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Abstract

Image restoration tasks traditionally rely on convolutional neural networks. However, given
the local nature of the convolutional operator, they struggle to capture global information.
The promise of attention mechanisms in Transformers is to circumvent this problem, but
it comes at the cost of intensive computational overhead. Many recent studies in image
restoration have focused on solving the challenge of balancing performance and compu-
tational cost via Transformer variants. In this paper, we present CascadedGaze Network
(CGNet), an encoder-decoder architecture that employs Global Context Extractor (GCE), a
novel and efficient way to capture global information for image restoration. The GCE mod-
ule leverages small kernels across convolutional layers to learn global dependencies, without
requiring self-attention. Extensive experimental results show that our computationally effi-
cient approach performs competitively to a range of state-of-the-art methods on synthetic
image denoising and single image deblurring tasks, and pushes the performance boundary
further on the real image denoising task.

1 Introduction

Image restoration refers to recovering the original image quality by addressing degradation introduced dur-
ing the capture, transmission, and storage processes. This degradation includes unwanted elements like
noise, blurring, and artifacts. Given that infinitely many feasible solutions may exist, image restoration is
considered an ill-posed problem. It is a challenging task as it involves processing high-frequency elements
like noise while preserving crucial image characteristics such as edges and textures (Su et al., 2022b). To
tackle this complexity, current image restoration techniques leverage deep neural networks. These networks
have demonstrated remarkable progress across various restoration tasks, achieving state-of-the-art results on
several benchmark datasets (Li et al. |2023b; |Zamir et al., |2021; Wang et al., 2022b; |Cheng et al., |2021}; |Chu
et al., 2022).

While convolutional neural networks (CNNs) have been widely used for image restoration |Chen et al.| (2021);
Fan et al.| (2022)); /Chang et al.[(2020); [Yue et al.| (2020), their limited receptive field size restricts their ability
to capture long-range dependencies and global context effectively. Conversely, Transformers excel at modeling
global interactions and dependencies, making them well-suited for image restoration tasks that require a
holistic understanding of the image content (Dosovitskiy et al. |2020; |Vaswani et al., 2017; Ramachandran
et al.,|2019; Touvron et al.,2021). However, Transformers come at the cost of intensive memory consumption
and quadratic computational complexity of self-attention as image spatial resolution increases.

Due to the computational overhead of Transformers, especially self-attention, there has been a growing
interest in developing efficient types of Transformers. Various techniques have been proposed to address this
challenge, including local attention (Wang et al., [2022b; [Liang et all 2021)), which applies self-attention to
smaller input patches instead of the entire input. Channel attention introduced by Restormer (Zamir et al.
2022) is another method that applies the attention mechanism to the channel dimension rather than the
spatial dimension. Even though these methods have demonstrated improved computational efficiency, they
do not fully capture long-range spatial dependencies. Building upon efficient attention mechanisms, various
architectures have emerged, combining existing mechanisms or introducing novel attention methods to learn
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Figure 1: Computational Efficiency vs Performance. Left: PSNR vs. MACs (G) comparison on SIDD real
image denoising. Right: PSNR vs. MACs (G) comparison on Gaussian image denoising tested on Kodak24
dataset with noise level o = 50. Our model achieves state-of-the-art results and is computationally efficient.

global context. Nonetheless, these approaches, including (Li et al. 2023b; |Zhang et al., 2022; |Chen et al.l
[2022b} |Zhao et al., [2023)), still require significant computational resources.

In this paper, we address the substantial computational overhead associated with learning global depen-
dencies. We propose CascadedGaze Network (or CGNet), a fully convolutional encoder-decoder based
restoration architecture, which uses Global Context Extractor (GCE) module to effectively capture the
global context without relying on a self-attention mechanism, thus achieving both state-of-the-art perfor-
mance and computational efficiency simultaneously in image restoration tasks. The name "CascadedGaze"
reflects the cascading convolutional layers within the GCE. CGNet draws inspiration from recent work, e.g.,
Metaformer , which challenges the prevailing belief that attention-based token mixer mod-
ules are essential for the competence of Transformers. Metaformer demonstrated that these attention-based
modules can be replaced with simpler components while achieving impressive performance.

We empirically demonstrate the efficacy of CGNet and the GCE when applied to image restoration tasks. We
observe competitive performance on a range of benchmark datasets while maintaining a lower computational
complexity and run-time compared to previous methods (Figur. In real image denoising (SIDD dataset),
our method pushes the performance boundary further by surpassing the previous best-reported results. On
synthetic image denoising and single image motion deblurring (GoPro dataset), our method sets a new Pareto
frontier and performs competitively to previous approaches whilst being significantly faster in inference time
and lower on MACs (G). These results emphasize the effectiveness of the proposed approach across various
restoration tasks.

