
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AniTalker: Animate Vivid and Diverse Talking Faces through
Identity-Decoupled Facial Motion Encoding

Anonymous Authors

Singe Portrait

Speech
+

Synthesized Videos

Figure 1: We introduce AniTalker, a framework that transforms a single static portrait and input audio into animated talking
videos with naturally flowing movements. Each column of generated results utilizes identical control signals with similar
poses and expressions but incorporates some random variations, demonstrating the diversity of our generated outcomes.

ABSTRACT
The paper introduces AniTalker, an innovative framework designed
to generate lifelike talking faces from a single portrait. Unlike ex-
isting models that primarily focus on verbal cues such as lip syn-
chronization and fail to capture the complex dynamics of facial
expressions and nonverbal cues, AniTalker employs a universal
motion representation. This innovative representation effectively
captures a wide range of facial dynamics, including subtle expres-
sions and head movements. AniTalker enhances motion depiction
through two self-supervised learning strategies: the first involves
reconstructing target video frames from source frames within the
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same identity to learn subtle motion representations, and the second
develops an identity encoder using metric learning while actively
minimizing mutual information between the identity and motion
encoders. This approach ensures that the motion representation
is dynamic and devoid of identity-specific details, significantly re-
ducing the need for labeled data. Additionally, the integration of a
diffusion model with a variance adapter allows for the generation
of diverse and controllable facial animations. This method not only
demonstrates AniTalker’s capability to create detailed and realistic
facial movements but also underscores its potential in crafting dy-
namic avatars for real-world applications. Synthetic results can be
viewed at https://anitalker.github.io.

CCS CONCEPTS
• Computing methodologies→Motion capture; Procedural
animation.

KEYWORDS
Talking Face, Self-supervised, Motion Encoding, Disentanglement
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1 INTRODUCTION
Integrating speech signals with single portraits [13, 18, 31, 42, 44, 56–
58] to generate talking avatars has greatly enhanced both the enter-
tainment and education sectors, providing innovative avenues for
interactive digital experiences. While current methodologies [34,
44, 54, 58, 59] have made notable strides in achieving synchronicity
between speech signals and lip movements, thus enhancing verbal
communication, they often neglect the critical aspect of nonverbal
communication. Nonverbal communication encompasses the trans-
mission of information without the use of words, including but not
limited to specific head movements, facial expressions, and blink-
ing. Research [33] indicates that these nonverbal cues are pivotal
in communicating.

The primary challenge lies in the inadequacy of existing models
to encapsulate the complex dynamics associated with facial motion
representation. Existing approaches predominantly employ explicit
structural representations such as blendshapes [3, 13, 32], landmark
coefficients [18, 45, 57], or 3DMorphable Models (3DMM) [7, 14, 25]
to animate faces. Designed initially for single-image processing,
these methods offer a constrained approximation of facial dynamics,
failing to capture the full breadth of human expressiveness. Recent
advancements [11, 24] have introduced trainable facial motion en-
coders as alternatives to conventional explicit features, showing
significant progress in capturing detailed facial movements. How-
ever, their deployment is often tailored for specific speakers [11] or
limited to the mouth region [24], highlighting a gap in fine-grained
motion representation that captures all varieties of facial dynamics.

A universal and fine-grained motion representation that is ap-
plicable across different characters remains absent. Such a repre-
sentation should fulfill three key criteria: capturing minute details,
such as minor mouth movements, eye blinks, or slight facial mus-
cle twitching; ensuring universality, making it applicable to any
speaker while removing identity-specific information to maintain
a clear separation between appearance and motion; and incorpo-
rating a wide range of nonverbal cues, such as expressions, head
movements, and posture.

In this paper, we introduce AniTalker. Our approach hinges
on a universal motion encoder designed to grasp the intricacies of
facial dynamics. By adopting the self-supervised learning paradigm,
we mitigate the reliance on labeled data, enabling our motion en-
coder to learn robust motion representations. This learning process
operates on dual levels: one entails understanding motion dynamics
through the transformation of a source image into a target image,
capturing a spectrum of facial movements, from subtle changes
to significant alterations. Concurrently, the use of identity labels
within the dataset facilitates the joint optimization of an identity
recognition network in a self-supervised manner, further aiming
to disentangle identity from motion information through mutual
information minimization. This ensures that the motion representa-
tion retains minimal identity information, upholding its universal
applicability.

