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ABSTRACT

To reduce generalization loss in line with the bias-variance trade-off, machine
learning engineers should construct models based on their knowledge of the mod-
eling target and, as training data increases, choose more flexible models with re-
duced dependence on that knowledge. To achieve this automatically, methods
have been proposed to determine the amount of model’s assumed prior knowledge
directly from training data, rather than relying solely on an engineer’s intuition. A
widely studied approach involves using both a flexible model and a knowledge-
dependent simulator, selectively incorporating simulator-generated data into the
flexible model’s training data. While neural networks have been used as flexi-
ble models, Gaussian Processes (GPs) are also candidates due to their flexibility
and ability to output prediction uncertainty. However, direct methods for adding
simulator-generated data to GPs training data remain unstudied. The SoD method,
the closest alternative, often adds inappropriate data due to its assumption about
the true distribution. On the other hand, the log marginal likelihood is a theoreti-
cally grounded metric when viewed as a model selection criterion for incorporat-
ing data generated from a simulator into the training data. However, calculating
this metric for GPs is computationally expensive. To overcome this, we propose
a faster method computing log marginal likelihood by considering the Cholesky
factor and matrix element dependencies. Experiments indicate that metrics using
log likelihood outperform SoD and other basic methods.

1 INTRODUCTION

One of the ultimate objectives of machine learning models is to reduce generalization loss. Ac-
cording to the bias-variance trade-off, the generalization loss, when employing Mean Squared Error
(MSE) as the loss function, can be decomposed into terms of bias and variance. There is a trade-
off between bias and variance, with very flexible models having low bias and high variance, and
relatively rigid models having high bias and low variance. The model with the optimal predictive
capability is the one that leads to the best balance between bias and variance (Bishop & Nasrabadi
(2006)).

The strength of a model’s rigidity or assumptions can either be determined manually by AI engineers
or adjusted automatically from data. The latter is likely to achieve a more appropriate balance. There
are two categories of methods to automatically adjust the strength of model assumptions from train-
ing data. The first category embeds assumptions directly into the model, adjusting their strength as
hyperparameters. The second category involves preparing a separate model with strong assumptions
and adjusting its influence on the main model. The specific methods of the former include L1 reg-
ularization, L2 regularization, and recent Physics-Informed Neural Networks(Raissi et al. (2019)).
While this category of methods is applicable to parametric models, it is difficult to apply to non-
parametric models like GPs mentioned later. The specific methods of the latter category include
Auto Data Augmentation (Cubuk et al. (2019; 2020); Ho et al. (2019); Lim et al. (2019)) (for more
details, see Appendix A.4) and selectively adding generated data from simulators to training data.
Since this category controls the strength of assumptions not through the model’s loss function but
through training data, it can be applied whether the model is parametric or non-parametric. Within
this category, although Auto Data Augmentation is efficient, the knowledge transferred from the
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simulator must be expressed in the form of a policy. On the other hand, the method of selectively
adding generated data has no restrictions on the format of the applicable simulator. Hence, we focus
on the latter method of selectively adding generated simulator data to the training data.

When adjusting the strength of a model’s assumptions, a flexible model with fewer assumptions is re-
quired as the prediction model before increasing the model’s assumptions. In previous research, neu-
ral networks have been used as such models. While neural networks are powerful predictive models,
their predictions are essentially point estimates, making it challenging to determine how much con-
fidence to place in those predictions. Consequently, in recent years, GPs with deep structures repli-
cating neural networks or CNNs have been proposed (Duvenaud (2014); Van der Wilk et al. (2017);
Wilson et al. (2016)). GPs generate predictions along with confidence levels, offering a method that
indicates how much trust can be placed in the predictions. By devising the kernel functions of the
GPs, one can replicate deep learning models such as fully connected layers or CNNs. Research
is advancing on models that retain the predictive power of neural networks while also providing a
measure of prediction reliability. A drawback of GPs is their computational intensity, but as we will
discuss later, this research alleviates that. In summary, if we can use GPs instead of neural networks
as the predictive model before increasing model assumptions, we can develop a method that can
automatically adjust the model’s assumptions and also understand the reliability of the predictions.

However, a direct method of selectively adding simulator-generated data to training data when using
GPs as the predictive model has not been studied. The closest approach is a technique called Subset
of Data (SoD). SoD addresses the problem that GPs take a long time to compute because they
use all the training data for each prediction by reducing the training data to only essential data. The
criterion for selecting important data is the diversity of the training data. Various methods to measure
this diversity have been proposed (Seeger et al. (2003); Lawrence et al. (2002); Lalchand & Faul
(2018)). For more details, see Appendix A.1.

However, when using the diversity within training data as a criterion to selectively add simulator-
generated data to the training data, data that deviates from the training data tends to be selected
from the simulator-generated data. This may lead to preferentially adopting parts of the simulator’s
generation distribution that deviate from the true distribution, which in turn could potentially degrade
the predictions of the GPs.

Bias-variance trade-off cannot be directly measured because we do not have knowledge of the true
underlying distribution. Instead, we rely on indirect metrics. One such metric is the log marginal
likelihood, which assesses the model’s fit to the data and the balance of complexity as discussed
in (Bishop & Nasrabadi (2006)). Optimizing the log marginal likelihood indirectly contributes to
achieving a favorable balance between bias and variance. Therefore, we propose using the negative
log marginal likelihood1 of the GPs as a criterion when selectively adding simulator-generated data
to the training data. The negative log marginal likelihood is a metric that measures the model’s fit to
the training data and has a theoretical foundation that it matches, on average, the Kullback–Leibler
(KL) divergence between the true distribution and the model’s distribution. For more details, see
Appendix G, H and (Shlens (2007)). Furthermore, evaluating each candidate training data point
using the negative log marginal likelihood can be time-consuming, so we propose a method for fast
computation by considering the Cholesky update and the dependencies between matrix elements.
Specifically, using our method, the computational cost to select generated data to add to the training
set can be reduced from O(M3N +M2N2 +MN3) to O(M2N +MN2) where N is the number
of true training data and M is the number of data generated by the simulator.

