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ABSTRACT

Unsupervised domain adaptation (UDA) is to make a prediction for unlabeled
data in a target domain with labeled data from the source domain available. Re-
cent advances exploit entropy minimization and self-training to align the feature
of two domains. However, as decision boundary is largely biased towards source
data, class-wise pseudo labels generated by target predictions are usually very
noisy, and trusting those noisy supervisions might potentially deteriorate the in-
trinsic target discriminative feature. Motivated by agglomerative clustering which
assumes that features in the near neighborhood should be clustered together, we
observe that target features from source pre-trained model are highly intrinsic dis-
criminative and have a high probability of sharing the same label with their neigh-
bors. Based on those observations, we propose a simple but effective method
to impose Neighbor Class Consistency on target features to preserve and further
strengthen the intrinsic discriminative nature of target data while regularizing the
unified classifier less biased towards source data. We also introduce an entropy-
based weighting scheme to help our framework more robust to the potential noisy
neighbor supervision. We conduct ablation studies and extensive experiments on
three UDA image classification benchmarks. Our method outperforms all existing
UDA state-of-the-art.

1 INTRODUCTION

Recent advances in deep neural network have dominated many computer vision tasks, such as image
recognition He et al. (2016), object detectionGirshick (2015), and semantic segmentationLong et al.
(2015). However, collection and manual annotation need no trivial human effort, especially for
vision tasks like semantic segmentation where dense annotations are required. Thanks to the growth
of computer graphics field, it is now possible to leverage CNN to synthetic images with computer-
generated annotations (Richter et al. (2016); Ros et al. (2016)), so unlimited amount of data with free
annotation is available for training network in scale. However, directly applying the model trained
on synthetic source data to unlabeled target data leads to performance degradation and Unsupervised
Domain Adaptation (UDA) aims to tackle this domain shift problem.

A widespread of UDA methods were proposed to align the domain-invariant representations by
simultaneously minimizing the source error and discrepancy(e.g. H-divergence Ben-David et al.
(2010); Hoffman et al. (2016)H4H-divergenceBen-David et al. (2010)) between two domain such
as the maximum mean discrepancy Tzeng et al. (2014), correlation distanceSun et al. (2016) and etc.
Further, adversarial learning-based UDA Ganin & Lempitsky (2015); Tzeng et al. (2017); Radford
et al. (2015); Hoffman et al. (2018); Tsai et al. (2018); Sankaranarayanan et al. (2018); Luo et al.
(2019) methods aim to reduce this discrepancy between two domain by minimizing the adversarial
loss. However, the major limitation of adversarial learning is that it only aligns the global feature
distribution of two domains without considering the class labels. As the result, a small H4H
distance does not guarantee the small error on ideal joint hypothesis on the features of two domains
Liu et al. (2019).

To alleviate this issue, Entropy minimization (Grandvalet & Bengio (2005); Vu et al. (2019)) and
Self-Training (Lee (2013); Zou et al. (2018)) are the two dominant methods to enforce the clus-
ter assumption such that network can learn a discriminative feature space by pushing the decision
boundary away from densely-distributed area. However, as decision boundary is largely biased to-
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Figure 1: (1) Our Neighbor Class Consistency framework. (2) An overview of our approach:
(a) Self-Training methods ignore the intrinsic target structure while aligning the features of two
domains based on a biased classifier. They potentially deteriorate the intrinsic target clusters. (b)
Our approach enforces the Neighbor Class Consistency on target features, therefore progressively
strengthen the instrinsic discrimination of target features while regularizing the unified classifier less
biased towards source data.

wards source data, trusting biased network predictions will push target features towards their nearest
source class prototypes while deteriorating the intrinsic discriminative target structure as shown in
Fig. 1(2.a).

Motivated by agglomerative clustering methods (Sarfraz et al. (2019)) which assume that features
in the nearby region should be clustered together, we investigate target features from source pre-
trained model and observe that they are intrinsically discriminative and have a very high possibility
of sharing the same label with their neighbors as shown in Fig. 1(2.b). To utilize this high-quality
pairwise neighbor supervision, we propose a simple and effective approach to impose Neighbor
Class Consistency between target samples and their neighbors. To alleviate propagated errors from
false neighbor supervision, we introduce an Entropy-based weighting scheme to emphasize more
on the reliable pairwise neighbor supervision. Additionally, we categorize Self Class Consistency
as a special case of our method where the nearest neighbor of a sample is its self-augmentation.
Further, we explore feature representation learning based on the ranking relationship between self-
augmentation and the first neighbor given an anchor. We enforce the features of anchors to be closer
to their self-augmentation than their first neighbors.

