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Abstract
High-dimensional time-series datasets are com-
mon in domains such as healthcare and economics.
Variational autoencoder (VAE) models, where la-
tent variables are modeled with a Gaussian pro-
cess (GP) prior, have become a prominent model
class to analyze such correlated datasets. How-
ever, their applications are challenged by the in-
herent cubic time complexity that requires spe-
cific GP approximation techniques, as well as
the general challenge of modeling both shared
and individual-specific correlations across time.
Though inducing points enhance GP prior VAE
scalability, optimizing them remains challeng-
ing, especially since discrete covariates resist
gradient-based methods. In this work, we pro-
pose a scalable basis function approximation tech-
nique for GP prior VAEs that mitigates these chal-
lenges and results in linear time complexity, with
a global parametrization that eliminates the need
for amortized variational inference and the as-
sociated amortization gap, making it well-suited
for conditional generation tasks where accuracy
and efficiency are crucial. Empirical evaluations
on synthetic and real-world benchmark datasets
demonstrate that our approach not only improves
scalability and interpretability but also drastically
enhances predictive performance.

1. Introduction
High-dimensional time-series datasets are common in var-
ious domains, including social sciences, economics, and
healthcare. These longitudinal datasets contain repeated
measurements of subjects over time along with auxiliary
covariate information, such as time, age, and gender, in the
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healthcare domain. By studying the associations between
covariates and samples (i.e., measurements), it is possible to
model temporal dynamics, such as disease progression, and
impute missing values in the data (Diggle, 2002). However,
analysis is challenged by factors like high dimensionality,
non-trivial correlations within and across subjects, time-
varying covariates, and missing values (Ramchandran et al.,
2021).

Several machine learning methods have been developed
to address these challenges, with variational autoencoders
(VAEs) emerging as an established class of models for
representation learning and generative tasks (Kingma &
Welling, 2014; Rezende et al., 2014). VAEs can learn both
an expressive neural network parameterized model for high-
dimensional data generation as well as an efficient amor-
tized variational approximation of sample-specific latent
variables. However, standard VAEs assume that each data
point is independent and identically distributed (iid), which
limits their ability to capture correlations between samples
in temporal datasets.

VAEs can be enhanced to model correlations between sam-
ples. Among these enhancements, VAEs equipped with a
Gaussian process (GP) prior for latent variables have proven
to be particularly effective for capturing time dependencies
and correlations between samples and achieve impressive
performance improvements (Casale et al., 2018). However,
this powerful approach comes with a cost of computational
complexity that scales cubically with the size of the dataset
(Quinonero-Candela & Rasmussen, 2005; Bauer et al., 2016)
that limits its scalability for large datasets. There have been
efforts to tackle these challenges by incorporating inducing
points (Titsias, 2009) and stochastic gradient-based opti-
mization with mini-batching (Hensman et al., 2013). Opti-
mizing inducing point locations becomes non-trivial with
discrete covariates as their non-continuous kernels preclude
gradient-based updates. To our knowledge, no efficient
general solution for discrete covariates in GP prior VAEs
has been proposed. Finally, their variational posterior com-
monly uses a mean-field approximation with parameters
tied by a shared encoder, which limits performance and
introduces an unavoidable amortization gap (Cremer et al.,
2018; Margossian & Blei, 2024).
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(d) High-dimensional generation(b) Exact additive GP

(c) Basis function approximation
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Figure 1. Overview of DGBFGP. (a) A conditional generative model incorporates covariate information. (b) Additive GP priors are used
but are not scalable. (c) We replace exact GP with a basis function approximation for scalability. (d) Samples are generated by the decoder.

Contributions. In this work, we propose Deep Genera-
tive Basis Function Gaussian Process (DGBFGP), a novel
conditional generative model. Inspired by earlier VAE ap-
proaches (Ramchandran et al., 2021; Ong et al., 2024), DG-
BFGP is capable of accurately modeling high-dimensional
longitudinal data by capturing complex correlations within
and across subjects, specified by extensive continuous and
categorical covariates using scalable basis function approx-
imation that provides global parameterization and learns
parameters using variational inference (VI) (Hoffman et al.,
2013). Figure 1 overviews DGBFGP, which uses scalable
GP approximations with auxiliary covariates to model in-
dividual, group, and temporal effects. The model delivers
flexible, interpretable representations and scales to large
datasets. Our contributions are:

• We propose DGBFGP, a conditional deep generative
model that leverages basis function approximation for
mixed-domain additive GPs to model complex correla-
tions within and across subjects, guided by extensive
continuous and categorical covariates.

• Our global parameterization avoids explicit kernels,
runs in linear time, eliminates the amortization gap,
overcomes the limitations of categorical inducing point
optimization, enhances interpretability in the latent
space by quantifying the contributions of different co-
variates/effects using Sobol indices, allows for standard
mini-batch training, and treats kernel hyperparameters
probabilistically.

• We compare DGBFGP against state-of-the-art methods
in the literature and report highly competitive perfor-
mance on synthetic and real-world benchmark datasets.

2. Related Work
There has been a vast array of suggestions to improve the
performance of VAEs. Sohn et al. (2015) proposed the con-
ditional VAE (CVAE), which leverages auxiliary covariate
information to better guide the latent space representation
and generate more context-aware outputs. However, it uses
a standard Gaussian prior, which is not flexible for com-
plex tasks. The expressiveness of approximated posteriors
can be strengthened by importance sampling (Burda et al.,
2016), normalizing flows (Rezende & Mohamed, 2015),
RealNVPs (Dinh et al., 2017), and inverse autoregressive
flows (Kingma et al., 2016). Yet, these methods still rely
on the iid assumption across samples. Hence, they cannot
capture sample correlations.

Casale et al. (2018) proposed the GP prior VAE (GPPVAE),
which incorporates GP priors to include view and object
information directly into the latent variables. However, its
reliance on a restrictive view-object GP product kernel lim-
its its ability to capture subject-specific temporal patterns,
making it less suitable for longitudinal studies. Additionally,
the pseudo-mini-batch stochastic gradient descent (SGD)
training scheme lacks scalability for large datasets as it ne-
cessitates a full dataset pass for every training step.

Building upon the idea of employing GPs within the latent
space of VAEs, Fortuin et al. (2020) introduced GP-VAE,
which assumes a separate GP prior for the time-series data
of each individual subject. While GP-VAE is tailored for
temporal data, its independent GP priors for each subject
limit its ability to capture shared temporal patterns. Further-
more, GP-VAE cannot utilize auxiliary covariate informa-
tion beyond time, restricting its flexibility in context-rich
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Table 1. Features of our proposed method contrasted to the related previous methods.

