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Abstract
Multimodal person re-identification (Re-ID) aims
to match pedestrian images across different
modalities. However, most existing methods fo-
cus on limited cross-modal settings and fail to
support arbitrary query-retrieval combinations,
hindering practical deployment. We propose
FlexiReID, a flexible framework that supports
seven retrieval modes across four modalities: rgb,
infrared, sketches, and text. FlexiReID introduces
an adaptive mixture-of-experts (MoE) mechanism
to dynamically integrate diverse modality features
and a cross-modal query fusion module to en-
hance multimodal feature extraction. To facilitate
comprehensive evaluation, we construct CIRS-
PEDES, a unified dataset extending four popular
Re-ID datasets to include all four modalities. Ex-
tensive experiments demonstrate that FlexiReID
achieves state-of-the-art performance and offers
strong generalization in complex scenarios.

1. Introduction
Pedestrian re-identification (ReID) is a critical technology in
computer vision, focused on matching individuals across dif-
ferent camera viewpoints. This capability is essential for var-
ious surveillance and security operations, leading to diverse
applications in fields such as security, urban management,
retail, and law enforcement. ReID tasks are classified into
single-modal ReID and cross-modal ReID. Single-modal
ReID focuses on retrieval between RGB images, depending
on the extraction and matching of visual features. However,
it encounters several challenges in practical applications,
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(a) Existing Methods

(b) Our Method

Figure 1. Illustration of our idea. Existing cross-modal ReID mod-
els primarily address single-modality retrieval, which limits their
practical applicability. In contrast, our method enables flexible
retrieval across seven different modality combinations. The green
boxes match the query.

including variations in lighting, occlusions, differences in
viewpoints, and changes in pedestrian poses, all of which
can compromise recognition accuracy and robustness. In
contrast, cross-modal pedestrian re-identification (ReID)
presents significant advantages. Unlike single-modal ap-
proaches, cross-modal ReID incorporates various modal-
ities, including textual descriptions, infrared images, and
sketches. By leveraging multimodal information, cross-
modal ReID offers complementary features that sustain high
recognition accuracy across diverse environmental condi-
tions, such as lighting variations and nighttime scenarios,
thereby improving the system’s robustness and adaptability.
For example, in low-light or nighttime conditions, infrared
images can provide clearer outlines of pedestrians compared
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to RGB images, while textual descriptions and sketches can
supply additional semantic and structural information when
visual data is incomplete or ambiguous. However, existing
cross-modal ReID, as shown in figure1a , has an inher-
ent limitation: it typically supports retrieval only between
specific pairs of modalities, which restricts its ability to
accommodate various combinations of modalities. In real-
world scenarios, we often receive information from multiple
modalities simultaneously. If retrieval is confined to a single
modality paired with RGB images, the potential of exist-
ing multimodal information remains underutilized. This
raises a critical question: Can we establish a unified cross-
modal person re-identification framework that supports
flexible retrieval across any combination of modalities?

Based on this, we propose the FlexiReID frame-
work, which spans four modalities (Text, Sketch, In-
frared, RGB) and supports seven different combinations
of multimodal retrieval: Text-to-RGB, Sketch-to-RGB,
Infrared-to-RGB, Text+Sketch-to-RGB, Text+Infrared-to-
RGB, Sketch+Infrared-to-RGB, and Text+Sketch+Infrared-
to-RGB, as shown in figure1b. Inspired by CLIP, which is
pre-trained on a large-scale dataset of 400 million image-text
pairs, FlexiReID utilizes a simple dual-encoder architecture
for the extraction of visual and textual features. Notably,
the three visual modalities share a single image encoder. In
order to efficiently extract features of diverse modalities,
we introduce an Adaptive Expert Allocation Mixture of Ex-
perts (AEA-MoE) mechanism. Specifically, our proposed
adaptive routing mechanism dynamically selects a varying
number of expert combinations based on the attributes of the
input features. Compared to the traditional Top-K routing
mechanism, which selects a fixed number of experts, our
approach better leverages the strengths of the multi-expert
system, thereby optimizing the extraction of multi-modal
features. Additionally, we designed a multi-modal feature
fusion module called Cross-Modal Query Fusion (CMQF).
This module accepts multi-modal feature inputs and uses
learnable embedded features to compensate for missing
modalities. Its superior feature fusion capability further en-
hances the flexible retrieval performance of FlexiReID. In
this study, We introduce the concept of flexible retrieval to
the field of person re-identification for the first time, pio-
neering a new research direction. The core idea of flexible
retrieval is to accurately perform person retrieval using the
existing modalities, even in the presence of missing modal-
ities. To achieve this challenging objective, We expanded
the modalities of the of the four datasets (CUHK-PEDES,
ICFG-PEDES, RSTPReid, and SYSU-MM01), construct-
ing a unified dataset named CIRS-PEDES, which encom-
passes four modalities: text, sketches, RGB images, and
infrared images. Experimental results on the CIRS-PEDES
show that the proposed FlexiReID outperforms several other
state-of-the-art methods, demonstrating its flexibility and

effectiveness in complex scenes. Our main contributions are
summarized as follows:

• We introduce the concept of flexible retrieval in the
field of person re-identification for the first time and
propose FlexiReID, which supports flexible retrieval
with arbitrary modality combinations, opening up a
new research direction.

• In FlexiReID, we propose the AEA-MoE mechanism,
which dynamically selects different numbers of experts
based on the input features. Additionally, we design the
CMQF module, which leverages learnable embedding
features to compensate for missing modalities and fuse
different modality features.