In summary, our main contributions are shown as follows: (1) We revisit the source pre-trained
model and observe the intrinsic discriminative nature of target features from source model. (2)
Based on this observation, we propose Neighbor Class Consistency (NC) to utilize the high-quality
pairwise neighbor pseudo supervision over noisy class-wise pseudo supervision from Self-Training
methods. (3) We introduce an Entropy-based weighting scheme to help our framework be more
robust to unreliable neighbor supervision. (4) We categorize Self Class Consistency as a special
case of our framework and explore the first neighbor for feature representation learning. (5) We
conduct extensive experiments on three UDA benchmarks datasets. NC outperforms all existing
methods and achieves a new UDA state-of-the-art performance. Notably, we achieve 86.2% on
challenging VisDA17 dataset.

2 RELATED WORK

Discrepancy based domain adaptation Following the theoretical upper bound proposed in Ben-
David et al. (2007), existing methods have explored to align the feature representations of the source
and target images by minimizing the distribution discrepancy. For example, Maximum Mean Dis-
crepancy (MMD) Tzeng et al. (2014) is proposed to match the mean and covariance of source
and target distributions. Alternatively, adversarial domain adaptation methods Ganin & Lempitsky
(2015); Tzeng et al. (2017); Radford et al. (2015); Hoffman et al. (2018); Tsai et al. (2018); Sankara-
narayanan et al. (2018); Luo et al. (2019) solve this domain discrepancy by training a domain-
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invariant feature generator which produces the features to fool a discriminator that distinguishes the
representations from source and target domains. However, since the domain discriminator aligns
source and target features without considering the class labels, merely aligning the global marginal
distribution of the features in the two domains fails to align the class-wise distribution.

Clustering based domain adaptation Entropy minimization (Grandvalet & Bengio (2005); Vu
et al. (2019)). and self-training (Zou et al. (2018); Gu et al. (2020)) are two streams of approaches
to realize the class-wise alignment across domains. However, minimizing the conditional entropy
of target prediction based on source biased classifier will harm the intrinsic discriminative target
structure. To this end, prototypical classifier and alignment Xie et al. (2018); Pan et al. (2019)
have been explored to mitigate the noisy supervision from source biased classifier. However, the
prototypes of target samples are still noisy estimated cluster centers and therefore target samples
away from prototypes may still risk of being wrongly classified. Similar effort has been made by
Tang et al. (2020) on learning the latent discriminative target structure with respect to learnable
clusters via deep clustering framework Ghasedi Dizaji et al. (2017).

Consistency Regularization In semi-supervised setting, mainstream methods apply various con-
sistency regularization on unlabeled data with different pre-defined positive counterpart. Among
them, Tarvainen & Valpola (2017) impose consistency between predictions from student network
and moving-average based teacher networks. Virtual Adversarial Training Miyato et al. (2018) tries
to make network invariant to small adversarial permutations around the neighborhood of a sample
while DTALee et al. (2019) enforces the target predictions from the networks with different choice
of dropout mask to be consistent. In un/self-supervised setting, SimCLR (Chen et al. (2020)) and
MoCo (He et al. (2020)) are the two prevalent approaches to conduct contrastive learning on the
feature space among unlabeled data, its strong augmentation and other negative samples from ei-
ther extremely large current batch or momentum updated memory banks. In comparison to those
un/self-supervised methods, our method exploreS neighbor samples for consistency regularization.
In cross-domain person re-identification, Zhong et al. (2019) also utilize the neighbor information
on target data. To emphasize the difference, our method focuses on regularizing the classifier to be
less biased toward source domain by applying target neighbor class consistency while they focus on
the feature representation learning by enforcing neighbor feature invariance.