The contributions of this research are as follows:

1. We proposed using the negative log marginal likelihood of the GPs as a criterion when
selectively adding simulator-generated data to the training data.

2. We proposed an algorithm to efficiently compute the negative log marginal likelihood when
selecting training data.

1While the terms ’negative’ and ’log’ in ’negative log marginal likelihood’ can be added as needed during
optimization, for simplicity in this paper, it may also be referred to as ’marginal likelihood’. Additionally, the
’negative log marginal likelihood’ is sometimes called ’type II likelihood’ or ’free energy’.
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2 METRICS

The aim of this study was to achieve an optimal balance between data and knowledge. The proposed
approach employs GPs as a data-driven method and simulators as knowledge-driven models. To
assess this optimal balance, we use the log marginal likelihood of the model as a metric, which
approximates the KL divergence between the predictive distribution and the true distribution. (For
an explanation of the approximation, refer to Appendix G) The method of achieving this balance
involves sampling data from the simulator and adding it to the GPs’ training data while checking
the metric. We anticipate that if the simulator deviates significantly from the true distribution, or if
there is already sufficient training data, adding that data to the GPs won’t increase the log marginal
likelihood. Consequently, such data would be rejected, resulting in a balanced distribution between
the data and knowledge.

The process of the proposed method is straightforward. First, the hyperparameters of the GPs are
learned using training data. Next, data (x, y) is sampled from the generative model2 and added to
the training data of the GPs. We measure the log marginal likelihood of the GPs, and if it improves,
we accept the sampled data as valid training data, otherwise, we discard it. This process is repeated
until no continuous improvement is observed or until all generated data has been examined. The
GPs that possess both the original training data and the accepted generated data serve as our final
prediction model.

In Section 2.1, we derive the marginal likelihood when adding the training data candidates generated
from the simulator. In Section 3, we propose a method to quickly compute that marginal likelihood.

2.1 MARGINAL LIKELIHOOD OF GPS WHEN SYNTHETIC DATA IS ADDED

We define the symbols as follows: x ∈ Rd is a random variable, XN = (x1,x2, . . . ,xN ) are N
independent random variables following the same distribution, y ∈ R1 is a random variable, and
yN = (y1, y2, . . . , yN ) are N independent random variables following the same distribution. Let
(XN ,yN ) be the training data and (Xm∗

,ym∗
) be the m training data candidates generated from

the simulator. Note that M is the total number of data generated from the simulator, and m is
the number of training data candidates generated by the simulator up to the current step, as data is
greedily added to the training set. We also denoted the star in (Xm∗

,ym∗
) to explicitly indicate that

it is not a sample from the true distribution.

As we mentioned at the beginning of Section 2, in order to evaluate samples from the generative
model, we determine the marginal likelihood of the GP when such a sample is added. The negative
log marginal likelihood (the free energy) of the discriminative model when pseudo data is added
was Fm∗ = − log p(yN |XN ,ym∗

,Xm∗
). (Refer to Appendix H for the derivation.) In the case of

GPs, since the predictive distribution can be analytically determined (see Appendix I), the marginal
likelihood p(yN |XN ,ym∗

,Xm∗
) is also trivially obtained. To define the notation, let’s express the

joint distribution of synthetic data and training data as follows:
x1∗

3 · · ·xm∗ x1 · · ·xN

y1∗ 0 x1∗

ym∗ 0 xm∗

y1 0 x1

yN 0 xN

∼ N ,

Km∗ + σ2I4 KN,m∗

KT
N,m∗ KN + σ2I
















. (1)

Here, each K is the kernel of the corresponding rows and columns of x. Using this notation, the
free energy when synthetic data is added as training data is expressed as p(yN |XN ,ym∗

,Xm∗
) =

N (KT
N,m∗ [Km + σ2I]−1ym∗

, [KN + σ2I]−KT
N,m∗ [Km + σ2I]−1KN,m∗).

2In this paper, the terms ’simulator’ and ’generative model’ are used interchangeably.
3x1∗ . . .xm∗ ,x1 . . .xN represent the input variables for the kernel function that constructs the covariance

matrix.
4Different-sized identity matrices appear in the paper, but the size is easily inferred from the context, so

they are all uniformly denoted as I.
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Next, as a metric to determine whether to add the m+1-th data to where m pieces of synthetic data
have been adopted, we will explain the free energy when the m+1-th synthetic data is added. Let’s
define the notation of the covariance matrix by adding xm+1∗ to Equation 1 as follows:

x1∗ · · ·xm∗ xm+1∗ x1 · · ·xN

y1∗ 0 x1∗

ym∗ 0 xm∗

ym+1∗ 0 xm+1∗

y1 0 x1

yN 0 xN

∼ N ,

Km+1∗ + σ2I KN,m+1∗

KT
N,m+1∗ KN + σ2I
















. (2)

At this time, the free energy can be simply extended as: Fm+1∗ = − log p(yN |XN ,ym∗
,Xm∗

) =
− logN (KT

N,m+1∗ [Km+1∗ +σ2I]−1ym+1, [KN +σ2I]−KT
N,m+1∗ [Km+1∗ +σ2I]−1KN,m+1∗).