2 Related Work

The problem of image restoration is well-studied in computer vision literature (Fattal, 2007 [HeK & SUNJ|
[2011} [Kopf et al.,2008; [Michaeli & Irani, 2013), with competitions and challenges organized around designing
methods across various restoration domains (Ignatov & Timofte, [2019; [Abdelhamed et all 20195 2020}
. In recent times, learnable neural network based approaches outperform the more traditional
restoration methods [Chen et al. (2022a)); Zhang et al. (2023); |Chen et al.| (2021); |Zamir et al.| (2021)) even
without any prior assumptions on the degradation process. Since these learnable approaches are data-
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driven, the availability of large-scale benchmark datasets allows these methods to estimate the distribution
of degraded images empirically. This gain in performance is afforded by several stacked convolutional layers
that downsample and upsample the feature maps throughout the network. Furthermore, most of these
networks are constructed in U-Net (Ronneberger et all [2015) fashion, where stacked convolutional layers
form a U-shaped architecture with skip-connections providing the necessary signal over a longer range.

Transformers in Restoration Transformers have seen a significant surge in their usage across the suite
of computer vision tasks, including image recognition, segmentation, and object detection (Dosovitskiy et al.,
[2020; Ramachandran et al.| 2019} [Touvron et al.| 2021} [Yuan et al.l 2021} [Liu et al. 2021} |Carion et al.l 2020]);
albeit they were originally designed for natural language tasks (Vaswani et al. 2017). Vision Transformers
decompose images into sequences of patches and learn their relationships, demonstrating remarkable capa-
bilities to handle long-range dependencies and adapt to diverse input content relying solely on self-attention
to learn input and output representations. They have also been applied to low-level vision tasks like super-
resolution, image colorization, denoising, and deraining (Zamir et al. [2022; [Wang et al.| 2022b; Liang et al.|
[2021}; [Tu et al. 2022} |Li et all [2023b} |Zhao et al. 2023|). Unlike high-level tasks, pixel-level challenges
necessitate manipulating individual pixels or small pixel groups in an image to enhance or restore specific
details. Although these architectures can learn long-term dependencies between sequences, the computa-
tional intractability hinders their realization and adoption in resource-constrained applications (Han et al.
[2022} [Lin et al.,[2022)). Specifically, the complexity increases quadratically with an increase in the input size.

Efficient Transformers Recent approaches seek alternative strategies that reduce complexity while en-
suring the generation of high-resolution outputs (Liu et all [2022a} [Hatamizadeh et al., 2023; [Liu et all
[2022¢; Tang et all [2022)). One such approach is locality-constrained self-attention in Swin Transformer de-
sign (Liu et al., 2021). However, since self-attention is applied locally, the context aggregation is restricted
to local neighborhoods. To overcome the locality issue, some methods like CAT (Chen et al., [2022b) try
to address the locality issue by using rectangle-window self-attention which utilizes horizontal and vertical
rectangle-window attention to expand the attention area. A recent work, ART (Zhang et al., [2022), focused
on combining sparse and dense attention, wherein the sparse attention module provides a wider receptive
field and dense attention functions in a more local neighborhood. Low-rank factorization and approximation
methods are two other efficient techniques employed to reduce the computational complexity of self-attention
in Transformers (Wang et al., |2020; [Xiong et al., 2021} [Lu et al,2021; [Ma et al[2021). However, these meth-
ods can lead to loss of information, are sensitive to hyper-parameters, and are potentially task-dependent.

Fully Convolutional Methods in Restoration Prior to the surge of Transformers, restoration methods
utilized convolutional neural networks in their design (Tu et al. 2022; |Zamir et al. 2021; |Zhang et al., 2020b}
|Zamir et al. 2020). HINet (Chen et al) 2021), a multi-stage convolutional method, introduced the half-
instance normalization block for image restoration. This was opposed to the batch normalization given the
high variance between patches of images, and difference in training and testing settings, a normal practice
in low-vision tasks such as restoration. SPAIR (Purohit et all [2021]) designed distortion-guided networks
consisting of two main components: a network to identify the degraded pixels, and a restoration network
to restore the degraded pixels. Building on Restormer’s (Zamir et al. [2022) computational savings by
introducing channel attention instead of spatial attention and prioritizing simplicity in design, NAFNet
proposed a simplified version of channel attention, achieving state-of-the-art performance while
being much more computationally efficient. For a more detailed survey on deep learning based restoration

methods, we refer the reader to the recent survey (Su et al., 2022a)).

3 Methodology

We aim to develop a module capable of efficiently learning local and global information from the input data.
We propose a cascaded fully convolutional module that progressively captures this information. It serves as
a low-cost alternative for the attention mechanism. We further introduce the Range Fuser module in order
to aggregate the learned local and global context. Both of these modules are coupled with the restoration
architecture, which we refer to as CascadedGaze Network (CGNet). In this section, we discuss the overall
architecture of the proposed approach, followed by the two proposed modules, namely (a) Global Context
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(a) CascadedGaze Network (CGNet) (b) CascadedGaze Block (c) Global Context Extractor (d) Range Fuser

Input Output 7 ’_---L---“
key X ey
l 3x3, Head 1x1,
oy 1x1, point-conv.
Fq F, point-conv
» 313, GELU
P S, depth-conv
7 \
1 =
! Encoder Decoder : E— Iy X ey
1 i = TX1
1 S 9
! Residual i g point-conv.
| Encoder [ ot oot | ) §
! ! Té GELU
i 2
1 a
1 | Encoder Decoder | | 2 ! Legend
\ | ki o kixk1, depth-conv,
! 1 1x1, ide=
[ N H point-conv stride=k1 H
\ Encoder Middle Decoder / k2xk2, depth-cony, Tk
e e e e g stride=k2 w
| N —— - a k3xk3, depth-conv, w kykoks
stride=k3
) Element-wise L] _ Global
Addition Local Middle —>