3 METHOD

3.1 PROBLEM DEFINITION

In unsupervised domain adaptation(UDA), source domain data is denoted as Ds = {(xs
i ,y

s
i )|

Ns
i=1}

where xs
i and ys

i denote the i-th training sample and its label, Ns is the number of source images.
Target domain data is denoted as Dt = {xt

i|
Nt
i=1} where Nt is the number of target images. The

objective of UDA is to train a deep neural network G(·|θ) which has access to the source data
(xs

i ,y
s
i ) drawn from Ds and target data xt

i drawn from Dt such that the modelG(·|θ) can generalize
on target domain. Network G(·|θ) = C ◦ F (·|θ) is comprised of a feature extractor F (·|θ) and a
classifier C(·|θ) where θ denotes network parameters.

3.2 REVISIT SUPERVISED PRE-TRAINING FOR SOURCE DOMAIN

In general, UDA pre-trains a network G(·|θ) on source domain by standard cross entropy loss and
then the network is transferred to inference the target data. The source supervised objective function
is in the form of,

Ls
src(θ) =

1

Ns

Ns∑
i=1

Lce (C(F (x
s
i |θ)),ys

i ) . (1)

However, the model trained on source data usually generalizes poorly on target data due to the
domain shift between the joint distribution of two domains.

Self-Training (ST) and Entropy Minimization (Ent) methods are proposed to make the network
be confident on its target predictions following the cluster assumption and thus improve the discrim-
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k-th Neighbor k=1 k=3 k=5
Acc 96.4 92.3 86.4

Table 1: Pairwise class consistency evaluation on target features extracted from Source model with
their k-th Nearest neighbors on Office-31 A→W.

inativeness of network. Their objective functions are calculated as

Lt
ST (θ) =

1

Nt

Nt∑
i=1

Lce

(
C(F (xt

i|θ)), ỹt
i

)
, (2)

Lt
Ent(θ) =

1

Nt

Nt∑
i=1

H
(
C(F (xt

i|θ))
)
, (3)

where ỹt
i is the pseudo label for the i target sample andH is entropy function.

Nonetheless, the pseudo labels of target samples are noisy as the network is biased towards source
data. Trusting noisy label or prediction has high risk of misleading the training and propagate errors.

Inspired by agglomerative clustering methods which claim that features should be clustered with
their near neighborhood, we hypothesize that source domain pre-training can provide a feature space
where target features are intrinsically discriminative and have high probability of sharing the same
labels with their neighbors.

To verify this, we apply k-Nearest Neighbor (kNN) search on target features extracted from source
model on Offce-31 A→W. We evaluate the pairwise label consistent accuracy between target fea-
tures and their k-th neighbors. Table 1 shows that target features from source model have very high
accuracy of sharing the same label with their K-th neighbors. It demonstrates our hypothesis that
target features from source model are locally discriminative.

This observation motivates us to leverage this relative ”clean” pairwise pseudo supervision to help
the network generalization on target domain over the noisy class-wise pseudo supervision.

3.3 NEIGHBORHOOD CLASS CONSISTENCY

1) Neighborhood Discovery. First, we extract target features zt = F (xt|θ) from source pre-train
model and save them into a target feature memory bank Vt = {zti |

Nt
i=1}. Then we apply kNN on

target features Vt to explore the neighborhood Nk(z
t) which is defined as follows:

Nk(z
t
j) = {zti |s(zti , ztj) is top-k in Vt}, (4)

where s is a similarity metric and k is the number of neighbors.

Note that we update the memory bank Vt with the newest features in training and conduct kNN on
Vt at every epoch.

2) Vanilla Neighborhood Class Consistency (VNC). Based on our motivation that target samples
should share the same class label with their neighbors, we propose VNC to enforce the class assign-
ment consistency between pairwise neighbors by mutual information (MI) maximization between
their network predictions. Formally, we formulate the objective function of VNC in the form of:

Lt
V NC(θ) = −

1

Nt

Nt∑
i=1

1

k

∑
j∈Nk(zt

i)

MI
(
C(zti |θ), C(ztj |θ)

) . (5)

It is also worth noting that the memory bank serves as a look-up table to retrieve the target features
and feed them into the classifier C for computing the Neighborhood Class Consistency loss. As the
size of k can be potentially large, using memory bank can implicitly enlarge the batch size by k
times without introducing extra computational cost and time.
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3) Entropy-weighted Neighborhood Class Consistency (ENC). Table 1 shows that the reliability
of pairwise neighborhood supervision is decreased with the rise of neighborhood size k. In other
words, there is a trade-off between large neighborhood diversity and reliability of neighbor supervi-
sion.

