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ABSTRACT

Disparities in class-wise robust accuracies frequently arise in adversarial training,
where certain classes suffer significantly lower robustness than others, even when
trained on balanced data. This phenomenon has been identified and termed robust
fairness in prior work, highlighting the challenge of ensuring equitable robustness
across classes. In this work, we investigate the root causes of such disparities
and identify a strong correlation between the norms of head parameters (i.e., the
last layer’s weights) and class-wise robust accuracies. Our theoretical and em-
pirical analyses show that adversarial training tends to amplify these disparities
by disproportionately affecting head norms, which in turn influence class-wise
performance. To address this, we propose a simple yet effective solution that mit-
igates these imbalances by directly fine-tuning the head parameters while keeping
the feature extractor fixed. Unlike existing methods that rely on class reweighting
or remargining strategies, our approach requires no validation set and introduces
minimal computational overhead. Experiments across various datasets and archi-
tectures demonstrate that our method significantly reduces disparities in class-wise
robust accuracies with minimal impact on average accuracy and overall robust-
ness, providing a practical and principled step toward improving robust fairness in
adversarial learning.

1 INTRODUCTION

Adversarial training has become one of the most effective paradigms for improving model robust-
ness against adversarial perturbations. While considerable progress has been made in enhancing the
average robustness of deep neural networks, a critical and underexplored issue has emerged: ad-
versarially trained models often suffer from large performance disparities across classes, even when
trained on class-balanced datasets.
This phenomenon manifests as certain classes (e.g., automobile or ship in CIFAR-10) achieving
much higher adversarial robustness than others (e.g., cat or dog), despite no difference in class fre-
quency. The disparity becomes especially prominent under strong adversarial attacks. This uneven
distribution of robustness has been identified and termed as robust fairness in recent works [18; 2].
It refers to the class-wise imbalance in robustness that arises naturally during adversarial training,
highlighting a fairness issue distinct from average accuracy or overall robustness metrics.
Importantly, this notion of robust fairness is conceptually different from the more widely studied
fairness problems based on sensitive attributes such as race, gender, or age. While traditional fairness
in machine learning typically addresses bias with respect to demographic subgroups, often requiring
the presence of explicit group labels, robust fairness focuses on disparities across semantic classes in
multi-class classification tasks. Here, each class (e.g., cat, dog, airplane) is treated uniformly during
training, yet still experiences varying levels of vulnerability to adversarial attacks. This reveals a
fundamentally different kind of fairness issue that does not rely on external group annotations, but
arises intrinsically from the learning dynamics of adversarial training.
One underlying cause of this phenomenon is the variation in intrinsic class difficulty. Easier classes–
those that are well-separated in the feature space and show high clean accuracy–tend to preserve
or improve their performance under adversarial training. In contrast, harder classes–with higher
sample variability or overlap with others–often see a decline in robust accuracy. From a geometric
standpoint, adversarial training tends to shift decision boundaries in ways that favor easier classes,
leaving harder ones more vulnerable to misclassification [18]. As a result, while average robustness
improves, class-wise fairness deteriorates.
In this work, we take a new perspective on this issue by examining the role of the final classification
layer (i.e., the head) in mediating class-wise disparities (Figure 1). We discover a strong correlation
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(a) ρ(cls-acc, ∥Wrob∥2) = 0.9516 (b) ρ(rob-cls-acc, ∥Wrob∥2) = 0.9533 (c) ρ(cls-acc, ∥Wstand∥2) = −0.6422

Figure 1: Correlation (ρ) of Class-wise Standard and Robust Accuracies for adversarially trained model and
standard trained model (non-adversarially robust trained model). cls-acc and rob-cls-acc are standard and robust
class-wise accuracies against 20 step PGD, respectively. ∥Wstand

1:C ∥2 and ∥Wrob
1:C∥2 are ℓ2 norms of class-wise

head parameters for standard and robust trained model. We do not provide the ρ(rob-cls-acc, ∥Wstand
1:C ∥2) for

standard trained model since it has robust accuracies of 0% for all classes.

between the norms of the head parameters and class-wise robust accuracies. Specifically, adversarial
training implicitly induces norm imbalances among head weights, which we find to be closely tied
to class difficulty and robustness.
While adversarial training has shown promise in improving model robustness, it often introduces
class-wise performance disparities, particularly affecting head parameters. Most previous ap-
proaches attempt to mitigate this by reweighting samples or remargining perturbation budgets, but
they generally rely on hyperparameter tuning and validation sets, limiting their practical applicabil-
ity. In contrast, our proposed HWNwB (Head Weights Normalization with Bias) and Deco-SAM
methods are designed to directly address this imbalance without requiring extensive tuning, reducing
both computational overhead and implementation complexity. By focusing on head weight norms,
our approach effectively balances robustness across classes while maintaining overall model perfor-
mance, representing a significant advancement over existing methods.
Our contributions are summarized as follows:

• We identify a strong correlation between the norms of class-specific head parameters and
class-wise robust accuracies in adversarially trained models.

• We theoretically and empirically demonstrate that adversarial training induces imbalances
in these norms, which contributes to performance disparities across classes.

• We propose lightweight algorithms that directly mitigate norm disparities at the head level
through weight normalization or minimal post-training fine-tuning, without modifying the
feature extractor or requiring a validation set.

• Our methods are compatible with a wide range of adversarial training algorithms (e.g.,
PGD-AT, TRADES, MART, ARoW) and incur negligible computational overhead.

• Through extensive experiments, we show that our approach significantly reduces class-wise
disparities in both standard and robust accuracies while maintaining overall robustness.

Our findings provide a novel and practical approach to improving robust fairness, offering new
insights into the structural origins of class-wise disparity in adversarial training and how it can be
mitigated efficiently.

2 PRELIMINARIES

2.1 ROBUST POPULATION RISK

Let X ⊂ Rd be an input space and a label set Y = {1, · · · , C}. Let f : X → RC be a scoring
function that produces a vector of predictive probabilities p(x) = softmax(f(x)) ∈ RC for each
class. We define the classification function hf (x) = argmax

k∈Y
fk(x) ∈ Y , which assigns the input to

the class with the highest score. Additionally, let Bp(x, ε) = {x′ ∈ X : ∥x − x′∥p ≤ ε} denote
the ε-ball around x in the p-norm, and 1(·) be the indicator function. In the context of adversarial
training, we aim to minimize the robust population risk, defined as:

Rrob(f) = E(X,Y ) max
X′∈Bp(X,ε)

1{Y ̸= hf (X
′)}. (1)

This risk measures the worst-case expected misclassification rate within the ε-neighborhood of each
input. If there exists an adversarial example x′ ∈ Bp(x, ε) that leads to the misclassification of y,
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the value of the 0-1 loss function is 1; otherwise, it is 0. The primary goal of adversarial training
is to find an optimal scoring function f (or equivalently, the predictive probability function p) that
minimizes this robust risk.

2.2 ALGORITHMS FOR ADVERSARIAL ROBUSTNESS

Recent works on defensing against adversarial attacks, such as PGD-AT [11], TRADES [25] and
ARoW [20], are grounded in minimizing theoretical bounds on the robust risk. PGD-AT directly
minimizes the empirical risk, whereas TRADES and ARoW minimize the regularized empirical
robust risk.