For subsequent sections, let’s expand the content of the free energy as follows:

Fm+1∗ =
1

2

(
yNµm+1

)T
Σ−1

m+1

(
yN − µm+1

) 1
2
log |Σm+1| −

N

2
log 2π, (3)

µm+1 = KT
N,m+1∗ [Km+1∗ + σ2I]−1ym+1, (4)

Σm+1 = [KN + σ2I]−KT
N,m+1∗ [Km+1∗ + σ2I]−1KN,m+1∗ . (5)

The overall procedure of the algorithm is to randomly draw a generated data in sequence and for-
mally add the m+1-th generated data to the training data if Fm+1∗ < Fm∗ , and discard it otherwise.
Section 3 will explain an algorithm to perform this evaluation quickly.

3 AN ALGORITHM FOR REDUCING THE COMPUTATIONAL COST OF FREE
ENERGY UPDATE

In order to rapidly compute equation 3, there are two challenges. The first one is to compute
K−1

m+1∗ + σ2I in the mean (Equation 4). Though the computation of K−1
m+1∗ + σ2I can be ef-

ficiently determined through the Cholesky decomposition Km+1∗ + σ2I = Lm+1L
T
m+1 (where

Lm+1 is an (m+1)× (m+1) lower triangular matrix), the computational cost of obtaining Lm+1∗

still remains O(m3). Hence, the total computational cost, even if pseudo-samples are adopted every
time, amounts to O(M4) for incorporating M data points. This makes the computation challeng-
ing. However, by utilizing Lm from the previous step, the computation of Lm+1 can be achieved
in O(m2), and the total computational cost can be kept within O(M3). This technique is called
Cholesky Update (Osborne (2010)). For other existing acceleration techniques, refer to Appendix
A.3. The second one is that the inverse matrix of the free energy variance-covariance matrix, Σ−1

m+1,
appearing in the first term on the right side of Equation 3, requires a matrix multiplication cost of
O(m2N + mN2) and O(N3) for the inversion even when the efficiently updated Lm+1 is used
(Osborne (2010)). Thus, the total amounts to O(M3N +M2N2 +MN3), exceeding the allowable
range. However, we propose a new algorithm which passes through the Cholesky decomposition
of the variance-covariance matrix Σm+1 = Vm+1V

T
m+1, and reuses Vm from the previous step

for calculating Vm+1
5. The algorithm achieves a computational complexity of O(mN + N2) per

step, with a total cost of O(M2N + MN2), keeping it within the quadratic order for N. Once the
Cholesky factor Vm+1 is determined, the second term |Σm+1| in Equation 3 can also be immedi-
ately computed.

5Osborne (2010) proposed an efficient method to compute Lm+1 from Lm in O(m2) for the Cholesky
factor Km+1∗ + σ2I = Lm+1L

T
m+1. In contrast, we propose an efficient method to derive Vm+1 from Vm

in O(mN +N2) for Σm+1 = Vm+1V
T
m+1.
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3.1 COMPUTING K−1
m+1∗ + σ2I

First, we explain how to efficiently compute the Cholesky factor Lm+1 of K−1
m+1∗ + σ2I from

Lm. Km+1∗ , as shown in Equation 6, possesses a structure extended by the kernel vector km+1∗

and scalar km+1∗ due to the added pseudo-data xm+1∗ to the covariance matrix Km∗ prior to the
addition:

x1∗ · · ·xm∗ xm+1∗

x1∗

xm∗

xm+1∗ kT
m+1∗ km+1∗

Km+1∗ + σ2I =
Km∗ km+1∗

+σ2I.


 (6)

Here, we block partition the Cholesky factor Lm+1 into three regions in the same manner:

1 · · ·m m+ 1
1

m

m+ 1 lT21 l22

Lm+1 =
L11 0


. (7)

Using the Cholesky factor update relations from Osborne (2010), Lm+1 can be efficiently obtained
using Lm as follows:

L11 = Lm, (8)
l21 = Lm\km+1∗ , (9)

l22 =
√
km+1∗ + σ2 − lT21l21. (10)

Here, l21 = Lm\km+1∗ is obtained by solving the equation Lml21 = km+1∗ for l21. This compu-
tation can be efficiently performed in O(m2) using back-substitutions (Seeger (2004)). The compu-
tational cost of the cholesky factor update (equations 8, 9, 10) is dominated by equation 9, and as a
result, Lm+1 can be computed from Lm in O(m2). Once Lm+1 is determined, the mean term (equa-
tion 4) (Lm+1L

T
m+1)

−1ym+1∗ can also be computed in O(m2) by performing back-substitution
twice.

3.2 COMPUTING INVERSE OF COVARIANCE MATRIX Σ−1
m+1

Once the Cholesky factor Σm+1 = Vm+1V
T
m+1 is obtained, the first term in equation 3 can be

computed by back-substitution in O(N2), and the second term, which is the product of the diagonal
components of the Cholesky factor, can be computed in O(N). Here, we describe a method to
efficiently compute Vm+1 using Vm.

