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Abstract

Large-vocabulary object detectors (LVDs) aim to detect objects of many cate-
gories, which learn super objectness features and can locate objects accurately
while applied to various downstream data. However, LVDs often struggle in rec-
ognizing the located objects due to domain discrepancy in data distribution and
object vocabulary. At the other end, recent vision-language foundation models
such as CLIP demonstrate superior open-vocabulary recognition capability. This
paper presents KGD, a Knowledge Graph Distillation technique that exploits the
implicit knowledge graphs (KG) in CLIP for effectively adapting LVDs to various
downstream domains. KGD consists of two consecutive stages: 1) KG extraction
that employs CLIP to encode downstream domain data as nodes and their feature
distances as edges, constructing KG that inherits the rich semantic relations in
CLIP explicitly; and 2) KG encapsulation that transfers the extracted KG into LVDs
to enable accurate cross-domain object classification. In addition, KGD can extract
both visual and textual KG independently, providing complementary vision and
language knowledge for object localization and object classification in detection
tasks over various downstream domains. Experiments over multiple widely adopted
detection benchmarks show that KGD outperforms the state-of-the-art consistently
by large margins.

1 Introduction

Object detection aims to locate and classify objects in images, which conveys critical information
about “what and where objects are” in scenes. It is very important in various visual perception
tasks in autonomous driving, visual surveillance, object tracking, etc. Unlike traditional object
detection, large-vocabulary object detection [1, 2, 3] aims to detect objects of a much larger number
of categories, e.g., 20k object categories in [3]. It has achieved very impressive progress recently
thanks to the availability of large-scale training data. On the other hand, large-vocabulary object
detectors (LVDs) often struggle while applied to various downstream tasks as their training data
often have different distributions and vocabularies as compared with the downstream data, i.e., due to
domain discrepancies.

In this work, we study unsupervised domain adaptation of LVDs, i.e., how to adapt LVDs towards
various downstream tasks with abundant unlabelled data available. Specifically, we observe that
LVDs learn superb generalizable objectness knowledge from massive object boxes, being able to
locate objects in various downstream images accurately [3]. However, LVDs often fail to classify
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Figure 1: A comparison of the domain adaptation performance of our method against existing
methods. Our method outperforms the state-of-the-art consistently on 11 widely studied downstream
detection datasets in terms of AP50 improvements. The results of all methods are acquired with the
same baseline [3].

the located object due to two major factors: 1) the classic dataset-specific class-imbalance and the
resultant distribution bias across domains; and 2) different vocabularies across domains [4, 5]. At
the other end, vision-language models (VLMs) [6] such as CLIP [7] learn from web-scale images
and text of arbitrary categories, which achieve significant generalization performance in various
downstream tasks with severe domain shifts. Hence, effective adaptation of LVDs towards various
unlabelled downstream domains could be facilitated by combining the superior object localization
capability from LVDs and the super-rich object classification knowledge from CLIP.

We design Knowledge Graph Distillation (KGD) that explicitly retrieves the classification knowledge
of CLIP to adapt LVDs while handling various unlabelled downstream domains. KGD works
with one underling hypothesis, i.e., the generalizable classification ability of CLIP largely comes
from its comprehensive knowledge graph learnt over billions of image-text pairs, which enables it
to classify objects of various categories accurately. In addition, the knowledge graph in CLIP is
implicitly encoded in its learnt parameters which can be exploited in two steps: 1) Knowledge Graph
Extraction (KGExtract) that employs CLIP to encode downstream data as nodes and computes their
feature distances as edges, constructing an explicit CLIP knowledge graph that captures inherent
semantic relations as learnt from web-scale image-text pairs; and 2) Knowledge Graph Encapsulation
(KGEncap) that encapsulates the extracted knowledge graph into object detectors to enable accurate
object classification by leveraging relevant nodes in the CLIP knowledge graph.

The proposed KGD allow multi-modal knowledge distillation including Language Knowledge Graph
Distillation (KGD-L) and Vision Knowledge Graph Distillation (KDG-V). Specifically, KGD-L
considers texts as nodes and the distances among text embeddings as edges, enabling detectors to
reason whether a visual object matches a text by leveraging other relevant text nodes. KGD-V takes a
category of images as a node and the distances among image embeddings as edges, which enhances
detection by conditioning on other related visual nodes. Hence, KGD-L and KGD-V complement
each other by providing orthogonal knowledge from language and vision perspectives. In this
way, KGD allows to explicitly distill generalizable knowledge from CLIP to facilitate unsupervised
adaptation of large-vocabulary object detectors towards distinctive downstream datasets.

In summary, the major contributions of this work are threefold. First, we propose a knowledge
transfer framework that exploits CLIP for effective adaptation of large-vocabulary object detectors
towards various unlabelled downstream data. To the best of our knowledge, this is the first work
that studies distilling CLIP knowledge graphs for the object detection task. Second, we design novel
knowledge graph distillation techniques that extracts visual and textual knowledge graphs from CLIP
and encapsulates them into object detection networks successfully. Third, extensive experiments show
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that KGD outperforms the state-of-the-art consistently across 11 widely studied detection datasets as
shown in Fig. 1.

2 Related works

Large-vocabulary Object Detection [8, 9, 10, 11, 12, 13, 14] aims to detect objects of thousands
of classes. Most existing studies tackle this challenge by designing various class-balanced loss
functions [8] for effective learning from large-vocabulary training data and handling the long-tail
distribution problem [15, 16, 17, 18]. Specifically, several losses have been proposed, such as
Equalization losses [19, 20], SeeSaw loss [21], and Federated loss [22]. On the other hand, [23] and
Detic [3] attempt to introduce additional image-level datasets with large-scale fine-grained classes
for training large-vocabulary object detector (LVD), aiming to expand the detector vocabulary to
tens of thousands of categories. These LVDs learn superb generalizable objectness knowledge from
object boxes of massive categories and are able to locate objects in various downstream images
accurately [3]. However, they often fail to classify the located objects [4, 5] accurately. In this work,
we focus on adapting LVDs towards various unlabelled downstream data by utilizing the super-rich
object classification knowledge from CLIP.

Domain Adaptation aims to adapt source-trained models towards various target domains. Previous
work largely focuses on unsupervised domain adaptation (UDA), which minimizes the domain
discrepancy by discrepancy minimization [24, 25], adversarial training [26, 24, 27, 28, 29, 30],
self-supervised learning [31, 32, 33, 34], or self-training [35, 36, 37, 38, 39, 40, 41, 42, 43]. Recently,
source-free domain adaptation (SFDA) generates pseudo labels for target data without accessing
source data, which performs domain adaptation with entropy minimization [44], self training [45,
46, 47, 48, 49], contrastive learning [50, 51, 52, 53], etc. However, most existing domain adaptation
methods struggle while adapting LVDs toward downstream domains, largely due to the low-quality
pseudo labels resulting from the discrepancy in both data distributions and object vocabulary.

Vision-Language Models (VLMs) have achieved great success in various vision tasks [6]. They are
usually pretrained on web-crawled text-image pairs with a contrastive learning objective. Representa-
tive methods such as CLIP [7] and ALIGN [54] have demonstrated very impressive generalization
performance in many downstream vision tasks. Following [7, 54], several studies [54, 55, 56, 57]
incorporate cross-attention layers and self-supervised objectives for better cross-modality modelling
of noisy data. In addition, several studies [58, 59, 60, 61] learn fine-grained and structural alignment
and relations between image and text. In this work, we aim to leverage the generalizable knowledge
learnt by VLMs to help adapt LVDs while handling various unlabelled downstream data.

Knowledge Graph (KG) [62] is a semantic network that considers real-world entities or concepts as
nodes and treats the semantic relations among them as edges. Multi-modal knowledge graph [63, 64]
extends knowledge from text to the visual domain, enhancing machines’ ability to describe and
comprehend the real world. These KGs have proven great effectiveness in storing and representing
factual knowledge, leading to successful applications in various fields such as entity recognition [65,
66], question-answering [67], and information retrieval [68]. Different from the aforementioned KGs
and MMKGs that are often handcrafted by domain experts, we design knowledge graph distillation
that builds a LKG and a VKG by explicitly retrieving VLM’s generalizable knowledge learnt from
web-scale image-text pairs, which effectively uncover the semantic relations across various textual
and visual concepts in different downstream tasks, ultimately benefiting the adaptation of LVDs.

3 Method

Task Definition. This paper focuses on unsupervised adaptation of large-vocabulary object detectors
(LVDs). We are provided with a set of unlabeled downstream domain data Dt = {xt

i}
Nt
i=1 and

an LVD pre-trained on labeled source domain detection dataset Ds = {xs
i ,y

s
i }

Ns
i=1. xi and yi =

{(pj , tj)}Mj=1 are the image and M instance annotations of i-th sample, where pj and tj denote the
ground-truth category and box coordinate of j-th instance. Ns and Nt refer to the number of samples
in Ds and Dt. The goal is to adapt the pretrained LVD towards the downstream domain Dt by using
the unlabelled images.
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Figure 2: Overview of the proposed Knowledge Graph Distillation (KGD). KGD comprises two
consecutive stages including Knowledge Graph Extraction (KGExtract) and Knowledge Graph
Encapsulation (KGEncap). KGExtract employs CLIP to encode downstream data as nodes and
considers their feature distances as edges, explicitly constructing KGs including language knowledge
graph (LKG) and vision knowledge graph (VKG) that inherit the rich semantic relations in CLIP.
The dashed reddish lines between LKG and VKG represent the cross-modal edges that connect
the nodes between vision and language modalities, enabling the integration of both language and
visual information. KGEncap transfers the extracted KGs into the large-vocabulary object detector
to enable accurate object classification over downstream data. Besides, KGD works for both image
and text data and allow extracting and transferring vision KG (VKG) and language KG (LKG),
providing complementary knowledge for adapting large-vocabulary object detectors for handling
various unlabelled downstream domains.