3 RELATED WORKS

The concept of robust fairness was first highlighted in the empirical survey by [2] and the theoretical
study of [18]. Both studies observed that even when the training dataset contains an equal number of
samples per class, there exists an inter-class discrepancy in terms of accuracy and robustness. [18]
approached this issue theoretically by assuming that data follows a Gaussian mixture distribution
with differing variances for each class, showing that adversarial training inevitably leads to this
imbalance. [2] examined the potential of adapting long-tail techniques to address robust fairness in
adversarial training.
Most existing solutions to this problem rely on class-wise weighting or regularization approaches
[18; 12; 10; 16; 26], which are commonly used in long-tail learning techniques. Specifically, many
algorithms for robust fairness employ class-wise weighting methods to adjust for inter-class imbal-
ances [18; 10; 16; 26]. These approaches minimize the following loss function to address inter-class
imbalances:

1

n

n∑
i=1

wϕ(xi, yi)ℓ
rob
ε (fϕ(xi), yi), (2)

where n is the number of samples, ϕ is the parameters of f , wϕ(xi, yi) denotes the weight assigned
to each sample, and ℓrob

ε is a surrogate risk used to approximate the robust risk (1). Common ex-
amples include PGD-AT [11], TRADES [25], ARoW [20], and MART [15]. Another approach,
known as the remargin method [18], assigns different perturbation budgets ε to each class, aiming
to mitigate class-specific vulnerabilities. This is expressed as:

1

n

C∑
k=1

nk∑
i=1

wϕ(xi, yi = k)ℓrob
εk
(fϕ(xi), yi = k), (3)

where nk is the number of samples assigned to class k, and n =
∑C
k=1 nk. In addition to these

weighting methods, long-tail techniques also include strategies for aligning decision boundaries
across classes, which can further improve fairness. Building upon these approaches, in this paper,
we conduct both theoretical and empirical analyses to uncover the optimization-driven causes of
class disparity in adversarial training. This analysis guides the development of a novel and prac-
tical decision boundary alignment method, providing an effective solution to mitigate class-wise
disparities in adversarial training.

4 WHY DOES THE DISPARITY OF CLASS-WISE ACCURACIES OCCUR?

In this section, we investigate why class-wise accuracy disparities arise in adversarial training com-
pared to standard training in multi-class classification, drawing on both theoretical analysis and
empirical observations. All corresponding proofs are provided in the Appendix.

4.1 THEORETICAL ANALYSIS

We start with a neural network composed of two parts - a feature extractor ψ : X → Rp and a
head h : Rp → RC . Let h be parameterized by weights W1:C = (W1, . . . ,WC) and biases b =
(b1, . . . , bC), i.e., h(ψ(x)) = (W⊤

k ψ(x)+bk)
C
k=1. Let pk(x) be the k-th element of the prediction

probability p(x), and sk(x) = W⊤
k ψ(x). Let xadv be an adversarial example corresponding to a

clean input x, such that ℓce(f(x
adv), y) > ℓce(f(x), y), or equivalently, py(xadv) < py(x), where

py(x) denotes the predicted probability of the true class y. In addition, let θψ(x),k denote the angle
between the feature representation ψ(x) and the weight vector Wk of class k.
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To examine the type of bias present in the final model resulting from adversarial training, we focus
on the case where the training loss has been sufficiently minimized. Under this assumption, it is
reasonable to approximate ψ(xadv) ≃ ψ(x), since prior work has shown that adversarial training
tends to better preserve robust feature representations compared to standard training [22; 24]. Then,
both cos(θψ(x),y) and cos(θψ(xadv),y) are expected to be large; refer to Proposition 2 in Section A.2
for a more rigorous formulation.
Before presenting the main theorem, we define the following two relative measures.
Definition 1. We define the class-specific gradient gap measure and its expected version as

δ(x, y) :=

∣∣∣∣∂ℓce(f(x
adv), y)

∂∥Wy∥2

∣∣∣∣− ∣∣∣∣∂ℓce(f(x), y)

∂∥Wy∥2

∣∣∣∣ ,∆k := E(X,Y=k)δ(X, Y ), (4)

respectively.
Definition 2. Define the hardness of class k by Hk := E(X,Y=k)

[
pk(X)− pk(X

adv)
]
. A class chard

is said to be harder than a class ceasy iff Hchard > Hceasy .

Remark 1. The scalar gap δ(x, y) measures, for each sample, how much the adversarial example
amplifies the gradient magnitude with respect to the y-th head-norm compared with the clean sam-
ple; a larger δ therefore reflects a stronger push that drives ∥Wy∥2 upward during SGD. Meanwhile,
the hardness indexHk is the class-level average drop in the correct-class posterior pk induced by the
adversarial attack, so a larger Hk indicates that class k is inherently more vulnerable (i.e., harder)
against adversarial attack.

Proposition 1. ∆k = µZ Hk holds. Consequently, if a class chard is harder than class ceasy (Hchard >
Hceasy), then ∆chard > ∆ceasy .
Remark 2. Hk is the average drop in class probability caused by the adversarial attack. Propo-
sition 1 shows that this drop translates linearly into the gradient gap ∆k, so that harder classes
necessarily incur larger ∆k. This observation directly justifies the assumption ∆h > ∆e, which is a
key condition underlying the drift dynamics analyzed in the Theorem 1 below.

Theorem 1. Run stochastic gradient descent with learning rate η for T iterations using the adver-
sarial loss. Let ∆k := E(X,Y=k)δ(X, Y ) be the class-specific expected gradient gap. Then,

E∥W(T )
k ∥2 = ∥W(0)

k ∥2 + η T ∆k. (5)

Consequently, if a class chard is harder than a class ceasy (∆chard > ∆ceasy ), there exists T ∗ such that

E∥W(T )
chard∥2 > E∥W(T )

ceasy∥2 for all T ≥ T ∗.

These results demonstrate that a larger gradient gap ∆k drives a steady increase in the ℓ2-norm of
the corresponding class head. As training proceeds, the norms of harder classes grow more rapidly
than those of easier ones, thereby widening robustness disparities. Theorem 1 formally characterizes
this gradient-imbalance effect, shedding light on why adversarial training can exacerbate class-wise
robustness differences and motivating the normalization strategies proposed in Section 5.

4.2 EMPIRICAL OBSERVATIONS

In addition to the previous theoretical correlation between W1:C and class-wise robust accura-
cies, we also provide empirical observations on them. Specifically, we observe the correlation be-
tween W1:C and rob-acc, where ∥W1:C∥2 := (∥W1∥2, ∥W2∥2, . . . , ∥WC∥2) and rob-acc :=
(rob-acc(1), rob-acc(2), . . . , rob-acc(C)), where rob-acc(c) represents the robust accuracy of the
c-th class. Figures 1a and 1b show that the class-wise standard and robust accuracies of the ad-
versarially trained model are highly correlated with the norms of the head parameters. Conversely,
Figure 1c reveals that in the standard trained model, there is no significant correlation between them.
To compare the disparity in head parameter norms between adversarially robust and standard mod-
els, we use the ratio maxk∥Wk∥2/mink∥Wk∥2. This index measures the relative disparity in the
norms of head weights, with a minimum value of 1, indicating that all norms are equal when the
index is exactly 1. The value for the standard trained model is 1.08, whereas for the adversarially
robust trained model, it is 1.43, highlighting a significant difference in norm disparity in adver-
sarially trained models. These observations suggest that adversarial training algorithms inherently
induce bias in the head parameters, causing the norms of more challenging classes to increase while
those of relatively easier classes remain smaller, which coincides with the theoretical analysis from
Section 4.1. An increase in norm magnitude implies an expansion of the decision boundary region
for the corresponding class in multi-class classification problems. We identify this phenomenon as
implicit bias in adversarially robust training.
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(a) Training Dynamics of
corr(∥Wrob

1:C∥2, rob-acc)
(b) Confusion Matrix of Rob-Acc
(PGD-20).