• We construct a unified dataset, CIRS-PEDES, which
contains four modalities. Extensive experiments
demonstrate the effectiveness of FlexiReID.

2. Related Work
2.1. Vision-Language Pre-Training Models

Vision-language pre-training models, pre-trained on image-
text corpora, have demonstrated significant potential in
downstream vision and language tasks, such as few-shot
classification(Zhou et al., 2022; Gao et al., 2024; Yu
et al., 2023), cross-modality generation(Nichol et al., 2021;
Ramesh et al., 2022; Patashnik et al., 2021; Niu et al.,
2025b), and visual recognition(Wang et al., 2021). The pre-
training approaches mainly contain the BERT-like masked-
language and masked-region modeling methods(Lu et al.,
2019; Su et al., 2019; Tan & Bansal, 2019; Chen et al., 2020),
contrastive learning for learning a joint embedding space of
vision and language(Radford et al., 2021; Jia et al., 2021;
Li et al., 2021; Zhai et al., 2022a; Niu et al., 2025a), and
vision-language multimodal autoregressive techniques(Cho
et al., 2021; Ramesh et al., 2021). In this paper, we focus on
the contrastive vision-language models (VLMs) that adopt
a dual encoder to encode images and texts into the joint
embedding space and use contrastive learning to align the
visual and textual representations. A representative work is
CLIP(Radford et al., 2021), which aggregates 400 million
image-text pairs from websites. It employs a dual-encoder
architecture consisting of an image encoder and a text en-
coder, and showcases remarkable prompt-based zero-shot
performance across diverse visual classification tasks by
exploiting alignments between text and image features.

2.2. Cross-Modal Person Re-Identification

Person re-identification (ReID) focuses on retrieving all im-
ages of a specific pedestrian across different devices, with an
emphasis on learning distinctive pedestrian features. Based
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on the various modalities used to represent pedestrian infor-
mation, ReID can be divided into single-modal ReID(Chen
et al., 2022c; Ye et al., 2021c) and cross-modal ReID(Chen
et al., 2022a; Ye et al., 2021b; Zhu et al., 2021). Cross-modal
ReID, in particular, addresses unique situations where RGB
images of pedestrians are not readily available. It suggests
utilizing non-RGB modalities(such as infrared images(Chen
et al., 2022b; Yang et al., 2022; Ye et al., 2021a), text descrip-
tions(Ding et al., 2021; Gao et al., 2021; Shao et al., 2022),
and sketches(Chen et al., 2022a; Gui et al., 2020; Yang et al.,
2020)) to represent pedestrian information, thereby broad-
ening the application scope of ReID technology. Li et al.(Li
et al., 2017) first propose to explore the problem of retriev-
ing the target pedestrians with natural language descriptions
for adaptation to real-world circumstances. Shao et al.(Shao
et al., 2022) analyze the granularity differences between
the visual modality and textual modality and propose a
granularity-unified representation learning method for text-
based ReID. Pang et al.(Pang et al., 2018) first propose to
use professional sketches as queries to search for the target
person in the RGB gallery. They design cross-domain ad-
versarial learning methods to mine domain-invariant feature
representations. In order to explore the complementarity
between the sketch modality and the text modality, Zhai et
al.(Zhai et al., 2022b) introduce a multi-modal ReID task
that combines both sketch and text modalities as queries for
retrieval. However, existing methods are limited to retrieval
between specific pairs of modalities and cannot be extended
to support retrieval across various combinations of modali-
ties, which fails to meet the demands of real-world scenar-
ios. To address this limitation, we propose the FlexiReID
framework, which spans four modalities and supports seven
different combinations for multimodal retrieval.

2.3. Mixture-of-Experts

Mixture-of-Experts (MoE) has been extensively explored in
computer vision(Riquelme et al., 2021), natural language
processing(Shazeer et al., 2017), and vision-language pre-
training(Chen et al., 2024). MoE learns a series of expert
networks and a gating network, where the outputs of the
expert networks are weighted by gating scores generated
by the gating network before the weighting operation. In
more recent works, some researchers(Eigen et al., 2013;
Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al.,
2020) use the gating scores as a criterion to sparsely select
only one or a few experts. The sparse activation of experts
enables a significant reduction of the computational cost
when training large-scale models. To further enhance com-
putational efficiency, a TOP-K(Shazeer et al., 2017) sparse
gating mechanism is employed, selecting only a subset of
experts in each layer. This approach enables MoE models to
scale linearly in size while maintaining manageable compu-
tational requirements, depending on the number of experts

included in the weighted averaging. In contrast to the tra-
ditional Top-K mechanism, the Adaptive Expert Activation
(AEA-MOE) mechanism proposed in this paper employs
an adaptive routing algorithm that dynamically adjusts the
number of activated experts based on the complexity of the
input data, thereby enabling more efficient utilization of
computational resources.

3. Proposed Method
3.1. Framework

The overall framework is illustrated in figure2. The frame-
work contains four types of modal data: Irgb, Is, Iir, and
T , corresponding to RGB, sketch, infrared, and text, respec-
tively. We employ CLIP (ViT-B/16) as the backbone of our
network. Specifically, the Image encoder is used to extract
features from the three image modalities, while the Text
encoder is used to extract features from the text modality.