Figure 2(a): (a) Illustration of the overall architecture of CascadedGaze Figure 2(b): GCE module: We visualize

network (CGNet). Each encoder layer comprises Ngx CascadedGaze the depthwise separable convolution lay-

blocks. (b) The CascadedGaze blocks are composed of (c) GCE mod- ers to elucidate the capturing of context

ule and (d) Range Fuser. GCE Module has three depthwise convolutions, at different levels. The spatial range of

followed by pointwise convolutions and GELU. each Convolution is depicted in the in-
put feature block with their correspond-
ing colors.

Extractor (GCE) and (b) Range Fuser. Finally, we go through the details of construction steps to keep the
architectural construction computationally tractable and efficient.

3.1 Overall Pipeline

We adopt the widely acknowledged U-shaped Net architecture, composed of several encoder-decoder blocks,
which has emerged as a standard in image restoration tasks (Elad et all [2023). We follow the supervised
setting wherein the dataset D is realized by pairs of degraded and ground-truth (degradation-free) images
D = {(fO,Io), (fl,Il), ceens (fn,In)} where n is the total number of images, while I;, and I; denote the ith
degraded and ground-truth images respectively.

Consider a degraded input image ITer? *Wx3 where H, and W denote the height, and width respectively
(or spatial dimension of the image) and 3 denotes the number of channels. Input Image is first fed to the
convolutional layer that transforms the image into a feature map Fo € RE*XWXC This feature map then
passes through four encoder-decoder stages. At each encoder stage, the input resolution is halved, and the
number of channels is doubled. The spatial dimension of the feature map is at the lowest in the middle
block. Each encoder block is composed of N,;x CascadedGaze (CG) blocks. Since the U-Net structure is
symmetric, each decoder block operates on input from the previous block and its corresponding encoder
block through a skip connection. In each decoder stage, a pixel shuffling operation progressively restores the
feature map’s original resolution. The output from the last decoder block, F, is then fed through the head
of the network before outputting the restored image Ir € R¥*W*3 We defer the reader to Figure [2al for
visualization of the entire architecture.

3.2 Global Context Extractor (GCE) Module

We draw insights from the work by Metaformer (Yu et al., 2022) and find that it is possible to gain competitive
performance by retaining the core structure of the Transformer but replacing the self-attention mechanism
with a more efficient alternative. We achieve the aforementioned goal by using convolutional layers with
small kernel sizes as the building blocks of our Global Context Extractor (GCE) module to extract and
aggregate features from a large area of the input feature map.
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Each GCE module is composed of up to three convolution layers denoted by I, I3, and I3, respectively. For
every convolution inside the GCE module, we set the stride to be equal to kernel size at each layer resulting
in non-overlapping patches and subsequent reduction in the spatial dimension. The output spatial resolution
of any convolution layer can be derived from ng,; = [%2”_’“ + 1], where p denotes padding, s denotes
stride, and k denotes kernel size. In GCE, we set s = k, and p = 0, and re-write the above formula as

Nout = [n]ic"].

Consider the input feature map Fi € R¥*W*C that is fed to the i-th encoder. Let G;- denote the j-th GCE
module in i-th encoder. At the first convolution layer, [1, has a kernel size of k1, and will aggregate spatial
features from a k; x k; neighborhood of the input feature map. Let the output of I; be denoted by Al°®!
then we can write it formally as follows:

Alocal _ G; [ll}(Fol) e R%X%XC (1)

where kﬂl, and k—mf, and C' denote the spatial dimension of the output feature map. Similarly, the second
convolution layer, lo, with a kernel size of ko, will aggregate information from ko X ko patches of summary
tokens from the previous layer. Each of these summary tokens represents a ky x ki1 area of the original input
feature map, so the output of the second convolution can be described as aggregated information from a
k1ko x k1ko neighborhood of the input feature map. If the kernel size of the last convolution layer, I3 is ks,
we can write a similar formal construction for Il and I3:

Amiddle _ G; [l2](Alocal) c Rﬁx%xc (2)

Aglobal _ Gé [13](Amidd1<;) c Rklxgxk?’ X wrschasis XC 3)

where Alocal - gmiddle 554 Agslobal denote local, middle, and global context, respectively.

Comparison to Self-Attention Self-attention in ViT (Dosovitskiy et al.l [2020]) functions on patches
of images generated by splitting the image into fixed-sized pieces. Each patch, or its linear projection, is
coupled with a 1D positional embedding indicating its position in the sequence. Self-attention then computes
the attention score by attending to each sub-sequence (or patch) within the sequence (or image). In contrast,
each subsequent layer in GCE operates on the patches generated by the layer preceding it. In Eq. [2] Amiddle
operates on the patches generated by the preceding layer, A'°°! Similarly, A8'°P2! operates on the patches
generated by A™iddle qrawing parallels to self-attention.

