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Abstract
Goodhart’s law is a famous adage in policy-
making that states that “When a measure be-
comes a target, it ceases to be a good measure”.
As machine learning models and the optimisa-
tion capacity to train them grow, growing empir-
ical evidence reinforced the belief in the valid-
ity of this law without however being formalised.
Recently, a few attempts were made to formalise
Goodhart’s law, either by categorising variants of
it, or by looking at how optimising a proxy metric
affects the optimisation of an intended goal. In
this work, we alleviate the simplifying indepen-
dence assumption, made in previous works, and
the assumption on the learning paradigm made
in most of them, to study the effect of the cou-
pling between the proxy metric and the intended
goal on Goodhart’s law. Our results show that
in the case of light tailed goal and light tailed
discrepancy, dependence does not change the na-
ture of Goodhart’s effect. However, in the light
tailed goal and heavy tailed discrepancy case, we
exhibit an example where over-optimisation oc-
curs at a rate inversely proportional to the heavy
tailedness of the discrepancy between the goal
and the metric.

1. Introduction and related work
From Charles Goodhart’s remark in the context of mon-
etary economics (Goodhart, 1975) to its reformulation by
Keith Hoskin (Hoskin, 1996) and its popularisation by
Marylin Strathern(Strathern, 1997), Goodhart’s law re-
mained unformalised. It is only in recent years that a few
attempts were made to transform this “law” from a popular
wisdom to a well defined mathematical concept. Efforts to
formalise Goodhart’s law fall into 3 categories :

1Center for applied Mathematics of Polytechnique (CMAP),
Ecole Polytechnique, Palaiseau, France. Correspondence to:
Adrien Majka <adrien.majka@polytechnique.edu>.

ICML 2025 Workshop on Models of Human Feedback for AI
Alignment

Formalisations on Reinforcement Learning. RL was
naturally a favourite setting to formalise Goodhart-
Strathern’s law as the most notable cases of reward-
hacking in AI appeared in reinforcement learning (RL) set-
tings (Clark & Amodei, 2016; Amodei et al., 2016; Gao
et al., 2022). The first part of (Kwa et al., 2024) shows the
inefficiency of KL divergence to prevent reward hacking
by showing that with heavy-tailed policy reward, a policy
with arbitrarily high proxy reward but low penalty and low
true reward always exists. (Skalse et al., 2022) introduces
a formalisation of reward hacking in the context of policy
learning in RL. It proves several results on the general ex-
istence of reward hacking policy with respect to different
reward function on different sets of policies.

Formalisations on Supervised Learning. (Hennessy &
Goodhart, 2020) intends to give a microfoundation to ML
model to make them robust to the seminal (Lucas, 1976)
critique of classic keynesian models. A regulator tries to
make a prediction in a setting where, at test time, covariate
can be manipulated by an agent to induce a more favorable
decision from the regulator.

Paradigm-Agnostic Formalisations. Two precedent
works by D.Manheim and S.Garrabrant (Manheim, 2023;
Manheim & Garrabrant, 2018) provide interesting insight
on general metrics design, by providing a towering view
on metric potential flaw and set of case separation on
Goodhart’s law respectively, while not fully formalising
the problem. (Zhuang & Hadfield-Menell, 2021) devises
a general framework for AI overoptimisation and draw
results in the case of constrained ressources and partially
specified goal. Their setup is inspired by incomplete
contracting, but its reliance on state-space descriptions
makes it more suitable to reinforcement learning. Previous
works (El-Mhamdi & Hoang, 2024; Kwa et al., 2024)
provide a general formalisation of Goodhart’s law, where
no assumption is made on the learning paradigm and show
nuanced cases where Goodhart’s law holds or not depend-
ing on the relative thickness of the tail of the goal and the
discrepancy. This was however done while assuming the
discrepancy is independent from the goal. In our work,
we follow the same paradigm-agnostic approach, but we



The Strong, weak and benign Goodhart’s law

alleviate the independence assumption.

Our key contributions are the following :

• We alleviate the independence hypothesis of previous
work.

• We conduct a detailed analysis in two cases of depen-
dence which highlight the importance of coupling.

• We propose a formal characterisation of different
Goodhart’s law effect that captures the different
strenght of Goodhart’s law.

Paper structure. The rest of this paper is organised as
follows. In Section 2, we provide our formal setup, in Sec-
tion 3 we first provide a comprehensive overview of our
results, followed by their formal statements and sketches
of proofs (detailed proofs are available in the Appendix), fi-
nally, Section 4 provides concluding remarks and discusses
future work.

2. Model
We follow the same formalisation as in (El-Mhamdi &
Hoang, 2024) and denote by G, M and ξ respectively the
intended goal, the proxy metric being optimised, and the
discrepancy between the goal and the proxy.

Namely, an agent is optimising the function M as a proxy
for G and G = M + ξ. Optimising is modelised in a mech-
anism agnostic way. Indeed, conditioning on M > m with
m → ∞ model optimisation of the proxy metric. A ba-
sic “sanity check” for whether the proxy fails to capture
the goal is to see if M and G remain correlated as we
optimise M . When M and G are not correlated as M is
being optimised, one can suspect that optimising M does
not help make progress in the intended goal G, that is the
weak Goodhart-Strathern case introduced in the formalism
of (El-Mhamdi & Hoang, 2024). When they keep being
correlated, that is the no Goodhart-Strathern case. But
looking at the correlation between G and M , as M is be-
ing optimised, is only a first check, one should focus on the
intended goal’s behaviour. To do so, we also evaluate the
expected value of the goal, as the proxy is being optimised,
i.e., limm→SM

E [G|M > m] where for any random vari-
able X , SX is the support of it and SX = supSX ,
SX = infSX the superior and inferior limits of its sup-
port respectively. When E [G|M > m] decreases as we op-
timise M that is the same strong Goodhart-Strathern case
in (El-Mhamdi & Hoang, 2024). In addition to the weak,
strong and no Goodhart-Strathern, we introduce the benign
Goodhart-Strathern. In the latter, M stops being correlated
with G, but G keeps increasing as we optimise M .

3. Results
We first provide a comprehensive overview of different
cases in Subsection 3.2, before giving our formal results
in Subsection 3.2 and Subsection 3.3 together with proof
sketches, all detailed proofs are available in the Appendix.

3.1. Overview

Precedent work supposed independence between the goal
G and the discrepancy ξ in the equation defining the metric
M = G + ξ. One of the key contributions of our work is
to capture the dependency between the goal G and the dis-
crepancy ξ in a way that enables a comprehensive analysis,
and conduct the analysis in two scenarios :

First scenario (light tailed). The goal G and discrepancy
ξ form a Gaussian random vector (ie they are both light
tailed). Our result extends that of (El-Mhamdi & Hoang,
2024) to the case where the covariance between the goal
G and the discrepancy ξ is not null. When maximising
the metric (i.e conditioning on M > m, with m → ∞),
and provided that we have Var (G) > Var (ξ), we have 3
results :

• The true goal G will also be maximised
(E [G|M > m] →

m→∞
∞), although with a coef-

ficient depending on the covariance.

• Despite the conditional expectation of G going to in-
finity, the correlation between the proxy metric M and
the goal G goes to 0. This is an instance of what we
coin the benign Goodhart’s law (defined intuitively
and formally in Table 1).

• The covariance between the goal G and the discrep-
ancy ξ acts linearly on the correlation between the
goal G and the proxy metric M when close to zero.
When the same covariance is near its limiting value
(ie |Cov (G, ξ) | ∼

√
Var (G)Var (ξ)), the correla-

tion between the goal and the proxy metric can be ar-
bitrarily close to one.

Second scenario (heavy tailed). The goal G is exponen-
tially distributed, and the discrepancy ξ is heavy tailed with
conditional law proportional to exp(G((x/η)

b−1
)xb−2. In

this case we have two results :

• We subsume the findings of El-Mhamdi and Hoang
(El-Mhamdi & Hoang, 2024) that a heavy tail on the
discrepancy makes the conditional expectancy of the
goal G goes to 0 when optimising the proxy metric M ,
demonstrating an instance of the strong Goodhart’s
law.
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Table 1: Qualitative and formal definitions for each of the Goodhart’s law outcomes

Qualitative definition Formal definition

No Goodhart
During optimisation the proxy stays

informative and the goal G goes
to its maximum value

∃m0 ∈ S(M)/∀m > m0,
Corr (G,M |M > m) > 0 and
E [G|M > m] −→

m→SM

SG

Benign
Despite the proxy’s decreasing informativeness,

the goal is maximised

Corr (G,M |M > m) −→
m→S(M)

0

and E [G|M > m] −→
m→S(M)

S(G)

Weak
The expected value of the goal is bounded below

its maximum value during optimisation
∃l ∈ S(G), l < S(G), ∃m0 ∈ S(M)

/∀m > m0,E [G|M > m] < l

Strong
The goal goes to its minimum value
during the optimisation of the proxy E [G|M > m] −→

m→S(M)
S(G)

• A bigger shape parameter for the discrepancy ξ (which
imply lighter tail) will make the goal G goes to 0
quicker. That is, the same conditioning by M > m
will imply a smaller expected value for the goal with
a lighter tail discrepancy.

