https://doi.org/10.1016/j.infsof.2024.107405

[25] Y. Cai, Y. Lin, C. Liu, J. Wu, Y. Zhang, Y. Liu, Y. Gong, and J. S. Dong,
“On-the-fly adapting code summarization on trainable cost-effective
language models,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[26] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010,
pp. 35–44.

[27] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A
literature review,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 883–909, 2016.

[28] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 380–389.

[29] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[30] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795–806.

[31] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu, “Comformer:
Code comment generation via transformer and fusion method-based
hybrid code representation,” in 2021 8th International Conference on
Dependable Systems and Their Applications (DSA). IEEE, 2021, pp.
30–41.

[32] R. Nagata, M. Hagiwara, K. Hanawa, M. Mita, A. Chernodub, and
O. Nahorna, “Shared task on feedback comment generation for language
learners,” in Proceedings of the 14th International Conference on
Natural Language Generation, 2021, pp. 320–324.

[33] R. Shahbazi, R. Sharma, and F. H. Fard, “Api2com: On the improvement
of automatically generated code comments using api documentations,”
in 2021 IEEE/ACM 29th International Conference on Program Com-
prehension (ICPC). IEEE, 2021, pp. 411–421.

[34] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
arXiv preprint arXiv:1704.04856, 2017.

[35] L. Kuang, C. Zhou, and X. Yang, “Code comment generation based on
graph neural network enhanced transformer model for code understand-
ing in open-source software ecosystems,” vol. 29, no. 2, NOV 2022.

[36] Z. Li, Y. Wu, B. Peng, X. Chen, Z. Sun, Y. Liu, and D. Paul,
“Setransformer: A transformer-based code semantic parser for code
comment generation.”

[37] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st international conference on program
comprehension (icpc). Ieee, 2013, pp. 83–92.

[38] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of
source code comments: the javadocminer,” in International Conference
on Application of Natural Language to Information Systems. Springer,
2010, pp. 68–79.

[39] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2017, pp. 112–122.

[40] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE,
2019, pp. 53–64.

[41] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367–394, 2009.

[42] Y. Hai, L. Bin, W. Peixia, J. Di, and W. Yongji, “Source code com-
ments quality assessment method based on aggregation of classification
algorithms,” Journal of Computer Applications, vol. 36, no. 12, p. 3448,
2016.

[43] W. Ding, P. Liang, A. Tang, and H. Van Vliet, “Knowledge-based
approaches in software documentation: A systematic literature review,”
Information and Software Technology, vol. 56, no. 6, pp. 545–567, 2014.

[44] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and
G. Ruhe, “Cost, benefits and quality of software development documen-
tation: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

[45] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, 2005, pp. 68–75.

[46] P. Rani, “Speculative analysis for quality assessment of code comments,”
in 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion). IEEE, 2021, pp.
299–303.

[47] “https://github.com/panthap2/ learningtoupdatenlcomments.”