To authenticate the versatility of our motion space, we integrate
a diffusionmodel and a variance adapter to enable varied generation
and manipulation of facial animations. Thanks to our sophisticated
representation and the diffusion motion generator, AniTalker is
capable of producing diverse and controllable talking faces.

In summary, our contributions are threefold:

(1) We have developed universal facial motion encoders using
a self-supervised approach that effectively captures facial
dynamics across various individuals. These encoders fea-
ture an identity decoupling mechanism to minimize identity
information in the motion data and prevent identity leakage.

(2) Our framework includes a motion generation system that
combines a diffusion-basedmotion generator with a variance
adapter. This system allows for the production of diverse
and controllable facial animations, showcasing the flexibility
of our motion space.

(3) Extensive evaluations affirm our framework’s contribution
to enhancing the realism and dynamism of digital human
representations, while simultaneously preserving identity.

2 RELATEDWORKS
Speech-driven Talking Face Generation refers to creating talk-
ing faces driven by speech, We categorize the models based on
whether they are single-stage or two-stage. Single-stage models [34,
55, 58] generate images directly from speech, performing end-to-
end rendering. Due to the size constraints of rendering networks,
this method struggles with processing longer videos, generally
managing hundreds of milliseconds. The two-stage type [3, 11, 13,
18, 24, 31, 57] decouples motion information from facial appear-
ance and consists of a speech-to-motion generator followed by a
motion-to-video rendering stage. As the first stage solely generates
motion information and does not involve the texture information
of the frames, it requires less model size and can handle long se-
quences, up to several seconds or even minutes. This two-stage
method is known to reduce jitter [3, 11, 24], enhance speech-to-
motion synchronization [11, 13, 31, 57], reduce the need for aligned
audio-visual training data [3, 24], and enable the creation of longer
videos [18]. Our framework also employs a two-stage structure but
with a redesigned motion representation and generation process.

Motion Representation serves as an essential bridge between
the driving features and the final rendered output in creating talk-
ing faces. Current methods predominantly utilize explicit structural
representations, such as blendshapes [3, 13, 30], 3DMorphable Mod-
els (3DMMs) [25], or landmarks [45, 57]. These formats offer high
interpretability and facilitate the separation of facial actions from
textures, making them favored as intermediary representations in
facial generation tasks. However, due to the wide range of variabil-
ity in real-world facial movements, they often fail to capture the
subtle nuances of facial expressions fully, thus limiting the diversity
and expressiveness of methods dependent on these representations.
Our research is dedicated to expanding the spectrum of motion
representation by developing a learned implicit representation that
is not constrained by the limitations of explicit parametric models.

Self-supervised motion transfer approaches [29, 38, 41, 45,
46, 48, 51] aim to reconstruct the target image from a source image
by learning robust motion representations from a large amount
of unlabeled data. This significantly reduces the need for labeled
data. A key challenge in these methods is separating motion from
identity information. They primarily warp the source image us-
ing predicted dense optical flow fields. This approach attempts
to disentangle motion from identity by predicting distortions and
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Figure 2: The AniTalker framework comprises two main components: learning a universal motion representation and then
generating and manipulating this representation through a sequence model. Specifically, the first part aims to learn a robust
motion representation by employing metric learning (ML), mutual information disentanglement (MID), and Hierarchical
Aggregation Layer (HAL). Subsequently, this motion representation can be used for further generation and manipulation.

transformations of the source image. However, information leakage
occurs in practice, causing the target image to contain not just
motion but also identity information. Building on this observation,
we explicitly introduce identity modeling and employ the Mutual
Information Neural Estimation (MINE) [1, 4] method to achieve a
motion representation independent of identity.

Diffusion Models [19] have demonstrated outstanding per-
formance across various generative tasks [12, 17, 21, 36]. Recent
research has utilized diffusion models as a rendering module [2,
11, 24, 27, 37, 40, 42]. Although diffusion models often produce
higher-quality images, they require extensive model parameters
and substantial training data to converge. To enhance the genera-
tion process, several approaches [18, 25, 26, 30, 52] employ diffusion
models for generating motion representations. Diffusion models
excel at addressing the one-to-many mapping challenge, which is
crucial for speech-driven generation tasks. Given that the same
audio clip can lead to different actions (e.g., lip movements and
head poses) across different individuals or even within the same
person, diffusion models provide a robust solution for managing
this variability. Additionally, the training and inference phases of
diffusion models, which systematically introduce and then remove
noise, allow for the incorporation of noise during generation to fos-
ter diversity. We also use diffusion in conjunction with our motion
representation to further explore diversity in talking face genera-
tion.