3.2. Gaussian goal and Gaussian discrepancy

In this section, we study the double light-tailed situation
where both G and ξ are Gaussian. For notation conve-
nience, we represent G and ξ as a Gaussian random vector
as follows. (

G
ξ

)
∼ N (0,Σ)

where Σ =

(
a c
c b

)
is the covariance matrix of the ran-

dom vector composed by G and ξ. Here, Var (G) = a,
Var (ξ) = b and Cov (G, ξ) = c. The first result shows
that in the Gaussian case, as long as the variance of the goal
G dominates the variance of the discrepancy ξ (Var (G) >
Var (ξ)), the goal G goes to infinity while the correlation
between the goal G and the proxy metric M goes to 0. We
call this situation the benign Goodhart’s law, which is a
special case of the “weak Goodhart” case introduced in (El-
Mhamdi & Hoang, 2024). In this case, “benign“ reflects
the fact that while the correlation between the goal and the
proxy is going to zero it does not prevent the goal from
going to infinity.

Lemma 3.1. With (G, ξ) ∼ N (0,Σ), M = G + ξ and
Var (G) > Var (ξ) the optimisation of the proxy metric
also leads to the optimisation of the true goal.

E [G|M > m] ∼
m→∞

a+ c

(a+ b+ 2c)
m.

The full proof of Lemma 3.1 is given in Appendix 5.2, bel-
low we provide a simple proof sketch.

Proof sketch. The proof contains two parts. The first part
computes an equivalent for P (M > m), which is done us-
ing the equivalent for Gaussian tail :∫ ∞

x

e−u2

du =
e−x2

2x

N−1∑
n=0

(−1)n
(2n− 1)!!

2nx2n
+O

(
x−2N−1

exp(x2)

)
.

The second part computes the unormalised expected value
from the formula of its definition, i.e.,

∫
R
exp(−σ2x

2)

∫
t≥µ−xθ

t exp
(
−σ1t

2
)
dtdx.

The coefficient in front of the optimisation threshold m is
most of the time < 1, except if the covariance between
the goal G and the discrepancy ξ is very negative. With
greater positive covariance, the discrepancy ξ will account
for a greater portion of the proxy, thus decreasing the ex-
pected value of the goal G. On the contrary, with negative
covariance between the goal G and ξ, an increase in the
goal value induce a decrease proportional to the covariance
in the discrepancy as we have EG [ξ] = cG

a . This leads
to the goal being actually higher in expectancy with neg-
ative covariance, as for any level of the proxy considered,
it has to compensate for the discrepancy that is negatively
correlated.

We coin the term “benign” to describe the situation as de-
spite the goal G going to infinity, the correlation between
the proxy M and the goal G goes to 0
Theorem 3.1. With (G, ξ) ∼ N (0,Σ), M = G + ξ, the
correlation between the proxy metric M and the goal G
goes to zero in the limit no matter the correlation between
the discrepancy ξ and the goal G.

Corr (G,M |M > m) ∼
m→∞

(a+ c)
√
a+ b+ 2c

m
√
ab− c2

.
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Table 2: Summary of results with respect to the goal G and discrepancy ξ tails in state of the art analyses and in our
analysis.

G
ξ

Heavy tail Light tail

Assuming independence
(El-Mhamdi & Hoang, 2024; Kwa et al., 2024)

Heavy tail
Relevance of the proxy depends

on the relative tail shape
between G and ξ

No Goodhart

Light tail
Weak Goodhart

worsening with tail thickness Benign Goodhart

No assumption
on independance

(This paper)

Heavy tail x x

Light tail
Strong Goodhart,

worsening with tail lightness Benign Goodhart

The full proof of Theorem 3.1 is given in Appendix 5.3,
bellow we provide a simple proof sketch.

Proof sketch. The proof uses the formula for conditional
variance an covariance (taking X ,Y and Z random vari-
ables) :

Var (X|Y ) =E
[
X2
∣∣Y ]+ E [X|Y ]

2
,

Cov (X,Y |Z) =E [XY |Z] + E [X|Z]E [Y |Z] .

For the squared term, a computation of the conditional
leads to a first tractable term, and a second one intractable.
The second intractable term is the Gaussian density inte-
grated over the half space in R2 delimited by θx + y > µ
:

A =
1

σ2

∫
R

∫ +∞

m−xθ

exp(−σ1

2
x2 − σ2

2
t2)dtdx.

A is proportionnal to P (X + Y > m) where X and Y are
independant Gaussian random variables of variance 1

σ1
and

1
σ2

. But we know that the sum of X and Y is a Gaussian
random variable of variance 1

σ1
+ 1

σ2
. As such, an equiva-

lent for the tail of Z := X + Y is also an equivalent for A.
We compute it with the equivalent for Gaussian tail.

The crossed term poses no difficulty. The simple expecta-
tion is calculated as in the proof for G expectation.

Here , we can differentiate two regimes of the covariance
on the correlation equivalent, exemplified in Figure 1 :

• When the covariance coefficient is close to 0, mov-
ing the covariance will move almost linearly the cor-
relation coefficient.

• When the covariance coefficient is close to the limit,
the covariance matrix is almost degenerated and the
point of the Gaussian lie very close to a line. It means
M ≈ const × G. One of the consequence is that
for any quantile we can choose, there exist a Gaussian

coupling such that the correlation is arbitrarily close
to 1 in that quantile.

Figure 1: Coefficient for the correlation equivalent
depending on the value of the covariance

Table 3: Normal goal and discrepancy results summary

c < 0 c > 0
E [G|M > m] + -

Corr (G,M |M > m) - +

The effect of covariance on conditional expectancy of the
goal G and correlation between the proxy metric M and
goal G is contrasted. Table 3 summarizes the covariance ef-
fect, “+” denoting an improvement on the considered quan-
tity while “-” denotes a negative effect.

3.3. Exponential goal and heavy tailed discrepancy

In this section, we consider the case where the goal G is
exponential of parameter 1. The discrepancy is then drawn



The Strong, weak and benign Goodhart’s law

conditionally to the goal G by a truncated at 1 exponential
law of parameter G. This imply that ξ follow a Pareto law
of shape 2 and scale 1. The same variable elevated to the
power of 1/(b− 1) and multiplied by η will be such that it
follow a pareto law of shape b and scale η.

ξ then has the conditionnal density : fξ|G(x) =

G exp(−G((xη )
b−1 − 1))x

b−2

ηb−1 (b− 1)1{x > η}. This case
is an example of strong Goodhart’s law. The optimisation
the goal G tends to 0 while making the discrepancy tend to
infinity.

Lemma 3.2. When G ∼ E(1) and fξ|G(x) =

G exp(−G((xη )
b−1−1))x

b−2

ηb−1 (b−1)1{x > η}, the maximi-
sation of the proxy metric M also leads to the maximisation
of the discrepancy ξ, as

E [ξ|M > m] ∼
m→∞

m
b− 1

b− 2
.

We provides a simple proof sketch below of Lemma 3.2,
the full proof can be found in Appendix 5.15

Proof sketch. The idea of the proof is inspired by Gaussian
tail development. Using the fact that for any polynomial
Q, we have d expQ(x)

dx = Q′(x) exp(Q(x)), this means that
any integral of the form

∫m−η

0
P (x)exp(Q(m,x))dx can

be iteratively integrated by part to obtain as follows.∫ m−η

0

P (x)exp(Q(m,x))dx

=

N∑
n=0

[
fn
Q′(P (g))

Q′(g)
exp(Q(g))

] m
b+1

0︸ ︷︷ ︸
I1

+

(−1)N+1

∫ m/b+1

0

fN+1
Q′ (P )(g) exp(Q(g))dg︸ ︷︷ ︸

I2

,

where we denote fQ′ the operation consisting in dividing
by Q′ and then differentiating, fn

Q′ consisting in applying
fQ′ n times. Using the fact that fN+1

Q′ (P ) is bounded (as
it is a rational fraction with degree < 0) by a quantity de-
creasing to zero with a speed depending on N + 1, I2 is
o(I1) (using the Bachmann–Landau notations to reflect the
fact that I2 is of inferior order to I1). The expected values
are then an application of this equivalent after a some work
on the original integral.

First important thing to notice is that the discrepancy ξ is
actually what’s being optimised for here. The lighter tail of
the goal G makes it much less likely than the discrepancy
ξ to produce extreme realisation. This is true whatever the
shape b of the discrepancy ξ as its tail is proportional to

1/xb, while the tail of the exponential goal G is propor-
tional to exp(−x). This means that, if we know that M has
a very high realisation, it will be much more likely to be
due to a large discrepancy ξ than a high G.