3.3 Range Fuser

The extracted local and global features have different spatial sizes. To enable proper concatenation, we
employ upsampling with nearest-neighbor interpolation to match the spatial dimensions. This is a non-
learnable layer and hence does not affect the model size. We concatenate the upsampled feature maps
along the channel dimension and obtain features with the original spatial dimensions but with inflated
channels. We recognize the varying importance of channels and draw inspiration from (Chen et al.l 2022a))
by employing Simple Channel Attention (SCA) to re-weight each channel. This approach enables us to
accentuate important channels while suppressing less informative ones, resulting in a more refined and
focused representation of the aggregated features.

We employ a single pointwise convolution to streamline the representation further and reduce the channel
dimension to the input size. This yields a compact, refined input representation that seamlessly incorporates
local and global information. Combining SCA and pointwise convolution ensures that our model retains the
essential details while suppressing noise and improving performance and robustness.

3.4 On Computationally Efficient Construction

To further reduce the computational overhead, we merge similar channels by element-wise summation before
feeding them to GCE. We explore two channel-merging options in this regard.
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Table 1: Scores on Gaussian Image Denoising task. We report PSNR scores along with MACs (G) and
inference time (milliseconds) calculated for an image size of 512 x 512 one a single NVIDIA Tesla v100 PCle
32 GB GPU. Our method is lower in MACs and is faster than previous methods while remaining comparable,
if not better. Notably, our model outperforms Restormer, which has the closest MACs and inference time to
us, across all test datasets except for McMaster. The best results are highlighted in red, while the second
bests are in blue. *We do not highlight ART (Zhang et al., 2022) due to significant differences in MACs.

MAGs | | Inference | CBSD68 Kodak24 McMaster Urban100
Method (@) Time(ms) Martin et al,l 2001| Franzenl 1999! Zhang et aLI 2011| Huang et al.l 2015'
c=15 0=25 0=50|0=15 0=25 0=50|0=15 0=25 0=50|0=15 o0=25 o=50
f SwinlRt 2991 1850 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82
Liang et al,l 2()21|
Restormer . = - .
dm‘ 5022 564 350 34.40 31.79 28.60 35.47 33.04 30.01 35.61 33.34 30.30 35.13 32.96 30.02
T GRI-S 5 975 680 34.36 31.72 28.51 35.32 32.88 29.77 35.32 33.29 30.18 35.24 33.07 30.09
Li et al.l 2()23b|
%
= ART 4220 OOM 34.46 31.84 28.63 35.39 32.95 29.87 35.68 33.41 30.31 35.29 33.14 30.19
Zhang et aLI 2022'
CODE 180 600 34.33 31.69 28.47 35.32 32.88 29.82 35.38 33.11 30.03 - - -
dml 2023 DA DF.D3 21.0 B (13 B DL . ). D9, 2U.US
?(O}i\rie)t 444 215 34.41 31.79 28.60 35.52 33.07 30.06 35.58 33.28 30.22 35.18 32.98 30.07

¢ DynamicMerge: We employ a dynamic channel merging technique by leveraging the token merging
approach introduced by (Bolya et all [2023)) for merging similar tokens within Transformers. This
adaptation relies on a selected similarity metric, such as Mean Absolute Error or correlation, to assess
the channel similarity to facilitate the merging process. The similarity may be calculated among the
channels themselves or the kernel weights of the depthwise convolution layer corresponding to each
channel.

o StaticMerge: As opposed to a dynamic merging strategy, we also explore statically merging based
on a fixed index. We achieve this by merging even channels with odd channels.

We ablate each method and find that static merging of channels (StaticMerge) performs the best in our case.
This is preferable given that there is a constant computational cost to the operation, more discussion on
ablation experiments to follow.

3.5 Comparison to NAF Block
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difference between them lies in the CG block’s Global Context Extractor
(GCE), which utilizes cascading receptive fields for a compact understand-
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Figure 3: CacadedGaze Block
and NAF Block comparison di-
agram.

4 Results

We evaluate CGNet on benchmark datasets for three image restoration
tasks (a) real image denoising, (b) Gaussian image denoising, and (c)
single image motion deblurring. We discuss these restoration tasks, and
datasets, and then describe our experimental setup, hyperparameters, and
training protocol, followed by a summary of the results.
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Noisy Input Restormer / 30.95 / 28.02 CGNet /30.98 / 28.12

Figure 4: Visual results on Gaussian image denoising on Kodak24 dataset. We compare
with Restormer (Zamir et al., [2022), the best method in the literature on the dataset. Our method, CGNet,
restores finer details and pleasing outputs. The corresponding PSNR scores for each image are mentioned
at the top of the figure.

4.1 Datasets

For image denoising, we train our models on both synthetic benchmark datasets (Gaussian image denois-
ing) and the real-world noise dataset (real image denoising). The Smartphone Image Denoising Dataset
(SIDD) (Abdelhamed et al., 2018) is a real-world noise dataset composed of images captured from different
smartphones under various lighting and ISO conditions, inducing a variety of noise levels in the images. The
synthetic benchmark datasets are generated with additive white Gaussian noise on BSD68 (Martin et al.)
2001)), Urban100 (Huang et all [2015), Kodak24 (Franzen| [1999) and McMaster (Zhang et al. [2011). For
image motion deblurring, we employ the GoPro dataset (Nah et al.} 2017) as the training data. The GoPro
dataset contains dynamic motion blurred scenes captured from a consumer-grade camera. In all cases, we
adopt the standard data preprocessing pipeline following (Chen et al., [2021}; 2022a; [Zamir et al., 2022)

4.2 Experimental Setup

CGNet for the denoising and deblurring tasks comprises a sequence of four encoder blocks, one middle block,
followed by a sequence of four decoder blocks, with skip connections between corresponding encoder/decoder
blocks. To reduce computational expenses, we strategically use CGE blocks in the encoder and simple NAF
blocks (Chen et al., 2022a)) in other places which is discussed in detail in the ablation section. Below, we
elaborate on the specifications of each model.