(c) Correlation Matrix of Weights
of Head

Figure 2: Figures illustrate the training dynamics and final epoch models of PGD-AT without a validation set.
To prevent robust overfitting, a learning rate decay is applied just before the 5th and 10th epochs of the total
training epochs, as done in [13], in order to select models that have not overfitted.

5 PROPOSED METHODS

In the previous section, we identified that class-wise robustness disparities primarily arise from the
implicit bias introduced during adversarial training, particularly affecting the head parameters. To
address this issue, we propose two complementary methods that specifically target this imbalance,
focusing on efficiency without the need for extensive hyperparameter tuning or additional validation
sets.

5.1 HEAD WEIGHTS NORMALIZATION

To directly address the gradient accumulation imbalance highlighted in Section 4, we introduce the
Head Weights Normalization with Bias (HWNwB) method. Unlike traditional weight normaliza-
tion approaches, HWNwB aims to stabilize head norms without relying on separate validation sets,
and effectively reduces the class-wise robustness gap while maintaining computational efficiency.
This approach mitigates the overfitting risk for challenging classes with large gradient updates, pro-
moting balanced head norms across all classes. Formally, for a fixed feature extractor and bias
terms, the head weights are normalized as W̃k := Wk

∥Wk∥2
. Then, the label prediction is given as

argmax
k∈Y

(W̃⊤
k ψ(x) + bk) with normalized weights W̃ = (W̃1, · · · ,W̃C).

Effect of Bias Terms in Normalized Weight Models In this paragraph, we examine the im-
pact of bias terms on confusing classes in a normalized weight setting. Consider the score for
class c, defined as W⊤

c ψ(x) + bc. The decision boundary between classes 1 and 2 is given by
x : W⊤

1 ψ(x) + b1 = W⊤
2 ψ(x) + b2, with its distance from the origin expressed as |b1−b2|

∥W1−W2∥2
.

When weight vectors are normalized (i.e., ∥W1∥2 = ∥W2∥2 = 1), this distance becomes
|b1−b2|√

2(1−W⊤
1 W2)

. For similar classes, where W⊤
1 W2 is high, the bias terms b1 and b2 have a crit-

ical influence on the positioning of the boundary. Figures 2b and 2c show that the correlation of
heads for confusing classes, such as cat and dog, is the highest.
Furthermore, Figure 3 illustrates that small variations in the bias term for similar (confusing) classes
cause more sensitive shifts in the decision boundary compared to distinct classes, significantly im-
pacting class separation. We present additional experiments in Section E.2 that further emphasize
the importance of bias terms in such settings.

5.2 DECOUPLED SAM

Our approach builds on the idea that a high head norm correlates with a wider decision boundary
[7], signifying an easier class that needs only minor adjustments. On the other hand, a low head
norm corresponds to a narrower decision boundary [7], indicating a more difficult class that requires
larger modifications. This understanding allows us to better balance the model’s robustness across
different classes. This concept of head norms and decision boundaries is central to the functionality
of DecoSAM, enabling more effective class-wise adjustments.
Our approach is motivated by the Sharpness Aware Minimization (SAM) [5] optimizer, which opti-
mizes:

min
θ

1

n

n∑
i=1

max
∥δ∥2≤ρ

ℓce(fθ+δ(xi), yi) (6)

5
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(a) When classes are confusing. (b) When classes are distinct.
Figure 3: An illustration on decision boundary shifts, given bias term shifts. Score contours are calculated via
arbitrary level c. Higher weight similarity leads to larger decision boundary shifts.

where ℓce is the cross-entropy loss. Geometrically, it finds a flatter minimizer than standard training.
Modifying SAM and motivated by HWNwB, DecoSAM minimizes the following empirical risk:

min
W

1

n

C∑
k=1

nk∑
i=1

max
∥δk∥2≤ρk

ℓce(hWk+δk ◦ ψ(xi), yi) (7)

where n =
∑C
k=1 nk. In this optimization, it is important to select ρk. Inspired by HWNwB, we

select it as
νk =

exp(−τ∥Wk∥2)
C∑

k=1

exp(−τ∥Wk∥2)
(8)

with constrained
∑C
k=1 νk = ρ.

Our approach leverages the relationship between head norm and decision boundary width to balance
model robustness across classes, allowing us to adaptively adjust the model’s behavior for different
classes. Specifically, for difficult classes with low head norms and narrow decision boundaries,
we make larger adjustments to improve the robustness of the worst-performing class, while for
easier classes with high head norms and wide decision boundaries, we make smaller adjustments to
maintain robustness for that class. DecoSAM employs this adaptive strategy to align head weights
with the fixed feature extractor, enhancing robust fairness through class-specific adjustments based
on head norms. Additionally, SAM’s tendency to locate flat minima in the loss landscape further
boosts DecoSAM’s robust fairness.
This dual approach, which combines class-specific adaptations with SAM’s inherent robustness
properties, yields a model that is well calibrated and robust for varying class difficulties. To imple-
ment this, we replace the standard cross-entropy loss (ℓce) with surrogate loss functions for robust
risk, utilizing methods such as PGD-AT [11], TRADES [25], MART [15], and ARoW [20]. The
complete procedure is summarized in Algorithm 1.
5.3 COMPARISON WITH EXISTING ALGORITHMS

Comparison with FRL [18] Theoretical analysis in Fair Robust Learning (FRL) [18] reveals that
adversarial training expands the decision boundary for easier classes while compressing it for harder
ones. However, FRL focuses on binary classification and does not provide an optimization-based
explanation for the observed class-wise disparity. In contrast, our work addresses the multi-class
setting and identifies gradient imbalance relative to head weight norms as the core reason for
disparity. Moreover, FRL is tied to TRADES [25] and lacks algorithm-agnostic flexibility. Our
proposed methods are algorithm-agnostic and compatible with various adversarial training frame-
works, including PGD-AT [11] and MART [15]. We further contribute optimization-based insights
and introduce simple, practical strategies to mitigate class-wise unfairness.
Comparison with Existing Algorithms Most robust fairness methods mitigate class-wise dis-
parities through re-weighting or class-specific budgets, typically modifying the loss function. In
contrast, our work uniquely applies normalization techniques to address class-wise robustness gaps
under class-balanced data. First, unlike τ -normalization [6], which removes bias terms post-training,
we show that preserving them is crucial for fairness and robust accuracy. Second, while cRT helps
in long-tailed setups, it fails under adversarial training on balanced data–unlike our HWNwB and
Deco-SAM. Lastly, our methods are computationally efficient: HWNwB applies simple weight nor-
malization, and Deco-SAM adds only one SAM epoch, yet both achieve strong robust fairness.
Our approach is grounded in the insight that head weight norms correlate with class difficulty: larger
norms indicate easier classes with wider margins. By aligning weight directions while preserving
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critical bias terms, our methods efficiently promote fairness without compromising overall robust-
ness.
Table 1: Summary of Existing Works and Comparison to Proposed Methods. wθ(x, y) and εy represent
class-wise re-weighting (CW-RW) and re-margin(RM) methods in (3), respectively. Val. indicates the necessity
of a validation set. Extensibility is a boolean value that indicates whether a method can be applied to adversarial
training algorithms such as PGD-AT [11], TRADES [25], MART [15], and ARoW [20].