MODEL
SHARED TEMPORAL

STRUCTURE
INDIVIDUAL

TEMPORAL STRUCTURE
OTHER

COVARIATES
MINIBATCHING GENERATIVE

GP
COMPLEXITY

REFERENCE

CVAE ✓ ✗ ✓ ✓ ✓ - SOHN ET AL. (2015)
BRITS ✓ ✗ ✗ ✓ ✗ - CAO ET AL. (2018)
L-NODE ✓ ✓ ✗ ✓ ✓ - IAKOVLEV ET AL. (2023)

GPPVAE ✓ LIMITED LIMITED PSEUDO ✓ O(NH2) CASALE ET AL. (2018)
GP-VAE ✗ ✓ ✗ ✓ ✓ O(

∑
p n

3
p) FORTUIN ET AL. (2020)

SVGP-VAE ✓ LIMITED LIMITED ✓ ✓ O(NM2 +M3) JAZBEC ET AL. (2021)
LVAE ✓ ✓ ✓ ✓ ✓ O(NM2 +

∑
p n

3
p) RAMCHANDRAN ET AL. (2021)

SGP-BAE ✓ LIMITED ✓ ✓ ✓ O(NM2 +M3) TRAN ET AL. (2023)

DGBFGP ✓ ✓ ✓ ✓ ✓ O(N
∑

r B
(r)) OUR WORK

datasets. To overcome some of these issues, both SVGP-
VAE (Jazbec et al., 2021) and LVAE (Ramchandran et al.,
2021) were introduced, leveraging inducing points to enable
scalable, mini-batch training (Titsias, 2009; Hensman et al.,
2013). While SVGP-VAE inherits GPPVAE’s limitations in
incorporating all auxiliary covariates, LVAE is capable of
handling an arbitrary number of covariates, allowing greater
flexibility in modeling diverse datasets. However, both ap-
proaches face challenges in initializing and optimizing the
inducing points, which can impact their performance and ap-
plicability, particularly in complex scenarios. Finally, Tran
et al. (2023) proposed SGP-BAE, a fully Bayesian autoen-
coder using stochastic gradient Hamiltonian Monte Carlo
to jointly sample decoder and sparse GP prior parameters.
Howver, it still faces the same challenge with categorical
covariates due to its reliance on inducing points.

Multi-output GPs extend traditional GPs to model corre-
lations across multiple output dimensions (Alvarez et al.,
2012). By learning dependencies both within and across
variables, they offer a natural and flexible way to represent
coupled latent spaces. This capability makes them particu-
larly suitable for tasks where multiple related outputs need
to be jointly modeled. However, multi-output GPs do not
directly scale to high-dimensional datasets.

Ong et al. (2024) introduced LMM-VAE, which uses linear
mixed models (LMMs) as conditional priors in VAEs, en-
abling the integration of auxiliary covariates while modeling
shared and random effects. By combining the strengths of
LMMs and VAEs, it captures nuanced dependencies and is
adaptable to diverse applications. Its performance can be
further improved with basis functions for greater flexibility
in modeling complex patterns.

Modeling temporal correlations is also explored through
latent neural ordinary differential equations (ODEs)
(Rubanova et al., 2019). Iakovlev et al. (2023) proposed
L-NODE, a latent neural ODE with Bayesian multiple shoot-
ing that offers an efficient framework for continuous-time
latent dynamics with sparse observations. In contrast, clas-
sical approaches like BRITS (Cao et al., 2018) use bidi-
rectional recurrent networks for time-series imputation but
are not generative models. These methods address comple-

mentary aspects of time-series analysis and offer diverse
tools for high-dimensional datasets. Table 1 summarizes the
capabilities of the related previous methods.

3. Background
Problem setup. We consider general longitudinal experi-
mental designs with P unique instances (i.e. subjects or pa-
tients), where each instance p has np longitudinal samples.
The total number of samples equals the sum of instance-
specific samples, N =

∑P
p=1 np. We denote the high-

dimensional samples as y ∈ Y = RD. Without loss of
generality, we can assume that the samples are ordered
according to the instances such that the first n1 samples
y1, . . . ,yn1

are from instance one, the next n2 samples
yn1+1, . . . ,yn1+n2

from instance two, etc. Samples across
all instances are denoted as Y = [y1, . . . ,yN ]. Addition-
ally, an instance p has corresponding covariate information
for each sample, collectively denoted as X = [x1, . . . ,xN ],
where x ∈ X =

∏Q
q=1 Xq is aQ-dimensional vector includ-

ing information such as time, age and gender. We denote the
sample-specific L-dimensional (L≪ D) latent variables as
Z = [z1, . . . ,zN ], where each z ∈ Z = RL.

3.1. Variational autoencoders

Consider a data sample y generated by a joint gener-
ative model pω(y, z) = pφ(y|z)pθ(z), where ω =
{φ, θ} denotes parameters. The posterior pω(z|y) =
pφ(y|z)pθ(z)/pω(y) is generally intractable since the term
pω(y) cannot be computed analytically. A common ap-
proach is to employ amortized VI (AVI) (Kingma & Welling,
2014; Rezende et al., 2014) to estimate the true posterior
with a parameterized approximation qϕ(z|y). This is done
by optimizing a lower bound on the evidence, log pω(y),
w.r.t. all parameters involved

log pω(y) ≥ Eqϕ [log pφ(y | z)]−KL(qϕ(z | y) || pθ(z)).

A common assumption is that the likelihood pφ(y | z), the
prior pθ(z), and the variational posterior qϕ(z | y) are all
represented using a mean-field approximation. In practice,
this implies that distributions factorize over samples.
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Sohn et al. (2015) build upon this idea by incorporating
auxiliary covariates x ∈ X into the encoder and decoder
networks. This allows the VI procedure to approximate not
just pω(z|y), but pω(z|y,x) for the conditional generative
model pω(y, z|x) = pφ(y|z,x)pθ(z|x). Although CVAE
enables more flexible generative modeling by leveraging
known factors, it shares the iid assumption of the VAE.

3.2. Gaussian processes

GPs extend the concept of the Gaussian probability distri-
bution of random variables to stochastic processes, which
characterize the properties of entire functions (Rasmussen
& Williams, 2006). A univariate GP

f(x) ∼ GP(µ(x), k(x,x′))

is fully determined by its mean function µ(x) (gen-
erally considered as 0) and covariance (i.e. kernel)
function k(x,x′). For a finite collection of inputs
X = [x1, . . . ,xN ], GP evaluated at X , f(X) =
[f(x1), . . . , f(xN )]⊤, is defined to have a joint Gaussian
distribution f(X) ∼ N (0,Σ), where Σi,j = k(xi,xj).
The covariance function encodes our prior assumptions
about the underlying latent functions that generate the data.
For example, a kernel for continuous-valued covariate might
assume that the function changes smoothly (ensuring con-
tinuity), whereas a kernel for categorical covariate defines
properties of the function across the categories. These co-
variance functions generally have hyperparameters, which
are inferred from data.

3.3. Gaussian process prior variational autoencoders

A GP conditioned on auxiliary information can capture non-
trivial dependencies and provide a flexible, non-parametric
model that can adapt to complex patterns in the data. Pre-
viously, researchers have utilized GPs as priors in VAEs to
create effective generative models (Casale et al., 2018).

Let f : X → Z and z = f(x) = [f1(x), . . . , fL(x)]
⊤,

and assume that f follows a multi-output GP prior (Alvarez
et al., 2012):

f(x) ∼ GP(0,K(x,x′ | θ)),
whereK(x,x′ | θ) is a so-called cross-covariance function
with hyperparameters θ. Contrary to standard multi-output
GPs that typically use a linear model of co-regionalization to
define the cross-covariance function (Alvarez et al., 2012),
GP prior VAE models assume that each latent dimension has
an independent GP prior, i.e., factorizes across dimensions

p(f(X) | θ) =
L∏

l=1

N (0,Σl), (1)

where Σl denotes the covariance matrix of the lth compo-
nent of f(·). This assumption comes without any loss of

generality because the latent variables are further mapped to
the data space by a neural network parameterized decoder
pφ(y | z) that can introduce arbitrary correlations at least as
expressive as standard multi-output GPs across dimensions.