A straightforward idea is to treat each neighbor pairs differently in terms of loss weight such that
hopefully positive neighbor pairs (Correct) will have higher loss weight than negative neighbor pairs
(False). To achieve this, we propose a entropy-based weighting scheme (EW) to assign different
loss weight on different neighbor pairs given an anchor. As the entropy is a measurement of sample
prediction certainty, the less entropy is, more confident the prediction is and thus more weight we
will assign on. Formally, we define the loss weight and objective of ENC as follows:

w(zt) = 1− H(C(z
t|θ))

logM
, (6)

Lt
ENC(θ) = −

1

Nt

Nt∑
i=1

w(ztj)
k

∑
j∈Nk(zt

i)

MI
(
C(zti |θ), C(ztj |θ)

) , (7)

where M is the number of class.

We claim that entropy-based weighting helps mitigate the problem of noisy pairwise supervision
and it is more robust to the neighborhood size k as it will down-weight the neighbor pairs if the
selected neighbor samples have high entropy value.

3.4 SELF CLASS CONSISTENCY

In addition to neighborhood consistency, target samples should always share the same label with
their self-augmentation and this pairwise supervision is 100% clean. Therefore, Self Class Con-
sistency is a special case of NC where the nearest neighbor given an anchor is its augmentation.
We adopt Cropping, grayscale and color distortion as our data augmentation following Chen et al.
(2020) and enforce the self-consistency in terms of class assignment on target samples and their
augmentations as follows,

Lt
SC(θ) = −

1

Nt

Nt∑
i=1

MI
(
C(F (xt

i|θ)), C(F (x̃t
i|θ)

)
, (8)

where x̃t
i is the data augmentation of i-th target sample.

3.5 FEATURE RANKING BETWEEN SELF-AUGMENTATION AND FIRST NEIGHBOR

As the first neighbors given target anchors might be negative (do not share the same label with an-
chors) and the anchors’ self-augmentations might be heavily distorted, enforcing neighbor class con-
sistency alone might not guarantee that the anchors are closer to their self-augmented samples than
their first neighbors in feature space. We claim that introducing this feature ranking regularization
benefits the feature representation learning by ensuring the positive samples (self-augmentations)
rank higher than the negative samples (the first neighbors) in feature space. When the first neighbors
are positive, it can also enforce an inductive bias on model training to rank the positive samples with
pre-defined variations (such as cropping, grayscale and color distortion) higher than the positive
samples with unknown variations (the first neighbors).

To impose this feature ranking regularization, we adopt triplet loss as objective function as shown
below,

Lt
tri(θ) =

1

Nt

Nt∑
i=1

max
(
0, ||F (xt

i|θ)− F (x̃t
i|θ)||+m− ||F (xt

i|θ)−N1(F (x
t
i|θ))||

)
, (9)

where N1(F (x
t
i|θ)) is the feature of the first neighbor of target sample i and m is the margin.
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3.6 TOTAL LOSS

The objective of proposed Neighbor Class Consistency is in the form of,

Lt
NC(θ) = Ls

src(θ) + λ(Lt
ENC(θ) + Lt

SC(θ) + Lt
tri(θ)). (10)

As pre-training on source data only might not provide the optimal initial feature space to explore
high-quality neighborhood, we add target self-consistency loss with source supervised loss in pre-
training stage and formulate it as:

LSP (θ) = Ls
src(θ) + λLt

SC(θ). (11)

4 EXPERIMENT

4.1 DATASETS

We conduct experiments on three widely used domain adaptation classification benchmarks: Office-
31 Saenko et al. (2010), VisDA17 Peng et al. (2018) and ImageCLEF-DA 1.

Office-31 is a commonly used dataset for unsupervised domain adaptation. It includes 4652 images
of 31 classes from three domains: Amazon (A), Webcam (W) and DSLR (D). ImageCLEF-DA con-
sists of 12 common classes shared by three public datasets (domains): Caltech-256 (C), ImageNet
ILSVRC 2012 (I), and Pascal VOC 2012 (P). VisDA17 is a large-scale dataset. It uses 152, 409
2D synthetic images from 12 classes as the source training set and 55, 400 real images from MS-
COCO Lin et al. (2014) as the target set. 12 object categories are shared by these two domains.