For the Image encoder, the image is first divided into N
patches, which are then mapped into embedding vectors
through linear projection, with positional information added
to enhance spatial awareness. Subsequently, a [CLS] token
is introduced at the beginning of the embedding vectors
to represent the global features of the image. These N+1
tokens are then fed into a series of transformer blocks. In
order to efficiently extract features of diverse modalities,
the Adaptive Expert Allocation Mixture of Experts(AEA-
MOE) mechanism is introduced. After processing through
the multi-head attention mechanism, an adaptive routing
algorithm is employed to dynamically select the experts to
be activated based on the confidence level of each expert.
Unlike the traditional Top-K routing mechanism that selects
a fixed number of experts, the adaptive routing algorithm can
dynamically adjust the number of activated experts based
on the input feature attributes. Additionally, to ensure that
the adaptive routing algorithm selects the smallest necessary
set of experts, an adaptive loss is introduced.

For the Text encoder, the text description T is tokenized
using a simple tokenizer with a vocabulary of 49,152 words,
converting it into embedding vectors e. A [BOS] token is
added at the beginning of the sequence as a start token, and
an [EOS] token is added at the end as an end token. Thus,
the entire sequence can be represented as {ebos, e1, ..., eeos},
and is fed into the transformer blocks. The subsequent
processing is similar to that of the Image encoder and will
not be repeated here.

The final image feature representations are denoted as
{v∗cls, v∗1 , ..., v∗M}, and the text feature representations are
denoted as {tbos, t1, ..., teos}, where * is used to indicate
the three modalities within the image domain. Here, v∗cls
represents the global features of the image, and teos rep-
resents the global features of the text. Since FlexiReID
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Figure 2. The network architecture of the proposed FlexiReID. All visual modalities share a single visual encoder. The incorporation
of AEA-MOE facilitates the efficient processing of heterogeneous modality data. CMQF is employed to seamlessly integrate diverse
modality features, while learnable embedding features are utilized to compensate for any missing modalities.

supports seven retrieval strategies across four modalities,
we propose a feature fusion module Cross-Modal Query
Fusion(CMQF), which accepts multi-modal feature input,
complements the missing modalities with learnable embed-
ding features, and finally outputs seven fused features de-
noted as {fs, fir, ft, fs ir, fs t, fir t, fs ir t}. These seven
fused features and visual representation vrgbcls are fnally in-
teracted and calculated by Similarity Distribution Matching
(SDM) which is an effective matching loss function across
different modalities.

To reduce the number of parameters during model train-
ing, we freeze the Patch Embedding, Word Embedding,
and Multi-Head Attention components of the pre-trained
model, and only train the Adaptive Expert Allocation Mix-
ture of Experts(AEA-MOE), learnable embedding features
and Cross-Modal Query Fusion(CMQF) modules.

3.2. Adaptive Expert Allocation Mixture of Experts
(AEA-MOE)

In order to enhance the multimodal feature extraction capa-
bility of the model, we introduced the AEA-MOE mecha-
nism. The traditional MOE based on Top-K routing calcu-
lates the confidence for each expert and activates the top K
experts in confidence ranking. We argue that the activation
strategy overlooks the diverse characteristics inherent in the
input features. Different input features require the activa-
tion of different numbers of experts, and a fixed number of
experts cannot meet the needs of extracting features from

different modalities. Therefore, we propose an adaptive
routing mechanism that dynamically selects the number of
activated experts to extract features from different modali-
ties. Specifically, we introduce a threshold confidence level.
After the routing mechanism calculates the confidence level
for each expert, it first compares the highest expert confi-
dence level with the threshold. If the highest confidence
level exceeds the threshold, only the corresponding expert
is activated for feature extraction, and no additional experts
are involved. If the highest confidence level does not exceed
the threshold, experts are activated in descending order of
confidence until the threshold is surpassed. This set of ex-
perts is then used for feature extraction. The data processing
procedure of AEA-MOE can be formally represented as
follows:

P = Softmax(Wr · xT ) (1)

gi(x) =

{
Pi, Adapteri ∈ S

0, Adapteri /∈ S
(2)

y =

n∑
i=1

gi(x)Adapteri(x) (3)

where Wr represents the weights of the gating network
within the routing mechanism, and P is a vector of size
n, where Pi denotes the probability of selecting the i−th
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Figure 3. Traditional Top-K-based routing mechanisms are limited
to selecting a fixed number of experts. In contrast, our proposed
adaptive routing mechanism introduces a threshold confidence
level, allowing the number of selected experts to be dynamically
adjusted based on the input data.

expert as computed by the gating network.S is the minimal
set of experts whose confidence levels exceed the threshold.
gi(x) indicates the probability of selecting the i−th expert
as determined by the adaptive routing mechanism. Equation
(3) illustrates the weighted summation process of experts
and routing weights. The structure of the Adapter, inspired
by (Chen et al., 2022d), consists of a down-sampling layer,
an intermediate activation layer, and an up-sampling layer.

To prevent the model from assigning small weights to each
expert, resulting in the need to activate a large number of
experts to exceed the threshold confidence level, which con-
tradicts the principle of MOE to enhance computational
efficiency and performance by activating only a few experts.
We propose an adaptive loss to constrain the distribution of
the probability P calculated by the gating function. We in-
troduce the concept of entropy for adaptive loss calculation,
formally expressed as follows:

Lada = −
n∑

i=1

Pilog(Pi) (4)

the adaptive loss ensures that the minimum necessary set
of experts is activated, thereby enhancing computational
efficiency. Simultaneously, it guarantees that the sum of the
confidences of the activated experts exceeds the threshold
confidence, and the activated experts can effectively extract
features.