Method wθ(x, y) εy Val. Extensibility Remark
FRL [18] ! ! ! % First Work
FAT [12] % % % ! Variance Regularization
WAT [10] ! % ! % CW-RW Loss
CFA [16] ! ! ! % CW-RW loss, CW-RM loss , Weight Averaging

FAAL [26] ! % % ! Distributionally Robust Optimization
HWNwB % % % ! Aligning Decision Boundary

DecoSAM % % % ! Aligning Decision Boundary

Table 2: Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on CIFAR-10.
PGD and AA indicate the robust accuracy under a 20-step PGD attack and the AutoAttack, respectively. WC
indicates the worst-class robust accuracy, STD indicates the standard deviation of class-wise robust accuracies,
and Max-Min indicates the difference between the highest and lowest class-wise robust accuracies.

Method CIFAR-10 (WRN-28-2)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 80.85 49.20 19.70 17.47 53.70 0.9314 45.27 13.70 19.13 58.00
+ HWNwB 79.47 52.74 29.10 13.44 41.30 – 43.50 18.60 14.71 46.10
+ DecoSAM 79.69 52.79 31.50 13.64 39.97 – 44.26 21.90 15.01 44.33

TRADES 78.98 49.30 22.40 16.83 48.10 0.8964 45.33 17.20 18.15 51.30
+ HWNwB 78.74 51.42 29.90 14.27 41.70 – 44.96 19.40 15.72 48.60
+ DecoSAM 78.21 51.30 30.57 15.59 40.87 – 45.00 22.53 16.23 43.97

MART 77.13 51.44 20.90 17.59 52.10 0.9129 46.27 12.30 20.40 57.90
+ HWNwB 75.12 52.75 26.90 15.29 45.80 – 44.03 15.80 16.11 50.00
+ DecoSAM 75.75 53.12 27.47 14.96 45.27 – 44.45 19.90 16.07 45.97

ARoW 79.82 50.05 23.90 15.72 45.50 0.9437 45.97 18.70 17.01 48.70
+ HWNwB 78.61 51.88 36.90 12.44 33.70 – 44.22 28.10 14.10 36.50
+ DecoSAM 78.73 52.34 35.43 12.88 35.33 – 44.85 28.60 13.65 36.17

Method CIFAR-10 (WRN-28-5)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 86.00 53.94 24.20 16.07 51.30 0.9515 49.50 17.60 18.03 55.70
+ HWNwB 85.09 56.68 39.10 12.31 34.80 – 48.25 29.10 13.83 38.90
+ DecoSAM 85.52 56.55 38.93 12.22 35.37 – 49.09 30.70 14.60 39.93

TRADES 83.52 53.85 29.60 15.68 46.50 0.8967 50.65 23.90 17.17 51.10
+ HWNwB 82.93 56.13 37.60 13.54 39.00 – 49.88 26.20 14.77 46.10
+ DecoSAM 83.01 56.05 36.00 14.84 38.23 – 50.24 29.17 15.92 41.27

MART 82.66 55.00 25.80 15.92 52.00 0.9528 49.77 17.60 18.78 58.00
+ HWNwB 80.28 56.88 36.50 13.44 37.80 – 48.26 24.60 16.12 44.60
+ DecoSAM 80.66 56.75 33.97 14.06 40.60 – 48.90 25.30 15.50 43.90

ARoW 84.18 53.46 27.10 15.26 48.50 0.9328 50.36 22.70 16.42 51.40
+ HWNwB 83.43 56.21 43.70 11.87 30.30 – 48.36 30.05 13.08 36.90
+ DecoSAM 82.82 56.45 37.57 13.08 35.77 – 49.29 31.30 13.89 36.43

Method CIFAR-10 (WRN-28-10)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 87.74 52.75 22.50 16.18 51.10 0.9061 50.06 19.70 17.29 53.50
+ HWNwB 87.30 56.89 42.10 11.23 31.20 – 49.35 30.70 13.98 39.90
+ DecoSAM 87.36 56.31 39.53 12.16 34.57 – 49.64 29.87 14.63 42.43

TRADES 85.35 55.71 29.00 15.57 48.00 0.8741 52.86 25.30 16.89 50.80
+ HWNwB 84.90 57.77 39.00 13.37 37.00 – 52.21 30.40 14.69 42.30
+ DecoSAM 84.25 57.78 38.03 14.53 37.77 – 52.35 31.10 15.71 42.23

MART 85.30 56.64 31.60 14.95 44.90 0.9460 51.32 22.00 17.84 52.70
+ HWNwB 83.64 58.82 39.30 12.83 35.80 – 49.99 30.00 14.53 41.40
+ DecoSAM 84.05 58.68 38.03 12.95 38.23 – 50.64 31.63 14.79 41.70

ARoW 85.97 55.23 27.30 15.75 49.30 0.8910 52.27 23.00 16.73 52.40
+ HWNwB 84.90 57.87 40.90 13.58 36.70 – 50.42 31.50 14.68 36.30
+ DecoSAM 84.66 57.82 38.90 13.22 37.47 – 50.82 32.90 14.01 38.47

6 EXPERIMENTS

We utilize CIFAR-10 [9] and CIFAR-100 [9], which are widely recognized benchmark datasets for
evaluating robust fairness in prior studies [18; 10; 16; 26]. Additionally, we incorporate STL-10 [3]
and OfficeHome [14] to assess the effectiveness of our approach in higher-resolution settings. The
results for CIFAR-100 and OfficeHome are presented in the Appendix. To evaluate the effect of our
algorithm across different levels of model capacity, we conduct experiments using three variants of
WideResNet—WRN-28-2, WRN-28-5, and WRN-28-10 [23]. Our aim is to validate the generality
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Table 3: Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on STL-10. PGD
and AA indicates the robust accuracy under a 20-step PGD attack and the AutoAttack. WC indicates the
worst-class robust accuracy, STD indicates the standard deviation of class-wise robust accuracies, and Max-
Min indicates the difference between the highest and lowest class-wise robust accuracies.