Motivated by longitudinal datasets, Ramchandran et al.
(2021) proposed to use an additive GP prior for each of
the latent dimensions:

fl(x) = f
(1)
l (x(1)) + · · ·+ f

(R)
l (x(R))

f
(r)
l (x(r)) ∼ GP

(
0, k

(r)
l

(
x(r),x(r)′ | θ(r)l

))
,

where R denotes the number of additive components, each
component depends on either a single or a pair of covari-
ates x(r) ∈ X (r) ⊆ X , and θ(r)l denotes the kernel hy-
perparameters of the rth component of the lth latent dimen-
sion. This additive GP model provides interpretability sim-
ilar to commonly used LMMs (Laird & Ware, 1982) do
and allows for handling mixed-domain (e.g. a combina-
tion of continuous and categorical) inputs. The additive
GP model implies that the factorizable joint distribution
p(f(X) | θ) from Equation (1) has an additive covariance
structure Σl =

∑R
r=1 Σ

(r)
l , where i, j element of the co-

variance matrix Σ
(r)
l is given by k(r)l (x

(r)
i ,x

(r)
j | θ(r)l ).

Being able to model correlations comes with a chain of
trade-offs. We need to keep a kernel matrix with O(N2)
memory complexity. In addition, O(N3) time complexity
arises from the inversion of the kernel matrix, necessitating
reliable approximative GP techniques. Previous GP prior
VAEs have proposed to use the inducing point approach
(Ramchandran et al., 2021; Jazbec et al., 2021) achieving
O(NM2 +M3) time complexity with M inducing points,
or low-rank approximations (Casale et al., 2018) reducing
complexity to O(NH2), where H ≪ N is the dimension-
ality of the low-rank approximation. Instead, in this work,
we propose an efficient method that uses basis function
approximation, which results in global parametrization.

4. Methods
4.1. Kernel approximation for continuous covariates

Stationary GP kernels, such as the squared exponential (SE)
kernel kse(x, x′|σ, ℓ) = σ2 exp(−∥x−x′∥2

2ℓ2 ), can be writ-
ten as a function of the distance between the two inputs,
k(r) = k(x, x′) = k(|x− x′|), where x ∈ R is a univariate
continuous input covariate (e.g. time, age, etc.). According
to Bochner’s theorem (Akhiezer & Glazman, 2013; Ras-
mussen & Williams, 2006), covariance functions can be
represented as the Fourier transform of a positive measure
since they are positive definite. When a measure has an
associated density, it is referred to as the spectral density
s(ω) of the covariance function. This relationship leads to
the Fourier duality between spectral densities and kernels, a
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principle known as the Wiener-Khintchin theorem:

s(ω) = F{k(r)} =

∫ ∞

−∞
k(r)e−iωrdr

k(r) = F−1{s(ω)} =
1

2π

∫ ∞

−∞
s(ω)eiωrdω.

For example, the spectral density corresponding to the SE
kernel is given by sse(ω | σ, ℓ) = σ2ℓ

√
2π exp(− ℓ2ω2

2 )
which is Gaussian in the frequency domain.

Solin & Särkkä (2020) demonstrated that an isotropic co-
variance function (k(r) ≜ k(||r||)) has the following eigen-
function approximation

k(x, x′) ≈ k̃(x, x′) =

M∑
m=1

s(
√
λm)ϕm(x)ϕm(x′), (2)

where λm and ϕm are the mth eigenvalue and eigenfunction
of the Laplace operator with Dirichlet boundary conditions,
including boundary Ω = [−J, J ] ∈ R described as{

−∂2ϕm(x)
∂x2 = λmϕm(x), x ∈ Ω

ϕm(x) = 0, x ∈ ∂Ω.

In this setup with J > 0, the eigenfunctions and eigen-
values are ϕm(x) = 1√

J
sin(πm(x+J)

2J ) and λm = (πm2J )2,
respectively. Finally, we can represent Hilbert space approx-
imation of a GP in a linear parametric form with ϕ(x) =
[ϕ1(x), . . . , ϕM (x)]⊤ and global parameters a ∈ RM as

f(x) ≈ a⊤ϕ(x), (3)

where a ∼ N (0,S) andS = diag(s(
√
λ1), . . . , s(

√
λM )).

Note that the approximation depends on the kernel hyper-
parameters via the parameter prior, which for the SE ker-
nel can be written as a ∼ N (0,S(σ, ℓ)) and S(σ, ℓ) =
diag(sse(

√
λ1 | σ, ℓ), . . . , sse(

√
λM | σ, ℓ)).

For the remainder of this paper, we will use the SE kernel
to model continuous covariates. However, our method is
applicable to any stationary continuous covariance function.

4.2. Generative model

Ong et al. (2024) show that a Fourier basis-based linear
model can be utilized to approximate the latent space of GP
prior VAEs. Here we show how an additive GP prior VAE
model can be defined using the Hilbert space approximation
and the associated global parametrization. Let x(r) ∈ R de-
note one of the continuous covariates from X as before. To
simplify notation, we assume that all additive components
use the same number of eigenfunctions, M , for the kernel
approximation in Equation (2), but that can be generalized
easily. Assuming the latent dimensions are a priori indepen-
dent as in previous works (see e.g. Equation (1)), we can

S σxn

A ℓyn

N

Figure 2. Graphical model of DGBFGP. Blank, partially shaded,
and shaded circles indicate latent, partially observed, and observed
variables, respectively. Non-circled variable S is deterministic.

obtain the Hilbert space approximation for the rth compo-
nent of a multi-output GP prior by using the approximation
from Equation (3) for each latent dimension separately

z(r) = A(r)ϕ(x(r)) =

a
⊤
r1
...
a⊤
rL

ϕ(x(r)),

where arl ∈ RM denotes the linear model parameters for ad-
ditive component r and latent dimension l, ϕ(x(r)) ∈ RM ,
and arl ∼ N (0,Sr(σr, ℓr)). Here we assume that ker-
nel hyperparameters are shared across dimensions although
this can be easily generalized, and we explicitly write the
prior dependence of arl on the corresponding kernel hy-
perparameters σr and ℓr via the spectral density. Since GP
prior factorizes across latent dimensions, the prior on A(r)

is defined as p(A(r)) =
∏L

l=1 p(arl). Therefore, the full
additive GP structure is approximated by

z =

R∑
r=1

z(r) =

R∑
r=1

A(r)ϕ(x(r))

which is parameterized by a collection of weights A =
(A(1), . . . , A(R)) with prior p(A) =

∏R
r=1 p(A

(r)). See
Appendix B for details. The generative model can then be
expressed as follows (see Figure 2 for the plate diagram):

σr ∼ Lognormal(0, 1) (r = 1, . . . , R)

ℓr ∼ Lognormal(0, 1)

Sr(σr, ℓr) = diag
(
{sse(

√
λm | σr, ℓr}Mm=1

)
A | σ, ℓ ∼

R∏
r=1

L∏
l=1

N (arl | 0,Sr(σr, ℓr)) (4)

Y | A,X ∼
N∏

n=1

pφ(yn | A,xn),

where σ = (σ1, . . . , σR), ℓ = (ℓ1, . . . , ℓR), and sse(
√
λm |

σr, ℓr) is again the spectral density of the SE kernel that
depends on the kernel hyperparameters σr and ℓr evaluated
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at the square-root of the eigenvalue λm. A log-normal prior
is chosen for both the length scale ℓr (Timonen et al., 2021)
and amplitude σr as it ensures positivity and accommo-
dates a wide range of values. The likelihood function pφ is
parameterized by a neural network.