3.3. Cross-Modal Query Fusion (CMQF)

To effectively extract multimodal features and achieve flex-
ible retrieval with various modality combinations, we pro-
pose the CMQF module. The features of the combined
modalities are input into the CMQF module, and learnable
embedded features are used to compensate for any missing
modalities. Specifically, the features of each modality are
input into their respective transformer blocks, where the
query features are the sum of the query features from the
other two modalities. Formally, this can be represented as:

ys = TL s((Xir +Xt)WQ, XsWK , XsWV )

yir = TL ir((Xs +Xt)WQ, XirWK , XirWV )

yt = TL t((Xs +Xir)WQ, XtWK , XtWV ) (5)

Where X represents the input modality features, and W
denotes the weight parameters used to generate the Query,
Key, and Value. TL stands for the transformer block. Sub-
sequently, all output features are concatenated and fed into
a shared transformer block (TL fu). Finally, the fused fea-
tures are obtained through a mean pooling operation. This
process can be formally represented as follows:

y = Concat(ys, yir, yt)

f = MeanPool(TL fu(yWQ, yWK , yWV )) (6)

After processing through the CMQF, we ob-
tain seven types of modality-fused features:
{fs, fir, ft, fs ir, fs t, fir t, fs ir t}. These features
correspond to the following modalities: sketch, infrared,
text, sketch fused with infrared, sketch fused with text,
infrared fused with text, and the fusion of sketch, infrared
and text features.

Figure 4. Our proposed CMQF Module.

3.4. Optimization and Inference

During the training phase, we utilize a parameter-free
loss function called Similarity Distribution Matching
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(SDM)(Jiang & Ye, 2023). Jiang and Ye incorporate the
cosine similarity distributions of the N × N embeddings
for image-text pairs into the KL divergence to establish a
connection between the two modalities. This is formally
represented as:

Li2t = KL(pi||qi) =
1

N

N∑
i=1

N∑
j=1

pi,j log(
pi,j

qi,j + ϵ
) (7)

Lsdm = Li2t + Lt2i (8)

where pi,j is the probability denoting the similarity between
image-text pairs and qi,j is the true matching probability.
Lsdm is the bi-directional SDM loss.

Our model supports seven retrieval methods, each of which
employs the SDM loss for its loss calculation. Therefore,
the total loss is the aggregate of the SDM losses across all
seven retrieval methods. Formally, this is expressed as:

Lsum
sdm =

7∑
i=1

Li
sdm (9)

where Li
sdm denotes the SDM loss for the i-th retrieval

method. Our framework is trained end-to-end, and the over-
all optimization objective is formally defined as:

L = Lsum
sdm + λLada (10)

During inference, the trained network processes combina-
tions of various modalities, assigning learnable Embedding
Features to any missing modalities. It subsequently extracts
integrated features across these modalities and computes
their similarity with the RGB image embeddings. The Top-
K candidates are then processed to derive the relevant evalu-
ation metrics for each query.

4. Experiments
4.1. Experimental Setup

Datasets. In this study, we introduced four datasets: CUHK-
PEDES, ICFG-PEDS, RSTPReid, and SYSU-MM01. To
support the flexible retrieval capabilities of FlexiReid, which
accommodates four modalities of pedestrian data, we ex-
panded the modalities of these datasets. For the CUHK-
PEDES, ICFG-PEDS, and RSTPReid datasets, which origi-
nally contain RGB images and textual descriptions, we em-
ployed StyleGAN3(Karras et al., 2021) to generate sketch
modalities. This involved preprocessing each RGB image
and using a pre-trained StyleGAN3 model to convert it into
a sketch, preserving the primary contours and structural
information of the original image. Concurrently, we used
InfraGAN(Özkanoğlu & Ozer, 2022) to generate infrared

image modalities. This was achieved by training the model
on pairs of visible light and corresponding infrared images,
and then applying the trained model to each RGB image
to produce infrared images that capture thermal radiation
information. For the SYSU-MM01 dataset, which originally
contains RGB and infrared images, we similarly used Style-
GAN3(Karras et al., 2021) to generate sketch modalities and
employed the GPT-4 model to generate textual descriptions.
This involved extracting features from each RGB image and
generating corresponding textual descriptions that capture
the main content and characteristics of the images. By incor-
porating these additional modalities, our expanded datasets
better simulate real-world multimodal data scenarios, pro-
viding richer and more diverse data support for the training
of the FlexiReid model. An overview of training and test
set partitioning for each dataset can be found in the existing
work(Ding et al., 2021; Zhu et al., 2021; Wu et al., 2020).

Evaluation Protocols. Following existing cross-modality
ReID settings(Chen et al., 2022a; Ye et al., 2021b;c), we
use the Rank-k matching accuracy, mean Average Preci-
sion (mAP), and mean Inverse Negative Penalty (mINP)(Ye
et al., 2021c) metrics for performance evaluation in our
FlexiReID.

Implementation Details. We employ the Vision Trans-
former(Dosovitskiy, 2020) as the visual modalities feature
learning backbone, and the Transformer model(Vaswani,
2017) as the textual modality feature learning backbone.
Both backbones have pre-trained parameters derived from
CLIP(Radford et al., 2021). During the training process, all
parameters of the backbone networks are frozen. In a batch,
we randomly select 64 identities, each containing a sketch,
an infrared, a text, and an RGB sample. The image is resized
to 384 × 128, and the length of textual token sequence is
77. We train our FlexiReID model with the Adam optimizer
for 60 epochs. And the initial learning rate is computed
as 1e-5 and decayed by a cosine schedule. The threshold
confidence level is set to 0.6, and the number of experts is 6.
The hyperparameter λ that indicates the adaptive loss is set
to 0.5. We perform experiments on a single NVIDIA 3090
24GB GPU.