Method STL-10 (WRN-28-5)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 81.28 65.51 34.75 18.40 54.38 0.6502 62.40 26.00 20.48 62.12
+ HWNwB 79.57 67.10 41.75 17.23 47.38 – 61.58 34.00 18.13 49.50
+ DecoSAM 79.92 66.71 42.63 17.47 46.75 – 61.59 36.29 19.42 50.33

TRADES 79.67 62.41 34.00 18.13 51.50 0.5379 58.69 24.62 20.44 59.12
+ HWNwB 78.54 64.06 40.12 17.36 46.75 – 58.10 31.62 20.51 50.75
+ DecoSAM 78.43 63.62 39.83 17.85 46.50 – 58.03 34.54 19.88 48.62

ARoW 80.65 63.95 34.88 17.78 51.12 0.7113 60.44 25.62 19.90 58.75
+ HWNwB 80.05 65.74 43.50 16.90 44.12 – 59.15 34.88 19.70 49.88
+ DecoSAM 80.22 65.33 43.87 17.31 42.55 – 59.58 35.71 19.57 47.71

of our method by applying it to a range of adversarial training algorithms that minimize surro-
gate robust risk objectives, including PGD-AT [11], TRADES [25], MART [15], and ARoW [20].
While ARoW is not explicitly designed to enhance robust fairness, it has been reported to exhibit
fairness-improving properties [20]. In our experiments, we also include a comparison with FAAL
and evaluate the combination ARoW + DecoSAM, highlighting the improvements in both average
and worst-class accuracies. Note that we do not include ImageNet in our evaluation, as it is generally
not adopted in robust fairness studies due to its large number of classes [18; 12; 10; 16; 26]. In such
large-scale settings, the worst-class accuracy tends to approach zero, making it difficult to meaning-
fully evaluate robust fairness. Ablation studies on the effects of robust regularization intensity and
bias terms in the proposed algorithms are provided in the Appendix.

Training Setups We follow the experimental setting of Pang et al. [13] and select the model
from the last epoch to avoid using a validation set. To generate adversarial examples, we employ
a 10-step PGD attack with a perturbation budget of ε = 8/255 and a step size of 2/255. For the
pretrained model, we use a weight decay of 5e−4, train for a total of 100 epochs, and employ a
multi-step learning rate scheduler with learning-rate decays at epochs 90 and 95 for all algorithms.
The regularization parameters for TRADES, MART, and ARoW are set to 6, 3, and 7, respectively.
HWNwB applies simple head weight normalization without additional training, keeping the bias
terms unchanged. DecoSAM with τ = 1 in (7), on the other hand, performs training for only one
epoch with fixed learning rate.

Evaluation Setups To evaluate robust fairness, we adopt two complementary methods: a 20-step
PGD attack using the same configuration as during training (perturbation budget ε = 8/255, step
size α = 2/255), and AutoAttack (AA) [4], a standardized ensemble of attacks known for providing
reliable robustness evaluations. AA is particularly valuable in mitigating the effects of gradient
obfuscation [1], where misleading gradients can result in overestimated robustness under weaker
attacks. For comprehensive assessment, we report five key metrics: clean accuracy, robust accuracy,
worst-class accuracy, standard deviation of class-wise accuracies, and the accuracy gap between the
best and worst-performing classes. Among these, worst-class accuracy is the most critical metric,
as it reflects the robustness of the most vulnerable class and serves as a widely adopted indicator of
robust fairness in prior works [10; 18; 26; 16].
6.1 PERFORMANCE EVALUATION

Table 2 presents the performance of HWNwB and DecoSAM across various adversarially robust
training algorithms–PGD-AT, TRADES, MART, and ARoW–on architectures of varying complex-
ity. Overall, all algorithms exhibited a high correlation between weight norms and PGD robustness
across architectures, with TRADES showing a slightly lower correlation. In terms of PGD accuracy,
HWNwB generally outperformed DecoSAM, likely because weight normalization tends to equalize
class scores more uniformly [17]. Despite this, DecoSAM achieved significant improvements in
robust fairness under AutoAttack (AA), performing particularly well in worst-class robust accuracy
and showing notable gains in overall robust accuracy under AA, thus proving its effectiveness in
enhancing robust fairness across classes. Table 3 shows the performance of our algorithm. Sim-
ilar to CIFAR-10, the correlation is high, demonstrating that our approach significantly improves
robustness fairness.

Combination with Existing Works In this paragraph, we integrate our methods with existing
algorithms such as FRL [18], FAT [12], WAT [10], CFA [16], and FAAL [26]. Each algorithm
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is implemented using the default settings from the corresponding official repository, based on the
WRN-28-5 architecture. The trained models are saved and then HWNwB and DecoSAM are ap-
plied, after which they are evaluated to assess their performance. Table 4 presents the results of
combining HWNwB and DecoSAM with existing algorithms. We also observe that existing robust
fairness algorithms induce a high correlation between head parameters and class-wise robust accu-
racies. Our methods demonstrate improvements in worst-class accuracy across all methods except
FAAL. In FAAL, although worst-class accuracy decreases, overall accuracy increases.

Effect of Bias Term in HWNwB and DecoSAM We conduct experiments with HWNwB and
DecoSAM to examine the importance of bias terms in enhancing performance, particularly for
the worst-performing classes. Our proposed algorithms, HWN w/ Bias and DecoSAM w/ frozen
Bias, preserve the bias term to explore its impact, while HWN w/o Bias follows the traditional τ -
normalization technique by removing the bias term, and DecoSAM w/o frozen Bias allows the bias
term to be updated alongside other parameters. As shown in Table 5 and discussed in Section 5.1,
retaining the bias term significantly improves worst-class performance in both HWN and DecoSAM,
underscoring its critical role in achieving robust fairness.

Table 4: Combination with Existing Algorithms.

Method CIFAR-10 (WRN-28-5)
Clean(↑) AA(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD)

FRL 84.09 46.85 27.10 14.23 40.10 0.9056
+ HWNwB 81.31 44.38 29.50 12.90 43.30 –
+ DecoSAM 83.51 46.03 30.11 14.07 40.19 –

FAT 83.22 50.02 20.70 17.47 56.20 0.9469
+ HWNwB 82.95 49.11 27.90 15.14 47.00 –
+ DecoSAM 82.31 48.88 29.90 15.32 43.80 –

CFA 85.42 50.42 23.70 16.52 50.00 0.9075
+ HWNwB 85.41 49.73 27.90 15.13 44.30 –
+ DecoSAM 85.52 50.33 29.11 14.59 42.75 –

FAAL 81.19 48.81 31.70 11.86 33.90 0.9114
+ HWNwB 77.32 44.91 31.90 11.12 32.90 –
+ DecoSAM 81.96 50.11 32.10 11.37 32.80 –

WAT 83.62 50.50 21.50 16.90 53.00 0.9508
+ HWNwB 83.13 49.93 30.30 14.74 41.40 –
+ DecoSAM 83.19 50.22 30.60 15.34 39.80 –

Table 5: Effect of Bias Terms of HWNwB and DecoSAM.