Naïve Solution with Mean Teacher Method (MT) [45]. In this paper, we adopt Detic [3] as the
pretrained LVD, which utilizes CLIP text embeddings as the classifier. We employ mean teacher [45]
as the preliminary solution, which involves a teacher detector and a student detector where the
former generates pseudo labels to train the latter while the latter updates the former in a momentum
manner. Given a batch of B unlabeled target samples, the teacher detector Φt first produces detection
predictions on them, which are then filtered with a predefined threshold τ to generate detection
pseudo label ŷi (consisting of classes and bounding boxes). With ŷi, the unsupervised training of
student detector Φs on the unlabeled downstream data can be formulated as the following:

Loss =
1

B

B∑
i=1

L
(
Φs(x

t
i), ŷi

)
, (1)

where L(·) = Lrpn(·) + Lreg(·) + Lcls(·) is the detection loss function in which Lrpn(·), Lreg(·),
and Lcls(·) denote the loss for region proposal network, regression, and classification, respectively.
Note both teacher detector Φt and student detector Φs are initialized with the pretrained LVD.

Motivation. On the other hand, although the LVD is able to locate objects in various downstream-
domain images accurately [3], it often fails to classify the located objects, leading to very noisy
detection pseudo labels when serving as the teacher detector. At the other end, vision-language
models (VLMs) [6] such as CLIP [7] learns from web-scale images-text pairs of arbitrary categories,
which possesses the ability to classify objects accurately in various downstream data. Thus, we
argue that effective adaptation of LVDs towards various unlabelled downstream data could be
facilitated by combining the superior object localization capability from LVDs and the super-rich
object classification knowledge from CLIP. To this end, we design Knowledge Graph Distillation
(KGD) with Language KGD and Vision KGD, aiming to explicitly retrieves the classification
knowledge of CLIP to adapt LVDs while handling various unlabelled downstream data. The overview
of our proposed KGD is shown in Fig. 2.
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3.1 Language knowledge graph distillation

The proposed language knowledge graph distillation (KGD-L) aims on distilling knowledge graph
from the perspective of text modality. KGD-L works in a two-step manner. The first step is language
knowledge graph (LKG) extraction with a large lexical database named WordNet [69] that aims to
uncover the implicitly encoded language knowledge in CLIP. With the guidance from the WordNet
that stores a wide range of knowledge, LKG Extraction builds a category-discriminative and domain-
generalizable LKG. The second step is LKG encapsulation that encapsulates the extracted LKG
into the teacher detector, enabling the detector to reason whether a visual object matches a text by
leveraging other relevant text nodes and ultimately generate more accurate detection pseudo labels.

LKG Extraction with WordNet Hierarchy. We first generate domain-generalizable [70] prompts
for each object category by leveraging the large lexical database WordNet [69]. Specifically, given
the category set C = {ci|i = 1. . . , Nc} of a downstream domain, we obtain the WordNet [69] Synset
definition as well as the hyponym set of category ci as follows:

di,Si = WNRetrieve(ci), (2)

where WNRetrieve(·) retrieves the WordNet database [69] and returns the definition di as well as
the hyponym set Si of its input. Si = {sj}mj=1, where sj refers to the jth hyponym of category ci
and m refers to the cardinal number of Si. Note that hyponym sj is the concatenation of the class
name and its descriptions. In this way, a category name ci can be better defined and described with
the informative yet accurate category definition in its hyponym set from WordNet, which are then
combined with di as a set of domain generalizable prompts for category ci:

S̃i = Si ∪ {di}, (3)

and the domain generalizable prompt set of category set C can be constructed as the following:

S̃ =
Nc∪
i=1
S̃i. (4)

With the category-discriminative and domain-generalizable information contained in S̃ , we formulate
the proposed LKG as a weighted undirected graph GL = (VL, UL,Ω) , which is capable of capturing
semantic relationships and associations between different category concepts. VL = {s̃i}Nc(m+1)

i=1 is
the vertex set in which each node s̃i refers to a description in S̃ . And UL = {(s̃i, s̃j)} is the edge set.
Ω is a matrix of node feature vectors Ωi = T (s̃i), where T (·) denotes the CLIP text encoder.

LKG Encapsulation encapsulates the comprehensive knowledge in the extracted LKG into the
teacher detector to facilitate detection pseudo label generation. Specifically, we first employ CLIP to
encode the regions cropped by the teacher detector and then generate pseudo labels for each region
feature conditioned on LKG. Given the image xt ∈ Dt, we feed it into the teacher detector Φt to
acquire the prediction as the following:

ŷ = Φt(x
t), (5)

where ŷ = {(p̂j , t̂j)}Mj=1, p̂j denotes the probability vector of the predicted bounding box t̂j after
Softmax activation function. M denotes the number of predicted proposals after the thresholding
with τ , i.e., a predicted proposal will be discarded if its confidence score is less than τ .

Next, we employ CLIP to encode the predicted object proposals in ŷ as follows:

F = V
(
Crop

(
xt, ŷ

))
, (6)

where Crop(·) crops square regions from image xt based on the longer edges of bounding boxes
in ŷ, V (·) is the image encoder of CLIP, and the j-th vector fj of matrix F is the feature of j-th
proposal in ŷ.

With the extracted LKG GL and the features of objects (or object proposals) F , we reason the class
of objects conditioned on GL with a two-layer graph convolutional network (GCN) [71] as follows:

[QF ;QΩ] = Softmax(D− 1
2AD− 1

2 ReLU(D− 1
2AD− 1

2H0W 0)W 1), (7)

where H0 = [F ; Ω], Aij = exp(−||H0
i −H0

j ||22/Var(||H0
i −H0

j ||22)), Aii = 1, and Dii =
∑

j Aij .
QF

ji/Q
Ω
ji is the i-th element in probability vector QF

j /Q
Ω
j , which denotes the predicted category
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probability of being ci for object feature fj /LKG node s̃j . {W l}1l=0 are the trainable weights. For
updating {W l}1l=0, we minimizing the following cross entropy error over the nodes in LKG:

LLKG(x
t) = −

∑
i

∑
j

(
log(QΩ

ji) · I(s̃j ∈ S̃i)
)
. (8)

Then we encapsulate the extracted LKG into Φt by,

pl
ji = p̂ji ·QF

ij , (9)

where p̂ji is the i-th element in probability vector p̂j , which denotes the predicted category probability
of ci. The first term in Eq. 9 denotes the original prediction probability from the teacher model while
the second term in Eq. 9 stands for the prediction probability from LKG. pl

ji denotes the prediction
probability calibrated by LKG.

In this way, KGD-L extracts and encapsulates LKG from CLIP into the teacher detector, enabling
it to reason whether an object matches a category conditioned on the relevant nodes in LKG and
ultimately refining the original detection pseudo labels.

3.2 Vision knowledge graph distillation

As LKG captures language knowledge only, we further design vision knowledge graph distillation
(KGD-V) that extracts a vision knowledge graph (VKG) and encapsulates it into the teacher detector
to improve pseudo label generation. Specifically, VKG captures vision knowledge dynamically along
the training process, which complement LKG by providing orthogonal and update-to-date vision
information.

Dynamic VKG Extraction. We first initialize VKG with the CLIP text embedding and then employ
the update-to-date object features to update it using manifold smoothing. Specifically, we initialize
VKG as a weighted undirected graph GV = (VV , UV ), in which each node vi ∈ VV is initialized
with the CLIP text embedding of category ci:

vi = T (ci) , (10)

and the graph edge uij ∈ UV is defined as the cosine similarity between nodes vi and vj . Given a
batch of {xt

b}Bb=1 ⊆ Dt and the corresponding pseudo labels {ŷb}Bb=1 and CLIP features {Fb}Bb=1,
the visual embedding centroid of category ck can be obtained as the following:

θi =

∑B
b=1

∑
fj∈Fb

fj · I(p̂j(i) == p̂max
j )∑B

b=1

∑
fj∈Fb

I(p̂j(i) == p̂max
j )

, (11)

where p̂max
j is the maximum element in probability vector p̂j , I is the indicator function. And an

affinity matrix A can be calculated as Aij = exp(−r2ij/σ2) and Aii = 0, where rij = ||θi − θj ||2
and σ2 = Var(r2ij). In each iteration, the node of VKG is preliminarily updated as:

vi ← λvi + (1− λ)θi. (12)

In order to incorporate the downstream visual graph knowledge into VKG, we perform additional
steps to smooth the node of VKG, using the affinity matrix A from the current batch as a guide:

vi =
∑
j

Wijvj , (13)

where W = (I −αL)−1, L = D− 1
2AD− 1

2 , Dii =
∑

j Aij , α is a scaling factor set as [72], and I is
the identity matrix.

VKG Encapsulation encapsulate the orthogonal and update-to-date vision knowledge in the extracted
VKG into the teacher detector, which complements LKG and further improves pseudo label generation.
With the extracted dynamic VKG GV and the object features F in image xt, we encapsulate the
extracted VKG into Φt in a similar way as the LKG Encapsulation as follows:

pv
ji = p̂ji ·

exp(cos ⟨fj ,vi⟩)∑
i′ exp(cos ⟨fj ,vi′⟩)

, (14)
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Table 1: Benchmarking over autonomous driving datasets under various weather and time conditions.
† signifies that the methods employ WordNet to retrieve category definitions given category names,
and CLIP to predict classification pseudo labels for objects. We adopt AP50 in evaluations. The
results of all methods are acquired with the same baseline [3] as shown in the first row.