3 ANITALKER FRAMEWORK
3.1 Model Overview
AniTalker contains two critical components: (1) Training a motion
representation that can capture universal face dynamics, and (2)
Based on the well-trained motion encoder from the previous step,
the generation or manipulation of the motion representation using
the user-controlled driving signal to produce the synthesised talking
face video.

3.2 Universal Motion Representation
Our approach utilizes a self-supervised image animation frame-
work, employing two RGB images from a video clip: a source image
𝐼𝑠 and a target image 𝐼𝑡 (𝐼 ∈ R𝐻×𝑊 ×3), to serve distinct functions:
𝐼𝑠 provides identity information, whereas 𝐼𝑡 delivers motion details.
The primary aim is to reconstruct 𝐼𝑡 . Due to the random selection
of frames, occasionally adjacent frames are chosen, enabling the
network to learn representations of subtle movements. As depicted
in Figure 2 (a), both the source and target images originate from
the same video clip. Through this self-supervised learning method,
the target image’s encoder is intended to exclusively capture mo-
tion information. By learning from frame-to-frame transfer, we can
acquire a more universal representation of facial motion. This repre-
sentation includes verbal actions such as lip movements, as well as
nonverbal actions, including expressions, posture, and movement.

To explicitly decouple motion and identity in the aforementioned
processes, we strengthen the self-supervised learning approach
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by incorporating Metric Learning (ML) and Mutual Information
Disentanglement (MID). Specifically:

Metric Learning. Drawing inspiration from face recognition [8,
43] and speaker identification [9], metric learning facilitates the
generation of robust identity information. This technique employs
a strategy involving pairs of positive and negative samples, aiming
to minimize the distance between similar samples and maximize it
between dissimilar ones, thereby enhancing the network’s ability
to discriminate between different identities. This process can also
proceed in a self-supervised fashion, with each iteration randomly
selecting distinct identities from the dataset. Specifically, the ap-
proach establishes an anchor (𝑎) and selects a positive sample (𝑝)
and a negative sample (𝑛)—corresponding to faces of different iden-
tities—with the goal of reducing the distance (𝑑) between the anchor
and the positive sample while increasing the distance between the
anchor and the negative samples. This optimization, depicted in Fig-
ure 2 (b), involves randomly selecting a different identity from a list
of candidates not belonging to the current person as the negative
sample. The optimization goal for this process is as follows:

L𝑀𝐿 = max (0, 𝑑 (𝑎, 𝑝) − 𝑑 (𝑎, 𝑛) +margin)

Here, the margin is a positive threshold introduced to further
separate the positive and negative samples, thus improving the
model’s ability to distinguish between different identities.

Mutual InformationDisentanglement.Althoughmetric learn-
ing effectively constrains the identity encoder, focusing solely on
this encoder does not adequately minimize the identity information
within the motion encoder. To tackle this issue, we utilize Mutual In-
formation (MI), a statistical measure that evaluates the dependency
between the outputs of the identity and motion encoders. Given
the challenge of directly computing MI between two variables, we
adopt a parametric method to approximate MI estimation among
random variables. Specifically, we use CLUB [4], which estimates
an upper bound for MI. Assuming the output of the identity en-
coder is the identity latent 𝑧𝑖𝑑 and the motion encoder’s output is
the motion latent 𝑧𝑚 , our goal is to optimize the mutual informa-
tion 𝐼 (E(𝑧𝑖𝑑 ); E(𝑧𝑚)), where E denotes the learnable Multi-Layer
Perceptron (MLP) within CLUB. This optimization ensures that
the motion encoder primarily captures motion, thereby preventing
identity information from contaminating the motion space. This
strategy is depicted in Figure 2 (c).

In summary, by leveraging Metric Learning and Mutual Infor-
mation Disentanglement, we enhance the model’s capacity to ac-
curately differentiate between identity and motion while reducing
reliance on labeled data.