4.2. Performance Comparison

Results on CUHK-PEDES, ICFG-PEDES and RST-
PReid In our experiments, we evaluated the model’s perfor-
mance across seven different test tasks: T → R, S → R,
IR → R, T + S → R, T + IR → R, S + IR → R, and
T + S + IR → R The results, as shown in table 1, demon-
strate the model’s performance on the CHUK-PEDES,
ICFG-PEDES, and RSTPReid datasets. In the T → R
task, our model achieved a Rank-K accuracy of 69.20% at
R@1, 86.43% at R@5, and 91.41% at R@10 on the CHUK-
PEDES dataset. On the ICFG-PEDES dataset, the model
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Table 1. Comparison with the state-of-the-arts on CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets. Rank (R) at k accuracy (%) is
reported. The best results are bold.

Tasks Methods Venue CUHK-PEDES ICFG-PEDES RSTPReid
R1 R5 R10 mAP mINP R1 R5 R10 mAP mINP R1 R5 R10 mAP mINP

T→R

CMPM/C(Zhang & Lu, 2018) ECCV18 49.37 71.69 79.27 - - 43.51 65.44 74.26 - - - - - - -
MIA(Niu et al., 2020) TIP20 - - - - - 46.49 67.14 75.18 - - - - - - -

ViTAA(Wang et al., 2020) ECCV20 55.97 75.84 83.52 - - 50.98 68.79 75.78 - - - - - - -
NAFS(Gao et al., 2021) arXiv21 59.36 79.13 86.00 54.07 - - - - - - - - - - -
DSSL(Zhu et al., 2021) MM21 59.98 80.41 87.56 - - - - - - - 32.43 55.08 63.19 - -

SSAN(Ding et al., 2021) arXiv21 61.37 80.15 86.73 - - 54.23 72.63 79.53 - - 43.50 67.80 77.15 - -
Han et al.(Han et al., 2021) BMVC21 64.08 81.73 88.19 60.08 - - - - - - - - - - -

LBUL+BERT(Wang et al., 2022b) MM22 64.04 82.66 87.22 - - - - - - - 45.55 68.20 77.85 - -
SAF(Li et al., 2022) ICASSP22 64.13 82.62 88.40 58.61 - 54.86 72.13 79.13 32.76 - 44.05 67.30 76.25 36.81 -

TIPCB(Chen et al., 2022e) Neuro22 64.26 83.19 89.10 - - 54.96 74.72 81.89 - - - - - - -
CAIBC(Wang et al., 2022a) MM22 64.43 82.87 87.35 - - - - - - - 47.35 69.55 79.00 - -

AXM-Net(Farooq et al., 2022) MM22 64.44 80.52 86.77 58.73 - - - - - - - - - - -
LGUR(Shao et al., 2022) MM22 65.25 83.12 89.00 - - 59.02 75.32 81.56 - - - - - - -

IVT(Shu et al., 2022) ECCV22 65.59 83.11 89.21 - - 56.04 73.60 80.22 - - 46.70 70.00 78.80 - -
UNIReID(Chen et al., 2023a) CVPR23 68.71 85.35 90.84 - - 61.28 77.40 83.16 - - 60.25 79.85 87.10 - -

CFine(Yan et al., 2023) TIP23 69.57 85.93 91.15 - - 60.83 76.55 82.42 - - 50.55 72.50 81.60 - -
CSKT(Liu et al., 2024b) ICASSP24 69.70 86.92 91.80 62.74 - 58.90 77.31 83.56 33.87 - 57.75 81.30 88.35 46.43 -

FlexiReID(Ours) - 69.20 86.43 91.41 62.47 48.32 61.34 78.41 83.92 35.73 7.53 55.79 79.62 86.48 45.37 26.25

S→R

Sketch Trans+(Chen et al., 2023b) PAMI23 81.39 90.61 93.54 73.72 64.72 74.83 86.75 91.52 38.64 5.68 61.37 80.15 88.29 48.94 25.73
DALNet(Liu et al., 2024a) AAAI2024 83.03 92.39 94.58 75.39 66.82 77.28 87.84 92.61 40.35 6.18 64.68 83.27 89.06 51.08 27.13

UNIReID(Chen et al., 2023a) CVPR23 84.87 - - 78.85 68.55 77.47 - - 40.41 6.31 65.80 - - 51.22 27.47
FlexiReID(Ours) - 84.92 93.17 95.02 79.21 68.83 79.28 89.69 93.37 41.21 6.85 66.79 84.52 90.39 52.72 28.36

T+S→R UNIReID(Chen et al., 2023a) CVPR23 86.29 - - 80.92 71.30 82.17 - - 47.00 8.74 73.20 - - 58.72 34.61
FlexiReID(Ours) - 87.47 94.51 96.14 82.43 72.96 83.82 93.49 95.63 47.81 9.03 76.10 89.74 94.31 64.73 41.24

IR→R
GUR(Yang et al., 2023) ICCV23 82.06 91.72 93.95 75.84 66.86 80.31 90.89 92.78 44.36 6.90 73.42 86.29 91.35 60.43 38.52
SDCL(Yang et al., 2024) CVPR24 84.57 92.73 94.58 77.32 68.20 81.36 91.83 94.07 45.81 7.92 74.67 87.94 93.16 62.75 39.93