4.3. Interpretable model for mixed-domain covariates

We have so far described a conditional deep generative
model with a highly scalable GP prior for continuous covari-
ates. But it is also possible to model categorical covariates
and kernels (Garrido-Merchán & Hernández-Lobato, 2020)
utilizing their eigendecompositions. Assume that one of the
covariates, x ∈ C = {1, . . . , C}, has C possible categories,
and the corresponding kernel is k : C ×C → V ⊂ R. LetC
denote the C × C kernel matrix. Symmetric kernels have
the eigendecompositionC = ΘDΘ⊤, whereD is a diago-
nal matrix containing C eigenvalues on the diagonal and Θ
has C eigenvectors as its columns. Following Timonen &
Lähdesmäki (2024), by defining function ϑc : C → R that
outputs the values of the cth column of Θ, the covariance
function k can be written as

k(x, x′) = Cx,x′ = [ΘDΘ⊤]x,x′ =

C∑
c=1

dcΘx,cΘx′,c

=

C∑
c=1

dcϑc(x)ϑc(x
′).

The corresponding GP has the parametric form f(x) =
ϑ(x)a, where ϑ(x) denotes the xth row of Θ, and a ∼
N (0,D). It is important to note that f(x) is the exact
GP, not an approximation. Hence, it can be used to model
categorical covariates, such as gender and subject IDs. Gen-
eralization for new subjects can be achieved by learning
only subject-specific parameters (see Appendix B.1).

We are typically interested in modeling joint effects of con-
tinuous and categorical covariates (Saves et al., 2023). In
our setting, we can compute the interactions between the ap-
proximation for the stationary kernel and the decomposition
of the categorical kernel (Timonen & Lähdesmäki, 2024):

k̃(x,x′) = k̃se(x,x
′)kca(x,x

′)

=

M∑
m=1

C∑
c=1

s(
√
λm)dcϕm(x)ϕm(x′)ϑc(x)ϑc(x

′)
(5)

where k̃se(x,x′) depends only on one continuous variable
and kca(x,x′) depends only on one categorical variable of
inputs. Defining B =MC, the product kernel can then be
expressed as k̃(x,x′) =

∑B
b=1 sbψb(x)ψb(x

′), where

ψ(x) =


ϕ1(x)ϑ1(x)
ϕ1(x)ϑ2(x)

...
ϕM (x)ϑC(x)

 and s =


s(
√
λ1)d1

s(
√
λ1)d2
...

s(
√
λM )dC

 (6)

are both B dimensional. The GP with interaction kernel
given in Equation (5) has the following parametric form

f(x) ≈ a⊤ψ(x), a ∼ N (0,diag(s)).

We showed in Sections 4.1-4.2 that arl, the global weights
for continuous variables, have a multivariate Gaussian prior
with diagonal covariance in Equation (4). This structure
extends directly to the interaction kernel by incorporating a
diagonal covariance with entries that combine the SE ker-
nel’s spectral density and the eigenvalues of the categorical
kernel. The basis functions are products of the continuous
and categorical kernel bases as shown in Equation (6).

4.4. Inference

We use VI (Hoffman et al., 2013) to learn the parameters of
the generative model by assuming a factorized variational
posterior, q(A,σ, ℓ) = q(A)q(σ)q(ℓ). Approximate poste-
rior q(A) is Gaussian whereas q(σ) and q(ℓ) are log-normal.
The ELBO is given as (see Appendix C for the derivation)

log p(Y | X) ≥ Eq(A)

[
N∑

n=1

log pφ(yn | A,xn)

]
− Eq(σ)q(ℓ)[KL(q(A) || p(A | σ, ℓ))]
− KL(q(σ) || p(σ))
− KL(q(ℓ) || p(ℓ)),

(7)

where we use Monte Carlo to sample σ and ℓ from the cor-
responding distributions q(σ) and q(ℓ) in order to estimate
Eq(σ)q(ℓ)[KL(q(A) || p(A | σ, ℓ))]. These values are then
substituted into the spectral density computation. Note that
the spectral densities are needed to define p(A | σ, ℓ) as
shown in Equation (4). The closed form of this KL term is
given in Appendix C, Equation (11), which offers a simpler
solution compared to the more complex formulations involv-
ing GPs in previous GP prior VAE models. Additionally, the
KL terms for σ and ℓ are provided in Equation (12). Since
the parameterization is global, the ELBO (7) is directly
amenable to SGD optimization with mini-batching.

We also present a semi-amortized version of our model,
denoted as SA-DGBFGP in Appendix E, where AVI is used
only for modeling instance-specific characteristics.

4.5. Computational complexity

The Hilbert space approximation admits a closed-form
eigendecomposition independent of specific kernels, with
hyperparameters entering only via spectral densities that
also have closed-form solutions, enabling O(1) plug-and-
play use of eigenvalues and eigenfunctions. Computing
the categorical kernel eigendecomposition once suffices, so
overhead is negligible as C ≪ N . Hence, the most com-
putationally demanding operation in DGBFGP model is

6
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the multiplication of each data point’s basis function rep-
resentation, ϕ(x(r)

n ) ∈ RB , with the global linear model
parameters, arl ∈ RB . This computation is performed for
N data points. Extending this operation across all compo-
nents while accounting for the possibility that each compo-
nent may have a different number of basis functions, the
total time complexity for a single latent dimension becomes
O(N

∑R
r=1B

(r)).

4.6. Sobol indices for quantifying interpretability

In additive GPs, we can use a sensitivity analysis based on
Sobol indices (Sobol, 1993) to quantify the relative con-
tribution of additive components (Lu et al., 2022). The
Sobol index for rth component is defined as SI(r) =

V[f(r)(x(r))]
V[

∑R
i=1 f(i)(x(i))]

, which is the fraction of the total GP out-

put variance attributable to the rth component, thereby of-
fering a clear metric for assessing its impact. It is important
to note that in this context, the analysis is focused on the
contributions of the model components, not directly on in-
dividual covariates. A large SI(r) signals that component r
has a significant contribution, while a small value implies a
minor role.

5. Experiments
We showcase the effectiveness of our model in temporal
interpolation and long-term future prediction through exper-
iments on common benchmarks that include synthetic and
real-world longitudinal healthcare datasets. To evaluate our
approach, we compare it against state-of-the-art GP prior
VAEs, including SVGP-VAE (Jazbec et al., 2021), which
improves the scalability of GP prior VAEs using inducing
points, LVAE (Ramchandran et al., 2021), which uses in-
ducing points and is specifically designed for longitudinal
datasets, as well as SGP-BAE (Tran et al., 2023), which
also uses inducing points but treats all parameters in a fully
Bayesian manner. We also include L-NODE (Iakovlev et al.,
2023) in one experiment with shared governing temporal
dynamics across samples, but exclude it from experiments
with varying group-specific dynamics. Finally, we also
included BRITS (Cao et al., 2018), which implements a
bidirectional RNN. In all experiments, we used similar en-
coder and decoder architectures for all models. We assess
predictive performance using mean squared error (MSE),
reporting the average and standard deviation over five it-
erations. In all experiments, we used a fixed number of
basis functions, M = 10, to approximate continuous ker-
nels. Details on hyperparameter selection and latent space
modeling for each experiment are provided in Appendix F,
while neural network architectures are described in Ap-
pendix G. The implementation of our model is provided at
https://github.com/YigitBalik/DGBFGP.

Table 2. Temporal interpolation MSE on Rotated MNIST test data.