Moreover, as the discrepancy is drawn approximately fol-
lowing an exponential distribution of parameter G (the
goal), this means that high realisation of the discrepancy
ξ are associated with small realisation of the goal G. As
such, the optimisation procedure - by increasing the like-
lihood of higher discrepancy ξ - will also make instances
of very small G much more likely. This leads to following
result.

Lemma 3.3. When G ∼ E(1) and fξ|G(x) =

G exp(−G((xη )
b−1− 1))x

b−2

ηb−1 (b− 1)1{x > η}, the goal is
minimised when the proxy metric is maximised, as

E [G|M > m] ∼
m→∞

ηb−1

mb−1
.

Proof sketch. See sketch of proof of Lemma 2.2 which
relies on the same ideas. The full proof is available in
5.15.

Lemma 3.3 also show that the lighter the tail of the dis-
crepancy is (ie the bigger the shape b of ξ is), the faster the
goal will decrease toward 0. This is because a light tail on
the discrepancy ξ will mean more probability mass near η,
which will be associated with bigger value of the goal G
first. Moreover, Lemma 3.3 means that for any high value
of the discrepancy ξ, it’s realisation will be associated to
a smaller G in expectancy if the discrepancy ξ as a lighter
tail.

The two precedent results shows the importance of the cou-
pling when talking about Goodhart’s law. Indeed, if the
finding here is in line with (El-Mhamdi & Hoang, 2024)
with heavy tailed discrepancy, it brings nuance in the fact
that the coupling here is such that the goal decrease at a
speed which is actually inverse to that of the tail heaviness.

4. Concluding Remarks
Our results show that the dependence structure between the
goal G and the discrepancy ξ can be of prime importance
when optimising with a proxy metric M . Several natural
continuation are possible :

Aggregation of metrics. In real world settings, we have
access to neither the goal nor the discrepancy. However,
we might have access to several proxy metrics M1,M2, . . .
representative of the same overall goal G. Using the multi-
plicity of proxy metrics at disposal might be key to alleviate
Goodhart’s law, notably by devising aggregation rules that
would make an aggregated proxy metrics M̃ more robust
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through aggregation and natural variance reduction. This
would be to our sense key to alleviate alignment problem
in concrete AI implementation.

Access to the proxy metric’s tail. As proxy metric’s tail
seems to determine the presence or absence of Goodhart’s
law, empirical study on their prevalence within real world
applications would be key to assess the importance of
Goodhart’s law. Devising empirically funded categories
of tasks that are subject to heavy tail losses could offer a
needed roadmap for practitioner to avoid reward hacking
or at least be aware of potential risky situations.

Goodhart’s law and evasion attacks. (Hennessy &
Goodhart, 2020) study Goodhart’s law within evasion at-
tack settings1. So far we only considered settings were no
malicious or adversarial player were present. In practical
settings, AI will face adversarial behaviour that must be
anticipated to avoid catastrophic failure. Creating concrete
threat models as well as defense mechanisms represent a
large enough scope for development.

Auditing. Auditing black box models is hard (Godinot
et al., 2024). Peculiarly, developing robust and non-
hackable metrics is of prime interest when auditing ML
models. As such, understanding Goodhart’s law can inform
and strengthen research on auditing ML models.

Theoretical guarantees. Theoretical guarantees on the
possibility of harmful behaviour by the AI prior or at
test time is key to mitigate the global risk of AI (Bengio
et al., 2024). To our sense, the line of research of this pa-
per being by construction devised in a probabilistic setting,
which is a natural way of hedging risk and assessing uncer-
tainty on outputs, is promising. Moreover, it is sufficiently
general not to constrained the scope of results to one type
of algorithm or model.
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5. Appendix
5.1. Normal goal and normal discrepancy :

5.1.1. LEMMAS :

Lemma 5.1.
∫ +∞

m

exp(−x2)dx =
m→∞

exp
(
−m2

)
2m

[
1− 1

m2
+

1

2m4
+ o(m−5)

]
.

Proof. This directly stems from the well known equivalent for the Gaussian tail :

∫ ∞

x

e−u2

du =
e−x2

2x

N−1∑
n=0

(−1)n
(2n− 1)!!

2nx2n
+O(x−2N−1 exp(−x2)).

Applying it for N = 2 yields the lemma

Lemma 5.2. For θ > 0, σ1 > 0 and σ2 > 0 :∫
R
exp

(
− x2

2σ1

)∫
t≥m−xθ

tx exp

(
− t2

2σ2

)
dtdx =

√
2π

2c(b+ c)

b2

(
ab− c2

a+ b+ 2c

)3/2

mα exp

(
− m2

α

2(a+ b+ 2c)

)
.

Proof.

I1 =

∫
R
x exp

(
− x2

2σ1

)∫
t≥m−xθ

t exp

(
− t2

2σ2

)
dtdx

=

∫
R
x exp

(
− x2

2σ1

)[
−σ2 exp

(
− t2

2σ2

)]+∞

m−xθ

dx

= σ2

∫
R
x exp

(
− x2

2σ1

)
exp

(
− [mα − xθ]

2

2σ2

)
dx

= σ2

∫
R
x exp

(
−1

2

(
x2

(
1

σ1
+

θ2

σ2

)
+

m2
α

σ2
− 2

mαx

σ2

))
dx

= σ2 exp

(
−m2

α

2σ2

)∫
R
x exp

(
−1

2

(
x2

(
σ2 + θ2

σ2σ1

)
− 2

mαx

σ2

))
dx

= σ2 exp

(
−m2

α

2σ2

)∫
R
x exp

(
−σ2 + θ2

2σ2σ1

(
x− σ1

σ2 + θ2
mα

)2

+
σ1

(σ2 + θ2)σ2
m2

α

)
dx

= σ2 exp

(
− (σ1 + σ2 + θ2)m2

α

2σ2

)∫
R
x exp

(
σ2 + θ2

2σ2σ1

(
x− σ1

σ2 + θ2
mα

)2
)
dx.

With the change of variable u = x− σ1

σ2+θ2mα,

= σ2 exp

(
− (σ1 + σ2 + θ2)m2

α

2σ2

)∫
R
u exp

(
−σ2 + θ2

2σ2σ1
u2

)
du︸ ︷︷ ︸

=0

+
σ1

σ2 + θ2
mα

∫
R
exp

(
−σ2 + θ2

2σ2σ1
u2

)
du


=

σ2σ1

σ2 + θ2
mα exp

(
− (σ1 + σ2 + θ2)

2σ2σ1
m2

α

)√
2πσ1σ2

σ2 + θ2

=
√
2π

(
σ2σ1

σ2 + θ2

)3/2

mα exp

(
− (σ1 + σ2 + θ2)

2σ2σ1
m2

α

)
.
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Lemma 5.3. For θ > 0, σ1 > 0 and σ2 > 0:

∫
R
exp

(
−σ1

2
x2
)∫

t≥µ−xθ

t2 exp
(
−σ2

2
t2
)
dtdx

=
mα→∞

√
2π√

σ1 + θ2σ2

exp

(
−µ2σ2σ1

2(σ1 + θ2σ2)

)
×
(

µσ1

σ2(σ1 + θ2σ2)
+

(σ2θ
2 + σ1)

σ1σ2
2µ

(
1− (σ2θ

2 + σ1)

µ2σ1σ2
+

3(σ2θ
2 + σ1)

2

µ4σ2
1σ

2
2

+ o(µ−5)

))
.

Proof. First we denote :

I :=

∫
R
exp

(
−σ1

2
x2
)∫

t≥µ−xθ

t2 exp
(
−σ2

2
t2
)
dt︸ ︷︷ ︸

I1

dx.

We integrate by part I1 :

I1 =

∫
t≥µ−xθ

t2 exp
(
−σ2

2
t2
)
dt =

[
− t

σ2
exp(−σ2t

2)

]∞
µ−xθ

+
1

σ2

∫
t≥µ−xθ

exp(
σ2

2
t2)

=
µ− xθ

σ2
exp(

σ2

2
(µ− xθ)2) +

1

σ2

∫
t≥µ−xθ

exp(−σ2

2
t2)dt.

Pluging it into I we get :

I =

∫
R

µ− xθ

σ2
exp(

σ2

2
(µ2 − 2µθx+ θ2x2)− σ1

2
x2)dx︸ ︷︷ ︸

I2

+
1

σ2

∫
R

∫ +∞

µ−xθ

exp(
σ1

2
x2 − σ2

2
t2)dtdx︸ ︷︷ ︸

A

.