The covariance matrix can be transformed as follows:

Vm+1V
T
m+1 = [KN + σ2I]−KT

N,m+1∗ [Km+1∗ + σ2I]−1KN,m+1∗ (11)

= [KN + σ2I]−KT
N,m+1∗

(
Lm+1L

T
m+1

)−1
KN,m+1∗ (12)

= [KN + σ2I]−
(
L−1
m+1KN,m+1∗

)T (
L−1
m+1KN,m+1∗

)
. (13)

Here, if we let L−1
m+1KN,m+1∗ = Am+1, we want to show that it actually has the structure:

Am+1 =

 Am

aTm+1

. (14)
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Upon rearranging terms, it can be written as Lm+1Am+1 = KN,m+1∗ . The explicit structures of
Lm+1 and KN,m+1∗ can be represented as follows: Lm

lTm+1

Am+1 =

KN,m∗

kT
N,m+1

. (15)

When solving this for each column of Am+1 using the back-substitution method, it is observed that
the components of each column are only influenced by the components above them in Lm+1 and
KN,m+1∗ . Therefore, the influences of lTm+1 and kT

N,m+1 are limited to the final row, resulting in
the form described in Equation 14. Here, the nth component of aTm+1, am+1,n, is defined as follows.
Let lTm+1 = (lTm+1,≤m|lm+1,m+1), the vector excluding the last element am+1,n of the nth column
of Am+1 be am,n, and the nth component of kT

N,m+1 be km+1,n. Then,

am+1,n =
1

lm+1,m+1

{
km+1,n − (lTm+1,≤mam,n)

}
(16)

can be obtained.

The second term of Equation 13 is expressed as AT
m+1Am+1, but by leveraging the structure of

Equation 14, it can be separated into AT
m+1Am+1 = AT

mAm + am+1a
T
m+1. Substituting this in,

we get

Vm+1V
T
m+1 = [KN + σ2I]−

(
AT

mAm + am+1a
T
m+1

)
. (17)

From Equation 13, it is known that [KN + σ2I]−
(
AT

mAm

)
= VmVT

m, hence

Vm+1V
T
m+1 = VmVT

m − am+1a
T
m+1 (18)

holds true. With this form, the rank-one downdate (Seeger (2004)) can be utilized to update from
Vm to Vm+1 with a computational complexity of O(N2). The derived algorithm is summarized in
Algorithm 1 in Appendix B.

4 EXPERIMENTS

4.1 COMPARISON WITH OTHER METHODS

Firstly, in order to measure the accuracy of the proposed method in regression, we compare the mean
squared error (MSE) with existing methods. The first dataset utilizes one-dimensional artificial data.
We aim to replicate a scenario where we can obtain training data from the true distribution and data
from a partially correct custom simulator. For specific examples of situations where this occurs,
refer to Appendix C. In this experiment, the distributions of the true and the simulator are given by
the following equations:

True : 4 cos (1.5x) exp (−0.1x) + 4 arctan(x− 10) +N (0, 0.5),

Sim. : 4 cos (1.5x) + 4 arctan(x− 10) +N (0, 0.5).

It is assumed that during the simulator’s construction, the existence of the decay term exp (−0.1x)
was not recognized. The proposed algorithm aims to selectively incorporate only the matching
data from simulator data into the training data. In our experiments, we utilize three types of data:
training data, simulation data, and test data. To ensure these data sets do not overlap, they were
constructed as follows: From the true distribution, 2000 data points were generated, and randomly
50, 100, 200, . . . , 900 points were chosen as training data. From the remaining data, 1000 data points
were randomly selected as test data. As simulator data, 10000 data points were generated from the
simulation distribution. In most of our experiments, we repeated the experiment 10 times, reporting
the average and standard deviation. The training and test data were reselected randomly from the
2000 data points generated from the true distribution in each trial.
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(a) 1d data (b) 8d data (c) Concrete compressive strength

Figure 1: Comparison of the proposed method (NML) with other methods

The second dataset is eight-dimensional synthetic data. The distributions for the true and the simu-
lator are as follows:

True : 4 cos 1.5x1 + 3 sin 0.5x2 + 4x3 + (x4 − 5)2 + 3 cos 3x5 + 3 sinx6 + x2
7 − (x8 − 15)2

+150 exp (−(x1 − 10)2) +N (0, 1.0),

Sim. : 4 cos 1.5x1 + 3 sin 0.5x2 + 4x3 + (x4 − 5)2 + 3 cos 3x5 + 3 sinx6 + x2
7 − (x8 − 15)2

+N (0, 1.0).

The methods for generating training data, simulation data, and test data are the same as for the one-
dimensional data mentioned above. However, to reduce learning time in the eight-dimensional data,
we generated and used 1000 data points as simulation data. For details on the kernel and training
parameters, refer to Appendix D.

The third dataset used is real-world data. We evaluated our method using the concrete compres-
sive strength dataset, a standard dataset in regression tasks (Yeh (2007)). The concrete compressive
strength dataset aims to predict the target variable, concrete compressive strength, using eight ex-
planatory variables related to materials. As for data generated from a simulator, out of 500 datasets,
the target variable was modified to be +20 from its original value for 3/4 of the data, while the
remaining 1/4 were kept as the original data. This simulates a scenario where a simulator tends to
overestimate the concrete compressive strength due to some factors. The number of training data
points was set at 100, 200, 300, 400, and the test data comprised 100 data points. For details on the
kernel and training parameters, refer to Appendix E.

As comparative methods, in addition to the standard GPs, we implemented a method using anomaly
detection as a naive benchmark and SoD (Lalchand & Faul (2018)). Lalchand & Faul (2018) de-
scribed in Appendix A.1, promote diversity of training data. The termination condition was set to
accept until half of all simulator data were accepted. The method using anomaly detection is a naive
approach that excludes outliers in the simulator using a GP trained on true training data. The cri-
terion for determining if it’s an outlier is calculated by feeding all input data X from the simulator
to the GP to predict its distribution and then using the likelihood of all the output data y from the
simulator. If the likelihood is below a certain threshold, it is considered an outlier and is not added to
the training data. The threshold was selected from (0.2, 0.4, 0.6, 0.8, 1.0) through cross-validation.
This method can be seen as not sequentially adding simulator data to training data in the proposed
method, and also measures the significance of sequential addition.