Method Latent dimension MSE

BRITS (Cao et al., 2018) - 0.989± 0.0098
SVGP-VAE (Jazbec et al., 2021) 16 0.028± 0.0005
LVAE (Ramchandran et al., 2021) 16 0.026± 0.0006
SGP-BAE (Tran et al., 2023) 16 0.023± 0.0006
L-NODE (Iakovlev et al., 2023) 16 0.017± 0.0002

DGBFGP (our work) 16 0.009 ± 0.0001

5.1. Rotated MNIST

We evaluate our model on the temporal interpolation task
using a modified version of the handwritten MNIST dig-
its dataset (LeCun et al., 1998). This dataset consists of
P = 400 unique instances of the digit ’3’, each rotated
across 16 evenly spaced angles covering a full rotation,
[0, 2π]. Each data point is characterized by a unique instance
id and an associated rotation angle. Temporal interpolation
in this context refers to predicting intermediate representa-
tions of an instance at unseen angles. See Appendix F.1 for
additional details.

Table 2 provides a comparative analysis of our method
against existing approaches. Our model achieves a signifi-
cantly lower MSE on the interpolation task, outperforming
previous baselines by a substantial margin in addition to be-
ing computationally more efficient. Additionally, Figure 6
in Appendix H presents conditionally generated samples for
three test instances, illustrating the ability of our model to
capture smooth temporal transitions in the latent space.

In Figure 8, model interpretability is highlighted by exam-
ples of latent functions clearly decomposed into two addi-
tive components. Normalized Sobol indices show that both
components contribute nearly equally, indicating the model
effectively captures individual nuances and rotational dy-
namics. See Figure 9 (Appendix H) for t-SNE visualization.

5.2. Health MNIST

To better approximate real-world medical data, we introduce
modifications to the MNIST digits dataset simulating a high-
dimensional longitudinal dataset (Krishnan et al., 2015) with
missing values at each time point. In this setup, the digits
’3’ and ’6’ represent two distinct biological genders, with
an equal distribution across both groups. A shared aging
effect is modeled by gradually shifting all instances toward
the bottom right corner over time. Additionally, we assume
that half of the subjects in each gender group are healthy,
while the other half are unhealthy. The simulated measure-
ments remain unchanged for healthy subjects. Whereas, for
unhealthy individuals, rotation is applied where the amount
of rotation depends on the time to disease diagnosis. To
further mimic noisy real-world measurements, we introduce
a random rotational jitter to each data point. Finally, 25%
of each sample’s pixels are randomly selected and marked
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Figure 3. Health MNIST experiment results. (a) Example learned latent functions in the Health MNIST experiment along with normalized
Sobol indices averaged over L = 32 dimensions. (b) Predictive MSE of different models with 32 latent dimensions on test samples.

as missing. See Figure 10 for illustration. As a result, the
dataset includes Q = 5 auxiliary covariates, namely age,
diseaseT ime, gender, and disease along with a subject-
specific identifier id. The dataset consists of P = 1, 300
unique subjects, each observed over np = 20 time points.

For the training set, we include all time points from 1,100
subjects, along with the first five time points from the re-
maining subjects. The validation and test sets each contains
100 unique subjects, with their remaining time points used
for evaluating the model in the future prediction task.

Figure 3(b) shows performance on the future prediction
task, where our approach outperforms others. Figure 3(b)
presents an ablation removing additive components to show
that the numerical value R alone does not determine expres-
siveness: the design of each additive component, especially
the time related components, is essential for model perfor-
mance even though Figure 3(a) indicates that id is the most
dominant Sobol index component. Figure 10 shows visual
comparisons for two test subjects, highlighting DGBFGP’s
ability to capture subject-specific traits and temporal dy-
namics accurately. Figure 11 in Appendix H depicts the
relationship between M and the predictive performance and
shows that our approach can achieve competitive perfor-
mance even with a minimal number of basis functions.

5.3. Physionet

We also utilize healthcare data from the Physionet Challenge
2012 (Silva et al., 2012) to benchmark our model’s long-
term predictive performance in a real-world setting. The
dataset comprises approximately 12,000 subjects monitored

Table 3. Predictive MSE on test subjects of the Physionet dataset.

Method Latent dimension MSE

Mean prediction (all training samples) - 0.904± 0.000
Mean prediction (training samples of test subjects) - 0.756± 0.000
SVGP-VAE (Jazbec et al., 2021) 32 0.802± 0.009
SGP-BAE (Tran et al., 2023) 32 0.781± 0.002
BRITS (Cao et al., 2018) - 0.732± 0.005
LVAE (Ramchandran et al., 2021) 32 0.718± 0.007

DGBFGP (our work) 32 0.619 ± 0.009

in the intensive care unit (ICU) over a 48-hour period. Our
objective is to model repeated measurements of 36 distinct
attributes (we exclude weight from the original set of 37
attributes), including key physiological variables such as
body temperature and heart rate. As auxiliary covariates, we
incorporate id, time, ICUtype, gender, and mortality.

In our experiments, we utilize a subset of 3,997 patients
provided in "set A" of the dataset. We randomly select 200
subjects for the validation and test sets, allocating 100 sub-
jects to each. For these subjects, the first 10 time points
are included in the training set to learn individual-specific
temporal structure. The remaining time points are reserved
for validation and testing. As shown in Table 3, DGBFGP
achieves the best performance. While previous models per-
form close to the mean prediction, our approach achieves a
significantly lower MSE value. These results demonstrate
the effectiveness of our method in real-world forecasting
tasks. Figure 13 illustrates the learned latent functions and
their Sobol indices. The dominant f (1)ca (id) accounts for
heavy individual variation, while the others yield modest
but significant capacity gains. Unsurprisingly, the id term
prevails by encoding each instance’s defining traits.
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Table 4. Conditional generation MSE on unseen character combi-
nations of the SPRITES dataset.

Method Latent dimension MSE

SGP-BAE (Tran et al., 2023) 64 0.0145± 0.0021
SVGP-VAE (Jazbec et al., 2021) 64 0.0081± 0.0005
LVAE (Ramchandran et al., 2021) 64 0.0062± 0.0004

DGBFGP (our work) 64 0.0024 ± 0.0003

Table 5. MSE comparison for evaluating semi-amortization and
generalization across training setups

Training setup Method Rotated MNIST Health MNIST Physionet

Standard SA-DGBFGP 0.010± 0.0004 0.013± 0.0005 0.763± 0.007
DGBFGP∗ 0.009 ± 0.0001 0.009 ± 0.0000 0.619 ± 0.009

Independent
test subjects

SA-DGBFGP 0.013± 0.0004 0.015± 0.0006 0.779± 0.003
DGBFGP∗ 0.071± 0.0002 0.039± 0.0003 0.796± 0.007
DGBFGP 0.009 ± 0.0003 0.011 ± 0.0005 0.658 ± 0.026

5.4. SPRITES

The SPRITES dataset (Yingzhen & Mandt, 2018) comprises
1,296 unique characters, each defined by four categorical
attributes: skin color, hairstyle, top clothing, and bottom
clothing, with six possible options per attribute. Addition-
ally, each character can perform actions from three cate-
gories, each executed in three directions over T = 8 time
points. This results in a total of N = 1, 296× 9× 8 images,
each of size D = 64 × 64 × 3. The auxiliary covariates
used in this experiment are time, skin, hair, top, bottom,
action, and direction.

In this experiment, we aimed to demonstrate that our model
effectively captures shared attributes defining each unique
subject across a population without relying on explicit sub-
ject IDs. To evaluate this capability, we reserve 296 charac-
ters and all their action-time combinations for the test set,
while another 296 characters are allocated to the validation
set. The remaining characters are used for training.