I2 gives :

∫
R

µ− xθ

σ2
exp

(
−σ2

2
(µ2 − 2µθx+ θ2x2)− σ1

2
x2
)
dx

=

∫
R

µ− xθ

σ2
exp

(
−µ2σ2

2
+ 2

µσ2

2
θx− (

σ1 + θ2σ2

2
)x2

)
dx

=exp(
−µ2σ2

2
)

∫
R

µ− xθ

σ2
exp

(
−σ1 + θ2σ2

2
(x2 − 2

µσ2

(σ1 + θ2σ2)
θx+

µ2σ2
2θ

2

(σ1 + θ2σ2)2
) +

µ2σ2
2θ

2

2(σ1 + θ2σ2)

)
dx

=exp

−µ2σ2

(
1− σ2θ

2

σ1+θ2σ2

)
2

∫
R

µ− xθ

σ2
exp

(
−σ1 + θ2σ2

2
(x− µσ2θ

(σ1 + θ2σ2)
)2
)
dx

=exp

(
−µ2σ2σ1

2(σ1 + θ2σ2)

)(∫
R

µ

σ2
exp

(
−σ1 + θ2σ2

2
(x− µσ2θ

(σ1 + θ2σ2)
)2
)
dx

−
∫
R

xθ

σ2
exp

(
−σ1 + θ2σ2

2
(x− µσ2θ

(σ1 + θ2σ2)
)2
)
dx

)
.
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Making the change of variable u = x− µσ2θ
(σ1+θ2σ2)

,∫
R

µ

σ2
exp

(
−σ1 + θ2σ2

2
(x− µσ2θ

(σ1 + θ2σ2)
)2
)
dx−

∫
R

xθ

σ2
exp

(
−σ1 + θ2σ2

2
(x− µσ2θ

(σ1 + θ2σ2)
)2
)
dx

=
µ

σ2

∫
R
exp

(
−σ1 + θ2σ2

2
u2

)
dx−

∫
R

(u+ µσ2θ
(σ1+θ2σ2)

)θ

σ2
exp

(
−σ1 + θ2σ2

2
u2

)
dx

=
µ

σ2

√
2π

σ1 + θ2σ2
−
∫
R

uθ

σ2
exp

(
−σ1 + θ2σ2

2
u2

)
dx︸ ︷︷ ︸

=0

− µσ2θ
2

σ2(σ1 + θ2σ2)

∫
R
exp

(
−σ1 + θ2σ2

2
u2

)

=
µ

σ2

√
2π

σ1 + θ2σ2
− µσ2θ

2

σ2(σ1 + θ2σ2)

√
2π

σ1 + θ2σ2
.

It yields for I2 :

exp

(
−µ2σ2σ1

2(σ1 + θ2σ2)

)√
2π

σ1 + θ2σ2

(
µ

σ2
− µσ2θ

2

σ2(σ1 + θ2σ2)

)
=exp

(
−µ2σ2σ1

2(σ1 + θ2σ2)

)√
2π

σ1 + θ2σ2

µσ1

σ2(σ1 + θ2σ2)
.

We want now to approximate :

A =
1

σ2

∫
R

∫ +∞

µ−xθ

exp(−σ1

2
x2 − σ2

2
t2)dtdx.

For A, we can remark that if X ∼ N(0, θ2

σ1
) and Y ∼ N(0, 1

σ2
), with X ⊥⊥ Y we have :

P (X + Y ≥ µ) =

√
σ1σ2

2π |θ|

∫
R

∫ +∞

µ−y

exp
(
−x2 σ1

2θ2
− y2

σ2

2

)
dxdy.

But if we set u = xθ in the preceding integral we get :

1

|θ|σ2

∫
R

∫ +∞

µ−u

exp(− σ1

2θ2
u2 − σ2

2
t2)dtdu =

2π

σ2
√
σ1σ2

P (X + Y ≥ µ) .

But we know that as X and Y are normal and independant, they form a Gaussian vector with diagonal variance matrix. So
we can easily calculate the law of X + Y = Z ∼ N(0, σ2θ

2+σ1

σ1σ2
), so :

2π

σ2
√
σ1σ2

P (X + Y ≥ µ) =
2π

σ2
√
σ1σ2

P (Z ≥ µ) =

√
2π

σ2

√
(σ2θ2 + σ1)

∫ +∞

µ

exp

(
−z2σ1σ2

2(σ2θ2 + σ1)

)
dz.

By setting t = z
√

σ1σ2

2(σ2θ2+σ1)
we have :

1

σ2

√
2π

(σ2θ2 + σ1)

∫ +∞

µ

exp

(
−z2σ1σ2

2(σ2θ2 + σ1)

)
dz

=
mα→∞

1

σ2

2
√
π

√
σ1σ2

∫ +∞

√
σ1σ2

2(σ2θ2+σ1)
µ

exp
(
−t2

)
dt.

Using here the lemma 1 with N = 3

=
µ→∞

1

σ2

√
2π(σ2θ2 + σ1)

σ1σ2µ
exp

(
−µ2σ1σ2

2(σ2θ2 + σ1)

)(
1− (σ2θ

2 + σ1)

µ2σ1σ2
+

2(σ2θ
2 + σ1)

2

µ4σ2
1σ

2
2

+ o(µ−5)

)
,

hence the result.
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Lemma 5.4. For σ1 > 0 and σ2 > 0 :∫
R
exp(−σ2x

2)

∫
t≥µ−xθ

t exp
(
−σ1t

2
)
dtdx =

√
π

2σ1

√
σ2 + σ1θ2

exp

(
−µ2 σ1σ2

σ2 + σ1θ2

)
.

Proof. Setting

L :=

∫
R
exp(−σ2x

2)

∫
t≥µ−xθ

t exp
(
−σ1t

2
)
dtdx,

we have :

L =

∫
R
exp(−σ2x

2)

[
−exp(−σ1t

2)

2σ1

]+∞

µ−xθ

dx

=
1

2σ1

∫
R
exp(−σ2x

2 − σ1(µ− xθ)2)dx

=
1

2σ1

∫
R
exp(−σ2x

2 − σ1µ
2 − σ1x

2θ2 + 2σ1θµx)dx

=
1

2σ1
exp(−σ1µ

2)

∫
R
exp(−x2(σ2 + σ1θ

2) + 2σ1θµx)dx

=
1

2σ1
exp(−σ1µ

2)

∫
R
exp

(
−(σ2 + σ1θ

2)(x2 + 2
σ1θ

σ2 + σ1θ2
µx)

)
dx

=
1

2σ1
exp

(
−µ2(σ1 −

σ2
1θ

2

σ2 + σ1θ2
)

)∫
R
exp

(
−(σ2 + σ1θ

2)(x+
σ1θ

σ2 + σ1θ2
µ)2
)
dx

=
1

2σ1
exp

(
−µ2 σ1σ2

σ2 + σ1θ2

)∫
R
exp

(
−(σ2 + σ1θ

2)(x+
σ1θ

σ2 + σ1θ2
µ)2
)
dx

=

√
π

2σ1

√
σ2 + σ1θ2

exp

(
−µ2 σ1σ2

σ2 + σ1θ2

)
.

5.2. Proof of Lemma 3.1

Lemma 3.1. We set M = G+ ξ where
[
G
ξ

]
∼ N (02,Σ), Σ =

[
a c
c b

]
with a > 0, b > 0 and |c| <

√
ab. Then :

P (M > mα) =
mα→∞

√
a+ b+ 2c√
2πmα

exp

(
−m2

α

2(a+ b+ 2c)

)[
1− a+ b+ 2c

m2
α

+
3(a+ b+ 2c)2

m4
α

+ o(m−5
α )

]
, (1)

E [G|M > mα] =
mα→∞

a+ c

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )), (2)

E [ξ|M > mα] =
mα→∞

(b+ c)

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )), (3)

E [Gξ|M > mα] =
mα→∞

(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α ), (4)

E
[
G2
∣∣M > mα

]
=

mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

+ o(m−3
α ). (5)

Proof. For (1): As
[
G
ξ

]
∼ N (02,Σ), we have M ∼ N(0, a+ b+ 2c) :

P (M ≥ mα) =
mα→∞

1√
2π(a+ b+ 2c)

∫ +∞

mα

exp(
−x2

2(a+ b+ 2c)
)dx.
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With u = x√
2(a+b+2c

:

=
mα→∞

1√
π

∫ +∞

mα√
2(a+b+2c)

exp(−u2)du.

Using here the lemma 1 for N = 3

=
mα→∞

√
a+ b+ 2c√
2πmα

exp

(
−m2

α

2(a+ b+ 2c)

)[
1− a+ b+ 2c

m2
α

+
3(a+ b+ 2c)2

m4
α

+ o(m−5
α )

]
.

For (2):

E [G|G+ ξ ≥ mα] =
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

g exp

(
−δ

2
(bg2 − 2cgx+ ax2)

)
dgdx

=
1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
g+x≥mα

g exp

(
−δb

2
(g − c

b
x)2
)
dgdx,

with t = g − c
bx:

=
1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

(t+
c

b
x) exp

(
−δb

2
t2
)
dtdx.