Hierarchical Aggregation Layer (HAL). To enhance the mo-
tion encoder’s capability to understand motion variance across
different scales, we introduce the Hierarchical Aggregation Layer
(HAL). This layer aims to integrate information from various stages
of the image encoder, each providing different receptive fields [23].
HAL processes inputs from all intermediate layers of the image en-
coder and passes them through an Average Pooling (AvgPool) layer
to capture scale-specific information. A Weighted Sum [50] layer
follows, assigning learnable weights to effectively merge informa-
tion from these diverse layers. This soft fusion approach enables the
motion encoder to capture and depict movements across a broad

range of scales. Such a strategy allows our representations to adapt
to faces of different sizes without the need for prior face alignment
or normalization.

Specifically, the features following the AvgPool layer are denoted
as [𝑚1,𝑚2, . . . ,𝑚𝑛], representing the set of averaged features, with
[𝑤1,𝑤2, . . . ,𝑤𝑛] as the corresponding set of weights, where 𝑛 sym-
bolizes the number of intermediate layers in the image encoder.
These weights undergo normalization through the softmax func-
tion to guarantee a cumulative weight of 1. The equation for the
weighted sum of tensors, indicating the layer’s output, is formulated
as m =

∑𝑛
𝑖=1𝑤𝑖 ·𝑚𝑖 . The softmax normalization process is mathe-

matically articulated as𝑤𝑖 = 𝑒𝑊𝑖∑𝑛
𝑗=1 𝑒

𝑊𝑗
, ensuring the proportional

distribution of weights across the various layers. Subsequently, m
is fed into the motion encoder for further encoding.

Learning Objective. The main goal of learning is to reconstruct
the target image by inputting two images: the source and the target
within the current identity index. Several loss functions are utilized
during the training process, including reconstruction loss 𝐿𝑟𝑒𝑐𝑜𝑛 ,
perceptual loss 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 , adversarial loss 𝐿𝑎𝑑𝑣 , mutual information
loss 𝐿𝑀𝐼 , and identity metric learning loss 𝐿𝑀𝐿 . The total loss is
formulated as follows:

𝐿𝑚𝑜𝑡𝑖𝑜𝑛 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆1𝐿𝑝𝑒𝑟𝑐𝑒𝑝 + 𝜆2𝐿𝑎𝑑𝑣 + 𝜆3𝐿𝑀𝐼 + 𝜆4𝐿𝑀𝐿

3.3 Motion Generation
Once the motion encoder and image renderer are trained, at the
second stage, we can freeze these models. The motion encoder
is used to generate images, then video-driven or speech-driven
methods are employed to produce motion, and finally, the image
renderer carries out the final frame-by-frame rendering.

3.3.1 Video-Driven Pipeline. Video driving, also referred to face
reenactment, leverages a driven speaker’s video sequence I𝑑 =

[𝐼𝑑1 , 𝐼
𝑑
2 , . . . , 𝐼

𝑑
𝑇
] to animate a source image 𝐼𝑠 , resulting in a video

that accurately replicates the driven poses and facial expressions. In
this process, the video sequence I𝑑 is input into the motion encoder,
previously trained in the first phase, to extract the motion latent.
This latent, along with 𝐼𝑠 , is then directly fed, frame by frame, into
the image renderer for rendering. No additional training is required.
The detailed inference process, where the orange lines represent the
data flow during video-driven inference, is depicted in Figure 2 (e).

3.3.2 Speech-Driven Pipeline. Unlike video-driven methods that
use images, the speech-driven approach generates videos consistent
with the speech signal or other control signals to animate a source
image 𝐼𝑠 . Specifically, we utilize a combination of diffusion and
variance adapters: the former learns a better distribution of motion
data, while the latter mainly introduces attribute manipulation.