Method Cityscapes [73] Vistas [74] BDD100K-weather [75] BDD100K-time-of-day [75]
rainy snowy overcast cloudy foggy daytime dawn&dusk night

Detic [3] (Baseline) 46.5 35.0 34.3 33.5 39.1 42.0 28.4 39.2 35.3 28.5
MT [45] 49.1 35.7 34.3 34.2 39.9 41.7 28.9 40.0 36.3 28.5
MT [45]† 50.0 36.6 35.0 35.3 40.9 43.0 29.8 42.1 38.4 29.1
SHOT [44] 49.9 36.5 34.9 34.5 40.2 42.0 34.7 40.5 36.1 26.7
SHOT [44]† 50.8 37.4 36.1 35.7 41.8 44.1 35.6 42.4 38.1 28.0
SFOD [46] 49.3 35.6 32.5 33.0 40.5 43.3 33.8 40.8 36.0 28.9
SFOD [46]† 50.3 36.6 33.6 33.8 42.8 45.6 34.7 43.4 37.9 30.1
HCL [50] 49.5 36.0 34.7 34.5 40.4 42.2 30.8 40.6 36.7 28.2
HCL [50]† 50.7 37.0 35.6 35.7 42.2 44.3 31.9 42.9 38.6 29.5
IRG-SFDA [51] 50.6 36.4 35.0 35.3 40.7 42.6 36.4 40.8 36.4 27.8
IRG-SFDA [51]† 51.7 37.5 35.9 36.4 42.6 44.8 36.7 43.0 38.3 28.9
PETS [76] 50.2 35.8 34.4 33.9 40.1 43.0 36.3 39.7 35.7 27.8
PETS [76]† 50.8 37.4 35.9 36.3 41.0 42.8 36.7 40.9 37.2 27.7
TPDS [77] 50.1 36.0 35.8 35.2 40.0 42.1 36.4 40.4 36.5 28.5
TPDS [77]† 50.3 37.1 35.6 35.9 40.5 43.4 36.9 41.3 36.7 28.9
KGD (Ours) 53.6 40.3 37.3 37.1 44.6 48.2 38.0 46.6 41.0 31.2

where p̂ji is the i-th element in vector p̂j , denoting the predicted probability of category ci. The first
term in Eq. 14 is the prediction probability from the teacher model while the second term in Eq. 14 is
the prediction probability from VKG. pv

ji is the prediction probability calibrated by VKG.

In this way, KGD-V extracts and encapsulates the VKG from CLIP into the teacher detector, further
refining the detection pseudo labels of visual objects by conditioning on related visual nodes in VKG.

3.3 Overall objective

Finally, with the pseudo labels pl
j and pv

j generated from KGD-L and KGD-V respectively, the
unsupervised training loss of KGD can be formulated as the following:

LKGD =
∑

xt∈Dt

(
L
(
Φs(x

t), ỹ
)
+ LLKG(x

t)
)
, (15)

where ỹ = {(p̃j , t̂j)}Mj=1, and p̃j = N(pl
j + pv

j ). N(·) normalizes data to range [0, 1]. The pseudo
code of the proposed KGD is provided in appendix.

4 Experiments

This section presents experimental results. Dataset details and implementation details can be found
in the Appendix. Section 4.1 presents the experiments across various downstream domain datasets.
Section 4.2 and Section 4.3 provide ablation studies and discuss different features of KGD.

4.1 Results

Tables 1-2 show the benchmarking of our methods with state-of-the-art domain adaptive detection
methods. As there are few prior studies on LVD adaptation, we compare our proposed method with
state-of-the-art source-free domain adaptation methods for benchmarking, including Mean Teacher
(MT) [45], SHOT [44], SFOD [46], HCL [50], IRG-SFDA [51], PETS [76], and TPDS [77]. For fair
comparison, we incorporate CLIP [7] and WordNet [69] into the compared methods (marked with †).
Specifically, we employ WordNet [69] to generate category definitions given category names, and
CLIP [7] to predict pseudo labels for object classification.

Object detection for autonomous driving. As Table 1 shows, the proposed KGD outperforms
the baseline substantially over the general autonomous driving datasets Cityscapes and Vistas (with
an average improvement of 6.20 in AP50). KGD also outperforms the state-of-the-art by 2.35 on
average, demonstrating the superiority of KGD in adapting pretrained LVDs toward autonomous
driving scenarios with substantial inter-domain discrepancy. In addition, Table 1 shows experiments
on autonomous driving data under various weather and time conditions. We can observe that KGD still
achieves superior detection performance even though the unlabeled target data experience large style
variation and severe quality degradation. Further, the experiments show that KGD still outperforms
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Table 2: Benchmarking over common objects datasets, intelligent surveillance datasets, and artistic
illustration datasets. † signifies that the methods employ WordNet to retrieved category definitions
given category names, and CLIP to predict classification pseudo labels for objects. We adopt AP50 in
evaluations. The results of all methods are acquired with the same baseline [3] as shown in first row.

Method Common Objects Intelligent Surveillance Artistic Illustration
VOC [78] Objects365 [79] MIO-TCD[80] BAAI [81] VisDrone [82] Clipart1k [83] Watercolor2k [83] Comic2k [83]

Detic [3] (Baseline) 83.9 29.4 20.6 20.6 19.0 61.0 58.9 51.2
MT [45] 85.6 31.0 20.0 23.4 18.9 62.7 58.4 49.8
MT [45]† 86.2 31.4 20.9 23.9 20.4 63.4 59.6 51.1
SHOT [44] 84.0 30.7 21.2 22.5 19.4 61.3 58.3 50.4
SHOT [44]† 84.5 31.2 22.3 23.3 20.9 62.3 59.8 52.1
SFOD [46] 85.5 31.6 19.8 22.8 18.8 63.4 58.2 50.1
SFOD [46]† 86.2 32.0 21.0 23.1 20.2 64.6 59.3 51.8
HCL [50] 85.8 31.8 20.5 23.6 18.8 63.1 58.3 52.3
HCL [50]† 86.5 32.3 21.1 24.1 19.6 64.7 59.7 53.7
IRG-SFDA [51] 86.0 32.0 20.7 22.8 18.8 63.3 60.8 50.4
IRG-SFDA [51]† 86.3 32.3 21.6 23.7 20.0 65.0 61.5 52.0
PETS [76] 85.9 31.5 20.6 22.6 18.2 63.0 60.2 50.4
PETS [76]† 86.3 32.1 21.1 23.2 19.3 63.6 61.3 50.6
TPDS [77] 85.5 31.8 20.2 22.1 18.8 63.1 60.0 50.1
TPDS [77]† 85.6 32.0 21.1 23.2 19.2 64.3 61.4 50.6
KGD (Ours) 86.9 34.4 24.6 24.3 23.7 69.1 63.5 55.6

Table 3: Ablation studies of KGD with Language Knowledge Graph Distillation (KGD-L) and
Vision Knowledge Graph Distillation (KGD-V). The experiments are conducted on the Cityscapes.

Method Detic (Baseline) KGD (Ours)
Language Knowledge Graph Distillation ✓ ✓
Vision Knowledge Graph Distillation ✓ ✓
AP50 46.5 52.8 52.7 53.6

the state-of-the-art clearly when CLIP and WordNet are incorporated, validating that the performance
gain largely comes from our novel KGD instead of merely using CLIP and WordNet.

Object detection for intelligent surveillance. The detection results on intelligent surveillance
datasets are presented in Table 2. Notably, the proposed KGD surpasses all other methods by
significant margins, which underscores the effectiveness of KGD in adapting the pretrained LVD
towards the challenging surveillance scenarios with considerable variations in camera lenses and
angles. The performance improvements achieved by KGD in this context demonstrate its effectiveness
in exploring the unlabeled surveillance datasets by retrieving the classification knowledge of CLIP.

Object detection for common objects. We evaluate the effectiveness of our KGD on the common
object detection task using Pascal VOC and Objects365. Table 2 reports the detection results,
showcasing significant improvements over the baseline and outperforming state-of-the-arts, thereby
highlighting the superiority of KGD. Besides, we can observe that the performance improvements on
the Pascal VOC dataset and Objects365 dataset are not as significant as those in autonomous driving.
This discrepancy is attributed to the relatively smaller domain gap between common objects and the
pretraining dataset of LVD.

Object detection for artistic illustration. Table 2 reports the detection results on artistic illustration
datasets. The proposed KGD outperforms all other methods by substantial margins, which highlights
the effectiveness of KGD in adapting the pretrained large-vocabulary object detector towards artistic
images that exhibit distinct domain gaps with natural images.

4.2 Ablation studies

In Table 3, we conducted ablation studies to assess the individual contribution of our proposed
KGD-L and KGD-V on the task of LVD adaptation. The pretrained LVD (i.e., Detic [3] without
adaptation) does not perform well due to the significant variations between its pre-training data and
the downstream data, As a comparison, either KGD-L or KGD-V brings significant performance

Table 4: Comparisons with existing CLIP knowledge distillation methods on LVD adaptation. For a
fair comparison, we incorporate them with Mean Teacher Method (the columns with ‘MT+’). The
results of all methods are acquired with the same baseline [3] as shown in the first column.