Figure 1 shows the results of comparing the accuracy of regression predictions on three datasets. The
horizontal axis of each graph represents the number of real training data used for learning, while the
vertical axis represents MSE on test data, with a lower value being better. The solid lines represent
the average of 10 trials for each method, and the shaded regions represent the standard deviation. For
both datasets, improvements were observed with the proposed method, negative marginal likelihood
(NML), compared to the Plane GP. As can be seen in Section 4.2, this is because only beneficial data
from the simulator-generated data were added to the training data. On the other hand, SoD showed
a reduction in MSE compared to Plane GP. As discussed in Section 4.2, this is likely because SoD
prioritized diversity, leading to the inclusion of simulator-generated data that is distant from the
training data and deviates from the true distribution.

7
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Figure 2: Impact of the difference between the training data candidate distribution and the true
distribution on the MSE of each method.

(a) NML (b) SoD

Figure 3: Data adopted for training from the training data candidates. The x-axis represents x and
the y-axis represents y. Predictive Mean Plane and Predictive Std Plane are the average and standard
deviation of Plane GP predictions. Predictive Mean Added and Predictive Std Added are the average
and standard deviation of predictions for NML or SoD. Accepted Data are those adopted from the
training data candidates, and the gray points were not adopted.

4.2 LIMITATION OF MARGINAL LIKELIHOOD

We aim to clarify the effective range of marginal likelihood and SoD. Specifically, unlike our pro-
posed method which doesn’t require training data to be from the true distribution, SoD assumes it
is. We seek to understand the effects on both methods when training data diverges from the true
distribution.

To this end, we altered the distance between the simulator distribution and the true distribution,
observing the prediction accuracy of each method. Specifically, the true and simulator distributions
were set as follows:

True : sin (x) + arctan(x− 10) +N (0, 0.5)

Sim. : a× sin (x) + arctan(x− 10) +N (0, 0.5)

Here, a is an experimental parameter to adjust the distance between the simulator and true distribu-
tions. In this experiment, a = [1, 2, 3]. When a = 1, the training data candidates are assumed to
be sampled from the true distribution, and as a increases, the distribution of training data candidates
diverges from the true distribution. The number of true training data was set to 50, the number of
training data candidates generated from the simulator was 1000, and the number of test data was
1,000. We resampled all this data 10 times and showed the average and standard deviation of MSE
on a graph. For details on the kernel and training parameters, refer to Appendix E.

The results are shown in Figure 2. First, when a = 1 and the distributions of training data candi-
dates and the true distribution match, both NML and SoD had a lower MSE than Plane GP. Among
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them, SoD had a lower MSE than NML. This suggests that the diversity of training data in the SoD
approach is important under this condition. However, as a increases to 2 and 3, and the training
data candidate distribution deviates from the true distribution, the MSE of SoD increases, while the
MSE of NML remains smaller than Plane GP. For a = 3, data included in the training data from the
training data candidates and data that was rejected are visualized in Figure 3.

As SoD aims to enhance the diversity of training data, it accepts training data candidates that deviate
from the true distribution that training and test data follow, resulting in a deterioration in MSE due
to the predictions being influenced by these data. On the other hand, NML mainly accepts training
data candidates close to the true distribution, leveraging the correct part of the simulator distribu-
tion, arctan(x − 10). Accepting only the beneficial parts and stopping there implies that we have
achieved our original goal, which was to automatically adjust the strength of the model’s assump-
tions, that is, to find an appropriate balance between the strong assumptions of the simulator and the
lax assumptions of the GPs. From these results, when training data deviates from the true distribu-
tion and aligns with simulator-generated data, using marginal likelihood to fit training data can yield
samples close to the true distribution, benefiting prediction tasks. In contrast, the SoD metric, focus-
ing on training data diversity, can include data far from the true distribution in simulator-generated
data, negatively impacting predictions.

4.3 COMPUTATION TIME

Figure 4: Computational Time

We experimentally verify the computational complexity
reduction effect of the proposed method. We compare
the method that goes through the Cholesky decompo-
sition of the covariance matrix proposed in Section 3
Σm+1 = Vm+1V

T
m+1 with the method that does not.

The CPU was an Intel CORE i7 vPro 8th Gen, and 32GB
memory was used. The results are shown in Figure 4. The
horizontal axis represents the number of training data N ,
and the vertical axis represents the time taken for learn-
ing in hours. With the proposed computational technique,
the increase in computational time is gradual even as the
number of training data increases, while without it, there
is a sharp increase. This result confirms that the compu-
tational time order of the conventional method is O(N3),
whereas the computational time order of the proposed
method is O(N2). Furthermore, the gentle increase in computational time of the proposed method
suggests that the coefficient of O(N2) is small.

5 CONCLUSION

We propose using the negative log marginal likelihood of the GPs as a criterion when selectively
adding simulator-generated data to the training data in order to adjust the extent to which prior
knowledge is incorporated into GPs. Through experiments, it was confirmed that the proposed
method extracts only the correct knowledge from the simulator and improves the MSE. By only
accepting the beneficial components and halting, we have effectively balanced the strong assump-
tions of the simulator with the lenient assumptions of the GPs, achieving our original objective.
Moreover, by taking into account the Cholesky factor and the dependency of matrix elements, We
proposed an algorithm that reduces the computational cost of selecting training data candidates from
O(M3N+M2N2+MN3) to O(M2N+MN2). As a limitation, the algorithm we proposed is spe-
cialized for regression models with Gaussian likelihood, and its extension to classification models
and other likelihood models is not straightforward. We are planing to address this in the future.
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A RELATED WORKS