FlexiReID(Ours) - 85.26 93.25 95.31 79.43 69.39 82.03 92.19 94.27 46.76 8.47 75.36 88.71 93.27 63.22 40.82
T+IR→R FlexiReID(Ours) - 86.23 94.07 96.52 81.49 70.96 82.42 92.56 95.08 47.35 8.75 75.84 89.28 94.11 63.90 40.98
S+IR→R FlexiReID(Ours) - 85.97 93.52 95.89 81.02 69.68 82.57 92.74 95.28 47.43 8.93 75.94 89.47 94.23 64.59 41.18

T+S+IR→R FlexiReID(Ours) - 88.23 95.13 96.75 82.63 73.05 84.26 93.78 96.15 48.09 9.42 76.35 90.26 95.08 65.19 42.29

recorded a Rank-K accuracy of 61.34% at R@1, 78.41% at
R@5, and 83.92% at R@10. For the RSTPReid dataset, the
Rank-K accuracy was 55.79% at R@1, 79.62% at R@5, and
86.48% at R@10. Notably, the model achieved state-of-the-
art (SOTA) performance on the ICFG-PEDES dataset and
demonstrated performance close to SOTA on the CHUK-
PEDES and RSTPReid datasets. These results underscore
the model’s robust capability in text-to-image retrieval tasks.
In the S→R task, our model achieved MAP metrics of
79.21%, 41.21%, and 52.72% on the three datasets, re-
spectively. These results represent state-of-the-art (SOTA)
performance across all datasets.

In other tasks (T + S → R, T + IR → R, S + IR → R,
T +S+ IR → R), our model also demonstrated robust per-
formance. Compared to single-modality retrieval methods,
the flexible combination of different modalities consistently
achieved superior results. For instance, in the T+S+IR→R
task, our model achieved Rank-K metrics of 88.23% at
R@1, 95.13% at R@5, and 96.75% at R@10 on the CUHK-
PEDES dataset, surpassing single-modality retrieval meth-
ods. This indicates that combining various modalities pro-
vides richer pedestrian detail information, thereby enhanc-
ing overall retrieval performance.

Overall, most current cross-modal ReID methods focus on
retrieving RGB modality from a non-RGB modality. Our
approach not only achieves state-of-the-art (SOTA) or near-
SOTA performance in single-modality retrieval tasks but
also supports a broader range of retrieval methods. The flex-
ible combination of various modalities outperforms single-

modality cross-modal retrieval methods, making our ap-
proach more versatile and widely applicable.

Table 2. Comparison with the state-of-the-arts on SYSU-MM01
datasets. Rank (R) at k accuracy (%) is reported. The best results
are bold.

Tasks Methods Venue All-Search Indoor-Search
R1 R10 R20 mAP R1 R10 R20 mAP

IR→R

SSFT(Lu et al., 2020) CVPR20 61.6 89.2 93.9 63.3 70.5 94.9 97.7 72.6
DDAG(Ye et al., 2020) ECCV20 54.8 90.4 95.8 53.0 61.0 94.1 98.4 68.0

DG-VAE(Pu et al., 2020) MM20 59.5 93.8 - 58.5 - - - -
CICL+IAMA(Zhao et al., 2021) AAAI21 57.2 94.3 98.4 59.3 66.6 98.8 99.7 74.7
VCD+VML(Tian et al., 2021) CVPR21 60.0 94.2 98.1 58.8 66.1 96.6 99.4 73.0

MPANet(Wu et al., 2021) CVPR21 70.6 96.2 98.8 68.2 76.7 98.2 99.6 81.0
MCLNet(Hao et al., 2021) ICCV21 65.4 93.3 97.1 62.0 72.6 97.0 99.2 76.6
SMCL(Wei et al., 2021) ICCV21 67.4 92.9 96.8 61.8 68.8 96.6 98.8 75.6

FlexiReID(Ours) - 67.9 93.4 97.6 62.5 69.2 97.2 99.1 75.8

T→R UNIReID(Chen et al., 2023a) CVPR23 54.3 90.2 95.7 63.8 56.7 91.8 96.5 66.9
FlexiReID(Ours) - 56.8 92.7 96.3 65.4 58.2 93.3 97.4 67.6

S→R UNIReID(Chen et al., 2023a) CVPR23 64.7 90.9 94.6 59.2 66.7 95.4 97.8 74.0
FlexiReID(Ours) - 66.4 92.7 95.2 60.3 68.5 96.7 98.2 75.3

T+S→R UNIReID(Chen et al., 2023a) CVPR23 66.5 94.2 97.9 66.4 69.3 94.6 97.5 72.8
FlexiReID(Ours) - 68.7 95.1 98.3 67.2 70.6 95.0 97.9 73.4

T+IR→R FlexiReID(Ours) - 68.9 96.7 98.2 68.1 71.2 98.3 99.3 75.2
S+IR→R FlexiReID(Ours) - 69.0 96.4 98.5 68.6 72.2 98.7 99.4 76.2

T+S+IR→R FlexiReID(Ours) - 71.3 97.2 98.7 69.5 73.2 98.9 99.6 77.3

Results on SYSU-MM01 We also evaluated our model on
the SYSU-MM01 dataset, as shown in table 2. In the IR →
RGB task under the full search mode, our model demon-
strated competitive performance, approaching the state-of-
the-art (SOTA) level. However, by flexibly combining other
modalities, performance can be further enhanced. For in-
stance, in the Indoor-Search mode for the T +S+ IR → R
task, our model achieved Rank-K metrics of 73.2% on R@1,
98.9% on R@10, and 99.6% on R@20. This improvement
is attributed to the introduction of text and sketch modalities,
which provide additional pedestrian features and enhance
the model’s comprehension capabilities.
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Table 3. Ablation study on R@1 about each component of FlexiReID. The metric Avg. denotes the average R@1 across seven search
modes.