Method Detic [3] (Baseline) MT [45] MT [45]+VILD [84] MT [45]+RegionKD [85] MT [45]+OADP [86] KGD (Ours)
AP50 46.5 49.1 50.6 50.2 50.2 53.6
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Table 5: Study of different KGD-L strategies. The experiments are conducted on the Cityscapes.

Method Detic (Source only) KGD-L only
LKG Extraction with category names ✓
LKG Extraction with WordNet Synset definitions ✓
LKG Extraction with WordNet Hierarchy ✓
AP50 46.5 51.9 52.0 52.8

Table 6: Study of different KGD-L strategies. The experiments are conducted on the Cityscapes.

Method Detic (Source only) KGD-L Only
LKG Encapsulation by Feature Distance ✓
LKG Encapsulation ✓
AP50 46.5 49.6 52.8

improvements (i.e., +6.3 of AP50 and +6.2 of AP50 over the baseline), demonstrating both language
and vision knowledge graphs built from CLIP can clearly facilitate the unsupervised adaptation of
large-vocabulary object detectors. The combination of KGD-L and KGD-V performs the best clearly,
showing that our KGD-L and KGD-V are complementary by providing orthogonal language and
vision knowledge for regularizing the unsupervised adaptation of LVDs.

4.3 Discussion

Language knowledge graph (LKG) Extraction strategies. Our proposed KGD-L introduces the
WordNet [69] to uncover the implicitly encoded language knowledge in CLIP [7] and accordingly
enables to build a category-discriminative and domain-generalizable Language Knowledge Graph
(LKG) as described in Section 3.1. We examine the superiority of the proposed LKG Extraction with
WordNet Hierarchy by comparing it with "LKG Extraction with category names" and "LKG Extrac-
tion with WordNet [69] Synset definitions", the former builds LKG directly with the category names
from downstream datasets while the latter directly builds LKG using WordNet Synset definitions
that are retrieved from the WordNet database with category names from downstream datasets. As
Table 5 shows, both strategies achieve sub-optimal performance. For “LKG Extraction with category
names”, the category names are often ambiguous and less informative which degrades adaptation.
For "LKG Extraction with WordNet Synset definitions", the used WordNet Synset definitions are
more category-discriminative but they often have knowledge gaps with downstream data, limiting
adaptation of the pretrained LVDs. As a comparison, our proposed LKG Extraction with WordNet
Hierarchy performs clearly better due to the guidance of Synset definitions as well as their hyponym
sets that captures more comprehensive structural knowledge from the WordNet hierarchy which helps
generate category-discriminative and domain-generalizable LKG and facilitates the adaption of LVDs
towards downstream data effectively.

Language knowledge graph (LKG) Encapsulation strategies. Our proposed KGD-L encapsulates
the comprehensive knowledge in the extracted LKG into the teacher detector to facilitate detection
pseudo label generation as described in Section 3.1. We examine the superiority of the proposed
LKG Encapsulation by comparing it with "LKG Encapsulation by Feature Distance", which directly
calculate and normalize the feature distance between object proposal feature and LKG nodes, and
calibrates the original prediction probability from the teacher model using the normalized feature
distance. As Table 6 shows, "LKG Encapsulation by Feature Distance" does not perform well in
model adaptation, largely because it cannot effectively aggregate and capture semantic relationships
and associations between different nodes in our extracted LKG. As a comparison, our proposed LKG
Encapsulation shows clear improvements as the language information is adaptively aggregated along
the training process stabilizes and improves the model adaptation, validating the performance gain
largely comes from our novel LKG Encapsulation designs instead of merely using WordNet [69]
embedding.

Vision knowledge graph distillation (KGD-V) strategies. Our proposed KGD-V captures the
Dynamic vision knowledge graph (VKG) along the training as described in Section 3.2, which
complements LKG by providing orthogonal and update-to-date vision information. We examine the
proposed Dynamic VKG Extraction by comparing it with "Static VKG Extraction" and "Dynamic
VKG Extraction without Smoothing". The former builds a static VKG with CLIP features of image

9



crops of objects that are predicted by the pretrained LVD before adaptation and it remains unchanged
during the LVD adaptation process, while the latter updates the VKG with Eq. (12) but without
smoothing (Eq. 13). As Table 7 shows, "Static VKG Extraction" does not perform well in model
adaptation, largely because the extracted static VKG is biased towards the pretraining datasets of the
LVD and impedes domain-specific adaptation. For "Dynamic VKG Extraction without Smoothing",
the nodes in VKG are updated with unlabeled downstream data in Eq. (12), but the downstream
visual graph knowledge is not effectively incorporated into VKG, which limits the adaptation of the
pretrained LVD. As a comparison, our proposed Dynamic VKG Extraction shows clear improvements
as the update-to-date vision information extracted along the training process dynamically stabilizes
and improves the model adaptation.

Table 7: Studies of different KGD-V strategies. The experiments are conducted on the Cityscapes.

Method Detic (Source only) KGD-V only

Static VKG Extraction ✓
Dynamic VKG Extraction without Smoothing ✓
Dynamic VKG Extraction ✓
AP50 46.5 51.9 52.2 52.7

Comparisons with existing CLIP knowledge distillation methods for detection. We compared our
KGD with existing CLIP knowledge distillation methods designed for detection tasks. Most existing
methods achieve CLIP knowledge distillation by mimicking its feature space, such as VILD [84],
RegionKD [85], and OADP [86]. Table 4 reports the experimental results over the Cityscapes dataset,
which shows existing CLIP knowledge distillation methods do not perform well in adapting LVDs to
downstream tasks. The main reason is that they merely align the feature space between LVDs and
CLIP without considering the inherent semantic relationships between different object categories.
KGD also performs knowledge distillation but works for LVDs adaption effectively, largely because
it works by extracting and encapsulating knowledge CLIP knowledge graphs which enables accurate
object classification by leveraging relevant nodes in the knowledge graphs.

Table 8: Parameter analysis of KGD for the pseudo label generation threshold τ .

τ 0.15 0.2 0.25 0.3 0.35
AP50 53.4 53.2 53.6 53.9 53.5

Parameter studies. In the pseudo label generation in KGD, the reliable pseudo labels are acquired
with a pre-defined confidence threshold τ . We studied τ by changing it from 0.15 to 0.35 with a step
of 0.05. Table 8 reports the experiments over the Cityscapes dataset. It shows that τ does not affect
KGD clearly, demonstrating the proposed KGD is tolerant to hyper-parameters.

Qualitative experimental results. We present qualitative results of KGD over diverse downstream
domain detection datasets as shown in Appendix.

5 Conclusion

This paper presents KGD, a novel knowledge distillation technique that exploits the implicit KG of
CLIP to adapt large-vocabulary object detectors for handling various unlabelled downstream data.
KGD consists of two consecutive stages including KG extraction and KG encapsulation which extract
and encapsulate visual and textual KGs simultaneously, thereby providing complementary vision
and language knowledge to facilitate unsupervised adaptation of large-vocabulary object detectors
towards various downstream detection tasks. Extensive experiments on multiple widely-adopted
detection datasets demonstrate that KGD consistently outperforms state-of-the-art techniques by clear
margins.

References
[1] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu

Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image

10



pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10965–10975, 2022.

[2] Lewei Yao, Jianhua Han, Youpeng Wen, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li,
Chunjing Xu, and Hang Xu. Detclip: Dictionary-enriched visual-concept paralleled pre-training
for open-world detection. arXiv preprint arXiv:2209.09407, 2022.

[3] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip Krähenbühl, and Ishan Misra. Detecting
twenty-thousand classes using image-level supervision. arXiv preprint arXiv:2201.02605, 2022.

[4] Kemal Oksuz, Baris Can Cam, Sinan Kalkan, and Emre Akbas. Imbalance problems in
object detection: A review. IEEE transactions on pattern analysis and machine intelligence,
43(10):3388–3415, 2020.

[5] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Universal
domain adaptation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2720–2729, 2019.

[6] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision
tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):5625–
5644, 2024.

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[8] Achal Dave, Piotr Dollár, Deva Ramanan, Alexander Kirillov, and Ross Girshick. Evaluating
large-vocabulary object detectors: The devil is in the details. arXiv preprint arXiv:2102.01066,
2021.

[9] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5356–5364, 2019.

[10] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[11] Hao Yang, Hao Wu, and Hao Chen. Detecting 11k classes: Large scale object detection without
fine-grained bounding boxes. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9805–9813, 2019.

[12] Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. Llms meet vlms:
Boost open vocabulary object detection with fine-grained descriptors. arXiv preprint
arXiv:2402.04630, 2024.

[13] Jiaqing Zhang, Jie Lei, Weiying Xie, Yunsong Li, Geng Yang, and Xiuping Jia. Guided hybrid
quantization for object detection in remote sensing imagery via one-to-one self-teaching. IEEE
Transactions on Geoscience and Remote Sensing, 2023.

[14] Jiaqing Zhang, Jie Lei, Weiying Xie, Zhenman Fang, Yunsong Li, and Qian Du. Supery-
olo: Super resolution assisted object detection in multimodal remote sensing imagery. IEEE
Transactions on Geoscience and Remote Sensing, 61:1–15, 2023.

[15] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng Wang, Jintao Li, and Jiashi Feng.
Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10991–11000, 2020.

[16] Chengjian Feng, Yujie Zhong, and Weilin Huang. Exploring classification equilibrium in long-
tailed object detection. In Proceedings of the IEEE/CVF International conference on computer
vision, pages 3417–3426, 2021.