Method CIFAR-10 (WRN-28-5)
Clean(↑) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 86.00 49.50 17.60 18.03 55.70
+ HWN w/ Bias 85.09 48.25 29.10 13.83 38.90

+ HWN w/o Bias 86.23 48.14 23.10 16.50 48.20
+ DecoSAM w/ frozen Bias 85.52 49.09 30.70 14.60 39.93
+ DecoSAM w/o frozen Bias 85.28 48.97 28.60 16.00 42.70

7 CONCLUSION AND FUTURE WORK

This paper introduces a novel approach to improving robust fairness in adversarial training by uncov-
ering a strong correlation between classifier head parameter norms and class-wise robust accuracies.
We show that adversarial training induces imbalances in head norms, which in turn lead to dis-
parities in class-wise performance. To mitigate this issue, we propose an algorithm that fine-tunes
head parameters without requiring a validation set or modifying the feature extractor, effectively
reducing accuracy gaps across classes while preserving overall robustness. Extensive experiments
demonstrate that our method improves both fairness and robustness.
Despite these contributions, our analysis primarily focuses on linear classifier heads. Although many
modern architectures employ non-linear heads such as MLPs, our theoretical results still apply be-
cause the final prediction is ultimately computed through a linear transformation in the last layer. By
treating the input to this layer as the feature representation, our methods and theoretical insights re-
main valid. Nevertheless, a limitation of our current framework is that it mainly addresses robustness
disparities at the classifier head level. Implicit biases can also emerge in the feature representation
space, particularly under adversarial training, which tends to amplify such biases at both the feature
and classifier levels.
As future work, we plan to extend our robustness-balancing framework beyond the classifier head to
jointly address biases in both the feature and weight spaces. Such an extension would provide a more
comprehensive and principled strategy for improving class-wise fairness and robustness against ad-
versarial attacks.
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Reproducibility Statement We have taken considerable care to guarantee the reproducibility of
our findings in this study. For the theoretical results, we include full proofs in the Appendix. The
source code for implementing our proposed model are provided in the supplementary material. De-
tailed information for the hyperparameters, datasets and experimental setup are given in Section D
of Appendix.

Use of Large Language Models In the preparation of this manuscript, a large language model
was utilized as a writing aid. Its role was strictly limited to improving grammar, rephrasing for
clarity, and correcting typographical errors. The LLM did not contribute to the core research ideas,
experimental design, or the analysis of results presented in this paper.
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APPENDIX

A THEORETICAL RESULTS

In this section, we provide detailed assumptions and proofs of the theoretical results.

Gradient Formulas. We first consider the cross-entropy loss ℓce for a multi-class classification
task. The gradient with respect to the class score sk(x) is

∂ℓce(f(x), y)

∂sk(x)
= pk(x)− yk, (9)

where sk(x) is the logit for class k:

sk(x) = W⊤
k ψ(x) = ∥Wk∥2 ∥ψ(x)∥2 cos(θψ(x),k), (10)

and θψ(x),k is the angle between Wk and the feature vector ψ(x).
Since our goal is to investigate the effect of the head parameter norm on the loss, we compute the
derivative of the loss with respect to ∥Wk∥2:

∂ℓce(f(x), y)

∂∥Wk∥2
=
∂ℓce(f(x), y)

∂sk(x)
· ∂sk(x)

∂∥Wk∥2

=

{
(pk(x)− 1) ∥ψ(x)∥2 cos(θψ(x),k) if k = y,

pk(x) ∥ψ(x)∥2 cos(θψ(x),k) if k ̸= y.
(11)

A.1 NOTATION AND ASSUMPTIONS

We make the following assumptions, which are standard and realistic, serving as regular conditions
for our theoretical analysis.

Assumption 1 (Feature Extractor and Classifier Head). Let ψ : X → Rp be the feature extractor,
and let the classifier head be parameterized by {Wk, bk}Ck=1. For an input x, the class scores and
softmax probabilities are

sk(x) = W⊤
k ψ(x) + bk, pk(x) =

exp(sk(x))∑C
j=1 exp(sj(x))

.

Assumption 2 (Global Upper Bounds). We assume the existence of global upper bounds:

sup
x∈X

∥ψ(x)∥2 ≤ Bψ, sup
k

∥Wk∥2 ≤ Bw, sup
k ̸=y

|by − bk| ≤ B.

Assumption 3 (Small Cross-Entropy Condition). Each training sample (x, y) satisfies a small
cross-entropy condition:

ℓce(f(x), y) = − log py(x) ≤ ε′, ε′ ≪ 1. (12)

Assumption 4 (Margin Condition). The small cross-entropy condition in Assumption 3 implies a
positive margin:

mε′ := log
1− ε′

ε′
− log(C − 1) > 0. (13)

A.2 PROPOSITIONS

Proposition 2. Let (x, y) satisfy (12), and suppose the margin (13) dominates bias and norm terms,
mε′ > B + BwBψ. Then the angle between the feature vector ψ(x) and the correct weight vector
Wy is upper-bounded by

θy(x) ≤ arccos
mε′ −B −BwBψ

BwBψ
. (14)

In particular, as ε′ → 0, mε′ → ∞ and θy(x) → 0.

Proof. From (12), py(x) ≥ 1− ε′, which implies for all k ̸= y,

sy − sk = (Wy −Wk)
⊤ψ(x) + (by − bk) ≥ mε′ .

12
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Subtracting the bias term gives

(Wy −Wk)
⊤ψ(x) ≥ mε′ −B.

Writing the inner product in cosine form, using ∥Wy −Wk∥ ≤ 2Bw and ∥ψ(x)∥ ≤ Bψ ,

Sc(Wy −Wk, ψ(x)) ≥
mε′ −B

2BwBψ
> 0.

Finally, decompose W⊤
y ψ(x) = (Wy −Wk +Wk)

⊤ψ(x) and apply the norm bounds:

W⊤
y ψ(x) ≥ mε′ −B −BwBψ, cos θy(x) =

W⊤
y ψ(x)

∥Wy∥∥ψ(x)∥
≥ mε′ −B −BwBψ

BwBψ
.

This proves (14).

Remark 3. Proposition 2 formalizes the intuition that, for a training sample with a sufficiently small
cross-entropy loss, the corresponding feature vectorψ(x) aligns closely with the weight vector of the
correct class Wy . Specifically, when the margin mε′ dominates the bias and norm terms, the angle
θy(x) between ψ(x) and Wy is tightly upper-bounded. As the cross-entropy loss approaches zero,
the margin mε′ grows, causing θy(x) to approach zero. Intuitively, this means that highly confident
predictions correspond to feature vectors that are nearly collinear with the correct class weight,
which underpins the effectiveness of norm-based adjustments in class-wise robustness analysis.

A.3 HARD-VS-EASY CLASSES: A FORMAL GAP INEQUALITY

Notation Let (x, y) denote a training sample, and let xadv be its adversarial counterpart generated
within a perturbation budget ε. For a fixed class k, we define the clean and adversarial predictive
probabilities as

pk := pk(x), padv
k := pk(x

adv).

For samples belonging to class k, the pointwise gap as defined in Definition 1 is given by

δ(x, y = k) :=

∣∣∣∣∂ℓce(f(x
adv), y)

∂∥Wy∥2

∣∣∣∣− ∣∣∣∣∂ℓce(f(x), y)

∂∥Wy∥2

∣∣∣∣
=

(
pk − padv

k

)
∥ψ(x)∥2 cos θψ(x),k (by Equation (11))

In addition, we define the expected gradient gap as

∆k := E(X,Y=k)δ(X, Y )

.
We further introduce the shorthand notation

Z(x, k) := ∥ψ(x)∥2 cos θψ(x),k,

and note that Assumption A.1 ensures

Z(xadv, k) ≃ Z(x, k) (15)

for adversarially robust trained model [22; 24].
Assumption 5 (Feature–angle stationarity). For every class k, the random variable Z(X, k) is
independent of

(
pk, p

adv
k

)
and has finite mean µZ := E[Z(X, k)] > 0.