A.1 SUBSET OF DATA

Subset of Data (SoD) is a method that selects important data from candidate training data for GPs.
By generating training data candidates from simulators built using domain knowledge, the extent of
domain knowledge reflection into GPs can be adjusted by determining which data and how much
of it is included in the training data. SoD evaluates the training data candidates based on a metric
and greedily adds the highest-ranked ones. The metric for selecting important data is the diversity
of the training data (Seeger et al. (2003); Lawrence et al. (2002); Lalchand & Faul (2018)). Various
methods to measure this diversity have been proposed. Lawrence et al. (2002) uses the difference in
entropy between predictive distributions with and without a specific training data point as its metric.
Seeger et al. (2003) uses the KL divergence between predictive distributions with and without a spe-
cific training data point. Lalchand & Faul (2018) employs its unique diversity metric. Specifically,
when predicting with a GPs using the already accepted training data, they add data candidates to
the training set where the sum of the squared error and the prediction uncertainty is large. As the
training data candidates move farther from the already adopted training data, both the prediction
squared error and uncertainty increase. Thus, candidates that enhance the diversity of the training
data are chosen. These methods assume that training data candidates are sampled from the true
distribution and can ensure diversity within the training set. However, in the context of adjusting
the amount of domain knowledge introduced, training data candidates are sampled from simulators
using domain knowledge, which means there could be regions that deviate from the true distribu-
tion. Consequently, data deviating from the true distribution might be prioritized, causing predictive
distributions to diverge. Lawrence et al. (2002) employs a method using GPs classification, while
Seeger et al. (2003) uses a sparse GPs method. Given this, we choose Lalchand & Faul (2018),
which can be directly applied to standard GPs regression, to represent the SoD method and compare
it with our proposed method in experiments.

A.2 SPARSE GAUSSIAN PROCESSES

similarly to the Subset of Data, there are methods to generate a small number of pseudo-
training data for reducing the training data. Some of these methods, like the proposed approach,
use the log marginal likelihood as a metric to generate pseudo-training data (Titsias (2009);
Snelson & Ghahramani (2005)). However, none of these compute the exact log marginal likeli-
hood. For example, (Titsias (2009)) developed sparse GPs to reduce training data by substituting
the Gaussian process model from p(f |X) to p(f |fm), avoiding direct dependency of function values
f on the training data X, rather relying of function value fm on the pseudo data. This change in the
model altered the formula for marginal likelihood, which could not be computed quickly, leading to
the use of a lower bound of marginal likelihood as the metric instead (Titsias (2009)). On the other
hand, in our intended applications, all training data are available, so there is no need to alter the
marginal likelihood. Our proposed acceleration method allows us to use the exact log likelihood as
the metric. Similarly, (Snelson & Ghahramani (2005)) also uses an approximation of the marginal
log likelihood, not the exact value, as the metric (Titsias (2009)).
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A.3 RECOMPUTATION TECHNIQUES FOR GPS WHEN DATA IS ADDED

SoD evaluates the goodness of added training data candidates by sequentially adding them to the
GP’s training data and measuring the predictive distribution of the model using a metric. The compu-
tational effort needed to compute the predictive distribution when data is added has been researched
in the domain of Online GPs. After training with N data points (after computing the inverse matrix
with N data), an additional data point can be learned with an added computational effort of O(N2)
using a technique called rank-one update (Nguyen-Tuong et al. (2008); Seeger (2004)). This tech-
nique is used in part in our method. However, even with this technique, it’s not efficient to compute
the inverse of the covariance matrix for the log marginal likelihood. In this study, we propose a
method to efficiently compute it.

Since it takes O(N3) computational effort to compute the predictive distribution of a GPs, meth-
ods have been proposed that combine approximation techniques and online learning to reduce this.
Among the approximation methods that use the inducing variable method and variational inference,
methods to go online by mini-batch (Hensman et al. (2013); Cheng & Boots (2016)) and methods
to go online by sequential Bayesian updates (Csató & Opper (2002); Bui et al. (2017)) have been
proposed. Also, an online method that used a local GPs has been proposed (Nguyen-Tuong et al.
(2008)). Although our study does not use these approximation methods to compute the log marginal
likelihood without approximation, they may be utilized in the future to reduce computational effort.

A.4 AUTO-DATAAUGMENTATION

When Data Augmentation rules are considered as one of the inductive biases, one can interpret it
as injecting domain knowledge, such as the rules of augmentation (like an image retains its class
even when flipped), into the machine learning model. Notably, auto data augmentation (Cubuk et al.
(2019; 2020); Ho et al. (2019); Lim et al. (2019)) explores optimal magnitudes and application prob-
abilities of multiple data augmentations, like image flips and rotations, based on training data. This
concept is similar to our proposed method. The difference lies in the fact that while auto data aug-
mentation employs neural network classifiers as the discriminative model, our approach uses a GPs
regression model. Moreover, auto data augmentation evaluates policies, while our method evaluates
individual single data. Although potentially less efficient, our method offers versatility in situations
where defining a policy is challenging. Our approach does not optimize the order of samples for
evaluation. This is because, compared to the vast neural networks used in auto data augmentation,
the GPs evaluations can be conducted in a shorter computation time. However, considering sample
order optimization could be a consideration for future work if it becomes crucial.

B DETAILS OF THE PROPOSED ALGORITHM

The pseudo-code of the proposed algorithm is shown in Algorithm 1.

The hyperparameters of the input kernel function are pre-optimized using the true training data
(XN ,yN ) and remain fixed until the completion of Algorithm 1. While it is possible to relearn the
kernel’s hyperparameters using the selected generated data (XM∗

,yM∗
) and the original training

data (XN ,yN ) after applying Algorithm 1, this second round of learning has not been conducted in
the experiments presented in this paper.