Splitting it in two :

A1 :=
1

α2π
√
ab− c2

∫
R

∫
t≥m−x(1+ c

b )

t exp

(
−δb

2
t2 − x2

2b

)
dtdx

A2 :=
1

α2π
√
ab− c2

c

b

∫
R

∫
t≥m−x(1+ c

b )

x exp

(
−δb

2
t2 − x2

2b

)
dtdx.

We can use here Lemma 5.4 two times, which gives :

αA1 =

√
2π(ab− c2)3/2

b
√
a+ b+ 2c

.

And with normalisation :

A1 =
mα→+∞

(ab− c2)mα

b(a+ b+ 2c)
(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )).

In the same way :

αA2 =
(b+ c)c

b
√
2π(b+ 2c+ a)

exp

(
−m2

α

1

2(a+ b+ 2c)

)
.

And after normalisation:

A2 =
mα→∞

(b+ c)c

b(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )),

hence the result.
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For (3):

E [ξ|G+ ξ ≥ mα] =
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

x exp

(
−δ

2
(bg2 − 2cgx+ ax2)

)
dgdx

=
1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
g+x≥mα

x exp

(
−δb

2
(g − c

b
x)2
)
.

With t = g − c
b :

=
1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

x exp

(
−δb

2
t2
)
dtdx

=
b

c
A2.

So :

E [ξ|G+ ξ ≥ mα] =
mα→∞

(b+ c)

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )).

For (4):

Eα [Gξ] =
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

gx exp

(
−δ

2
(bg2 − 2cgx+ ax2)

)
dgdx

=
1

α2π
√
ab− c2

∫
R
x exp

(
−x2

2b

)∫
g+x≥mα

g exp

(
−δb

2
(g − c

b
x)2
)
dgdx.

With t = g − c
bx :

Eα [Gξ] =
1

α2π
√
ab− c2

∫
R
x exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

(t+
c

b
x) exp

(
−δb

2
t2
)
dtdx.

We can divide it in two : ∫
R
x exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

t exp

(
−δb

2
t2
)
dtdx,

c

b

∫
R
x2 exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

exp

(
−δb

2
t2
)
dtdx.

With application of Lemma 5.3 for the first integral and Lemma 5.2 for the second we get :

E [Gξ|M > mα] =
mα→∞

(b+ c)(ab− c2)

b(a+ b+ 2c)2

(
m2

α + (a+ b+ 2c)− 2(a+ b+ 2c)2

m2
α

+ o(m−5
α )

)
+

c(b+ c)2m2
α

b(a+ b+ 2c)2
+

c(b+ c)2

b(a+ b+ 2c)
− 2

c(b+ c)2

bm2
α

+ c+ o(m−3
α )

=
mα→∞

(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α ).

For (5) :
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Eα

[
G2
]
=

1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

g2 exp

(
−δ

2
(bg2 − 2cgx+ ax2)

)
dgdx

=
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

g2 exp

(
−δ

2

[
b(g2 − 2

c

b
gx) + ax2

])
dgdx

=
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

g2 exp

(
−δ

2

[
b(g2 − 2

c

b
gx+

c2

b2
x2)− c2

b
x2 + ax2]

])
dgdx

=
1

α2π
√
ab− c2

∫
R

∫
g+x≥mα

g2 exp

(
−δb

2
(g − c

b
x)2
)
exp

(
−δ

2

[
ax2 − c2

b
x2

])
dgdx

=
1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
g+x≥mα

g2 exp

(
−δb

2
(g − c

b
x)2
)
dgdx.

We make the following changes of variables in the second integral :

t = g − c

b
x,

which give the bound : t ≥ m− x(1 + c
b )

.

Eα

[
G2
]
=

1

α2π
√
ab− c2

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

(t+
c

b
x)2 exp

(
−δb

2
t2
)
dtdx.

We will treat the precedent integral by decomposing into 3 pieces :

I1 =

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

2
c

b
tx exp

(
−δb

2
t2
)
dtdx,

I2 =

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

x2 c
2

b2
exp

(
−δb

2
t2
)
dtdx,

I3 =

∫
R
exp

(
−x2

2b

)∫
t≥m−x(1+ c

b )

t2 exp

(
−δb

2
t2
)
dtdx.

Using Lemma 5.2 and Lemma 5.3 we obtain :

E
[
G2
∣∣M > mα

]
=

mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

.

Lemma 5.5.

Var (G|M > mα) =
mα→∞

ab− c2

(a+ b+ 2c)
+

(a+ c)2

m2
α

+ o(m−3
α )), (6)

Var (ξ|M > mα) =
mα→∞

ab− c2

(a+ b+ 2c)
+

(b+ c)2

m2
α

+ o(m−3
α )), (7)

Cov (G,M |M > mα) =
mα→∞

(a+ c)(a+ b+ 2c)

m2
α

+ o(m−3
α ). (8)
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Proof. for 7 and 8 we use that for any random variable X and Y

Var (X|Y ) = E
[
X2
∣∣Y ]− E [X|Y ]

2
.

The results then follow thanks to Section 5.2 results.

For (9), it’s only a combination of what we have done precedently

Covα (G,M) =
mα→∞

Eα

[
G2
]
+ Eα [Gξ]− Eα [G]

2 − Eα [G]Eα [ξ]

=
mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

+
(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

− (
a+ c

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )))2

− (b+ c)

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))

× a+ c

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))

=
mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

+
(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

− (a+ c)2

(a+ b+ 2c)2
m2

α(1 +
a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))2

− (b+ c)(a+ c)

(a+ b+ 2c)2
m2

α(1 +
a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))2

=
mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

+
(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

− (a+ c)2

(a+ b+ 2c)2
m2

α(1 + 2
a+ b+ 2c

m2
α

− 3
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))

− (b+ c)(a+ c)

(a+ b+ 2c)2
m2

α(1 + 2
a+ b+ 2c

m2
α

− 3
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))

=
mα→∞

a+ c− (a+ c)2

(a+ b+ 2c)
− (b+ c)(a+ c)

(a+ b+ 2c)
+

(b+ c)(a+ c)

m2
α

+
(a+ c)2

m2
α

+ o(m−3
α )

=
mα→∞

(b+ c)(a+ c)

m2
α

+
(a+ c)2

m2
α

+ o(m−3
α )

=
mα→∞

(a+ c)(a+ b+ 2c)

m2
α

+ o(m−3
α ).
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5.3. Proof of Theorem 3.1

Theorem 3.1. With (G, ξ) ∼ N (0,Σ), M = G + ξ, the correlation between the proxy metric M and the goal G goes to
zero in the limit no matter the correlation between the discrepancy ξ and the goal G.

Corr (G,M |M > m) ∼
m→∞

(a+ c)
√
a+ b+ 2c

m
√
ab− c2

.

Proof. We have :

ρα :=
Covα (M,G)√

Varα (M)Varα (G)
,

and :

Covα (M,G) = Eα

[
G2
]
+ Eα [Gξ]− Eα [G]

2 − Eα [G]Eα [ξ] .

With the Lemma 5.5:

=
mα→∞

(a+ c)2

(a+ b+ 2c)2
m2

α +
(a+ c)2

(a+ b+ 2c)
+ a− 2

(a+ c)2

m2
α

+
(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

− (
a+ c

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )))2

− (b+ c)

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))

× a+ c

(a+ b+ 2c)
mα(1 +

a+ b+ 2c

m2
α

− 2
(a+ b+ 2c)2

m4
α

+ o(m−5
α )),

after simplification :

=
mα→∞

(a+ c)(a+ b+ 2c)

m2
α

+ o(m−3
α ).

Then we have for the denominator :√
Varα (G)Varα (M) =

√
Varα (G)Varα (G+ ξ)

=
√
Varα (G) (Varα (G) + Varα (ξ) + 2Covα (G, ξ)).

For the covariance of ξ and G we can use Section 5.2,

Covα (G, ξ) = Eα [Gξ]− Eα [G]Eα [ξ]

=
mα→+∞

(a+ c)(b+ c)

(a+ b+ 2c)2
m2

α +
(a+ c)(b+ c)

(a+ b+ 2c)
+ c− 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

− (b+ c)(a+ c)

(a+ b+ 2c)2
m2

α(1 + 2
a+ b+ 2c

m2
α

− 3
(a+ b+ 2c)2

m4
α

+ o(m−5
α ))2

=
mα→+∞

c− (a+ c)(b+ c)

(a+ b+ 2c)
+

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

=
mα→+∞

c− (a+ c)(b+ c)

(a+ b+ 2c)
+

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

=
mα→+∞

c2 − ab

(a+ b+ 2c)
+

(a+ c)(b+ c)

m2
α

+ o(m−3
α ).
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Using Lemma 5.5 for the variance, we have :

Varα (G) + Varα (ξ) + 2Covα (G, ξ) =
mα→∞

ab− c2

(a+ b+ 2c)
+

(a+ c)2

m2
α

+
ab− c2

(a+ b+ 2c)
+

(b+ c)2

m2
α

+ 2
c2 − ab

(a+ b+ 2c)
+ 2

(a+ c)(b+ c)

m2
α

+ o(m−3
α )

=
mα→∞

(a+ c)2

m2
α

+
(b+ c)2

m2
α

+ 2
(a+ c)(b+ c)

m2
α

+ o(m−3
α ).