Our method achieves noticeably lower MSE than previous
approaches, as shown in Table 4. It also generates the most
accurate SPRITES characters, as illustrated in Figure 4.
These results highlight DGBFGP’s ability to capture shared
attributes and conditionally generate correlated character
trajectories with unseen attribute combinations. Figure 15
shows example latent functions with normalized Sobol in-
dices for each component. Unlike previous experiments,
action and direction components dominate, highlighting that
the latent representation encodes variability tied to those
covariates. Hairstyle, clothing, and skin color contribute
moderately, while time alone has minimal influence.

Table 10 shows that DGBFGP is the fastest model in all
experiments among relevant approaches. This demonstrates
its improved computational efficiency in addition to more
accurate conditional generation. The results were obtained
by running models on a single NVIDIA Tesla V100 GPU
with 32GB of memory.

Ground
truth

SVGP-VAE

LVAE

Ours

Figure 4. Conditionally generated character images from unseen
attribute combinations of the SPRITES dataset. An additional
example given in Appendix Figure 14.

5.5. Ablation of local latent variable amortization

In this experiment, we aim to determine whether learning a
global encoder for instance-specific characteristics affects
overall performance positively or negatively in the standard
training setup, where at least some samples of the test sub-
jects are included in the training set. Moreover, we assessed
the generalization abilities of SA-DGBFGP by completely
excluding the training samples of the test subjects from
the training set and comparing its performance to both the
non-finetuned DGBFGP model (denoted as DGBFGP∗) and
fine-tuned DGBFGP that has L additional parameters for
each new subject (Appendix B.1).

Table 5 displays the MSE values across various datasets.
Under our standard training setup, SA-DGBFGP performs
similarly to DGBFGP∗, with only a slight performance
decrease observed in the simulated datasets. However, this
trend does not hold for the Physionet dataset, where semi-
amortization exhibits poor performance. This discrepancy
may be attributed to the amortization gap. When it comes to
generalization abilities, DGBFGP∗ cannot perform as well
as SA-DGBFGP as expected. However, our proposed fine-
tuned DGBFGP outperforms the semi-amortized model.

6. Conclusions
In this work, we introduce a scalable basis-function ap-
proximation for GP-prior VAEs that eliminates the usual
cubic-time bottleneck. By adopting a global parameteri-
zation, our method avoids explicit kernels, runs in linear
time, eliminates the amortization gap, overcomes inducing
point optimization constraints, supports standard mini-batch
training, treats kernel hyperparameters probabilistically, and
enhances latent space interpretability via Sobol indices. On
various datasets, our approach yields markedly better pre-
dictive performance in conditional generation tasks than
current state-of-the-art models. We believe this technique
will prove invaluable for applications involving correlated
samples where accuracy and efficiency are essential.
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A. Other relevant background information
Linear Models. For simplicity and interpretability, one can assume that latent variables z can be modeled as a linear
combination of auxiliary covariates x by a standard linear model:

z = a1x1 + · · ·+ aQxQ + ϵ = Ax+ ϵ,

where aq ∈ RL, A = [a1, . . . ,aQ] ∈ RL×Q and ϵ is a noise that comes from a normal distribution with equal variance
across L dimensions.

It is possible to extend the capabilities of linear models and allow them to model nonlinear relationships by utilizing
nonlinear basis functions. A basis function extension for latent variables using Fourier features was considered in (Ong
et al., 2024).

B. Model details
A covariate component x(r) can correspond to:

• A single continuous variable. In that case, the number of basis functions is B(r) =M (r).

• Two variables (one continuous and one categorical with C(r) many possible values). In that case, the number of basis
functions is B(r) =M (r)C(r).

• A single categorical variable. In that case, the number of basis functions is B(r) = C(r), which in our work is
exclusively used for ID covariate such that C(r) = P .

The associated basis functions are represented as ϕ(x(r)) ∈ RB(r)

. The corresponding weight matrix A(r) is

A(r) =

a
⊤
r1
...
a⊤
rL

 =
[
arlb
]
L×B(r) ,

where l and b represent the lth latent dimension and bth basis function, respectively. The collection of weights of all
components can be represented as

A =
[
A(1) . . . A(R)

]
=
[
a⊤
1l . . .a

⊤
Rl

]
L×Q+ .

Here, Q+ =
∑R

r=1B
(r) indicates the size of the auxiliary covariates after applying basis functions.

B.1. Modeling choice for IDs

In our experiments, we did not model interactions between IDs and a continuous variable due to scalability concerns, as the
number of basis functions would grow to M × P , significantly increasing computational complexity. Instead, we modeled
IDs separately using a diagonal categorical kernel (Appendix Section D.2). Following the model presented in Section 4.3,
the basis functions then correspond to one-hot encodings, and the linear model weights are sampled from the standard
multivariate normal distribution. This approach simplifies the model while maintaining a manageable number of weights.

A trained model cannot be applied directly to a completely new instance with an unseen ID. However, retraining the
entire model from scratch is unnecessary. Since covariates other than the ID are shared across all instances, we only need
to fine-tune additional L parameters to capture instance-specific characteristics for the new ID while keeping all other
parameters fixed.
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C. Derivation of ELBO
Let Ψ = (A,σ, ℓ) be the generic notation for all unobserved random variables and q(Ψ) = q(A,σ, ℓ) = q(A)q(σ)q(ℓ).
We adopted a mean-field approximation and employed the following factorizations for each variational distribution

q(A) =

R∏
r=1

L∏
l=1

q(arl) =

R∏
r=1

L∏
l=1

B(r)∏
b=1

N
(
arlb | µrlb, σ

2
rlb

)
(8)

q(σ) =

R∏
r=1

Lognormal
(
σr | µrσq , σ

2
rσq

)
(9)

q(ℓ) =

R∏
r=1

Lognormal
(
ℓr | µrℓq , σ

2
rℓq

)
. (10)

The derivation of ELBO log p(Y | X) ≥ L(Ψ | X,Y ) is given as follows

L(Ψ | X,Y ) =

∫
q(Ψ) log

pφ(Y | Ψ, X)p(Ψ)

q(Ψ)
dΨ

= Eq(Ψ)[log pφ(Y | Ψ, X)] + Eq(Ψ)[log p(Ψ)]− Eq(Ψ)[log q(Ψ)]

= Eq(A)[log pφ(Y | A,X)]

+ Eq(σ)q(ℓ)q(A)

[
log

p(A | σ, ℓ)
q(A)

]
+ Eq(σ)[log p(σ)] + Eq(ℓ)[log p(ℓ)]

− Eq(σ)[log q(σ)]− Eq(ℓ)[log q(ℓ)]

= Eq(A)

[
N∑

n=1

log pφ(yn | A,xn)

]
− Eq(σ)q(ℓ)[KL(q(A) || p(A | σ, ℓ))]− KL(q(σ) || p(σ))− KL(q(ℓ) || p(ℓ)),

where, in order to estimate Eq(σ)q(ℓ)[KL(q(A) || p(A | σ, ℓ))], we sample σ and ℓ from the corresponding distributions
q(σ) and q(ℓ) and denote these samples as σ̂ and ℓ̂. These values are then substituted into spectral density computation,
which we denote as ŝ. Assuming a single Monte Carlo sample and using the mean-field assumptions from Equations (8)-(10)
as well as closed-form expressions for KL divergencies between normal and log-normal distributions, the ELBO can be
written as follows:

L(Ψ | X,Y ) ≈ Eq(A)

[
N∑

n=1

log pφ(yn | A,xn)