No. Module Components
T → R S → R IR → R T + S → R T + IR → R S + IR → R T + S + IR → R Avg.MLP-Adapter AEA-MOE AL CMQF LEF

0 Zero-shot CLIP 12.58 2.47 3.79 1.62 2.73 3.72 4.51 4.49
1 +MLP-Adapter ✓ 66.38 81.47 81.93 83.58 83.26 82.43 85.03 80.58
2 +AEA-MOE(w/o AL) ✓ ✓ 68.45 83.08 83.74 85.83 85.52 84.32 86.71 82.52
3 +AEA-MOE(w/ AL) ✓ ✓ ✓ 68.87 84.13 84.37 86.41 85.93 84.97 87.35 83.14
4 +CMQF(w/o LEF) ✓ ✓ ✓ ✓ 69.08 84.59 85.12 87.38 86.15 85.78 88.05 83.73
5 +CMQF(w/ LEF) ✓ ✓ ✓ ✓ ✓ 69.20 84.92 85.26 87.47 86.23 85.97 88.23 83.90

4.3. Ablation Study

A comprehensive ablation study for components of
FlexiReID is presented in Table 3, including the most critical
accuracy metric R@1 and the average metric on CUHK-
PEDES datasets. The results in No.0 serve as the back-
bone baseline by zero-shot CLIP, where inference is per-
formed directly on the original frozen CLIP model without
adding any additional trainable modules. No.1 employs
the traditional MOE method, while No.2 and No.3 utilize
AEA-MOE. It is evident that AEA-MOE outperforms the
traditional MOE in handling data from various modalities,
thereby achieving superior performance. Furthermore, in-
corporating adaptive loss further enhances performance. As
demonstrated by No.4, CMQF plays a pivotal role in the
integration of features from different modalities, thereby
improving the model’s performance. Moreover, substitut-
ing missing modalities with Learnable Embedding Features
yields optimal performance. These results indicate that each
component of FlexiReID significantly contributes to the
model’s overall performance, working in concert to achieve
optimal outcomes.

Ablation Study on Routing Strategies To evaluate the ef-
fectiveness of our proposed adaptive routing mechanism,
we conduct a comprehensive ablation study by comparing
it with several widely adopted routing strategies, including
Top-K routing, soft routing, and hash routing. As shown
in Table 4, our adaptive routing achieves the best overall
performance. These results demonstrate that our method
benefits from dynamically selecting both the number and
combination of experts based on the input features, rather
than relying on fixed or probabilistic routing strategies. This
ablation study highlights the critical role of adaptive expert
allocation in enhancing feature expressiveness and improv-
ing downstream retrieval performance.

Table 4. Comparison of different routing strategies.
Method Avg.
Top-K Routing 80.58
Soft Routing 81.80
Hash Routing 83.11
Ours (Adaptive Routing) 83.90

Ablation Study on Feature Fusion Strategies To vali-
date the effectiveness of the proposed Cross-Modal Query

Fusion (CMQF) module, we conducted an ablation study
comparing it with several commonly used multimodal fea-
ture fusion strategies, including concatenation, summation,
and hierarchical fusion. Specifically, the concatenation strat-
egy directly concatenates features from different modali-
ties and feeds them into a shared Transformer for fusion.
The summation strategy aggregates features by summing
them prior to Transformer processing. The hierarchical fu-
sion approach first encodes each modality independently
using separate Transformers and then performs fusion at a
shared layer. All methods were evaluated on the modality-
augmented CUHK-PEDES dataset, and the average R@1 ac-
curacy across seven retrieval tasks was reported. As shown
in Table 5, CMQF achieved the best overall performance.
Compared to the aforementioned methods, CMQF lever-
ages cross-modal attention mechanisms and incorporates
learnable embedding features to compensate for missing
modalities, enabling more comprehensive and robust feature
alignment. These results demonstrate the superior capability
of CMQF in enhancing multimodal feature representations
and improving retrieval accuracy.

Table 5. Comparison of different feature fusion strategies
Method Avg.
Concatenation 83.14
Summation 82.24
Hierarchical Fusion 83.51
CMQF (Ours) 83.90

4.4. Hyper-Parameter Analysis

The Number of Experts. As shown in Figure 5a, to investi-
gate the impact of the number of experts n, we sample n as
2, 4, 6, 8 and 10, to evaluate the R@1 accuracy and mAP
under different numbers of experts. A constant threshold
confidence level is fixed to 0.4 in the overall experiment.
When n is less than 6, average R@1 performance gradually
increases with an increasing number of experts. However,
when n exceeds 6, larger n leads to a decrease in perfor-
mance. we observe that although increasing n can propor-
tionally enhance the model’s information capacity, a larger
n does not necessarily lead to better performance. This sug-
gests that the model’s capacity cannot grow indefinitely. We
ultimately determine n = 6 as a practical choice.
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Threshold Confidence Level As shown in Figure 5b, we
set the number of experts n = 6 and explore the R@1 ac-
curacy and mAP with the change of threshold confidence
level. When the confidence level is low, the model’s per-
formance is poor. However, as the threshold confidence
level increases to 0.4, the performance reaches its peak. As
the threshold confidence level increases further, the model’s
performance essentially reaches a plateau without additional
improvement. Therefore, the threshold confidence level is
set to 0.4.