4.2 IMPLEMENTATION DETAILS

We follow the standard protocol of UDA( Ganin et al. (2016); Zhang et al. (2019b); Xu et al. (2019);
Zou et al. (2019)) to use all labeled source samples and all unlabeled target samples as training data.
The reported testing results are the average accuracy over three random repeats with center-crop
images. We adopt ResNet-50 (He et al. (2016)) on Office-31 and ImageCLEF-DA while ResNet101
on VisDA17 dataset, fine-tuned from the ImageNet (Deng et al. (2009)) pre-trained model. We
use Pytorch as implementation framework. We adopt Stochastic Gradient Descent (SGD) optimizer
with learning rate of 1 × 10−3, weight decay 5 × 10−4, momentum 0.9 and batch size 32. We set
λ = 0.1 (Eq 10) for Office-31 and ImageCLEF-DA while λ = 0.5 for VisDA17. We set k = 1 (Eq
7) to explore the most local neighbourhoods and triplet margin m = 0.1 in (Eq 9). The analysis on
the impact of k is at section 4.5.

4.3 ABLATION STUDY

In this section, we investigate the effectiveness of each components of NC in achieving the state-
of-the art performance on Office-31. We name each components of NC as: (1) Source Model,
which fine-tunes the base network on source labeled samples with Eq 1; (2) Vanilla Neighbor Class
Consistency (VNC), which denotes the training with non-weighted Neighbor Class consistency
with Eq 5; (3) Entropy-Weighted Neighbor Class Consistency (ENC), which denotes the training
with Entropy-Weighted Neighbor Class consistency with Eq 7; (4) Self Class Consistency(SC),
which denotes the training with Self consistency with Eq 8; (5) Feature Ranking (FR), which
denotes the training with feature ranking relations between anchor, its self-augmentation and its
first neighbor with Eq 9; (6) Self-Supervised Pretraining (SP), which fine-tunes the base network
with source labeled samples and SC with Eq 11. From the Tab 2, we observe that all proposed
components play a contributing role to our final performance.

4.4 COMPARISONS WITH THE STATE OF THE ART

Results on Office-31 and ImageCLEF-DA based on ResNet-50 are shown in Table 3 and Table 4.
We can observe that NC-SP outperforms all the existing methods and more importantly boosts the

1https://www.imageclef.org/2014/adaptation
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Method A→W D→W W→ D A→ D D→ A W→ A Avg
Source Model 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

SC 91.8 ±0.2 98.3±0.0 100.0±0.0 92.3±0.1 75.0±0.2 75.3±0.2 88.8
VNC 93.8 ±0.1 98.7±0.0 100.0±0.0 93.2±0.2 75.1±0.1 75.8±0.1 89.4
ENC 94.1±0.2 98.7±0.0 100.0±0.0 93.8 ±0.1 75.4±0.0 76.2 ±0.1 89.7

ENC-SC 94.2 ±0.1 98.7±0.0 100.0±0.0 95.8 ±0.2 75.3±0.1 76.7±0.3 90.1
ENC-SC-SP 95.8 ±0.1 98.7±0.0 100.0±0.0 95.4 ±0.1 76.9±0.1 77.0±0.1 90.6

ENC-SC-FR (NC) 95.7±0.2 98.7±0.0 100.0±0.0 95.2±0.1 77.5±0.1 76.9±0.0 90.6
ENC-SC-FR-SP (NC-SP) 96.4±0.1 98.7±0.0 100.0±0.0 95.8±0.3 77.6±0.2 77.4±0.2 91.0

Table 2: Ablation studies using Office-31 based on ResNet-50. Please refer to Section 4.3 on what
each component represents.

Method A→W D→W W→ D A→ D D→ A W→ A Avg
ResNet-50 He et al. (2016) 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (Ganin et al. (2016)) 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA (Tzeng et al. (2017)) 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

ENT (Grandvalet & Bengio (2005)) 89.0±0.1 99.0±0.1 100.0±0.0 86.3±0.3 67.5±0.2 63.0±0.1 84.1
JAN (Long et al. (2017) ) 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

MRENT (Zou et al. (2019)) 88.0±0.4 98.6±0.1 100.0±0.0 87.4±0.8 72.7±0.2 71.0±0.4 86.4
SAFN+Ent (Xu et al. (2019)) 90.1±0.8 98.6±0.2 99.8±0.0 90.7±0.5 73.0±0.2 70.2±0.3 87.1