11



[17] Jialian Wu, Liangchen Song, Tiancai Wang, Qian Zhang, and Junsong Yuan. Forest r-cnn:
Large-vocabulary long-tailed object detection and instance segmentation. In Proceedings of the
28th ACM International Conference on Multimedia, pages 1570–1578, 2020.

[18] Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A
unified framework for long-tail visual recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2361–2370, 2021.

[19] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie
Yan. Equalization loss for long-tailed object recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11662–11671, 2020.

[20] Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and Quanquan Li. Equalization loss v2: A new
gradient balance approach for long-tailed object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1685–1694, 2021.

[21] Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
9695–9704, 2021.

[22] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Probabilistic two-stage detection. arXiv
preprint arXiv:2103.07461, 2021.

[23] Hao Yang, Hao Wu, and Hao Chen. Detecting 11k classes: Large scale object detection without
fine-grained bounding boxes. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[24] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Advent: Ad-
versarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2517–2526, 2019.

[25] Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing Zhang. Contextual-relation consistent
domain adaptation for semantic segmentation. In European Conference on Computer Vision,
pages 705–722. Springer, 2020.

[26] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow: Domain flow for adaptation and
generalization. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2477–2486, 2019.

[27] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Rda: Robust domain adaptation
via fourier adversarial attacking. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 8988–8999, 2021.

[28] Tao Sun, Cheng Lu, and Haibin Ling. Domain adaptation with adversarial training on penulti-
mate activations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 9935–9943, 2023.

[29] Muhammad Akhtar Munir, Muhammad Haris Khan, M Sarfraz, and Mohsen Ali. Ssal: Syn-
ergizing between self-training and adversarial learning for domain adaptive object detection.
Advances in Neural Information Processing Systems, 34:22770–22782, 2021.

[30] Jingyi Zhang, Jiaxing Huang, Zhipeng Luo, Gongjie Zhang, Xiaoqin Zhang, and Shijian Lu.
Da-detr: Domain adaptive detection transformer with information fusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23787–23798,
2023.

[31] Mu Chen, Zhedong Zheng, Yi Yang, and Tat-Seng Chua. Pipa: Pixel-and patch-wise self-
supervised learning for domain adaptative semantic segmentation. In Proceedings of the 31st
ACM International Conference on Multimedia, pages 1905–1914, 2023.

[32] Xiangyu Yue, Zangwei Zheng, Shanghang Zhang, Yang Gao, Trevor Darrell, Kurt Keutzer,
and Alberto Sangiovanni Vincentelli. Prototypical cross-domain self-supervised learning for
few-shot unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13834–13844, 2021.

12



[33] Qin Wang, Dengxin Dai, Lukas Hoyer, Luc Van Gool, and Olga Fink. Domain adaptive
semantic segmentation with self-supervised depth estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8515–8525, 2021.

[34] Jiaxing Huang, Dayan Guan, Aoran Xiao, Shijian Lu, and Ling Shao. Category contrast for
unsupervised domain adaptation in visual tasks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 1203–1214, 2022.

[35] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on Challenges in Representation Learning, ICML,
volume 3, page 2, 2013.

[36] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Category anchor-guided unsupervised
domain adaptation for semantic segmentation. In Advances in Neural Information Processing
Systems, pages 433–443, 2019.

[37] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen. Prototypical
pseudo label denoising and target structure learning for domain adaptive semantic segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12414–12424, 2021.

[38] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. Instance adaptive self-training for
unsupervised domain adaptation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pages 415–430. Springer,
2020.

[39] Longkun Zou, Hui Tang, Ke Chen, and Kui Jia. Geometry-aware self-training for unsupervised
domain adaptation on object point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6403–6412, 2021.

[40] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation.
Advances in Neural Information Processing Systems, 34:22968–22981, 2021.

[41] Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma. Self-training avoids using spurious
features under domain shift. Advances in Neural Information Processing Systems, 33:21061–
21071, 2020.

[42] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Cross-view regularization for domain
adaptive panoptic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10133–10144, 2021.

[43] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation
for semantic segmentation via class-balanced self-training. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 289–305, 2018.

[44] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In International Conference on
Machine Learning, pages 6028–6039. PMLR, 2020.

[45] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In Advances in neural
information processing systems, pages 1195–1204, 2017.

[46] Xianfeng Li, Weijie Chen, Di Xie, Shicai Yang, Peng Yuan, Shiliang Pu, and Yueting Zhuang.
A free lunch for unsupervised domain adaptive object detection without source data. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 8474–8481,
2021.

[47] Nazmul Karim, Niluthpol Chowdhury Mithun, Abhinav Rajvanshi, Han-pang Chiu, Supun
Samarasekera, and Nazanin Rahnavard. C-sfda: A curriculum learning aided self-training
framework for efficient source free domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24120–24131, 2023.

13



[48] Li Yi, Gezheng Xu, Pengcheng Xu, Jiaqi Li, Ruizhi Pu, Charles Ling, A Ian McLeod, and Boyu
Wang. When source-free domain adaptation meets learning with noisy labels. arXiv preprint
arXiv:2301.13381, 2023.

[49] Sanqing Qu, Guang Chen, Jing Zhang, Zhijun Li, Wei He, and Dacheng Tao. Bmd: A general
class-balanced multicentric dynamic prototype strategy for source-free domain adaptation. In
European Conference on Computer Vision, pages 165–182. Springer, 2022.

[50] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical
contrastive learning for unsupervised domain adaptation without source data. Advances in
Neural Information Processing Systems, 34, 2021.

[51] Vibashan VS, Poojan Oza, and Vishal M Patel. Instance relation graph guided source-free
domain adaptive object detection. arXiv preprint arXiv:2203.15793, 2022.

[52] Shao-Yuan Lo, Poojan Oza, Sumanth Chennupati, Alejandro Galindo, and Vishal M Patel.
Spatio-temporal pixel-level contrastive learning-based source-free domain adaptation for video
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10534–10543, 2023.

[53] Ziyi Zhang, Weikai Chen, Hui Cheng, Zhen Li, Siyuan Li, Liang Lin, and Guanbin Li. Divide
and contrast: Source-free domain adaptation via adaptive contrastive learning. Advances in
Neural Information Processing Systems, 35:5137–5149, 2022.

[54] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision, 2021.

[55] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision. In International Conference on Machine Learning, pages
5583–5594. PMLR, 2021.

[56] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang,
Zhenguo Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image
pre-training, 2021.

[57] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888–12900. PMLR, 2022.

[58] Andreas Fürst, Elisabeth Rumetshofer, Johannes Lehner, Viet Tran, Fei Tang, Hubert Ramsauer,
David Kreil, Michael Kopp, Günter Klambauer, Angela Bitto-Nemling, and Sepp Hochreiter.
Cloob: Modern hopfield networks with infoloob outperform clip, 2022.

[59] Sivan Doveh, Assaf Arbelle, Sivan Harary, Rameswar Panda, Roei Herzig, Eli Schwartz,
Donghyun Kim, Raja Giryes, Rogerio Feris, Shimon Ullman, and Leonid Karlinsky. Teaching
structured vision&language concepts to vision&language models, 2022.

[60] Gensheng Pei, Fumin Shen, Yazhou Yao, Guo-Sen Xie, Zhenmin Tang, and Jinhui Tang.
Hierarchical feature alignment network for unsupervised video object segmentation, 2022.

[61] Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, Rongrong Ji, and Chunhua Shen.
Pyramidclip: Hierarchical feature alignment for vision-language model pretraining, 2022.

[62] Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and Francesco Osborne. Knowledge graphs:
Opportunities and challenges. 2023.

[63] Houda Alberts, Teresa Huang, Yash Deshpande, Yibo Liu, Kyunghyun Cho, Clara Vania, and
Iacer Calixto. Visualsem: a high-quality knowledge graph for vision and language. arXiv
preprint arXiv:2008.09150, 2020.

[64] Xiangru Zhu, Zhixu Li, Xiaodan Wang, Xueyao Jiang, Penglei Sun, Xuwu Wang, Yanghua
Xiao, and Nicholas Jing Yuan. Multi-modal knowledge graph construction and application: A
survey. arXiv preprint arXiv:2202.05786, 2022.

14



[65] Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang. Adaptive co-attention network for named
entity recognition in tweets. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[66] WX Wilcke, Peter Bloem, Victor de Boer, RH van t Veer, and FAH van Harmelen. End-to-end
entity classification on multimodal knowledge graphs. arXiv preprint arXiv:2003.12383, 2020.

[67] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Marcus Rohrbach. Krisp:
Integrating implicit and symbolic knowledge for open-domain knowledge-based vqa. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14111–14121, 2021.

[68] Cheng Deng, Yuting Jia, Hui Xu, Chong Zhang, Jingyao Tang, Luoyi Fu, Weinan Zhang,
Haisong Zhang, Xinbing Wang, and Chenghu Zhou. Gakg: A multimodal geoscience academic
knowledge graph. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 4445–4454, 2021.

[69] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

[70] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Fsdr: Frequency space domain
randomization for domain generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6891–6902, 2021.

[71] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[72] Diego Velazquez, Pau Rodríguez, Josep M Gonfaus, F Xavier Roca, and Jordi Gonzàlez.
A closer look at embedding propagation for manifold smoothing. The Journal of Machine
Learning Research, 23(1):11447–11473, 2022.

[73] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

[74] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder. The mapil-
lary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE
international conference on computer vision, pages 4990–4999, 2017.

[75] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv preprint arXiv:1805.04687, 2(5):6, 2018.

[76] Qipeng Liu, Luojun Lin, Zhifeng Shen, and Zhifeng Yang. Periodically exchange teacher-student
for source-free object detection. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 6414–6424, October 2023.