Remark 4. The assumption µZ > 0 is practically necessary to ensure a meaningful interpretation
of the gap measure: if µZ were zero or negative, the relationship between class hardness and gra-
dient gaps would become inverted or trivial, violating the intuitive notion of robustness and class
difficulty alignment. However, well-trained neural networks typically satisfy µZ > 0, validating our
assumption.
Proposition 1. ∆k = µZ Hk holds. Consequently, if a class chard is harder than class ceasy (Hchard >
Hceasy), then ∆chard > ∆ceasy .

Proof. Condition on y = k, ∆k = E(X,Y=k)

[
(pk − padv

k )Z(X, Y )
]
. By Assumption 5, Z(X, k)

is independent of (pk − padv
k ) and shares the same distribution for all samples of class k. Hence the

13
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expectation factorizes:

∆k = E(X,Y=k)[pk − padv
k ] · E(X,Y=k)[Z(X, Y )] = Hk µZ .

Because µZ > 0, the ordering of ∆k follows directly from the ordering of Hk.

Notation Let the clean and adversarial per-sample gradients for class k be

gcln
k (x, y) :=

∂ℓce
(
f(x), y

)
∂Wk

, gadv
k (x, y) :=

∂ℓce
(
f(xadv), y

)
∂Wk

, (16)

and denote the unit direction W̃k := Wk/∥Wk∥2. Define the scalar projections

scln(x, y) := W̃⊤
kg

cln
k (x, y), sadv(x, y) := W̃⊤

kg
adv
k (x, y). (17)

The sample-wise gap from Definition 1 is δ(x, y) = |sadv| − |scln|.
Lemma 1. For every SGD iteration t,

E(X,Y )∼D
[
W̃

(t)⊤
k g

(t)
k

]
= −∆k, where ∆k := E(X,Y=k)[δ(X, k)].

Proof. We prove the lemma by separating the contributions from samples of class k and non-target
classes.
Case 1: Y ̸= k. For samples not belonging to class k, the indicator 1{k = Y } = 0, so both clean
and adversarial class-k scores are positive:

scln > 0, sadv > 0.

PGD perturbations primarily target the true class Y , leaving non-target class logits largely un-
changed. Hence,

sadv ≈ scln ⇒ δ(X, Y ) = 0.

These samples therefore contribute positively to the inner product W̃⊤
k g

adv, but they do not con-
tribute to the expected gradient gap ∆k. In other words, for samples whose true label is not k, the
adversarial perturbation has little effect on the gradient gap because the model is already unlikely to
predict class k.
Case 2: Y = k. For samples of class k, the clean logit is high, pk(X) ≈ 1, so scln ≈ 0. Adversarial
perturbations decrease this logit significantly, pk(Xadv) ≪ 1, giving sadv < 0. Consequently, the
gradient gap satisfies

δ(X, k) = |sadv| − |scln| = − sadv(X, k).

Thus, for these samples,
W̃⊤

k g
adv = −δ(X, k).

Combine the two cases. Taking the expectation over the data distribution D, we have

E(X,Y )[W̃
⊤
k g

adv
k ] = EY ̸=k[W̃

⊤
k g

adv
k ] + EY=k[W̃

⊤
k g

adv
k ]

= 0 + EY=k[−δ(X, k)]
= −∆k.

Hence, the expected projected adversarial gradient is exactly −∆k, which governs the average
change of the head norm in Theorem 1.

Theorem 1. Run stochastic gradient descent with learning rate η for T iterations using the adver-
sarial loss. Let ∆k := E(X,Y=k)δ(X, Y ) be the class-specific expected gradient gap. Then,

E∥W(T )
k ∥2 = ∥W(0)

k ∥2 + η T ∆k. (5)

Consequently, if a class chard is harder than a class ceasy (∆chard > ∆ceasy ), there exists T ∗ such that

E∥W(T )
chard∥2 > E∥W(T )

ceasy∥2 for all T ≥ T ∗.

Proof. Let gadv,(t)
k :=

∂ℓce
(
f(xadv), y

)
∂W

(t)
k

denote the stochastic gradient at iteration t with adversarial

loss. One SGD step updates W(t+1)
k = W

(t)
k − η g

adv,(t)
k .

14
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We are interested only in the change of the norm ∥Wk∥2 and not in the change of its direction.
Decompose the gradient into a part parallel to W

(t)
k and an orthogonal part:

g
adv,(t)
k =

(
W̃

(t)⊤
k g

adv,(t)
k

)
W̃

(t)
k +

[
g

adv,(t)
k − (W̃

(t)⊤
k g

adv,(t)
k )W̃

(t)
k

]
,

where W̃
(t)
k := W

(t)
k /∥W(t)

k ∥2 is the unit vector in the current direction. Only the parallel com-
ponent

(
W̃

(t)⊤
k g

adv,(t)
k

)
W̃

(t)
k can increase or decrease the length; the orthogonal component merely

rotates W(t)
k and leaves its norm unchanged to first order.

Formally,

∥W(t+1)
k ∥22 =

∥∥W(t)
k − ηg

adv,(t)
k

∥∥2
2
= ∥W(t)

k ∥22 − 2η W̃
(t)⊤
k g

adv,(t)
k ∥W(t)

k ∥2 + η2∥gadv,(t)
k ∥22.

Ignoring the O(η2) term (standard in first-order SGD analysis) and taking square roots yields

∥W(t+1)
k ∥2 ≈ ∥W(t)

k ∥2 − η W̃
(t)⊤
k g

adv,(t)
k .

Hence we project the gradient onto W̃
(t)
k because that scalar product W̃(t)⊤

k g
adv,(t)
k is the exact

first-order change in the norm of Wk.

Taking expectations. Lemma 1 induces E(X,Y )[W̃
(t)⊤
k g

adv,(t)
k ] = −∆k for every iteration.1

Therefore,
E∥W(t+1)

k ∥2 = E∥W(t)
k ∥2 + η∆k.

Unrolling the recursion over T steps gives (5).

Hard vs. Easy classes. If ∆chard > ∆ceasy (by Proposition 1), their expected norm difference grows
as η T (∆chard −∆ceasy), so after T ∗ :=

(
∥W(0)

ceasy∥2 − ∥W(0)
chard∥2

)/[
η(∆chard −∆ceasy)

]
the inequality

E∥W(T )
chard∥2 > E∥W(T )

ceasy∥2 holds for all T ≥ T ∗.

Proposition 3. Under Assumptions A.1, we have δ(x, y) > ρ− ϵ′′ for ρ > 0 and small ϵ′′ > 0 for
every pair (x, y,xadv).

Proof. For class k, the chain rule gives

∂ℓce(f(x), y)

∂sk(x)
= pk(x)− 1{k = y}, ∂sk(x)

∂∥Wk∥2
= ∥ψ(x)∥2 cos θψ(x),k.