SymNets (Zhang et al. (2019a)) 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4
MDD (Zhang et al. (2019b)) 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

CAN (Kang et al. (2019)) 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.3±0.3 90.6
SRDC (Tang et al. (2020)) 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8

NC-SP 96.4±0.1 98.7±0.0 100.0±0.0 95.8±0.3 77.6±0.2 77.4±0.2 91.0

Table 3: Experiment results on Office-31 classification using ResNet-50

performance substantially on difficult transfer tasks such as A→ W, D→ A and W→ A. Notably,
comparing to state-of-the-art self-training (Zou et al. (2019)) and entropy minimization methods (Xu
et al. (2019)) based on class-wise pseudo supervision, NC-SP outperforms them by 4.6% and 3.9%
respectively, and it demonstrates that following the relatively clean neighborhood pseudo supervi-
sion can alleviate the error accumulation problem from self-training.

Results on VisDA17 based on ResNet-101 are reported in Table 5. NC-SP achieves much better
performance than all compared methods. Comparing to DTA (Lee et al. (2019)) which uses VAT
(Miyato et al. (2018)) as self-consistency and Adversarial Dropout as model-consistency, we instead
explore neighborhood consistency and demonstrate the effectiveness of NC-SP over other consis-
tency regularization. Note: The results of existing methods in Table 3,4,5 refer to their respective
papers.

4.5 ANALYSIS

Feature visualization. We visualize the target feature embeddings of (a) source model, (b) entropy
minimization, and (c) NC on Office-31 W→ A via t-SNE (Maaten & Hinton (2008)) in Fig.2. We
can qualitatively observe that NC could learn more discriminative features than source model and
entropy minimization as it preserves the intrinsic target features structure.

Nearest neighbors visualization. We visualize the top 3 nearest neighbors given an anchor based on
the target features from source model on Office-31 A→W in Fig.3(a). We investigate both success
and failure cases to get extra insights into our method. For the first two row, features from source
model could retrieve the correct neighbors for the mobile phone and backpack with certain level of
appearance and pose variations. However, at the last row where the pose of that laptop sample is
unusual, our method might fail in those cases. The proposed entropy weighting on neighbor class
consistency is to alleviate the misleading learning by false neighborhood supervision.

Impact of neighbourhood size k. Neighbourhood size k is an important parameter as it controls the
amount of pairwise neighborhood supervision. However, there is a trade-off between increasing the
neighbor diversity and increasing the risk of adding false neighborhood supervision. Empirically,
the optimal k is associated with the size of target dataset and the number of class. We evaluate k
from {1, 3, 5} for both Vanilla NC and Entropy-weighted NC on Office-31 A→W as shown in Fig
3(b). We observe that the performance decreases when increasing the k for VNC while ENC is more

7



Under review as a conference paper at ICLR 2021

Method I→P P→I I→C C→I C→P P→C Avg
ResNet-50 (He et al. (2016)) 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN (Ganin et al. (2016)) 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN (Long et al. (2017)) 76.8 88.0 94.7 89.5 74.2 91.7 85.8
CDAN (Long et al. (2018)) 76.7 90.6 97.0 90.5 74.5 93.5 87.1

SAFN+Ent (Xu et al. (2019)) 78.0 91.7 96.2 91.1 77.0 94.7 88.1
SymNets (Zhang et al. (2019a)) 80.2 93.6 97.0 93.4 78.7 96.4 89.9

CAN (Kang et al. (2019)) 78.5 93.0 97.3 91.0 77.2 97.0 89.0
A2LP+CAN (Zhang et al. (2020)) 79.8 94.3 97.7 93.0 79.9 96.9 90.3

NC-SP 80.9 95.0 97.9 94.2 79.8 97.5 90.9

Table 4: Experiment results on ImageCLEF-DA classification using ResNet-50

Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean
Source (Saito et al. (2018a)) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN( Ganin et al. (2016)) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD (Saito et al. (2018b) ) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ADR (Saito et al. (2018a)) 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
SAFN (Xu et al. (2019)) 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

MRKLD+LRENT (Zou et al. (2019)) 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
DTA (Lee et al. (2019)) 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5

RWOT (Xu et al. (2020)) 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
NC-SP 97.1 88.5 90.0 65.2 96.7 92.9 90.1 81.5 94.6 89.5 89.0 58.8 86.2

Table 5: Experimental results on VisDA17 classification using ResNet-101.

robust to k. This is consistent with the intuition of Entropy-weighting which aims to alleviate the
problem of false neighborhood supervision. For simplicity, we use k=1 through all the experiments
while increasing k definitely has lots of potential to boost the performance further especially when
applying Entropy weighting scheme.