Diffusion Models. For generating motion latent sequences, we
utilize a multi-layer Conformer [16]. During training, we incorpo-
rate the training process of diffusion, which includes both adding
noise and denoising steps. The noising process gradually converts
clean Motion LatentM into Gaussian noiseM𝑇 , where𝑇 represents
the number of total denoising steps in the diffusion process. Con-
versely, the denoising process systematically eliminates noise from
the Gaussian noise, resulting in clean Motion Latents. This itera-
tive process better captures the distribution of motion, enhancing
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Figure 3: Variance Adapter Block. Each block models a single
attribute and can be iterated multiple times, where 𝑁 repre-
sents the number of attributes.

the diversity of the generated results. During the training phase,
we adhere to the methodology described in [19] for the DDPM’s
training stage, applying the specified simplified loss objective, as
illustrated in Equation 1, where 𝑡 represents a specific time step
and C represents the control signal, which refers to either speech
or speech perturbed by a Variance Adapter (to be discussed in the
following section). For inference, considering the numerous itera-
tion steps required by diffusion, we select the Denoising Diffusion
Implicit Model (DDIM) [39]—an alternate non-Markovian noising
process—as the solver to quicken the sampling process.

𝐿diff = E𝑡,M,𝜖
[
∥𝜖 − 𝜖𝑡 (M𝑡 , 𝑡,C)∥2

]
(1)

Variance Adapter. The Variance Adapter [35] is a residual
branch connected to audio features, allowing optional control over
the speech signal. Originally proposed to mitigate the one-to-many
problem in Text-to-Speech (TTS) tasks, its architecture includes a
predictor and an encoder that use speech signals to predict attribute
representations. A residual connection is then applied between the
encoder output and the speech signals. During the Training Stage,
the encoder processes speech features in collaboration with the
predictor to minimize the L2 loss against a ground truth control sig-
nal. This includes incorporating an attribute extractor for targeting
specific attributes, such as employing a pose extractor (yaw, pitch,
roll) to control head posture during the audio generation process. In
the Inference Stage, the trained encoder and predictor can flexibly
synthesize speech with controlled attributes or operate based on
speech-driven inputs. The detailed structure is depicted in Figure 3.
Our approach extends previous works [11, 18] by incorporating
LSTM [15] for improved temporal modeling and introducing addi-
tional cues such as head position and head scale, which we refer to
as camera parameters. The architecture is detailed in Figure 3.

Learning Objective. The total loss comprises diffusion loss and
variance adapter loss, where 𝐾 represents the number of attributes:

𝐿gen = 𝐿diff + 𝜆
𝐾∑︁
𝑘=1

𝐿var𝑘

4 EXPERIMENTS
4.1 Experimental Settings
Weutilizes three datasets: VoxCeleb [28], HDTF [56], andVFHQ [49].
Due to different processing approaches across these datasets, we
re-downloaded the original videos and processed them in a uni-
fied way. Specifically, our processing pipeline included filtering out
blurred faces and faces at extreme angles. It is noted that we did
not align faces but instead used a fixed detection box for each video
clip, allowing for natural head movement. This effort resulted in a
dataset containing 4,242 unique speaker IDs, encompassing 17,108
video clips with a cumulative duration of 55 hours. Details of this
filtering process are provided in the supplementary material. Each
video in these datasets carries a unique facial ID tag, which we used
as labels for training our identity encoder. We also reserved some
videos from HDTF for testing, following the test split in [55].

Scenario Setting We evaluate methods under two scenarios:
video-driven and speech-driven, both operating on a one-shot basis
with only a single portrait required. The primary distinction lies
in the source of animation: image sequences for video-driven and
audio signals for speech-driven scenarios. The detailed data flow
for inference is illustrated in Figure 2. Additionally, each scenario
is divided into two types: self-driven, where the source and target
share the same identity, and cross-driven, involving different iden-
tities. In speech-driven tasks, if posture information is needed, it is
provided from the ground truth. Moreover, for our motion genera-
tor, unless specified otherwise, we use a consistent seed to generate
all outcomes. To ensure a fair comparison, the output resolution
for all algorithms is standardized to 256 × 256.

Implementation Details In training the motion representa-
tion, our self-supervised training paradigm is primarily based on
LIA [46]. Both the identity and motion encoders employ MLPs. Our
training targets use the CLUB 1 for mutual information loss, in
conjunction with AAM-Softmax [43]. This robust metric learning
method utilizes angular distance and incorporates an increased
number of negative samples to enhance the metric learning loss.
In the second phase, the speech encoder and the Motion Gener-
ator utilize a four-layer and a two-layer conformer architecture,
respectively, inspired by [11, 24]. This architecture integrates the
conformer structure [16] and relative positional encoding [6]. A
pre-trained HuBERT-large model [20] serves as the audio feature
encoder, incorporating a downsampling layer to adjust the audio
sampling rate from 50 Hz to 25 Hz to synchronize with the video
frame rate. The training of the audio generation process spans 125
frames (5 seconds). Detailed implementation specifics and model
structure are further elaborated in the supplementary materials.