[77] Song Tang, An Chang, Fabian Zhang, Xiatian Zhu, Mao Ye, and Changshui Zhang. Source-
free domain adaptation via target prediction distribution searching. Int. J. Comput. Vision,
132(3):654–672, October 2023.

[78] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes challenge: A retrospective. International
journal of computer vision, 111(1):98–136, 2015.

[79] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 8430–8439, 2019.

[80] Zhiming Luo, Frédéric Branchaud-Charron, Carl Lemaire, Janusz Konrad, Shaozi Li, Akshaya
Mishra, Andrew Achkar, Justin Eichel, and Pierre-Marc Jodoin. Mio-tcd: A new benchmark
dataset for vehicle classification and localization. IEEE Transactions on Image Processing,
27(10):5129–5141, 2018.

15



[81] Deng Yongqiang, Wang Dengjiang, Cao Gang, Ma Bing, Guan Xijia, Wang Yajun, Liu Jian-
chao, Fang Yanming, and Li Juanjuan. Baai-vanjee roadside dataset: Towards the connected
automated vehicle highway technologies in challenging environments of china. arXiv preprint
arXiv:2105.14370, 2021.

[82] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Heng Fan, Qinghua Hu, and Haibin Ling.
Detection and tracking meet drones challenge. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1–1, 2021.

[83] Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain
weakly-supervised object detection through progressive domain adaptation. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5001–5009, 2018.

[84] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via
vision and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

[85] Hanoona Rasheed, Muhammad Maaz, Muhammad Uzair Khattak, Salman Khan, and Fa-
had Shahbaz Khan. Bridging the gap between object and image-level representations for
open-vocabulary detection. arXiv preprint arXiv:2207.03482, 2022.

[86] Luting Wang, Yi Liu, Penghui Du, Zihan Ding, Yue Liao, Qiaosong Qi, Biaolong Chen, and
Si Liu. Object-aware distillation pyramid for open-vocabulary object detection. arXiv preprint
arXiv:2303.05892, 2023.

[87] Lluis Castrejon, Yusuf Aytar, Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Learning
aligned cross-modal representations from weakly aligned data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2940–2949, 2016.

[88] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[89] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[90] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[91] Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, BG Vijay Kumar, Anastasis
Stathopoulos, Manmohan Chandraker, and Dimitris N Metaxas. Exploiting unlabeled data with
vision and language models for object detection. In ECCV, pages 159–175. Springer, 2022.

[92] Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image
pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16793–16803, 2022.

[93] Christopher Lang, Alexander Braun, and Abhinav Valada. Contrastive object detection using
knowledge graph embeddings. arXiv preprint arXiv:2112.11366, 2021.

[94] Aijia Yang, Sihao Lin, Chung-Hsing Yeh, Minglei Shu, Yi Yang, and Xiaojun Chang. Context
matters: Distilling knowledge graph for enhanced object detection. IEEE Transactions on
Multimedia, 2023.

[95] Elena Deza, Michel Marie Deza, Michel Marie Deza, and Elena Deza. Encyclopedia of
distances. Springer, 2009.

[96] Liunian Harold Li*, Pengchuan Zhang*, Haotian Zhang*, Jianwei Yang, Chunyuan Li, Yiwu
Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng
Gao. Grounded language-image pre-training. In CVPR, 2022.

[97] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Simple multi-dataset detection. In
CVPR, 2022.

16



A Appendix

A.1 Datasets

We perform experiments on 11 object detection datasets that span different downstream domains
including the object detection for autonomous driving [73, 74], autonomous driving under different
weather and time-of-day conditions [75], intelligent surveillance [80, 81, 82], common objects [78,
79], and artistic illustration [83]. We provide dataset details here.

Cityscapes [73] is a dataset designed for the purpose of understanding street scenes. It comprises
images captured in 50 different cities, encompassing a total of 2975 training images and 500 validation
images. These images are captured under normal weather conditions with pixel-wise instance
annotations of 8 categories.

Vistas [74] is an autonomous driving dataset collected for street scene understanding. It comprises a
vast collection of high-resolution images that encompass diverse urban environments from various
locations worldwide. The dataset consists of 18000 training images and 2000 validation images with
pixel-wise instance annotations.

BDD100k [75] is a large-scale driving video dataset with a wide range of diverse driving scenarios. It
comprises various weather conditions such as clear, cloudy, overcast, rainy, snowy, and foggy, as well
as different times of the day including dawn, daytime, and night. The dataset contains 70000 training
videos and 10000 validation videos. Each video is annotated with bounding boxes for objects of 10
distinct categories.

MIO-TCD [80] is an intelligent surveillance dataset collected for traffic analysis. It comprises
137743 images captured at different times of the day and various periods throughout the year. The
images are captured from diverse viewing angles. Each image in the dataset is annotated with
bounding boxes, providing precise spatial locations of objects of 11 categories.

BAAI [81] is a dataset collected for surveillance applications. It comprises 5000 high-quality images
captured by the VANJEE smart base station positioned at a height of 4.5 meters. Each image in the
dataset is annotated with bounding boxes, providing spatial locations of objects of 12 categories.

VisDrone [82] is a surveillance dataset captured using drone-mounted cameras in different scenarios,
and under various weather and lighting conditions. It comprises 288 video clips with 261908 frames,
as well as an additional set of 10209 static images. These frames and images are annotated with more
than 2.6 million bounding boxes of objects of 10 categories.

Pascal VOC [78] consists of two distinct sub-datasets: Pascal VOC 2007 and Pascal VOC 2012.
The former comprises a total of 2501 training images and 2510 validation images, while the latter
encompasses a larger set of 5717 training images and 5823 validation images. This dataset includes
bounding box annotations of 20 object categories.

Objects365 [79] is a large-scale object detection dataset with 2 million images, 30 million bounding
boxes, and 365 categories, which is designed for detecting diverse objects in the wild.

Clipart1k [83] is a prominent dataset employed in cross-domain object detection, comprising 1000
clipart images collected from one dataset (CMPlaces [87]) and two image search engines (Openclipart
and Pixabay). Each image in the dataset is annotated with bounding boxes for objects that share 20
categories with Pascal VOC [78].

Watercolor2k [83] comprises a collection of 2000 watercolor images with image and instance-level
annotations of 6 categories. It is also a prominent dataset employed in cross-domain object detection.

Comic2k [83] contains 2000 comic images with image and instance-level annotations, sharing 6
categories with Pascal VOC [78].

A.2 Implementation details

We adopt Detic [3] as LVD, where CenterNet2 [22] with Swin-B [88] is pre-trained on LVIS [9] for
object localization and ImageNet-21K [89] for object classification. During adaption, the updating

https://openclipart.org/
https://pixabay.com/
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Algorithm 1: Domain Adaptation for Large-Vocabulary Object Detectors
Input: unlabeled downstream data Dt, pretrained LVD Φ, CLIP image encoder V , CLIP text

encoder T , WordNet database retrieval function WNRetrieve;
Output: domain adaptive detector Φs;

1 Initialization: teacher detector Φt ← Φ, student detector Φs ← Φ, maximum iteration l,
momentum updating frequency tmom, momentum updating rate µ;

2 Extract LKG by Eq.(2)-(4);
3 Extract VKG by Eq.(10);
4 for t← 0 to l do
5 Sample a batch of B targe domain samples: {xt

b}Bb=1 ⊆ Dt;
6 Generate pseudo label set {ŷb}Bb=1 by Eq.(5);
7 Generate CLIP feature matrix set {Fb}Bb=1 with Eq.(6);
8 Encapsulate LKG by Eq.(9);
9 Encapsulate VKG by Eq.(14);

10 Minimize overall objective function Eq.(15) by updating Φs and GCN; Update VKG by
Eq.(12) and (13);

11 if t% tmom == 0 then
12 Update EMA detector: Φt ← µΦt + (1− µ)Φs;

rate of EMA detector is set as 0.9999. The pseudo labels generated by the teacher detector with
confidence greater than the threshold τ = 0.25 are selected for adaptation. We use AdamW [90]
optimizer with initial learning rate 5× 10−6 and weight decay 10−4, and adopt a cosine learning rate
schedule without warm-up iterations. The batch size is 2 and the image’s shorter side is set to 640
while maintaining the aspect ratio unchanged.

A.3 Algorithm of KGD

We describe the detailed algorithm of our proposed KGD in Algorithm 1.

A.4 Additional Discussion

A.4.1 Parameter Study

The value of λ: In the Eq. (12), the nodes of VKG are preliminarily updated with a pre-defined λ. λ
is set as 0.9999. We studied λ by changing it from 0.99 to 0.999999. The table below reports the
experiments over the Cityscapes dataset. It shows that both an excessivel small λ or excessively large
λ lead to performance degradation, largely because an excessively small λ (i.e., 0.99) introduces
more noise and fluctuation, while an excessively large λ (i.e., 0.999999) results in a sluggish response
to the latest data changes, failing to update VKG nodes promptly. However, an appropriate value
(0.9999) of λ can suppress noise and data fluctuation while promptly updating VKG nodes to timely
respond to the latest data distribution shift.

Table 9: Parameter analysis of KGD for λ.