C USE CASES OF PARTIALLY CORRECT SIMULATORS

For instance, in semiconductor inspection algorithms, lasers are irradiated onto wafers to predict the
presence or absence of foreign substances based on scattered light. Obtaining substantial real-world
data is challenging due to the high experimental costs involved. While it is possible to simulate
scattered light, accounting for the thermal effects caused by the laser heating the foreign substances
is challenging. Therefore, there is a need to combine the limited real-world data with imperfect
simulation data that does not consider thermal effects, to make accurate predictions. To generalize
such a situation, we construct distributions for both the true distribution and a simulator that slightly
deviates from it.
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Algorithm 1 Selection of Samples Reducing Free Energy

Input: Training data (XN ,yN ), simulator pS(y,x), GP kernel function
Output: Selected generated data

(
XM∗

,yM∗)
1: compute KN

2: V0 = Cholesky
(
KN + σ2I

)
3: while True do
4: sample (ym+1∗ ,xm+1∗) ∼ pS(y,x)
5: if m = 0 then
6: L1 =

√
k1∗ + σ2

7: else {m ≥ 1}
8: compute km+1∗ , km+1∗

9: Lm+1 = CholeskyFactorUpdate
(
Lm,km+1∗ , km+1∗ + σ2

)
10: end if
11: compute KN,m+1∗

12: Mean µm+1 = KT
N,m+1∗

(
Lm+1L

T
m+1

)−1
ym+1

13: if m = 0 then
14: aT1 = KN,1∗/L1

15: A1 = aT1
16: else {m ≥ 1}
17: am+1 = LastCholeskySolution (Lm+1,Am,KN,m+1∗)
18: Am+1 = stack (Am,am+1)
19: end if
20: Vm+1 = RankOneDowndate (Vm,am+1)

21:
(
yN − µm+1

)T
Σ−1

m+1

(
yN − µm+1

)
=

(
yN − µm+1

)T (
Vm+1V

T
m+1

)−1 (
yN − µm+1

)
22: |Σm+1| = product of diagonal elements of Vm+1

23: Fm+1 = − 1
2

(
yN − µm+1

)T
Σ−1

m+1

(
yN − µm+1

)
− 1

2 log |Σm+1| − N
2 log 2π

24: if Fm+1 < Fm then
25: Xm+1 = Xm∗

+ xm+1∗

26: ym+1 = ym∗
+ ym+1∗

27: m++
28: else {Fm+1 ≥ Fm}
29: reject (ym+1∗ ,xm+1∗)
30: break if rejected R times consecutively
31: end if
32: end while

D DETAILS OF KERNELS AND TRAINING PARAMETERS IN SECTION 4.1

We employed the RBF kernel as the kernel for GPs regression. The initial values of the kernel
parameters were set to amplitude = 10 and lengthscale = 10. The variance of observation noise
was 1.

The estimation of the above three parameters was carried out by maximum likelihood estimation
using the true training data. For training parameters, we used Adam(Kingma & Ba (2015)) with a
learning rate of 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e − 7. The batch size was set to 1, and the
number of iterations was 15,000. We did not optimize these training hyperparameters.

E DETAILS OF KERNELS AND TRAINING PARAMETERS IN SECTION 4.2 AND
REAL DATA

We employed the RBF kernel as the kernel for GPs regression. The initial values of the kernel
parameters were set to amplitude = 1 and length scale = 1. The variance of observation noise
was 1. Estimation of these parameters was conducted using maximum likelihood estimation with
true training data. For training parameters, we used Adam(Kingma & Ba (2015)) with a learning

13



Under review as a conference paper at ICLR 2024

rate of 0.01, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 7. The batch size was set to 1, and the number of
iterations was 2,000. These training hyperparameters were not optimized.

F ABLATION STUDY

Our proposed method used the free energy as a metric, and efficiently computed the computationally
expensive inverse of the covariance matrix Σ−1

m+1 and its determinant ∥Σm+1∥ in the free energy
equation 3. To verify whether it’s truly necessary to compute the inverse and determinant of the
covariance matrix, we conducted an ablation study.

We compared with two ablated methods. The first method removed the inverse of the covariance
matrix from equation 3, resulting in − 1

2 (y
N−µm+1)

T(yN−µm+1)− 1
2 log |Σm+1|−N

2 log 2π. The
second method also eliminated the determinant term, yielding − 1

2 (y
N − µm+1)

T(yN − µm+1)−
N
2 log 2π. This approach is simply the squared error between the GPs (GP) prediction mean and the

actual data. The constant term N
2 log 2π does not influence data selection.

We varied the amount of training data, conducted a 10-cross validation, and compared the MSE
of test data. The results are shown in Figure 5. The method without the inverse of the covariance
matrix is labeled as w/o inverse, the one without the determinant is labeled as squared error, and our
proposed method is labeled as NML. The results showed that MSE, which evaluates the full free

Figure 5: Comparison of MSE with ablated methods

energy, demonstrated more stable improvements than both the simple squared error and w/o inverse.
From this, we can deduce that both the inverse of the covariance matrix Σ−1

m+1 and its determinant
∥Σm+1∥ significantly contribute to the improvement of MSE.

G NEGATIVE LOG MARGINAL LIKELIHOOD

In Bayesian statistics, free energy (negative log marginal likelihood) or generalization loss is used as
a model evaluation metric. The free energy measures the model’s fit to the training data, and model
selection often involves either the free energy or its approximation, the BIC (Bayes Information
criterion). The generalization loss measures the accuracy of the model’s predictive distribution, and
for model selection, cross-validation loss or the AIC (Akaike Information Criterion) (Akaike (1998))
are commonly used. In this study, we use the free energy as the metric for SoD.