Evaluation Metric For objective metrics, we utilize Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [47],
and Learned Perceptual Image Patch Similarity (LPIPS) [53] to
quantify the similarity between generated and ground truth im-
ages. Cosine Similarity (CSIM) 2 measures facial similarity using a
pretrained face recognition. Lip-sync Error Distance (LSE-D) [5]
assesses the alignment between generated lip movements and the
corresponding audio. Regarding subjective metrics, we employ
the Mean Opinion Score (MOS) as our metric, with 10 participants
1https://github.com/Linear95/CLUB/
2https://github.com/dc3ea9f/vico_challenge_baseline
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Figure 4: Cross-Reenactment Visualization: This task involves transferring actions from a target portrait to a source portrait to
evaluate each algorithm’s ability to separate motion and appearance. Starting from the third column, each column represents
the output from a different algorithm. The results highlight our method’s superior ability to preserve fidelity in both motion
transfer and appearance retention.

rating our method based on Fidelity (F), Lip-sync (LS), Naturalness
(N), and Motion Jittering (MJ).

4.2 Video Driven Methods

Table 1: Quantitative comparisons with previous Face Reen-
actment methods.

Method Self-Reenactment Cross-Reenactment

PSNR↑ SSIM↑ LPIPS↓ CSIM↑ SSIM↑ LPIPS↓ CSIM↑
FOMM [38] 23.944 0.775 0.178 0.830 0.411 0.423 0.494
DPE [29] 27.239 0.861 0.151 0.912 0.445 0.410 0.567
MTIA [41] 28.435 0.870 0.122 0.929 0.393 0.456 0.448
Vid2Vid [45] 27.659 0.870 0.115 0.924 0.410 0.401 0.553
LIA [46] 25.854 0.831 0.137 0.916 0.421 0.406 0.522
FADM [51] 26.169 0.849 0.147 0.916 0.445 0.399 0.574

AniTalker 29.071 0.905 0.079 0.927 0.494 0.347 0.586

Quantitative ResultsWe benchmarked our approach against
several leading face reenactment methods [29, 38, 41, 45, 46, 51], all
employing variations of self-supervised learning. The results are
presented in Table 1. Due to the inherent challenges and the absence
of frame-by-frame ground truth in Cross-Reenactment (using an-
other person’s video for driving), the overall results tend to be lower
compared to Self-Reenactment (using the current person’s video).
In Self-Reenactment, our algorithm achieved superior results for
image structural metrics such as PSNR, SSIM, and LPIPS, validating

the effectiveness of our motion representation in reconstructing
images. Additionally, using the CSIMmetric to measure face similar-
ity, we observed that the similarity between the reconstructed face
and the original portrait was the second highest, slightly behind
MTIA [41], illustrating our model’s identity preservation capabili-
ties. For Cross-Reenactment, where the portrait serves as ground
truth and considering cross-driven deformations, we focused on
high-level metrics: SSIM and LPIPS. Our method demonstrated
commendable performance. We also evaluated CSIM, which, unlike
self-reenactment, showed a significant improvement, achieving the
best results among these datasets. This highlights our algorithm’s
outstanding ability to disentangle identity andmotion when driving
with different individuals.

Qualitative Results To highlight comparative results, we con-
ducted a cross-reenactment scenario analysis with different algo-
rithms, as presented in Figure 4. The objective was to deform the
source portrait using the actions of the target. Each row in the
figure represents a driving case. We observed that baseline methods
exhibited varying degrees of identity leakage, where the identity
information from the target contaminated the source portrait’s iden-
tity. For example, as demonstrated in the fourth row, the slim facial
structure of the driving portrait led to slimmer outcomes, which
was unintended. However, our results consistently preserved the
facial identity. Additionally, in terms of expression recovery, as evi-
dent in the first and third rows, our approach replicated the action
of opening the eyes in the source portrait accurately, creating a
natural set of eyes. In contrast, other algorithms either produced
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slight eye-opening or unnatural eyes. These qualitative findings
highlight the advantage of decoupling ability.