How does entropy-based weighting looks like? In order to prove our hypothesis that negative
neighbor pairs will have lower consistency loss weight, we compute the entropy weights for all the
neighbor pairs (k=1) on Office-31 A → W and W → A, and take average over entropy weights
on positive pairs and negative pairs respectively. From Fig 3(c), we can see that positive neighbor
pairs have much higher consistency loss weight than negative pairs by 20% on average. It demon-
strates our hypothesis that Entropy-weighted NC could alleviate the false neighbor supervision via
assigning less loss weight to them.

Hyper-parameter sensitivity. We conduct the hyper-parameter sensitivity analysis on the λ in Eqn.
10 and the triplet margin m in Eqn. 9 on Office31 A → W. As Fig. 5 shows, the performance of
VNC decreases with the increase of λ while the performance of NC is inversely proportional to the
triplet margin m. To conclude, our method is robust to the regional changes of hyper-parameters.
The reason that large margin results in a performance drop might be that there exists a portion of
anchors whose first neighbors are positive and semantically more similar to the anchors than their
self-augmentations. Setting the margin to a very large value will emphasize the inductive bias too
much on the pre-defined variations and thus harm our model to align those positive neighbors with
unknown variations to the anchors. By setting a small margin, our method could ensure the self-
augmentations are more close to their anchors when the first neighbors of anchors are negative.
At the same time, we can ensure that the self-augmentations are not too far away from the first
neighbors when they are positive.

(a)    Source only (b)    Entropy Minimization (c)    Neighbor Consistency

Figure 2: The t-SNE visualization of target feature embedding (red) on Office-31 W → A.
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mobile 
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back
pack

laptop

1 NN 2 NN 3 NN

(a)  (b)  (c)  

Figure 3: Analysis: (a) Top 3 nearest neighbors given an anchor based on source model on Office-31.
(Green: positive sample; Red: negative sample.) (b) Impact of the neighbourhood size K on Office-
31 A→W. (c) Entropy-based weighting for positive and negative neighbor pairs on Office-31 A→
W, W→ A.

(a) (b)

Figure 4: Hyper-parameter sensitivity analysis: (a) Sensitivity of λ on Office-31 A→W. (b) Sensi-
tivity of m on Office-31 A→W.

5 CONCLUSION

In this work, we propose a simple but effective appoarch, named Neighbor Class Consistency based
on the observation that target features extracted from source pre-trained model are high intrinsically
discriminative. We introduce an entropy-based weighting scheme to improve the robustness of our
framework to potential noisy neighbor supervision. We also incorporate self-supervision and impose
metric learning based on feature ranking relationship. We conduct solid ablation studies to prove
each proposed components contributing to the performance and extensive experiments on three UDA
image classification benchmarks. Our method outperforms all existing UDA state-of-the-art.
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A APPENDIX

A.1 ADDITIONAL HYPER-PARAMETER SENSITIVITY ANALYSIS

To select the best neighborhood size k and analyze the influence of k on the performance, we eval-
uate k from {1, 3, 5} for all the tasks on Office31 and report the performance in Fig. 5. We observe
that our method (NC) achieves the best performance when k = 1 while the performance does not
monotonically decrease with the increase of neighborhood size.
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Figure 5: Hyper-parameter sensitivity of neighborhood size k on Office-31 for all tasks.

A.2 COMPARISON TO THE RELATED WORK FROM OTHER DOMAIN

To differentiate our method to the related work from other domains such as self-supervised learning
(Chen et al. (2020)), knowledge distillation (Yun et al. (2020)) and person re-identification tasks
(Zhong et al. (2019)), we implement their idea in unsupervised domain adaptation setting on Of-
fice31 A→W in table 6. Specifically, 1) for self-supervised learning, we utilize the self consistency
loss in Eqn. 8 only as comparison and term it as SC (ours). Though our objective function is dif-
ferent, we adopt the same data augmentation rule from from (Chen et al. (2020)). 2) For knowledge
distillation which is a supervised setting, we replace our objective function (Mutual information
maximization) in our ENC to the KL divergence objectives from (Yun et al. (2020)) to compute the
class consistency loss and term it as CS-KD. 3) For person re-identification, we refer to the official
github repository of (Zhong et al. (2019)) which introduces the neighbors invariance in feature space
and implement it in UDA setting. We term it as ECN.