(a) Ablation Study on the Number of Experts.

(b) Ablation Study on Threshold Confidence.

Figure 5. Ablation Study on the Number of Experts and Threshold
Confidence.

5. Conclusion
In this paper, we propose FlexiReID, a multimodal person
re-identification framework that supports flexible retrieval
across four modalities: text, sketches, RGB, and infrared,
as well as any combination thereof. We design the AEA-
MoE mechanism to dynamically select expert networks and
introduce the CMQF module to optimize cross-modal fea-
ture fusion. Based on the expanded CIRS-PEDES dataset,
experimental results demonstrate that FlexiReID outper-
forms existing methods in complex scenarios, validating its
flexibility and effectiveness, and opening up new research
directions for multimodal person re-identification.
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A. Ablation Study on the Impact of Applying Adaptive Moe to Different Encoders.
To further investigate the applicability and effectiveness of our proposed AEA-MOE mechanism within the FlexiReID
framework, we design an ablation study presented in the appendix. In this study, the AEA-MOE module is applied
individually to the image encoder, the text encoder, and jointly to both, aiming to clarify the performance contribution of this
mechanism across different modality-specific processing modules. As shown in the table 6, Experiment No.1 incorporates
AEA-MOE only into the image encoder, No.2 applies it to the text encoder, and No.3 integrates it into both encoders. Based
on the Rank@1 accuracy across seven retrieval tasks, we observe that AEA-MOE improves performance in both the image
and text encoders. However, the enhancement is more significant on the image side, and the best overall performance is
achieved when applied to both encoders simultaneously.

These results validate the generalizability of the proposed AEA-MOE module. It can be effectively adapted to both image
and text modalities and demonstrates a complementary enhancement effect in multimodal retrieval scenarios.

Table 6. Ablation results on the CUHK-PEDES dataset evaluating the impact of applying the AEA-MOE mechanism to the image encoder,
text encoder, or both.

No. Method T → R S → R IR → R T + S → R T + IR → R S + IR → R T + S + IR → R Avg.
0 MLP Adapter 66.38 81.47 81.93 83.58 83.26 82.43 85.03 80.58
1 No.0+AEA-MOE(Image) 68.24 83.73 83.81 85.87 85.39 84.46 86.88 82.63
2 No.0+AEA-MOE(Text) 67.25 82.66 82.78 84.52 84.06 83.19 85.74 81.46
3 No.0+AEA-MOE(Image,Text) 68.87 84.13 84.37 86.41 85.93 84.97 87.35 83.14

B. Experiments on PKU-Sketch
To further validate the effectiveness of the FlexiReID framework in handling sketch-based scenarios, we conduct additional
experiments on the PKU-Sketch dataset, which consists of two modalities: sketches and RGB images. To address the
issue of missing modalities, we adopt a Learnable Embedding Features (LEF) strategy, wherein each missing modality is
compensated by a corresponding learnable embedding vector. These embedding vectors are jointly optimized with the main
network parameters during training, enabling semantic completion and consistency preservation for the missing modalities.
This allows the model to perform robust cross-modal retrieval even when the input modality combination is incomplete.

As shown in the figure 7, FlexiReID achieves superior performance compared to existing methods on the PKU-Sketch
dataset. This demonstrates that FlexiReID exhibits strong robustness and practical applicability in complex scenarios with
incomplete multimodal inputs.

Table 7. Sketch-based retrieval performance on the PKU-Sketch dataset.
Method Reference mAP Rank@1 Rank@5 Rank@10
CCSC MM22 83.7 86.0 98.0 100.0

Sketch Trans+ PAMI2023 - 85.8 96.0 99.0
DALNet AAAI2024 86.2 90.0 98.6 100.0

FlexiReID(Ours) - 91.2 93.5 99.3 100.0

C. Experiments on Market-1501 and MSMT17
To further evaluate the performance of the FlexiReID framework on the traditional RGB-to-RGB single-modal person
re-identification task, we conduct experiments on two widely used ReID datasets: Market-1501 and MSMT17. This
experiment aims to verify whether our proposed framework can still exhibit strong visual feature modeling capabilities
without relying on auxiliary modality information. Notably, to maintain architectural consistency with multimodal retrieval
settings, we utilize learnable embedding features to replace the missing modalities. This mechanism ensures that even when
only RGB images are available, the model can still receive a unified four-modality representation, thereby preserving the
semantic generalization ability inherent in the multimodal design.

As shown in the table 8, FlexiReID outperforms existing representative methods on both Market-1501 and MSMT17. These
results clearly demonstrate that our method not only excels in complex cross-modal retrieval scenarios but also delivers
outstanding performance in standard RGB-RGB settings, highlighting its strong generalizability and practical applicability.
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Table 8. Evaluation results on the Market-1501 and MSMT17 datasets for the RGB-to-RGB person re-identification task.

Methods Reference Market-1501 MSMT17
Rank@1 mAP Rank@1 mAP

FastReID ACM MM23 95.4 88.2 83.3 59.9
BPBreID WACV23 95.1 87.0 - -
MVI2P Inf Fusion24 95.2 87.0 80.4 56.4

FlexiReID(Ours) - 96.0 92.1 83.7 67.5
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