4.3 Speech-driven Methods

Table 2: Quantitative comparisons with previous speech-
drivenmethods. The subjective evaluation is themean option
score (MOS) rated at five grades (1-5) in terms of Fidelity (F),
Lip-Sync (LS), Naturalness (N), and Motion Jittering (MJ).

Method Subjective Evaluation Objective Evaluation (Self)

MOS-F↑ MOS-LS↑ MOS-N↑ MOS-MJ↑ SSIM↑ CSIM↑ Sync-D↓
MakeItTalk [59] 3.434 1.922 2.823 3.129 0.580 0.719 8.933
PC-AVS [58] 3.322 3.785 2.582 2.573 0.305 0.703 7.597
Audio2Head [44] 3.127 3.650 2.891 2.467 0.597 0.719 8.197
SadTalker [54] 3.772 3.963 2.733 3.883 0.504 0.723 7.967

AniTalker 3.832 3.978 3.832 3.976 0.671 0.725 8.298

I
/aɪ/

State
/ˈsteɪt/

Believe
/ bɪˈliːv /

Climate
/ˈklaɪmət/

Se
lf 

D
riv

en
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Portrait MakeItTalk

Audio Source:

Audio2Head SadTalker AniTalker

Figure 5: Visual comparison of the speech-driven method in
self- and cross-driven scenarios. Phonetic sounds are high-
lighted in red.

We compare our method against existing state-of-the-art speech-
driven approaches, including MakeItTalk [59], PC-AVS [58], Au-
dio2Head [44], and SadTalker [54]. Quantitative results are pre-
sented in Table 2. From the subjective evaluation, our method con-
sistently shows improvements in fidelity, lip-sync accuracy, natu-
ralness, and a reduction in motion jittering, particularly noted for
the enhanced naturalness of movements. These advancements can
be attributed to our sophisticated universal motion representation.
The objective evaluation involves driving the image with its audio.
Compared to these methods, our approach shows significant im-
provements in SSIM and CSIM. However, our Sync-D metric shows
a decrease, which we believe is due to two main reasons: (1) we
do not use this metric as a supervisory signal, and (2) the Sync-D
metric focuses on short-term alignment and does not adequately

represent long-term information that is more crucial for the com-
prehensibility of generated videos. This is also corroborated by the
qualitative results shown in Figure 5, highlighting our model’s
ability to produce convincingly synchronized lip movements to the
given phonetic sounds.

4.4 Ablation Study

Table 3: Quantitative comparisons of disentanglement meth-
ods and the HAL module in Self-Reenactment setting

Method ML MID HAL PNSR ↑ SSIM ↑ CSIM ↑
Baseline 25.854 0.849 0.916
Triplet [10] ✓ 26.455 0.860 0.911
AAM-Softmax [43] ✓ 27.922 0.894 0.923
AAM-Softmax + CLUB [4] ✓ ✓ 28.728 0.900 0.924
AniTalker ✓ ✓ ✓ 29.071 0.905 0.927

4.4.1 Ablations on Disentanglement. To further validate the effec-
tiveness of our disentanglement between motion and identity, we
conducted tests using various methods. Initially, to evaluate the per-
formance of developing a reliable identity encoder using only Met-
ric Learning (ML) without Mutual Information Disentanglement
(MID), we assessed both Triplet loss [10] and AAM-Softmax [43].
Our results indicate that AAM-Softmax, an angle-based metric,
achieves superior outcomes in our experiments. Additionally, by
incorporating a mutual information decoupling module alongside
AAM-Softmax, we noted further improvements in results. This en-
hancement encouraged the motion encoder to focus exclusively on
motion-related information. These findings are comprehensively
detailed in Table 3.

Table 4: Different intermediate representations under the
Self-Reenactment setting. ‘Face Repr.’ is short for face rep-
resentation, and ‘Dim.’ represents the corresponding dimen-
sion.