Real Image Denoising The encoder comprises 2, 2, 4, and 6 CascadedGaze blocks, respectively. The
rest of the network is composed of NAF blocks with 10 at the middle layer and 2, 2, 2 and 2 for the four
decoder blocks, respectively. We set the width of the network to 60. The restored image is taken from the
head of the network, which is a convolutional layer applied to the output of the last decoder.

Gaussian Image Denoising. For a fair comparison with previous methods in the literature, we increase
the size of our network — specifically, increasing the number of blocks and the width. The encoder has 4, 4,
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Noisy Input Restormer NAFNet Ours
35.1 35.08 35.12
35.03 35.91 36.24

Figure 5: Denoising results on validation images from SIDD dataset (Abdelhamed et al., [2018). CGNet
(Ours) restores visually pleasing images in a variety of scenes and objects; additionally, the PSNR, scores
quantitatively confirm CGNet’s performance boost in these images.

Table 2: Scores on Image Denoising on SIDD dataset |Abdelhamed et al.| (2018). CGNet achieves state-of-
the-art results on the SIDD dataset while being faster with a lower MACs. The inference time is calculated
on a single NVIDIA Tesla v100 PCle 32 GB GPU, and the MACs is calculated for an image size of 256 x 256.
Note that we do not report inference time for methods scoring much lower PSNR on the task. The best
results are highlighted in red, while the second best in blue.

Smartphone Image Denoising Dataset (SIDD)
Method M?g)s v Ir_;ﬁr:r(‘ifsf PSNR 1 | SSIM 7
dﬁegoﬁ} 588 - 39.17 0.958
5
dﬁ]]m 189.5 - 39.52 0.957
Chenlgljf tlﬁ} 170.7 - 39.99 0.960
(ﬁlﬁgﬁ} 169.5 - 39.96 0.958
Chen e(t:?lr.[‘[m 135.7 390 40.05 0.960
dﬁ%%ﬁ} 141.0 102 40.02 0.960
ﬁ[ﬁmﬁ} 63.6 53 40.30 | 0.962
c(:gg S(;t 62.1 52 40.39 | 0.964

6, and 8 blocks, the middle layer has 10 blocks at each stage, and the decoder has 2, 2, 2, and 4 blocks. We
set the width of the network to 70.

Image Deblurring. The first three encoder blocks have 1 CascadedGaze block each, while the fourth
encoder comprises 2 CascadedGaze blocks followed by 25 NAF blocks. The remaining middle and decoder
blocks also comprise 1 NAFNet block each. We set the width of the network to 62 in this case. For the
deblurring task, We follow the architectural modifications proposed in the work (Liu et al. 2022b). Unlike
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Figure 6: Visual results on Single Image Motion Deblurring on sample images from validation set of GoPro
dataset Nah et al| (2017). CGNet (ours) results are much more closely aligned with the ground truth in
terms of reconstruction, and are sharper.

Table 3: Scores on Singe Image Motion Deblurring on GoPro (Nah et al., [2017)) dataset. Our method scores
the highest PSNR on the task, achieving state-of-the-art results. The best results are highlighted in red,
while the second bests are in blue.

GoPro Motion Deblurring
Method SRN DBGAN SPAIR MPRNet HINet HI-Diff
(Tao et al.][2018) | (Zhang et al.][2020a) | [Purohit et al.|(2021) | (Zamir et al|[2021} | (Chen et al.][2021) | (Chen et al.|[2024)
PSNR 30.26 31.10 32.06 32.66 32.77 33.33
SSIM 0.934 0.942 0.953 0.959 0.959 0.964
Method MAXIM Restormer NAFNet NI\IZIF_II_\IC(;t : DiffIR CGNet
(Zamin t e oz | Emctallpom | ous)
PSNR 32.86 32.92 33.71 33.75 33.20 33.77
SSIM 0.961 0.961 0.967 0.967 0.963 0.968

the single output in the denoising model, we modify the head of the network to accommodate for K multiple
outputs allowing the network to output multiple feasible solutions. We set the value K = 4 for all of
these experiments. Since the models are trained on 256 x 256 patch sizes, testing on larger sizes degrades
performance; therefore, we finetune the model on 384 x 384 patches for 2 more epochs following

2022); additionally, we use TLC as proposed by (Chu et al.l |2022)) for inference on image deblurring task.