]
−

R∑
r=1

L∑
l=1

B(r)∑
b=1

KL(q(arlb) || p(arlb|σ̂r, ℓ̂r))

−
R∑

r=1

KL(q(σr) || p(σr))−
R∑

r=1

KL(q(ℓr) || p(ℓr))

= Eq(A)

[
N∑

n=1

log pφ(yn | A,xn)

]

−
R∑

r=1

L∑
l=1

B(r)∑
b=1

µ2
rlb + σ2

rlb

2ŝrb
− 1

2
− log

σrlb√
ŝrb

(11)

−
R∑

r=1

σ2
rσq

+ µ2
rσq

− 1

2
− log σrσq −

R∑
r=1

σ2
rℓq

+ µ2
rℓq

− 1

2
− log σrℓq . (12)
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D. Kernels
D.1. Squared exponential kernel

The SE kernel, also known as the Gaussian kernel and the exponentiated quadratic kernel, is a stationary kernel used for
continuous variables. It measures similarity between points based on their Euclidean distance, assuming the modeled
function is smooth. It is formulated as follows:

kse(x, x
′ | σ, ℓ) = σ2 exp(−∥x− x′∥2

2ℓ2
),

where σ2 is the variance determining the magnitude of the variations and ℓ is the length scale determining how quickly
correlation decays with distance. The spectral density of the SE kernel is given by

sse(ω | σ, ℓ) = σ2ℓ
√
2π exp(−ℓ

2ω2

2
).

D.2. Diagonal categorical kernel

The diagonal kernel is a simple kernel used for categorical variables. It measures similarity by checking whether two inputs
belong to the same category. This kernel is formulated as:

kca(x, x
′) =

{
1 if x = x′

0 otherwise.

This kernel assigns a similarity of 1 to inputs from the same category and 0 otherwise. It is used when categories are
independent and no shared structure is assumed between them.

D.3. Zero-sum categorical kernel

The zero-sum kernel is also used for categorical variables. It ensures that the sum of similarities across all categories is zero.
It is defined as:

kzs(x, x
′) =

{
1 if x = x′

− 1
C−1 otherwise,

where C is the total number of categories. This kernel assigns a similarity of 1 for the same category and distributes the
remaining similarity equally among all other categories as − 1

C−1 . It is suitable for modeling categorical variables where
some correlation between different categories is expected while maintaining a sum-to-zero property.

D.4. Other kernels

While our experiments were carried out using the standard kernels described above, it is straightforward to extend the
proposed DGBFGP model to incorporate other kernels as well. The only requirements are that the covariance function for
each continuous covariate is stationary, such that the eigenfunction approximation is valid and the spectral density exists,
and that the covariance function for each categorical covariate is symmetric, such that the matrix eigendecomposition exists.
If a dataset contains non-stationarities, it is still possible to apply the proposed DGBFGP model by using e.g. stationary
kernels with input warpings (Snoek et al., 2014).

E. Semi-amortized DGBFGP
When a new observation arises, we typically do not add additional categories for variables like biological sex. This rule
does not apply to covariates that uniquely identify individuals, such as ID numbers, as each new individual necessarily
brings a brand-new category value. In such a case, we need to re-train the whole model from scratch or, preferably, optimize
additional L parameters as explained in Section B.1. Another approach to tackle the generalization problem is learning a
global function that predicts instance-specific latent variables using AVI while keeping global parameterizations for other
covariates. The generative model remains exactly the same model as in DGBFGP. The only change is in the variational
inference of the instance-specific part of parameters A. Without loss of generality, we assume that the Rth component
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Figure 5. Graphical model of SA-DGBFGP.

in DGBFGP is the component responsible of modeling instance-specific characteristics. Accordingly, this component is
removed from the global parameters and denoted as Z = (z1, . . . ,zP ) in SA-DGBFGP to be treated as a local, amortized,
instance-specific parameter. With a slight misuse of notation, we use A to denote (A(1), . . . , A(R−1)) below. SA-DGBFGP
whose plate diagram given in Figure 5 is expressed as follows:

σr ∼ Lognormal(0, 1)
ℓr ∼ Lognormal(0, 1)

Sr(σr, ℓr) = diag
(
{sse(

√
λm | σr, ℓr}Mm=1

)
A | σ, ℓ ∼

R−1∏
r=1

L∏
l=1

N (arl | 0,Sr(σr, ℓr))

Z ∼
P∏

p=1

N (zp | 0, IL)

Y | A,X ∼
N∏

n=1

pφ(yn | A, zn,xn).,

We assume factorizing variational posterior, q(A,Z,σ, ℓ | Y1) = q(A)qϕ(Z | Y1)q(σ)q(ℓ), where Y1 = {yp
1}Pp=1.1 We

adopt the same mean-field assumptions given in Equations (8)-(10) for global parameters, and for local latent variables, we
make use of the sample belonging to the first time point of an instance and assume the following factorization:

qϕ(Z | Y1) =
P∏

p=1

N (zp | µϕ(y
p
1),σ

2
ϕ(y

p
1)IL).

Therefore, the ELBO objective of SA-DGBFGP becomes:

log p(Y | X) ≥
P∑

p=1

(
np∑
t=1

Eq(A)q(zp|yp
1)
[log pφ(y

p
t | A, zp,xp

t )]

)
− KL(qϕ(zp | yp

1) || p(zp))

− Eq(σ)q(ℓ)[KL(q(A) || p(A | σ, ℓ))]
− KL(q(σ) || p(σ))
− KL(q(ℓ) || p(ℓ)).

We note that using the standard normal distribution as the prior for local latent variables is analogous to predicting global
linear parameters that affect a specific instance based on its first sample. This is because, when using the diagonal categorical

1We also experimented with utilizing all observed time points, but the results were not better than those obtained using only the first
time point.
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kernel defined in Section D.2, both theD and Θ matrices are identity matrices of size C, IC , which activate only the cth

entry that is related to the category c in global parameter vector, a. Hence, we can plug inferred latent variables into our
additive structure without any concern.

F. Experimental details
Since we specified a general Lognormal(0, 1) prior for the lengthscale parameters, we standardized all continuous auxiliary
covariates to have zero mean and unit variance exclusively for training DGBFGP. In contrast, other GP prior VAEs do not
impose a prior on kernel hyperparameters, as these are optimized jointly with the neural network parameters (Jazbec et al.,
2021; Ramchandran et al., 2021). Regardless of the approach, samples are scaled to the range [0, 1] in the Rotated MNIST,
Health MNIST, and SPRITES experiments, while they are standardized in the Physionet experiment.

In all experiments, we used a fixed number of basis functions, M = 10, to approximate continuous kernels. Additionally, for
all experiments, the boundary condition Ω = [−J, J ] was defined such that J is approximately c times half the range of the
corresponding continuous values, following the recommendations in (Riutort-Mayol et al., 2023; Timonen & Lähdesmäki,
2024). The approximation with a finite number of basis functions is expected to be effective as long as J is not too close to
the absolute maximum of the continuous covariate (Riutort-Mayol et al., 2023). Based on this criterion, we set c = 1.5.

We implemented our model using PyTorch (Paszke et al., 2019). Across all experiments and methods, we employed the
Adam optimizer (Kingma, 2014) with a learning rate of 0.001 and a batch size of 256. To ensure stable convergence, the
learning rate was dynamically reduced whenever the validation loss did not improve for a specified number of epochs.
Specifically, the learning rate was scaled down by a factor of 0.5 if no improvement was observed for 10 consecutive epochs.
Additionally, early stopping was employed to prevent overfitting, and the final model for each experiment was selected
based on the best performance on the respective validation set.