λ 0.99 0.999 0.9999 0.99999 0.999999

AP50 49.9 51.5 53.6 52.3 51.8

The value of α: Eq. (13) incorporate the downstream visual graph knowledge into VKG with a
pre-defined α. α is the scaling factor used to control the weights of the neighboring node features and
the node’s own features during this process. α is set as 0.001. We studied λ by changing it from 0.001
to 1.0. The table below reports the experiments over the Cityscapes dataset. It shows that both an too
small λ or too large α lead to performance degradation, largely because a too small α may cause the
model to fail to effectively utilize the information from neighboring nodes, thus not fully capturing
the structure of the graph and the relationships between nodes, while a too large α may cause noise
to propagate through the graph, making the node updates more susceptible to outliers or noisy data.
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Table 10: Parameter analysis of KGD for α.

α 0.0001 0.001 0.01 0.1 1

AP50 50.9 51.0 53.6 49.9 49.2

Table 11: Ablation studies of KGD with Language Knowledge Graph Distillation (KGD-L) and
Vision Knowledge Graph Distillation (KGD-V). The experiments are conducted on the Cityscapes,
BAAI, VOC, and Clipart1k.

Method Language Knowledge Graph Distillation Vision Knowledge Graph Distillation AP50
BAAI VOC Clipart1k

Detic [3] (Baseline) 20.6 83.9 61.0

✓ 22.2 86.1 66.5
✓ 22.4 86.2 67.1

KGD (Ours) ✓ ✓ 24.3 86.9 69.1

A.4.2 Additional ablation studies

We have conducted additional ablation study on 3 object detection datasets that span different
downstream domains including the object detection for intelligent surveillance (BAAI), common
objects (VOC), and artistic illustration (Clipart1k). As Table 11 shows, the behavior consistent across
datasets that span different downstream domains.

A.4.3 Combination of language knowledge graph extraction and vision knowledge graph
strategies

We conducted experiments and reports the results of using “LKG Extraction with category name”
and “Static VKG Extraction” jointly in Table 12. As a comparison, our proposed KGD shows
clear improvements as the language and vision information extracted along the training process
dynamically stabilizes and improves the model adaptation, validating the performance gain largely
comes from our novel KGD designs instead of merely using “LKG Extraction with category name”
and “Static VKG Extraction”.

A.4.4 Comparisons with semi-supervised learning.

We would clarify that the motivation for using knowledge graphs is to explicitly and comprehensively
extract CLIP knowledge for effectively de-noising pseudo labels generated by LVDs when adapting
LVDs. On the other hand, directly utilizing CLIP to obtain pseudo-labels could also benefit unsuper-
vised domain adaptation of LVDs, but it may be less effective. The reason lies in that knowledge
graphs carry not only the information of each category but also inter-class relations, while pseudo-
labels only carry the former information. As the table bleow, we conduct new experiments that adapt
Detic with semi-supervised learning [35] using CLIP-generated pseudo-labels. The experimental
results show that our proposed KGD outperforms the semi-supervised learning using CLIP-generated
pseudo-labels, validating the performance gain largely comes from our novel KGD designs instead of
merely using pseudo-labels from CLIP.

A.4.5 Comparisons with other pseudo label generation methodologies.

Our proposed KGD generates the pseudo labels (PLs) in real-time during training as discussed in
the paper. We examine the proposed KGD by comparing it with four strategies, i.e., "Offline Detic
Generated PLs", "Offline CLIP Generated PLs", "Online VL-PLM [91] Generated PLs", and "Online
RegionCLIP [92] Generated PLs".

For "Offline Detic Generated PLs", the pseudo labels (PLs) are generated offline for all downstream
samples using pretrained Detic [3], and remain unchanged during adaptation. For "Offline CLIP [7]
Generated PLs", pretrained Detic [3] generates instance bounding box pseudo labels (PLs) offline
while CLIP [7] generates instance category pseudo label offline, and remains unchanged during
adaptation. "Online VL-PLM [91] Generated PLs" and "Online RegionCLIP [92] Generated PLs"
refer to generate pseudo labels (PLs) from Detic [3] using other pseudo label generation methods
including VL-PLM [91] and RegionCLIP [92], respectively. As Table 14 shows, all the compared
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Table 12: Combination of language knowledge graph extraction and vision knowledge graph
strategies. The experiments are conducted on the Cityscapes.

Method Detic [3] (Source only) KGD
LKG Extraction with category names ✓ ✓
Static VKG Extraction ✓ ✓

LKG Extraction with WordNet Hierarchy ✓
Dynamic VKG Extraction ✓

AP50 46.5 51.9 51.9 52.4 53.6

Table 13: Study of different adaptation strategies for LVDs on Cityscapes dataset [73].

Method AP50

Detic [3] (Baseline) 46.5
semi-supervised learning [35] (using CLIP-generated pseudo-labels) 48.8
KGD (Ours) 53.6

strategies achieve sub-optimal performance. The offline generated pseudo labels in both "Offline Detic
Generated PLs" and "Offline CLIP Generated PLs" are noised and degrade the unsupervised domain
adaptation performance. "Online VL-PLM [91] Generated PLs" and "Online RegionCLIP [92]
Generated PLs" denoise the online generated pseudo labels when adapting LVD, which benefit the
unsupervised domain adaptation, but it may be less effective. The reason lies in that knowledge
graphs carry not only the information of each category but also inter class relations, while pseudo
labels (PLs) only carry the former information. The experimental results show that our proposed
KGD outperforms the compared methods, validating the performance gain largely comes from our
novel KGD designs instead of merely using pseudo-labels from Detic [3] and CLIP [7].

Table 14: Study of different adaptation strategies for LVDs on Cityscapes dataset [73].

Method AP50

Detic [3] (Baseline) 46.5
Offline Detic Generated PLs 48.5
Offline CLIP Generated PLs 50.1
Online VL-PLM Generated PLs 51.5
Online RegionCLIP Generated PLs 51.9
KGD (Ours) 53.6

A.4.6 Comparisons with prior knowledge graph-related distillation methods.

We conduct experiments to compare our KGD with prior knowledge graph-related methods [93, 94].
The results in Table 15 and 16 show that our KGD outperform KGE [93] and Context Matters [94]
clearly, largely becuase the knowledge graphs in KGE [93] and Context Matters [94] are hand-crafted
by domain experts while ours is built and learnt from CLIP.

A.4.7 Distance metrics for constructing knowledge graph.

We explore the feature distance metrics for constructing knowledge graphs. We conduct experiments
that construct knowledge graphs with the following feature distance metrics: 1) Cosine Similarity
[95], 2) Euclidean Distance [95], 3) Manhattan Distances [95]. The results in Table 17 show that our
KGD works effectively and consistently with different feature distance metrics. Besides, the cosine
similarity metric performs the best, largely because CLIP is also trained with cosine similarity where
using the same metric to distill its knowledge works the best reasonably.
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Table 15: Benchmarking over autonomous driving datasets under various weather and time conditions.
We adopt AP50 in evaluations. The results of all methods are acquired with the same baseline [3] as
shown in the first row.

Method Cityscapes [73] Vistas [74] BDD100K-weather [75] BDD100K-time-of-day [75]
rainy snowy overcast cloudy foggy daytime dawn&dusk night

Detic [3] (Baseline) 46.5 35.0 34.3 33.5 39.1 42.0 28.4 39.2 35.3 28.5
KGE [93] 48.9 36.0 35.5 34.4 40.5 41.2 29.7 40.1 36.6 29.0
Context Matters [94] 49.4 36.6 36.3 35.0 41.7 42.4 30.2 41.5 37.2 29.7
KGD (Ours) 53.6 40.3 37.3 37.1 44.6 48.2 38.0 46.6 41.0 31.2

Table 16: Benchmarking over common objects datasets, intelligent surveillance datasets, and artistic
illustration datasets. We adopt AP50 in evaluations. The results of all methods are acquired with the
same baseline [3] as shown in first row.

Method Common Objects Intelligent Surveillance Artistic Illustration
VOC [78] Objects365 [79] MIO-TCD[80] BAAI [81] VisDrone [82] Clipart1k [83] Watercolor2k [83] Comic2k [83]

Detic [3] (Baseline) 83.9 29.4 20.6 20.6 19.0 61.0 58.9 51.2
KGE [93] 85.4 31.2 20.3 23.5 19.4 62.4 58.1 50.5
Context Matters [94] 85.9 31.7 20.9 23.3 19.9 62.9 59.1 52.3
KGD (Ours) 86.9 34.4 24.6 24.3 23.7 69.1 63.5 55.6

A.4.8 Training and inference overhead analysis.

We study the training and inference time of all the compared methods, and Table 18 shows the results
on Cityscapes. † signifies that the methods employ WordNet to retrieve category descriptions given
category names, and CLIP to predict classification pseudo labels for objects. The experiments are
conducted on one RTX 2080Ti. It shows that incorporating CLIP into unsupervised domain adaptation
introduces a few additional overhead on training time and almostly does not affect inference time.
The reason lies in that the cropped object regions are processed by CLIP in a parallel manner during
training while the inference pipeline does not involve CLIP. Besides, we compare the memory usage
and computational overhead with other methods in the table below, where It can be seen that while
the involvement of CLIP during training increases memory usage and computational overhead due
to the processing of cropped object regions, the memory usage and computational overhead during
inference remain comparable to baseline methods. This is because the inference pipeline does not
involve CLIP, thus maintaining efficiency and ensuring that its practicability for deployment.