Method Face Repr. Dim. PSNR ↑ SSIM ↑ CSIM↑
EMOCA [7] 3DMM 50 20.911 0.670 0.768
PIPNet [22] Landmark 136 22.360 0.725 0.830
AniTalker Motion Latent 20 29.071 0.905 0.927

4.4.2 Ablation Study on Motion Representation. To compare our
motion representation with commonly used landmark and 3D Mor-
phable Model (3DMM) representations, we utilized 68 2D coordi-
nates [22] (136 dimensions) for the landmark representation and
expression parameters (50 dimensions) from EMOCA [7] for the
3DMM representation. In self-reenactment scenarios, all rendering
methods were kept consistent, and different features were used
to generate driven images. We observed several key points: (1) As
shown in Table 4, our learned representation exhibits a more com-
pact dimensionality, indicating a more succinct encoding of facial
dynamics. (2) Our video comparisons show that, unlike these ex-
plicit representations, our implicit motion representation maintains
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frame stability without the need for additional smoothing. This can
be attributed to our self-supervised training strategy of sampling
adjacent frames, which effectively captures subtle dynamic changes
while inherently ensuring temporal stability.
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Figure 6: The weights of motion representation from differ-
ent layers of the Image Encoder.

4.4.3 Ablations on HAL. To explore the significance of the Hier-
archical Aggregation Layer (HAL) in dynamic representations, we
conducted a series of ablation experiments focusing on the HAL
layer. The results showed that models incorporating the HAL layer
exhibited performance improvements, as detailed in the final row
of Table 3. To analyze the impact and importance of different HAL
layers on motion representation, we extracted and examined the
softmax-normalized weights of each layer (a total of 8 layers in our
experiment) in our Image Encoder as shown in Figure 6. It was found
that the weights of the last layer contributed most significantly,
likely because it represents global features that can effectively re-
cover most motion information. Notably, the fourth layer—situated
in the middle of the image encoder feature map—demonstrated a
local maximum. Considering the receptive field size of this layer’s
patch is similar to the size of eyes and approximately half the size
of the mouth, this finding suggests that the layer plays a potential
role in simulating areas such as the mouth and eyes. These results
not only confirm the pivotal role of the HAL layer in dynamic rep-
resentation but also reveal the deep mechanisms of the model’s
ability to capture facial movements of different scales.

5 DISCUSSION
Discussion on Universal Motion Representation Our inves-
tigations into the model’s ability to encode facial dynamics have
highlighted a universal representation of human facial movements.
As depicted in Figure 7, we observed that different individuals main-
tain consistent postures and expressions (such as turning the head
left, speaking with homophones, and closing eyes) at each point
within our motion space, demonstrating that our motion space
forms a Motion Manifold. This manifold facilitates the representa-
tion of a continuous motion space, enabling the precise modeling of
subtle facial feature variations and allowing for smooth transitions.
Additionally, by integrating perturbations through diffusion noise,
our model can simulate random, minute motion changes that align
with fundamental movement patterns, thus enhancing the diversity

Motion 
Manifold

Turn Head Left

Eye ClosedDiversity

Perturbation

Speak with
Homophones

Figure 7: Motion Manifold of the continuous motion space.

of generated expressions. These findings demonstrate that our mo-
tion representation has a robust capacity to capture and represent
a wide array of human facial movements.

Discussion on Generalization Ability Although our model is
trained on real human faces, it demonstrates the ability to generalize
to other images with facial structures, such as cartoons, sculptures,
reliefs, and game characters. This underscores the model’s excellent
scalability. We primarily attribute this capability to the complete
decoupling of identity and motion, which ensures that the model
grasps the intrinsic nature of facial movements, thereby enhancing
its generalization capability.

6 CONCLUSION
The AniTalker framework represents a significant advancement
in the creation of lifelike talking avatars, addressing the need for
a fine-grained and universal motion representation in digital hu-
man animation. By integrating a self-supervised universal motion
encoder and employing sophisticated techniques like metric learn-
ing and mutual information disentanglement, AniTalker effectively
captures the subtleties of both verbal and non-verbal facial dynam-
ics. The resulting framework not only achieves enhanced realism
in facial animations but also demonstrates strong generalization
capabilities across different identities and media. AniTalker sets
a new benchmark for the realistic and dynamic representation of
digital human faces, promising broad applications in entertainment,
communication, and education.

Limitation and Future WorkWhile AniTalker shows promise
in generalizing motion dynamics, it still faces challenges. Our ren-
dering network generates frames individually, which can lead to
inconsistencies in complex backgrounds. Additionally, limited by
the performance of the warping technique, extreme cases where
the face shifts to a large angle may result in noticeable blurring
at the edges. Future work will focus on improving the temporal
coherence and rendering effects of the rendering module.
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