Then :

Varα (G)Varα (M) =
mα→∞

(
ab− c2

(a+ b+ 2c)
+

(a+ c)2

m2
α

+ o(m−3
α ))

)
×
(
(a+ c)2

m2
α

+
(b+ c)2

m2
α

+ 2
(a+ c)(b+ c)

m2
α

+ o(m−3
α )

)
=

mα→∞

ab− c2

a+ b+ 2c

(
(a+ c)2

m2
α

+
(b+ c)2

m2
α

+ 2
(a+ c)(b+ c)

m2
α

+ o(m−3
α )

)
=

mα→∞

ab− c2

a+ b+ 2c

(a+ b+ 2c)2

m2
α

=
mα→∞

(ab− c2)(a+ b+ 2c)

m2
α

+ o(m−3
α ).

Hence :

√
Varα (G)Varα (M) ∼

mα→∞

√
(ab− c2)(a+ b+ 2c)

mα
.

This finally gives :

ρα ∼
mα→+∞

mα√
(ab− c2)(a+ b+ 2c)

(a+ c)(a+ b+ 2c)

m2
α

∼
mα→+∞

(a+ c)
√
a+ b+ 2c

mα

√
ab− c2

.

5.4. Exponential goal and heavy tail discrepancy :

For this case, we set the goal to have an exponential law. The conditional law of the discrepancy knowing the goal is of the
form (for b ∈]1,∞[, η ∈]0,∞[):

pξ′|G(u) = G exp(−G((
u

η
)b−1 − 1))

ub−2

ηb−1
(b− 1)1{}{u > η}.

The discrepancy defined like this follow a power law of shape parameter b and position parameter η.

5.5. Lemmas :

We need the two following lemma that will be useful in near all of our next demonstration :



The Strong, weak and benign Goodhart’s law

Lemma 5.6. Let’s consider Q a polynomial and P a rational polynomial over an interval I with ∀x ∈ I,Q(x) ̸= 0 and,

∃K ∈ R∀x ∈ I, |P (x)| ≤ K. We denote fQ the operation such that fQ(P ) =
∂ P

Q

∂x and for n ∈ N, fn
Q(P ) the same

operation applied n times. We have then :

fn
Q(P ) =

n∑
k=0

(−1)k
∑

i0+...+ik=n−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k

∑
0<n1≤i0+1

...
nk−1<nk<n

k∏
j=1

(nj + j).

Proof. We will proceed by induction. It’s to be noted that for n > max(deg(Q), deg(P )), many of the terms in the sum
will be null, but we still denote them as a derivative of a certain order of Q or P

Pn : ”fn
Q(P ) =

n∑
k=0

(−1)k
∑

i0+...+ik=n−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k

∑
0<n1≤i0+1

...
nk−1<nk<n

k∏
j=1

(nj + j)”.

If n = 1 :

f(P ) =
∂ P

Q

∂x

=
P ′

Q
− PQ′

Q2

= (−1)0
P (1)

Q
+ (−1)1

PQ(1)

Q2
.

We have the first step. Suppose we have n ∈ N such that Pn is true. Let’s prove that Pn+1 is also true.

fn+1(P ) =f(fn(P ))

=

 n∑
k=0

(−1)k
∑

i0+...+ik=n−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

∑
0<n1≤i0+1,...,nk−1<nk≤k+

∑k
j=0 ij

k∏
j=1

(nj + j)


′

by hypothesis

=

n∑
k=0

(−1)k
∑

i0+...+ik=n−k

(
P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

)′ ∑
0<n1≤i0+1,...,nk−1<nk≤k+

∑k
j=0 ij

k∏
j=1

(nj + j).

But we have :(
P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

)′

=
(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))′Q(x)(n+k+1)

Q(x)2(n+k+1)

− (n+ k + 1)Q′Qn+k(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))

Q(x)2(n+k+1)

=
(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))′

Q(x)n+k+1

− (n+ k + 1)Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+2
).

Moreover, focusing on (P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))′:

(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))′ =

k∑
j=0

P (i0)(x)Q(i1+1)(x) . . . Q(ij+2) . . . Q(ik+1)(x).
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So we have :(
P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

)′

=

k∑
j=0

P (i0)(x)Q(i1+1)(x) . . . Q(ij+2) . . . Q(ik+1)(x)

Q(x)n+k+1

− (n+ k + 1)Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+2
).

Which with the entire sum gives :

∑
i0+...+ik=n−k

k∑
j=0

(
P (i0)(x)Q(i1+1)(x) . . . Q(ij+2) . . . Q(ik+1)(x)

Q(x)n+k+1

)

− (n+ k + 1)Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+2

=
∑

i0+...+ik=n+1−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

−
∑

i0+...+ik=n−k

(n+ k + 1)Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+2
.

Plugging the second sum into the whole expression we get :

n∑
k=0

(−1)k+1
∑

i0+...+ik=n−k

Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x))

Q(x)n+k+2

∑
0<n1≤i0+1

...
nk−1<nk<n

(n+ k + 1)

k∏
j=1

(nj + j).

Taking k′ = k + 1 :

=

n+1∑
k′=1

(−1)k
′ ∑
i0+...+ik′−1=n+1−k′

Q′(x)(P (i0)(x)Q(i1+1)(x) . . . Q(ik′−1+1)(x))

Q(x)n+k′+1

∑
0<n1≤i0+1

...
nk′−2<nk′−1<n

(n+ k′)

k′−1∏
j=1

(nj + j).

The first sum being :

n∑
k=0

(−1)k
∑

i0+...+ik=n+1−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

∑
0<n1≤i0+1

...
nk−1<nk<n

k∏
j=1

(nj + j).

The second one exactly complete it to top n+ 1. Indeed, the last terms of the second sum is the terms needed to complete
at the rank n + 1 the formula. Moreover, each term of the second sum complete the first sum for the case when nk = n.
So we have :

n+1∑
k=0

(−1)k
∑

i0+...+ik=n+1−k

P (i0)(x)Q(i1+1)(x) . . . Q(ik+1)(x)

Q(x)n+k+1

∑
0<n1≤i0+1

...
nk−1<nk<n+1

k∏
j=1

(nj + j).
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We need, before going for the second big lemma, to calculate the derivative to any order of Q :

Lemma 5.7. If we denote Q(x) := −g
(

m−g
η

)b−1

with b > 2 and Q(n)(x) the derivative of Q to the n-th order we have :

Q(n)(x) =

n−1∏
i=1

(b− i)+(−1)n
(m− g)(b−n−1)+

ηb−1
(nm− bg)1{b̸=n}b1{b=n}.

Proof. Let’s proceed by induction. The induction hypothesis is that for all n ∈ J2 ; bK the following property is true :

Pn : ”Q(n)(x) = (−1)n
(m− x)(b−n−1)+

ηb−1
(nm− bx)1{b̸=n}b1{b=n}

n−1∏
i=1

(b− i)+”.

We have :

Q′(x) =
(m− x)(b−2)

ηb−1
(bx−m).

For n = 2, n < b :

∂Q′

∂x
(x) = b

(m− g)b−2

ηb−1
− (b− 2)

(m− g)b−3

ηb−1

=
(m− g)b−3

ηb−1
(2bm+ bg − b2g − 2m)

=
(m− g)b−3

ηb−1
(2m− bg)(b− 1).

For n = 2, n = b :

∂Q′

∂x
(x) =

b

ηb−1
.

So the property holds for n = 2.

Now suppose we have some n ∈ N such that the induction hypothesis holds. Then we have for n+ 1, n+ 1 < b :

Q(n+1)(x) = ∂((−1)n
(m− x)b−n−1

ηb−1
(nm− bx)

n−1∏
i=1

(b− i))/∂x,

by induction hypothesis

=(−1)n+1 (m− x)b−n−2

ηb−1
(bm− bx+ (b− n− 1)(nm− bg))

n−1∏
i=1

(b− i)

=(−1)n+1 (m− x)b−n−2

ηb−1
((b− n− 1)nm− (b− n)bx+ bm)

n−1∏
i=1

(b− i)

=(−1)n+1 (m− x)b−n−2

ηb−1
([bn− n2 − n+ b]m− (b− n)bx)

n−1∏
i=1

(b− i)

with (n+ 1)(b− n) = bn− n2 + b− n

=(−1)n+1 (m− x)b−n−2

ηb−1
((n+ 1)m− bg)

n∏
i=1

(b− i).
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If n+ 1 = b :

Q(n+1)(x) = ∂((−1)n
(nm− bx)

ηb−1

n−1∏
i=1

(b− i)+)/∂x

by induction hypothesis

=(−1)n+1

∏n−1
i=0 (b− i)

ηb−1

as b = n+ 1, b− n = 1 :

=(−1)n+1

∏n
i=0(b− i)

ηb−1
.