We define the symbols as follows: X ∈ Rd is a random variable, XN = (X1,X2, . . . ,XN ) are N
independent random variables following the same distribution, y ∈ R1 is a random variable, and
yN = (y1,y2, . . . ,yN ) are N independent random variables following the same distribution. The
free energy of the discriminative model (including GPs) is given by the following equation:

F = − log p(yN |XN ). (19)
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When the realized values of N training data are obtained in a regression task, the realized value
of the model’s free energy is − log p(yN = yN |XN = xN ). Random variables are denoted in
uppercase, and realized values are denoted in lowercase.

This metric is explained by the difference between the true distribution of the dataset and the inferred
model distribution. If we denote the true distribution of the dataset as q(yN |XN )q(XN ) and the
distribution in the discriminative model of the dataset as p(yN |XN ), the conditional KL-divergence
(Póczos & Schneider (2012)) between the two distributions is

KL(q(yN |XN )||p(yN |XN )) =

∫
q(XN )

∫
q(yN |XN ) log

q(yN |XN )

p(yN |XN )
dyNdXN (20)

= E[F ] + C.

Where E[·] denotes the average over samples from the true distribution and C =∫
q(yN |XN )q(XN ) log q(yN |XN )dXNdyN is a constant that does not depend on the model’s

distribution. Therefore, a smaller free energy F indicates that the inferred distribution approximates
the true distribution well on average.

H FREE ENERGY WHEN SYNTHETIC DATA IS ADDED IN GENERAL

As mentioned at the beginning of Section 2, we want to measure whether the performance of the
discriminative model improved by adding samples from the simulator to the training data of the
discriminative model. We adopt free energy as a performance metric and extend the free energy
of Equation 19 when samples are added from the generative model. If m samples from the gener-
ative model are represented by (Xm∗

,ym∗
), then the predictive distribution given (Xm∗

,ym∗
) in

the model becomes p(yN |XN ,Xm∗
,ym∗

). The conditional KL-divergence (Póczos & Schneider
(2012)) between p(yN |XN ,Xm∗

,ym∗
) and the true distribution can be transformed as follows:

KL(q(yN |XN ) || p(yN |XN ,Xm∗
,ym∗

)) (21)

=

∫
q(XN )

∫
q(yN |XN ) log

q(yN |XN )

p(yN |XN ,Xm∗ ,ym∗)
dyNdXN

= E[− log p(yN |XN ,Xm∗
,ym∗

)] + C.

Therefore, if we define

Fm∗ = − log p(yN |XN ,Xm∗
,ym∗

) (22)

then minimizing Fm∗ will minimize KL(q(yN |XN )||p(yN |XN ,Xm∗
,ym∗

)) on average. Thus,
we obtained Fm∗ as a performance metric for the discriminative model when (Xm∗

,ym∗
) is given.

Fm∗ is, then, the free energy when synthetic data is added.

I BASICS OF GPS REGRESSION

Given an input x, we define the feature vector of x as ϕ(x) = (ϕ0(x), ϕ1(x), . . . , ϕH(x))
T.

Considering the linear regression model y = wTϕ(x) with weights w = (w0, w1, . . . , wH),
for N input-output pairs, it can be described simultaneously using the design matrix Φ =(
ϕ(x1)

T, . . . ,ϕ(xN )T
)
, which can be written as y = Φw. Here, y = (y1, . . . , yN )T.

Assume the weights w are drawn from a Gaussian distribution N (0, λ2I) with mean 0 and vari-
ance λI. Then, since y is a linear transformation of the Gaussian distributed vector w by the con-
stant matrix Φ, y = Φw also follows a Gaussian distribution. The mean is given by E[y] =
E[Φw] = ΦE[w] = 0, and the covariance matrix is E[yyT] − E[y]E[y]T = E[(Φw)(Φw)T] =

ΦE[wwT]ΦT = λ2ΦΦT. As a result, the distribution of y becomes a multivariate Gaussian dis-
tribution, y ∼ N (0, λ2ΦΦT). By defining the covariance matrix as K = λ2ΦΦT, the (n, n′)
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elements become k(xn,xn′) = ϕ(xn)
Tϕ(xn′). Now, by constructing the kernel matrix K by di-

rectly defining the kernel function k(xn,xn′), there’s no need to explicitly define the feature vector
ϕ(x) (kernel trick). Here, the definition of the GPs is that for any set of N inputs (x1, . . . ,xN ),
if the joint distribution p(y) of the corresponding outputs y = (y1, . . . , yN ) follows a multivariate
Gaussian distribution, the relationship between x and y is governed by a GPs. Now, y ∼ N (0,K)
is a GPs with mean 0 and covariance matrix K. It should be noted that we can centered the mean of
the observed data y at 0 without loosing generalization. For the training data XN = (x1, . . . ,xN )
and yN = (y1, . . . , yN )T, and the data we wish to predict X̄S = (x̄1, . . . , x̄S), the joint distribution
of the corresponding output ȳS = (ȳ1, . . . , ȳS)

T is given by:

x1 · · ·xN x̄1 · · · x̄S

y1 0 x1

yN 0 xN

ȳ1 0 x̄1

ȳS 0 x̄S

∼ N ,

KN + σ2I K̄S,N

K̄T
S,N K̄S
















. (23)

σ2I represents the variance of observational noise, modeling the presence of noise in the training
data. The predictive distribution can be analytically derived as

p(ȳS |X̄S ,yN ,XN ) = N (K̄T
S,N [KN + σ2I]−1yN , K̄S − K̄T

S,N [KN + σ2I]−1K̄S,N ). (24)
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