In the remainder of this section, we provide detailed specifications for each experiment. We denote the additive components
utilizing different covariance functions as follows: fse(·) for the SE kernel, fse×ca(·) for the interaction of SE and CA
kernels, and fca(·) for the CA kernel which is applied exclusively to the id covariate, when applicable.

F.1. Rotated MNIST

For the validation and test sets, we randomly selected 80 distinct instances and randomly sampled four consecutive angles
for every instance. The remaining samples were allocated to the training set. As a result, the training set comprises
Ntrain = 5, 760 samples, while both the validation and test sets contain Nval = Ntest = 320 samples each.

For the Rotated MNIST experiment, we modeled the latent space using the following additive kernel structure:

f = f (1)ca (id) + f (2)se (angle).

In contrast, LVAE (Ramchandran et al., 2021) employed a more complex setup that incorporates an additional component
that models interactions between id and the continuous angle covariate, fse×ca(angle× id), as this configuration was
reported to be the most effective in the original work (Ramchandran et al., 2021).

The maximum number of epochs for this experiment was set to 2, 000.

F.2. Health MNIST

The kernel structure for the Health MNIST experiment was defined as:

f = f (1)ca (id) + f (2)se (time) + f
(3)
se×ca(time× gender) + f

(4)
se×ca(diseaseTime× disease).

Similarly, as in the Rotated MNIST experiment, LVAE used an additional interaction component fse×ca(time× id).

The maximum number of epochs for this experiment was also set to 2, 000.
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F.3. Physionet

For the Physionet experiment, our model utilized the following kernel structure:

f =f (1)ca (id) + f (2)se (time) + f
(3)
se×ca(time× ICUtype)

+ f
(4)
se×ca(time× gender) + f

(5)
se×ca(time×mortality),

whereas LVAE included an additional interaction term, fse×ca(time× id).

The maximum number of epochs for this experiment was set to 1, 000.

F.4. SPRITES

For the SPRITES experiment, both our model and LVAE used the same kernel structure:

f =f (1)se (time) + f
(2)
se×ca(time× skin) + f

(3)
se×ca(time× bottom)

+ f
(4)
se×ca(time× top) + f

(5)
se×ca(time× hair)

+ f
(6)
se×ca(time× action) + f

(7)
se×ca(time× direction).

The maximum number of epochs for this experiment was set to 100.

G. Neural network architectures
We present neural network architectures employed across different experiments. Table 6 details the convolutional neural
network (CNN) architecture used for the Rotated MNIST experiment; it is similar to the one in (Casale et al., 2018),
with minimal modifications. Likewise, Table 7 outlines the CNN architecture used for Health MNIST, closely following
(Ramchandran et al., 2021). Table 8 describes the multi-layer perceptron (MLP) architecture employed for the Physionet
experiment, and Table 9 shows the CNN-based architecture from (Jazbec et al., 2021) with a minor alteration in the final
activation layer. In CNN-based architectures, we use a sigmoid activation function in the last layer of the generative network,
which is better suited to our pre-processed data. By contrast, for the MLP-based architecture, we omit an activation function
in the final layer because the processed data are not bounded.

Table 6. Neural network architecture used in Rotated MNIST experiment

Hyperparameter Value

Inference network

Dimensionality of input 28× 28
Number of convolution layers 3
Number of filters per convolution layer 72
Kernel size 3× 3
Stride 2
Number of feedforward layers 1
Width of feedforward layers 128
Dimensionality of latent space L
Activation function of layers ELU

Generative network

Dimensionality of input L
Number of transposed convolution layers 3
Number of filters per transposed convolution layer 72
Kernel size 3
Stride 2
Number of feedforward layers 1
Width of feedforward layers 128
Activation function of layers ELU, Sigmoid
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Table 7. Neural network architecture used in Health MNIST experiment

Hyperparameter Value

Inference network

Dimensionality of input 36× 36
Number of convolution layers 2
Number of filters per convolution layer 16, 32
Kernel size 3× 3
Stride 1
Pooling Max pooling
Pooling kernel size 2× 2
Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 300, 30
Dimensionality of latent space L
Activation function of layers RELU

Generative network

Dimensionality of input L
Number of transposed convolution layers 2
Number of filters per transposed convolution layer 16
Kernel size 4× 4
Stride 2
Number of feedforward layers 2
Width of feedforward layers 30, 300
Activation function of layers RELU, Sigmoid

Table 8. Neural network architecture used in Physionet experiment

Hyperparameter Value

Inference network

Dimensionality of input 36
Number of feedforward layers 2
Width of feedforward layers 300, 30
Dimensionality of latent space L
Activation function of layers RELU

Generative network

Dimensionality of input L
Number of feedforward layers 2
Width of feedforward layers 30, 300
Activation function of layers RELU

Table 9. Neural network architecture used in SPRITES experiment

Hyperparameter Value

Inference network

Dimensionality of input 3× 64× 64
Number of convolution layers 6
Number of filters per convolution layer 16
Kernel size 3× 3
Stride 1,2
Dimensionality of latent space L
Activation function of layers ELU

Generative network

Dimensionality of input L
Number of convolution layers 6
Number of filters per convolution layer 16
Kernel size 3× 3
Stride 1
Activation function of layers ELU, Sigmoid
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H. Additional results and comparisons

Ground
truth

SVGP-VAE

LVAE

SGP-BAE

L-NODE

Ours

Figure 6. Conditionally generated images of three different test instances at unseen rotation angles in Rotated MNIST experiment.
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Figure 7. Test MSE as a function of M in the Rotated MNIST experiment.

19



Bayesian Basis Function Approximation for Scalable Gaussian Process Priors in Deep Generative Models

0 2 4 6
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z

f
(1)
ca (id), SI = 0.48

ID: 1

ID: 107

ID: 294

ID: 399

0 2 4 6

f
(2)
se (angle), SI = 0.52

Angle

Figure 8. Example learned latent functions in the Rotated MNIST experiment along with normalized Sobol indices averaged over L = 16
dimensions.

Table 10. Run time comparison of GP prior VAEs per epoch in terms of seconds.

Method Rotated MNIST Health MNIST Physionet SPRITES

LVAE (Ramchandran et al., 2021) 7.7± 0.1 34.9± 0.4 85.2± 0.9 88.3± 0.5
SVGP-VAE (Jazbec et al., 2021) 1.8± 0.1 13.6± 0.5 80.7± 0.5 35.9± 0.6
DGBFGP (our work) 0.5± 0.0 12.5± 0.2 13.1± 0.1 10.2± 0.4
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Angle
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Figure 9. t-SNE embedding of the latent variables of the Rotated MNIST data.
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Figure 10. Conditionally generated images of two different test instances for future prediction on the Health MNIST dataset.
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Figure 11. Test MSE as a function of M in the Health MNIST experiment.

22



Bayesian Basis Function Approximation for Scalable Gaussian Process Priors in Deep Generative Models

Gender 0 Gender 1 All Genders

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Healthy Unhealthy

Figure 12. t-SNE embedding of the latent variables of the Health MNIST data, with the color bar representing the diseaseT ime covariate.
This covariate is applicable exclusively to unhealthy subjects.
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Figure 13. Example learned latent functions in the Physionet experiment along with normalized Sobol indices averaged over L = 32
dimensions.
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Figure 14. Additional example of generated character images from unseen combinations of the SPRITES dataset.
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Figure 15. Example learned latent functions in the SPRITES experiment along with normalized Sobol indices averaged over L = 64
dimensions.
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