The part n > b is trivial.

Lemma 5.8. For l, k ∈ N, for any N ∈ N, if we denote Q(g) := −g
(

m−g
η

)b−1

and Pl(g) :=
gl

(m−g)s , we have :∫ m−η

0

gl

(m− g)s
exp(−g

(
m− g

η

)b−1

)dg =
m→∞

N∑
n=0

[
fn
Q′(Pl(g))

Q′(g)
exp(Q(g))

] m
b+1

0

+ o(1/m(N+1)b−l+−1).

Proof. First we have to cut it in half :∫ m−η

0

gl

(m− g)s
exp(−g

(
m− g

η

)b−1

)dg =

∫ m/(b+1)

0

gl

(m− g)s
exp(−g

(
m− g

η

)b−1

)dg︸ ︷︷ ︸
I1

+

∫ m−η

m/(b+1)

gl

(m− g)s
exp(−g

(
m− g

η

)b−1

)dg︸ ︷︷ ︸
I2

.

I2 can be roughly bounded as it will be negligible :∫ m−η

m/(b+1)

gl

(m− g)s
exp(−g

(
m− g

η

)b−1

)dg ≤ (m− η)l+1

ηs
exp(− m

b+ 1
).

For the first one, we note Q(x) = −g
(

m−g
η

)b−1

. The derivative of Q is different from 0 on the whole interval [0, m
b+1 ] as

it is equal to Q′(x) = (m−g)b−2

ηb−1 (bg−m). If we denote Pl(g) =
gl

(m−g)s . With integration by part we recognize the pattern
we studied earlier : ∫ m/(b+1)

0

gl exp(−g

(
m− g

η

)b−1

)dg

=

[
Pl(g)

Q′(g)
exp(Q(g))

] m
b+1

0

−
∫ m/(b+1)

0

∂ P
Q′

∂x
(g) exp(Q(g))dg

=

[
Pl(g)

Q′(g)
exp(Q(g))

] m
b+1

0

−
∫ m/(b+1)

0

fQ′(Pl)(g) exp(Q(g))dg,

iterating N + 1 times we get (with f0 as the identity):

=

N∑
n=0

[
fn
Q′(Pl(g))

Q′(g)
exp(Q(g))

] m
b+1

0︸ ︷︷ ︸
S

+(−1)N+1

∫ m/(b+1)

0

fN+1
Q′ (Pl)(g) exp(Q(g))dg.
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We need to show that
∫m/(b+1)

0
fN+1
Q′ (Pl)(g) exp(Q(g))dg is negligible in front of S. Using Lemma 5.6, we know that

for any n ∈ N :

fn
Q′(Pl)(x) exp(Q(x)) =

n∑
k=0

(−1)k
∑

i0+...+ik=n−k
i0≤l

i1≤b−2

...
ik≤b−2

P (i0)(x)Q(i1+2)(x) . . . Q(ik+2)(x)

Q′(x)n+k

∑
0<n1≤i0+1

...
nk−1<nk<n

k∏
j=1

(nj + j).

Using Lemma 5.7, we have for any i < b

Q(i+2)(x) =

i−1∏
s=1

(b− s)+(−1)i+2 (m− x)b−i−3

ηb−1
((i+ 2)m− bg).

And using Leibniz rule we get for P :

P (i0) =

i0∑
k=0

(
i0
k

) k∏
j=0

(l − j)

n−k∏
i=0

(s− j)gl−k(m− g)−s−i0+k.

We can already bound the derivative of P i0 by the fact that the integration is within [0,m/(b+ 1)] range :

P (i0) ≤
i0∑

k=0

(
i0
k

) k∏
j=0

(l − j)

i0−k∏
i=0

(s− j)ml−s−i0(b+ 1)s+i0−l.

Then for a given set of I = {i0, i1, ..., ik} with ∀j ∈ [0, k], ij > 0 and i0 + i1 + ...+ ik = n− k:

P (i0)(x)Q(i1+2)(x) . . . Q(ik+2)(x)

Q′(x)n+k

≤
i0∑

q=0

(
i0
q

)
(b+ 1)s+i0−ll!s!(b− 1)!k(m− x)kb+i0−n−2k

∏
i∈I((i+ 2)m− bx)

(l − q)!(s− q)!ηk(b−1)(b− i1 − 2)! . . . (b− ik − 2)!
×

ml−s−i0ηn+k(b−1)

(m− x)(n+k)(b−2)(m− bx)n+k
,

using the fact that as x ∈ [0,m/b+ 1] we have (i+2)m−bx
m−bx ≤ (b+ 1)(i+ 1) + 1 ≤ (b+ 1)(n+ 1) + 1 and simplifying :

≤
i0∑

q=0

(
i0
q

)
(b+ 1)s+i0−ll!s!(b− 1)!k((b+ 1)(n+ 1) + 1)k

(l − q)!(s− q)!(b− i1 − 2)! . . . (b− ik − 2)!
× ml−s−i0ηn

(m− x)n(b−1)−i0(m− bx)n

≤
i0∑

q=0

(
i0
q

)
(b+ 1)s+i0−ll!(b− 1)!k((b+ 1)(n+ 1) + 1)k

(l − i0)!(b− i1 − 2)! . . . (b− ik − 2)!
× ηn(b+ 1)nb−i0

mnb−l+sbn(b−1)−i0
.

It’s to be noted that we can extend with no difficulty the bound to the case where one or several of the ij are superior or
equal to b : if it’s strictly superior the bound is trivial as the quantity is 0, and if it’s b we simply have a constant. This allow
us to extend the result to the case where b = 2.

Using the fact that the preceding majoration is for any combination {i0, i1, ..., ik} with ∀j ∈ [0, k], ij > 0 and i0 + i1 +
...+ ik = N + 1− k, we have for a C sufficiently big that does not depend on m:
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m(N+1)b−l+s−1

∣∣∣∣∣
∫ m/(b+1)

0

fN+1
Q′ (Pl)(g) exp(Q(g))dg

∣∣∣∣∣ ≤ C
m(N+1)b−l+s−1

m(N+1)b−l+s
×

∣∣∣∣∣
∫ m/(b+1)

0

exp(Q(g))dg

∣∣∣∣∣
≤ C

1

m
×

∣∣∣∣∣
∫ m/(b+1)

0

exp(−g)dg

∣∣∣∣∣
≤ C

1

m
× (1− exp(−m/(b+ 1)))

→
m→∞

0.

This concludes the proof.

The following lemmas are the building blocks necessary to calculate all the quantities we are interested in after, and are
consequences of Lemma 5.8:

Lemma 5.9. ∫ m−η

0

exp(−g

(
m− g

η

)b−1

)dg =
m→∞

ηb−1

mb−1
+ 2

η2b−2 (b− 1)

m1−2b
+

3η3b−3 (b− 1) (3b− 2)

m3b−1

+ 8
η4b−4 (b− 1) (2b− 1) (4b− 3)

m4b−1
+ o

(
1

m4b−1

)
.

Proof. Use Lemma 5.8 with l = 0, s = 0 and n = 3.

Lemma 5.10.∫ m−η

0

g exp(−g

(
m− g

η

)b−1

)dg =
m→∞

η2b−2

m2b−2
+

6 (b− 1) η3b−3

m3b−2
+

12η4b−4 (b− 1) (4b− 3)

m4b−2
+ o

(
1

m4b−2

)
.

Proof. Use Lemma 5.8 with l = 1, s = 0 and n = 3.

Lemma 5.11. ∫ m−η

0

g2 exp(−g

(
m− g

η

)b−1

)dg =
m→∞

2η3b−3

m3b−3
+

24η4b−4 (b− 1)

m4b−3
+ o

(
1

m4b−3

)
.

Proof. Use Lemma 5.8 with l = 2, s = 0 and n = 3.

Lemma 5.12.∫ m−η

0

ηb−1

(m− u)b−1
exp(−u

(
m− u

η

)b−1

)du =
m→∞

η2b−2

m2b−2
+
3η3b−3 (b− 1)

m3b−2
+
4η4b−4 (b− 1) (4b− 3)

m4b−2
+o

(
1

m4b−2

)
.

Proof. Use Lemma 5.8 with l = 0, s = b− 1 and n = 3.