Shared Configuration. We train the models in all tasks for 400K iterations, with AdamW as the opti-
mizer (81 = 0.9, 82 = 0.9), and minimize the negative PSNR loss function (i.e., maximize the PSNR). We
use a cosine annealing scheduler that starts with the learning rate of le™2 and decays to le~” throughout
learning. All of our models are implemented in the PyTorch library, trained on 8 NVIDIA Tesla v100 PCle 32
GB GPUs. For inference, we utilize a single GPU. During training for real denoising and motion deblurring
experiments, we set the image patch size to 256 x 256. For Gaussian denoising, we follow (Zamir et al., 2022)’s
progressive training configuration and start with the patch size of 160 and increase it to 192, 256, 320, and
384 during training. The reported results are averaged over three runs. We compute Peak Signal-to-Noise
Ratio (PSNR) metric and Structural Similarity Index (SSIM) in line with the standard evaluation protocol
followed by literature on image restoration (Chen et al.| 2022a; [Purohit et al [2021} |Zamir et al.| 2022)).
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4.3 Results Discussion

Real Image Denoising. We perform experiments on the Smartphone Image Denoising Dataset
(SIDD) (Abdelhamed et al.,[2018) as part of the real-world denoising experiments. Table compares CGNet
with previously published methods in the literature. Our proposed approach archives 0.09 dB gain over the
previous best method NAFNet (Zamir et al., 2022). We provide visual results on sample images from the
SIDD dataset in Figure [bf our method restores results more faithfully and closer to the ground truth.

Gaussian Image Denoising. We present results of CGNet on Gaussian image denoising on four datasets
with three different noise levels (o = 15,25, 50) in Table |1} As the spatial size of images in the test datasets
is larger than 512, the reported MACs (G) values are calculated for an image size of 512 x 512. Our method
is comparable to current state-of-the-art methods, pushing the boundary on a few datasets while being
significantly faster in inference time, and lower on MACs (G). We beat Restormer (Zamir et al.l [2022) in all
datasets except McMaster. Even though we have reported ART (Zhang et al., |2022)), we note that CGNet
is not comparable as ART’s MACs (G) is 10x larger. Also, it is computationally intractable on a limited
budget, given that we observe an Out of Memory (OOM) error when running inference on ART. We present
a few visual results in Figure [4 on the Kodak24 dataset.

Single Image Motion Deblurring. Table (3| lists the results of our approach on single image motion
deblurring task on the GoPro dataset (Nah et al., |2017). Our model gains 0.06 and 0.02 dB in PSNR
compared to NAFNet and NAFNet multi-head methods, showing the effectiveness of our method in different
restoration tasks. Furthermore, visual results on an image from the GoPro dataset are also provided in

Figure [6]

4.4 \Visualizing GCE Module

We visualize the GCE module, mainly looking at how local and global layers learn input context. Figure [7]
plots the activations of A!°¢@! and Asl°bal recall Eq. |I| and Eq. |3] from G? i.e. the first GCE module of
second encoder block. The layer operating on the local context learns structure local to foreground objects
occupying considerable pixel space in the image (for example, the cars), while the global context is much
broader with considerably activated objects present even in the background (for example, trees and sidewalk).
For each image, the local context acts like an edge detector learning low-level features local to the objects.
Notice how objects much further away in the distance are void of sharp edges. On the other hand, the global
context learns higher abstractions of the image than low-level features. Such analysis of neuron activations to
understand context is well explored in interpretability literature, both in language processing (Sajjad et al.|
2022), and vision (Zeiler & Fergus, [2014)).

4.5 Ablation Study

We ablate the proposed CascadedGazeNet to understand what components necessitate efficiency and per-
formance gains. All experiments are conducted on real-image denoising task using a smaller variant of our
model with a singular block at each level of the architecture, and a width of 8. Our smaller models operate
within a computational budget of approximately 0.5 MACs (G), and are trained for a total of 200K iterations
while the remaining settings are the same as those of the main model. In all the cases, the combinations we
adopt for the CascadedGazeNet are in bold.

Channel Merging Method. We employ a merging algorithm before using the GCE module to reduce its
computational overhead further. Asshown in Table[7] our ablation study showed that merging channels based
on a fixed index, referred to as StaticMerge, during both training and inference outperforms dynamically
merging similar channels (referred to as DynamicMerge). The simplicity of the method makes it easier for
the model to learn, as it does not have to adapt to a different combination of channels for each batch of
data.
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Global Context

Local Context

Figure 7: Visualization of the local and global context taken from the outputs of the Global Context Extractor
(GCE) module. Results visualized on images taken from validation set of GoPro dataset 2017).
The local context is adept at learning local structure and features — edges, whereas the global context is
extracting high-level features and shapes.

Kernel Sizes. The choice of kernel sizes significantly impacts the performance of a CNN. In general, it
is better to use smaller kernel sizes at the beginning of the GCE and then use larger kernel sizes for later
convolutional layers. Smaller kernel sizes allow the GCE to extract more detailed information from the
input image. Then, larger kernels at the end of the GCE aggregate these details to capture more global
information. We follow this intuition and ablate two kernel choices for each layer in the GCE module. We
aim to understand whether smaller kernel to larger kernel sizes is better for design or vice-versa. Table
shows our experiments’ results on kernel size choices. Our results show that the best choice is to utilize a
smaller to larger kernel size design, where the initial layer extracts local, while the last layer learns global
context.