The Proposal Network of Faster R-CNN generates a large number of region proposals on the input
image (i.e., thousands to tens of thousands of region proposals), which make VILD [84]-like methods
very slow. On the other hand, our KGD is performed only on the selected box predictions (i.e.,
the box predictions after the confidence thresholding), where the number of involved predictions
is much smaller (i.e., a few to several dozen), which only introduces a few additional computation
overhead. In another word, Eq. (6) in our manuscript works by cropping the selected box predictions
(i.e., the pseudo labels after the prediction filtering and thresholding), instead of cropping all region
proposals as in VILD [84], which significantly reduces the number of regions to be cropped and is
much more efficient. We validate above statements by examining the training and inference time
of all the compared methods, as shown in Table 18. It shows that the operation of cropping object
regions and using CLIP introduces a few additional computation overhead in training time and almost
does not affect the inference time. The reason lies in that we only crop a limited number of object
regions (i.e., selected ones) and process them with CLIP model in a parallel manner during training,
while the inference pipeline does not involve these procedures.

A.4.9 Study of vocabulary size of KGD.

The construction of knowledge graphs greatly improves the quality of pseudo-labels. We study how
vocabulary size affects the cost of model training and inference. As shown in Table 19, the increase
in vocabulary size of knowledge graphs brings little computation overhead, largely because our
knowledge graphs are implemented in a efficient computation manner.

A.4.10 Experiments with open-vocabulary detectors.

The open-vocabulary detector (OVD) aims to detect objects in novel categories described by text
inputs [84]. Similar to Large-vocabulary Detectors (LVDs), OVDs also suffer from domain dis-
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Table 17: Study of different distance metrics for constructing KG. The experiments are conducted
on the Cityscapes dataset.

Distance Metrics Cosine Similarity Euclidean Distance Manhattan Distances

AP50 53.6 52.9 53.1

Table 18: Training and inference time analysis of all the compared methods. The experiments are
conducted on one RTX 2080Ti. † signifies that the methods employ WordNet to retrieve category
descriptions given category names, and CLIP to predict classification pseudo labels for objects.

Method MT [45] MT [45]† SHOT [44] SHOT [44]† SFOD [46] SFOD [46]† HCL [50] HCL [50]† IRG-SFDA [51] IRG-SFDA [51]† KGD (Ours)

Training Time (hours) 4.083 5.022 4.055 5.045 4.110 5.193 4.133 5.095 4.158 5.222 5.267
Training Memory Usage (MB) 3219 3219 7245 3219 7245 3219 7245 3219 7245 3219 7245
Training Computational Overhead (GFLOPs) 21.74 21.74 42.39 21.74 42.39 21.74 42.39 21.74 42.39 21.74 42.39

Inference Speed (images per second) 6.700 6.767 6.749 6.809 6.523 6.752 6.689 6.683 6.758 6.701 6.758
Inference Memory Usage (MB) 3219 3219 3219 3219 3219 3219 3219 3219 3219 3219 3219
Inference Computational Overhead (GFLOPs) 21.74 21.74 21.74 21.74 21.74 21.74 21.74 21.74 21.74 21.74 21.74

crepancies when applying to the downstream dataset, because their training data often exhibits
different distributions and vocabularies as compared with the downstream data. We investigate how
our proposed KGD works with open-vocabulary detectors by conducting experiments, as shown in
Table 20. It can be observed that our proposed KGD can also improve the performance of OVDs
significantly, validating the generalization ability of our KGD on different detectors.

A.4.11 Generalization across different datasets.

We study the generalization of our KGD by conducting domain-adaptive object detection on 11 widely
studied object detection datasets. Table 21 summarizes the detection results averaged on 11 datasets,
i.e., Cityscapes [73], Vistas [74], BDD100k [75], MIO-TCD [80], BAAI [81], VisDrone [82], Pascal
VOC [78], Objects365 [79], Clipart1k [83], Watercolor2k [83], and Comic2k [83]. It shows that our
KGD outperforms the state-of-the-art methods clearly on 11 datasets.

A.4.12 Motivation analysis.

Our motivation arises from the observation that the LVD pretrained on the source domain can
accurately locate objects in various downstream-domain images but struggles with classifying these
located objects [3]. To analyze this motivation, we disentangle object detection task into two sub-
tasks, i.e., object locating and object classification, and evalute them respectively by introducing two
new types of metrics: Category-agnostic AP50 and Ground Truth (GT) bounding box-corrected AP50.
In Category-agnostic AP50, we correct the object classification predictions (i.e., replace the predicted
object categories with ground truth object categories) before the conventional AP50 evaluation,
aiming to assess the accuracy of object locating sub-task only. In GT bounding box-corrected AP50,
we correct the object locating predictions (i.e., replace the predicted object bounding boxes with
ground truth bounding boxes) before the conventional AP50 evaluation, aiming to assess the accuracy
of object classification sub-task only.

Table 22 reports the results of Detic [3] over the Cityscapes dataset, which are measured in AP50,
Category-agnostic AP50, and GT bounding box-corrected AP50, respectively. We can observe
that introducing GT category and bounding box information to correct the predictions bring 14.3%
and 4.6% improvements respectively. It shows that the performance degradation of Detic [3] on
downstream domains largely comes from misclassification prompts as compared with the mislocating
issues, which is well-aligned with our motivation.

A.4.13 Study Limitations

The proposed KGD uses Detic as the LVD which is pre-trained on LVIS [9] for object localization and
ImageNet-21K [89] for object classification. When adapting LVD to datasets of different domains
especially from different scenarios, there is a risk that the detector will fail to localize certain
categories of objects that are not included in ImageNet-21K and LVIS. In our future work, we intend
to address this issue by employing larger pre-training dataset or transferring the more comprehensive
knowledge of Multi-Modal Large Language Models.
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Table 19: Study of vocabulary size of knowledge graphs. The experiments are conducted on one
RTX 2080Ti.

Dataset Vocabulary Size Training Time (hours) Inference Speed (images per second)

Watercolor2k 6 5.165 6.696
Comic2k 6 5.159 6.721
Cityscapes 8 5.167 6.718
Vistas 8 5.163 6.694
VisDrone 10 5.169 6.720
BDD100k 10 5.168 6.788
MIO-TCD 11 5.167 6.677
BAAI-VANJEE 12 5.169 6.714
Clipart1k 20 5.165 6.721
Pascal VOC 20 5.168 6.698
Objects365 365 5.171 6.723

Table 20: Experiments with Open-Vocabulary Detectors over Cityscapes dataset. We adopt AP50 in
evaluations. We can observe that our proposed KGD can also improve the performance of OVDs (e.g.,
GLIP [96], VILD [84], RegionKD [85], UniDet [97], and RegionCLIP [92]) significantly, validating
the generalization ability of our KGD on different detectors.

Method AP50

Detic [3] [3] (Baseline) 46.9
Detic [3]+KGD 53.6

GLIP [96] (Baseline) 44.7
GLIP [96]+KGD 52.1

VILD [84] (Baseline) 45.5
VILD [84]+KGD 53.1

RegionKD [85] (Baseline) 48.5
RegionKD [85]+KGD 54.3

UniDet [97] (Baseline) 52.6
UniDet [97]+KGD 54.7

RegionCLIP [92] (Baseline) 50.1
RegionCLIP [92]+MT 51.9
RegionCLIP [92]+SHOT 51.6
RegionCLIP [92]+SFOD 50.9
RegionCLIP [92]+HCL 51.2
RegionCLIP [92]+IRG-SFDA 52.2
RegionCLIP [92]+KGD 55.4

A.5 More Qualitative Comparisons

We provide qualitative illustrations of KGD over downstream datasets. As shown in Figure 3-7, KGD
produces accurate detection across multiple datasets, demonstrating its capability to adapt LVDs to
various downstream domains of very different data distribution and vocabulary.

23



Table 21: Average results over 11 widely studied datasets. † signifies that the methods employ
WordNet to retrieve category definitions given category names, and CLIP to predict classification
pseudo labels for objects. The results of all methods are acquired with the same baseline [3] as
shown in the first column.

Method Detic [3] (Baseline) MT [45] MT [45]† SHOT [44] SHOT [44]† SFOD [46] SFOD [46]† HCL [50] HCL [50]† IRG-SFDA [51] IRG-SFDA [51]† KGD (Ours)

AP50 39.24 39.91 40.95 40.21 41.47 40.14 41.50 40.43 41.67 40.93 42.12 44.44

Table 22: Benchmarking Detic over Cityscapes [73] dataset with AP50, Category-agnostic AP50,
and GT bounding box-corrected AP50.

Metric AP50 Category-agnostic AP50 GT bounding box-corrected AP50

Detic [3] 46.9 61.2 (+14.3) 51.5 (+4.6)

Figure 3: Qualitative comparisons over autonomous-driving data. Zoom in for details. Top: Detic [3].
Bottom: KGD (Ours).

Figure 4: Qualitative comparisons over autonomous-driving data under different weather and time-
of-day conditions. Zoom in for details. Top: Detic [3]. Bottom: KGD (Ours).

Figure 5: Qualitative comparisons over intelligent-surveillance data. Zoom in for details. Top:
Detic [3]. Bottom: KGD (Ours).
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Figure 6: Qualitative comparisons over common-object data. Zoom in for details. Top: Detic [3].
Bottom: KGD (Ours).

Figure 7: Qualitative comparisons over artistic illustration data. Zoom in for details. Top: Detic [3].
Bottom: KGD (Ours).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the paper’s contributions and
scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitations of the work in Section A.4.8 of the Appendix
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided detailed instructions for reproducing the main experimental
results in Section 3 Method and Appendix including the details of the proposed framework,
and the datasets, base models and the parameters used for experiments.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the detailed implementation details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We conducted the experiments with multiple runs and did not observe clear
variance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided sufficient information on the computation resources required for
reproduce the experiments in Appendix Section A.2 Implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.

29



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

30

https://neurips.cc/public/EthicsGuidelines


Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited the original owners of assets used in the paper and
properly respect their license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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