Lemma 5.13.∫ m−η

0

(
ηb−1

(m− u)b−2

)
exp(−u

(
m− u

η

)b−1

)du =
m→∞

η2b−2

m2b−3
− η3b−3 (4− 3b)

m3b−3
+

4η4b−4 (b− 1) (4b− 5)

m4b−3

+
5η5b−5 (b− 1) (5b− 6) (5b− 4)

m5b−3
+ o

(
1

m5b−3

)
.

Proof. Use Lemma 5.8 with l = 0, s = b− 2 and n = 3.
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Lemma 5.14.∫ m−η

0

(
η2b−2

(m− u)2b−2

)
exp(−u

(
m− u

η

)b−1

) =
m→∞

η3b−3

m3b−3
+

4η4b−4 (b− 1)

m4b−3
+

5η5b−5 (b− 1) (5b− 4)

m5b−3

+
12 (b− 1) (3b− 2) (6b− 5) η6b−6

m6b−3
+ o

(
1

m6b−3

)
.

Proof. Use Lemma 5.8 with l = 0, s = 2b− 2 and n = 3.

Lemma 5.15. If G ∼ E(1) and the conditionnal density of ξ is
pξ|G(x) := G exp(−G((xη )

b−1 − 1))x
b−2

ηb−1 (b− 1)1{x > η}, then we have :

P (G+ ξ > m) =
m→∞

ηb−1

mb−1
+

2η2b−2(b− 1)

m2b−1
+

3η3b−3(b− 1)(3b− 2)

m3b−1
+

8η4b−4(b− 1)(2b− 1)(4b− 3)

m4b−1

+ o

(
1

m1−4b

)
.

Proof.

P (G+ ξ > m) =

∫
R
exp(−g)

∫
R
exp(−g(

(
x

η

)b−1

− 1)xb−2 g

ηb−1
(b− 1)1{x > η, g > 0, g + x > m}dxdg

=

∫ ∞

0

exp(−g)

∫
R
exp(−g(

(
x

η

)b−1

− 1)xb−2 g

ηb−1
(b− 1)1{x > η, x > m− g}dxdg

=

∫ ∞

0

exp(−g)

∫
R
exp(−g(

(
x

η

)b−1

− 1)xb−2 g

ηb−1
(b− 1)1{x > max(η,m− g)}dxdg,

as g > m− η =⇒ η > m− g

=

∫ m−η

0

exp(−g)

∫ ∞

m−g

exp(−g(

(
x

η

)b−1

− 1)xb−2 g

ηb−1
(b− 1)dx︸ ︷︷ ︸

A1

dg + SG(m− η).

The survival function of G gives :

SG(m− η) =

∫ ∞

m−η

exp(−g)

= exp(−m) exp(η)

= o(
1

m2b
).

A1 gives :

A1 =

∫ ∞

m−g

exp(−g

(
x

η

)b−1

xb−2 g

ηb−1
(b− 1)dx =

b>1

[
exp(−g

(
x

η

)b−1

)

]∞
m−g

=
b>1

exp(−g

(
m− g

η

)b−1

).
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So we have :

P (G+ ξ > m) =
m→∞

∫ m−η

0

exp(−g

(
m− g

η

)b−1

)dg + o(
1

m2b
).

Applying Lemma 5.9 then yield the results

5.6. Proof of lemma 3.3 :

Lemma 3.3.

E [G|M > m] =
m→∞

ηb−1

mb−1
+

4η2b−2(b− 1)

m1−2b
+

η3b−3(b− 1)(31b− 22)

m3b−1
−

2(b− 1)(3b− 2)(27b− 23)η4b−4

m4b−1
+ o

(
1

m4b−1

)
,

Proof. Denoting by α := P (G+ ξ > m) :

αE [G|G+ ξ > m] =

∫ m−η

0

exp(−g)g

∫ ∞

m−g

exp(−g(

(
x

η

)b−1

− 1))xb−2 g

ηb−1
(b− 1)dxdg +

∫ ∞

m−η

exp(−g)gdg

=

∫ m−η

0

exp(−g)g

∫ ∞

m−g

exp(−g(

(
x

η

)b−1

− 1)xb−2 g

ηb−1
(b− 1)dxdg +

∫ ∞

m−η

g exp(−g)dg

=

∫ m−η

0

g exp(−g

(
m− g

η

)b−1

)dg︸ ︷︷ ︸
A2

+

∫ ∞

m−η

g exp(−g)dg︸ ︷︷ ︸
A3

.

Focusing first on A3 : ∫ ∞

m−η

g exp(−g)dg = [−g exp(−g)]
∞
m−η +

∫ ∞

m−η

exp(−g)dg

= (m− η) exp(−(m− η)) + exp(−(m− η))

= exp(−m) exp(η)(m− η + 1).

For A2, we can apply lemma 5.10.

We still need an equivalent to normalize :

1

α
=

m→∞

1
ηb−1

mb−1 + 2η2b−2(b−1)
m2b−1 + 3η3b−3(b−1)(3b−2)

m3b−1 + 8η4b−4(b−1)(2b−1)(4b−3)
m4b−1 + o

(
1

m1−4b

)
=

m→∞

mb−1

ηb−1(1 + 2ηb−1m−b (b− 1) + 3η2b−2m−2b (b− 1) (3b− 2) + 8η3b−3m−3b (b− 1) (2b− 1) (4b− 3) + o
(

1
m3b

)
)
,

using the classic development for geometric series :

=
m→∞

mb−1

ηb−1
(1− 2ηb−1(b− 1)

mb
− η2b−2(5b− 2)(b− 1)

m2b
− 4η3b−3(b− 1)(3b− 2)(3b− 1)

m3b
+O

(
1

m4b

)
)

=
m→∞

mb−1

ηb−1
− 2 (b− 1)

m
− ηb−1(b− 1)(5b− 2)

mb+1
− 4η2b−2(b− 1)(3b− 2)(3b− 1)

m2b+1
+O

(
1

m3b+1

)
=: ∆
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As we will use it several time in the future, we denote it by ∆. Multiplying the result of the Lemma 5.10 and this yields
the results.

5.7. Proof of lemma 3.2 :

Lemma 3.2.

E [ξ|M > m] =
m→∞

m
b− 1

b− 2
− 2ηb−1(b− 1)

mb−1(b− 2)
− 8η2b−2(b− 1)2

m2b−1(b− 2)
− 2η3b−3(b− 1)2(31b− 22)

m3b−1(b− 2)
(3)

+ o

(
1

m3b−1

)
,

Proof.

αE [ξ|G+ ξ > m] =

∫ ∞

0

∫
R
exp(−g(

(
x

η

)b−1

)xb−1 g

ηb−1
(b− 1)1{x > max(η,m− g)}dxdg

denoting M(x) := max(0,m− x)

=

∫ ∞

η

xb−1(b− 1)

ηb−1

∫ +∞

M(x)

g exp(−g(

(
x

η

)b−1

)dg︸ ︷︷ ︸
A4

dx.

Calculating first A4 with an integration by part :∫ +∞

M(x)

g exp(−g(

(
x

η

)b−1

)dg =M(x)
(η
x

)b−1

exp(−M(x)

(
x

η

)b−1

) +

∫ +∞

M(x)

ηb−1

xb−1
exp(−g

(
x

η

)b−1

)dg.

Taking it into the full integral :

αE [ξ|G+ ξ > m]

=

∫ ∞

η

(b− 1)M(x) exp(−M(x)

(
x

η

)b−1

) + (b− 1)

∫ +∞

M(x)

exp(−g

(
x

η

)b−1

)dgdx

=

∫ ∞

η

(b− 1)M(x) exp(−M(x)

(
x

η

)b−1

) + (b− 1)
ηb−1

xb−1
exp(−M(x)

(
x

η

)b−1

)dx

=

∫ m

η

(b− 1)(m− x) exp(−(m− x)

(
x

η

)b−1

) + (b− 1)
ηb−1

xb−1
exp(−(m− x)

(
x

η

)b−1

)dx

+

∫ ∞

m

(b− 1)
ηb−1

xb−1
dx

=

∫ m−η

0

(b− 1)u exp(−u

(
m− u

η

)b−1

)du︸ ︷︷ ︸
A5

+

∫ m−η

0

du(b− 1)
ηb−1

(m− u)b−1
exp(−u

(
m− u

η

)b−1

)du︸ ︷︷ ︸
A6

+
(b− 1)ηb−1

(b− 2)mb−2
.

The result of Lemma 5.10 gives an equivalent for A5, Lemma 5.12 gives an equivalent for A6. Summing yields the
expected value not normalised by the probability:

αE [ξ|G+ ξ > m] =
m→∞

η2b−2

m2b−2
+

6η3b−3(b− 1)

m3b−2
+

12η4b−4(b− 1)(4b− 3)

m4b−2
+ o

(
1

m4b−2

)
.
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Mutliplying by ∆ yields the result.