Global Context Extractor Module Placement. The GCE module is a resource-intensive component,
and incorporating it extensively throughout the network is impractical. This stems from the trade-off
between performance enhancements and computational costs, necessitating careful equilibrium. Intuitively,
since GCE extracts both local and global information, it is best suited for the encoder part. This helps the
model utilize information to capture fine-grained non-corrupted information. However, we ablate the GCE
placement, cumulatively increasing the GCE blocks throughout the network. The results are summarized in
Table 4l Our experiments back up the idea that placing the GCE module in the encoder blocks yields the
best balance between performance and computational efficiency.

Channel Expansion before GCE. We investigate the effects of channel expansion at the beginning of
the CascadedGaze block using a point-wise convolution operation. Specifically, we try expanding by x2,
keeping it as is, and expanding by x2 while utilizing channel merging (StaticMerge) to reduce the number of
channels by half. In agreement with intuition, we find that expanding the channels by x2, and performing
reduction by channel merging (StaticMerge) works the best while maintaining a balance between the MACs
(G) and PSNR score. The complete analysis is shown in Table

Convolutional Layer Type. The type of convolutional layers used in the GCE module significantly
impacts our model’s size and computational efficiency. Therefore, we ablate the choice by considering three
options: standard convolution, pointwise convolution + depthwise convolution (PW+DW), and depthwise
convolution + pointwise convolution (DW+PW). As shown in Table[6] using depthwise convolution to reduce

11
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Table 5:  Kernel Size Study: Tuple 6: Comparison of different
Comparison of different kernel .onyolutional layers. We mainly ab-
sizes for the GCE module in 1a¢e the order of pointwise (PW)
the architecture. We ablate two ,;,q depthwise convolutions (DW)
combinations to determine the .9 compare these combinations

optimal employment of larger ith the standard convolutional
kernels at the initial and final

Table 4: GCE Block Place Study:
We ablate the placement of GCE
blocks throughout the network. Enc
refers to Encoder blocks, while Mid
refers to Middle blocks, and Dec
refers to Decoder blocks.

layer.
F stages.
GCE L'ocatlon PSNR|MAGCs (G) Params g
Enc|Mid|[Dec (M) i
Convolution A Params
v | x X 39.32 |0.446 0.406 Rornal Borams Type PSNR|MACs (G) (M)
j i é ggg; 8‘322 ggfi Sizes |FSNRIMAGs (G)| () Standard 39.33 |0.480 0.408
d : : PW+DW 32 |0.464 4
v v v 39.33 [0.520 0.848 [5,3,3][39.25 [0.442 0.408 DWiPW 322;2 8426 8482
[3,3,5]]|39.832 |0.446 0.406 - - .

the spatial dimension and then applying the pointwise convolution significantly makes our model smaller
while maintaining competitive performance.

Table 7: Comparison of different channel merging Table 8: Comparison of channel expansion before
passing to GCE module. When channels are re-

methods. DynamicMerge has different strategies, e ) i
whereas StaticMerge is a fixed merging method, as dis- duced to half 3, we use the. StaticMerge technique
cussed before. to achieve the desired reduction.

Expansion Params
Method Strategy PSNR IT'::‘:’(‘;Z) Fa(f;:or Channels| PSNR|MACs (G) (M)
StaticMerge Fixed 39.32 |14.5
Channel Cosine Similarity[39.26 [16 X2 2 x ¢ 39.33 0.507 0.569
DynamicMerge[Kernel Cosine Similarity [39.29 [14.5 X1 C 39.28 |0.401 0.355
Kernel MAB 39.28 145 X 2 (2 x C)/2[39.32 [0.446 0.406

5 Conclusion

We introduced a method to learn the local and global context for image restoration tasks in a computa-
tionally efficient manner. Inspired by the self-attention mechanism in Transformers, we proposed a module
termed Global Context Extractor (GCE), for fully convolutional architectures. We constructed a restoration
architecture, termed CascadedGaze Network (CGNet), utilizing the introduced GCE module and empirically
verified the effectiveness in terms of overall performance and computational tractability. We hope that our
work will spur interest in efficient architecture construction to learn the global context for various low-level
vision tasks.
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Table 9: Generalization experiments on several denoising, and deblurring datasets (synthetic and real-world).
The MACs(G) are computed on an input size of (512 x 512 x 3).

Generalization Experiment(s)
Real-World Denosing Synthetic Blur Real-World Blur
Method | MACs (G) | Params DND GoPro RealBlurR RealBlurJ
(2017b (2017' 12020b 12020b
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Ng)gzNaet 254.37G 115.98M 38.41 0.943 33.71 0.967 36.07 0.954 28.18 0.848
CGNet 248.48G 119.22M 39.41 0.950 33.77 0.968 36.04 0.954 28.28 0.853
(Ours) ) ) (+1.0) dB (40.007) (4+0.06) dB | (40.001) | (=0.03) dB | (—=—) | (+0.1) dB | (40.005)

Table 10: Synthetic Gaussian Denoising dataset experiments, comparing NAFNet, and CGNet (ours) on
four datasets with noise level o = 25. % We trained NAFNet given the lack of open-source official results
from the authors.