As table 6 shows, our ENC outperforms other baselines by a significant margin. It demonstrates
that 1) the neighbor class consistency contributes more to the domain alignment than self consis-
tency loss. 2) Our consistency loss based on mutual information maximization is better than KL
divergence in terms of enforcing class prediction consistency. 3) Our neighbor class consistency
loss is more effective than enforcing neighbor feature invariance. We think the features of target
neighbors are naturally close to each other in feature space but the source biased classifier fails to
provide consistent class predictions between the target neighbor. Therefore, in our point of view,
providing regularization on the classifier via our neighbor class consistency loss is more important
than enforcing neighbor feature invariance in UDA problem.

Method A→W
ECN (Zhong et al. (2019)) 87.9
CS-KD (Yun et al. (2020)) 84.5
SC (ours) 91.8
ENC (ours) 94.1

Table 6: Comparison to the related works on Office-31 A→W where ECN explores neighbor feature
invariance and CS-KD utilizes the class-wise prediction regularization.

13



Under review as a conference paper at ICLR 2021

A.3 ADDING RESULTS FOR ENC ON IMAGECLEF-DA AND VISDA17

To show the effectiveness of our method with ENC only, we report the results on ImageCLEF-
DA and VisDA17 in table 7 and 8. We could observe that our method with ENC only achieves the
third best performance (exclude NC-SP) in Office-31, top 1 performance in ImageCLEF-DA and the
second best performance in VisDA17. Compared to the self-training based methods (ENT, MRENT,
SAFN+Ent), our ENC outperforms them by a large margin without bells and whistles.

Method I→P P→I I→C C→I C→P P→C Avg
ResNet-50 (He et al. (2016)) 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DANN (Ganin et al. (2016)) 75.0 86.0 96.2 87.0 74.3 91.5 85.0

JAN (Long et al. (2017)) 76.8 88.0 94.7 89.5 74.2 91.7 85.8
CDAN (Long et al. (2018)) 76.7 90.6 97.0 90.5 74.5 93.5 87.1

SAFN+Ent (Xu et al. (2019)) 78.0 91.7 96.2 91.1 77.0 94.7 88.1
SymNets (Zhang et al. (2019a)) 80.2 93.6 97.0 93.4 78.7 96.4 89.9

A2LP+CAN (Zhang et al. (2020)) 79.8 94.3 97.7 93.0 79.9 96.9 90.3
ENC 79.6 95.0 97.5 94.1 79.2 96.7 90.3

NC-SP 80.9 95.0 97.9 94.2 79.8 97.5 90.9

Table 7: Experiment results on ImageCLEF-DA classification using ResNet-50

Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean
Source (Saito et al. (2018a)) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN( Ganin et al. (2016)) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD (Saito et al. (2018b) ) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ADR (Saito et al. (2018a)) 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8
SAFN (Xu et al. (2019)) 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

MRKLD+LRENT (Zou et al. (2019)) 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
DTA (Lee et al. (2019)) 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5

RWOT (Xu et al. (2020)) 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.0
ENC 96.9 89.6 85.3 70.8 96.4 87.8 92.4 76.7 91.6 84.1 87.8 41.8 83.5

NC-SP 97.1 88.5 90.0 65.2 96.7 92.9 90.1 81.5 94.6 89.5 89.0 58.8 86.2

Table 8: Experimental results on VisDA17 classification using ResNet-101.

A.4 MUTUAL INFORMATION OBJECTIVE FUNCTION

We define the class prediction of target sample i as P (zti) = C(zti |θ) and its neighbor sample j as
P (ztj) = C(ztj |θ).
The objective of mutual information can be formulated as:

MI
(
P (zti), P (z

t
j)
)
= P (zti , z

t
j) log

P (zti , z
t
j)

P (zti)P (z
t
j)
, (12)
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t
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2
, (13)
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