Synthetic Gaussian Denoising
CBSD68 Kodak McMaster | Urbanl100

=125 (2001 (1999) (2011 (2015)

NAFNet*
20224 31.75 33.01 33.26 32.83
CGNet 31.79 33.07 33.28 32.98

(Ours) | (+0.04) dB | (+0.06) dB | (+0.02) dB | (+0.15) dB

Appendix

A Generalization Experiments

In this section, we discuss the generalization experiments on denoising and deblurring tasks. We test our
proposed method on four new datasets and compare it with the methods in the literature. More specifically,
we test our image denoising method, trained on SIDD dataset (Abdelhamed et al|2018), on the Darmstadt
Noise Dataset (DND) (Plotz & Roth| [2017)). Further, we test the single image deblurring method, trained
on synthetic blur datasets GoPro (Nah et al] [2017), on another synthetic blur dataset HIDE (Shen et all
, and two real-world blur datasets, RealBlurR and RealBlurJ (Rim et all,[2020)). Our
method is a non-transformer architecture and is comparable in parameters and MACs (G) to the previously
introduced NAFNet (Chen et al.| [2022a)); therefore, we emphasize the comparison with the aforementioned
method. We use the official models trained on SIDD and GoPro, which were published by the authorsﬂ and
only run inference for comparison.

A.1 Synthetic Image Denoising

To compare NAFNet on synthetic Gaussian image denoising task with noise level o = 25, we train the method
since there is no official trained model made available by the authors. We increase the model capacity and
size to match MACs(G) of CGNet for fair comparison. The results, PSNR scores, are reported in Table
our method scores higher on the metric across all four datasets.

A.2 Real Image Denoising

Darmstadt Noise Dataset (DND) (Plotz & Rothl [2017)) consists of 50 pairs of real-noise and its ground-truth
images captured with several different consumer-grade cameras. The reference image is taken with the base
ISO level, while the noisy image is captured with a higher ISO. The dataset is prepared following a series of
processing steps to handle camera shift alignment, exposure time adjustment, and intensity scaling.

Hhttps://github.com/megvii-research/NAFNet,
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CGNet

NAFNet

Figure 8: Visual Results of Real-World Denoising on the DND dataset. The zoomed-in regions are provided
for visualization, while the PSNR, scores are written on top of the restored frames.

It is common practice in image restoration literature to evaluate methods trained on the SIDD dataset on
the DND benchmark test since both are real-world noised datasets, albeit with different capturing devices
(smartphones and consumer-grade cameras, respectively). We compare our proposed CGNet method with
NAFNet given that both are non-Transformer architectures and are comparable in MACs (G). We observe
that our method scores (+1.0)dB higher in PSNR on the task compared to NAFNet in Table |§|7 and the
restored images are artifacts-free and true to the ground-truth, see Figure

A.3 Real-World Image Deblurring

On real-world image deblurring task, we compare both GoPro dataset trained models on two different real-
world blurry datasets: RealBlurR, and RealBlurJ (Rim et all [2020). The datasets are constructed with
an acquisition system designed to capture aligned pairs of blurred and sharp images, followed by post-
processing techniques to construct high-quality ground-truth images. On RealBlurJ, our proposed method
(CGNet) scores higher both on PSNR and SSIM metrics, while is comparable to NAFNet on the Real-
BlurR dataset. In conclusion, we find that CGNet generalizes better than NAFNet on unseen degradation
(denoising, deblurring-both synthetic and real-world).
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Table 11: Comparison on Single Image Motion Deblurring task on the GoPro dataset with recent diffusion-
based restoration models.

Methods DifffR InD HI-Diff | DvSR | DvSR-SA | Swintormer | CGNet
(2023) | (2023) | (2024) | (2022) | (2022) (2024) (Ours)
PSNR 33.20 | 31.49 33.33 31.66 33.23 33.38 33.77
SSIM 0.963 | 0.946 0.964 0.948 0.963 0.965 0.968

B Restoration Problems and Diffusion Models

Diffusion models have revolutionized the generative modeling landscape, and now have started to find their
adoption, although gradual, in the restoration community. In supervised restoration tasks, agreement of the
restored results with the ground truth is of high importance to avoid unwanted artifacts, and hallucinated
details, a problem inherent to naive diffusion models (Chen et al., 2024). However, more recently, diffusion
models have shown competitive performance on several restoration tasks, such as image deblurring, image
in-painting, image super-resolution, and image dehazing (Kawar et al.,[2022} [Wang et al.| [2022a}; [Chung et al.|
[2022} Delbracio & Milanfar} 2023). Generally, diffusion models require several steps (due to their iterative
nature) to produce a high-fidelity output and hence, encounter computational intractability issues. Recent
works on diffusion models for restoration, such as (Xia et al.| |2023} |Chen et al.| [2024; [Whang et al. 2022]),
now consider computational efficiency to be an important design decision of the architecture formalism. We
refer the reader to the recent survey work on diffusion methods for image restoration for

an in-depth literature summary.

In Table [[I} we compare our proposed approach with recent diffusion models based image deblurring ar-
chitectures on the GoPro dataset (Nah et al)|2017). Notably, diffusion models are known to score on the
lower end on distortion metrics such as PSNR, and SSIM due to the prevalence of undesired artifacts in the
restored results, or misaligned generations (Chen et al. 2024} Whang et al [2022).
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