For the true class k = y, combining these yields

g(x, y) :=
∂ℓce(f(x), y)

∂∥Wy∥2
= (1− py(x)) ∥ψ(x)∥2 cos θψ(x),y := (1− py(x))Zx,y. (18)

Define the adversarial gradient gap

δ(x, y) = (1− py(x
adv))Zadv − (1− py(x))Zcln,

where Zadv = Zxadv,y and Zcln = Zx,y . This can be rewritten as

δ(x, y) = (py(x)− py(x
adv))Zcln︸ ︷︷ ︸

:=(A)

+(1− py(x
adv))(Zadv − Zcln)︸ ︷︷ ︸
:=(B)

.

Part (A)
Since the adversarial attack reduces the probability of the true class, py(xadv) < py(x), and by
training Zcln > 0, the first term (py(x) − py(x

adv))Zcln is strictly positive. Denote the positive
magnitude by ρ > 0.

Part (B)
Under Assumptions A.1, Eq. (15) can be approximated. Then, the change in the cosine term is

1The unit vector W̃(t)
k is independent of the minibatch sampled at step t, so we may pull it outside the

expectation.
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small: |Zadv − Zcln| ≤ ϵ′′, and 1− py(x
adv) ≤ 1. Hence the second term satisfies

(1− py(x
adv))(Zadv − Zcln) ≥ −ϵ′′.

Part (A) + (B)
Adding the positive and negative parts gives

δ(x, y) ≥ (py(x)− py(x
adv))Zcln − ϵ′′ = ρ− ϵ′′.

Thus, the adversarial gradient gap is lower-bounded by ρ− ϵ′′, as claimed.

Remark 5. Proposition 3 guarantees that for each training sample (x, y), the adversarial gradient
gap δ(x, y) is lower-bounded by ρ − ϵ′′. Consequently, the class-specific expected gradient gap
∆k = E(X,Y=k)[δ(X, Y )] remains stable and mostly positive. Moreover, Theorem 1 shows that the
norm of the classifier head Wk evolves approximately linearly with ∆k:

E∥W(T )
k ∥2 = ∥W(0)

k ∥2 + ηT∆k.

Since harder classes have larger expected gradient gaps (∆chard > ∆ceasy ), their corresponding head
norms grow more rapidly during training. These observations collectively provide an intuitive ex-
planation: the stability of δ(x, y) ensures that the head norm growth predicted by Theorem 1 is
reliable. Consequently, harder classes naturally acquire larger norms, resulting in stronger logits
and improved robustness, while easier classes remain relatively balanced.
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Figure 4: Small Loss Scenario. Consider the case w/o bias term for simplicity. Orange and blue
circles are data point in feature space of class 1 and 2, respectively. If train loss is small and robust
features well trained, θψ(x),y and θψ(xadv),y are small.

Figure 4 illustrates a scenario where the loss becomes small through adversarial training.

B ALGORITHM

Algorithm 1: DecoupledSAM (DecoSAM)
Input : ψ : feature extractor, W : weight of head, b : bias of head, s : standard trained model, dataset

D = {(xi, yi)}ni=1 , number of epochs T , perturbation budget ε, number of batch B, batch size
J , adversarial training algorithm A

Output: adversarially robust network
1 ψ,W, b (train the adversarially robust model)
2 Freeze ψ and b
3 for b = 1, · · · , B do
4 Compute νk and ρk = ρ ∗ νk for all k.
5 W← W̃(HWNwB)
6 for j = 1, · · · , J do
7 Generate x̂adv

j by PGD(W ◦ ψ(xj), yj),

8 Update W with DecoSAM(A(x̂adv
j , yj)) in (7)

9 end
10 end
11 Return W, ψ

C A VALIDATION SET-FREE APPROACH

In situations where labeled data are limited or labeling is costly-such as requiring expert input or
facing privacy concerns [27] - using a separate validation set reduces the data available for training
or necessitates additional labeling effort, both of which can harm model performance [21; 19; 8].
By eliminating the need for a validation set, our approach fully utilizes the limited labeled data for
training, making it more practical and cost-effective in real-world scenarios.

D EXPERIMENTAL DETAILS

Common We follow the experimental setting of [13] for our study. In pre-training phase, we
train various adversarial robust learning algorithms (PGD-AT, TRADES, MART, and ARoW) using
SGD optimizer with a momentum of 0.9 and weight decay of 5e−4. To mitigate robust overfitting,
we implement a multi-step learning rate scheduler that reduces the learning rate by a factor of 0.1
at epochs 90 and 95, and select the model from the final epoch without using a validation set. In
DecoSAM stage, we employ an SGD optimizer with a momentum of 0.9, a learning rate of 0.01,
a batch size of 512, and a perturbation size ρ = 5e − 5. Our experiments are conducted using an
NVIDIA RTX 3090 GPU with 24 GB of memory.
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STL-10 STL-10 dataset is a benchmark designed for evaluating supervised and semi-supervised
learning algorithms, particularly in scenarios with limited labeled data. It consists of 96 ×96 pixel
images across 10 classes, with 5,000 labeled training images, 8,000 labeled test images, and 100,000
unlabeled images from a broader distribution. Its focus on small labeled datasets and abundant
unlabeled data makes it ideal for testing algorithms that aim to learn robust features or leverage
unlabeled data effectively. It has higher resolution than CIFAR-10.
For our experiments on STL-10, we employ a two-stage approach. We first train a teacher model
using supervised learning on the labeled data, then utilized this teacher model to generate pseudo
labels for the unlabeled data. Finally, we apply various adversarial training algorithms using both
the labeled data and the pseudo-labeled unlabeled data.

E ADDITIONAL EXPERIMENTS

(a) Confusion Matrix of Rob-Acc (AA). (b) Training Dynamics of corr(∥Wrob∥2, AA)
Figure 5: Confusion matrix for AA and the correlation between head weights and robust accuracy
against AA for a model trained using PGD-AT.

We provide the confusion matrix and the correlation between head weights and robust accuracy
against PGD-20 in the manuscript. Figures5a and 5b demonstrate that similar patterns observed in
PGD-20 are also present in AA. A notable feature is the heightened vulnerability of the class with
the lowest robust accuracy, which becomes even more pronounced under AA.

CIFAR100 CIFAR-100 is an extension of the CIFAR-10 dataset, designed to provide a more chal-
lenging classification task. While CIFAR-10 consists of 10 classes with 6,000 images per class,
CIFAR-100 includes 100 classes with only 600 images per class, making the dataset more com-
plex and less balanced. Each image in CIFAR-100, like CIFAR-10, is a 32x32 color image, but the
increased number of classes and fewer samples per class require models to have greater capacity
to generalize effectively. This makes CIFAR-100 particularly useful for evaluating algorithms in
scenarios with fine-grained classification and limited training data per class. CIFAR-100, with its
100 classes and only 600 images per class, poses a more complex classification challenge compared
to CIFAR-10. However, due to its large number of classes, it is not typically used as a benchmark
dataset for robust fairness studies [16; 18; 26; 10]. This is because robust fairness often focuses on
addressing disparities across a smaller set of classes, where the class-wise performance can be more
effectively analyzed and compared. The high number of classes in CIFAR-100 makes it less suit-
able for such targeted evaluations. Table 6 reveals that the robust accuracy of the worst class against
AA is significantly low. Therefore, in this scenario, it is advisable to consider the worst-class ro-
bust accuracy alongside other metrics for a more comprehensive evaluation. Across all algorithms
and varying levels of model complexity, HWNwB demonstrates substantial improvements in robust
fairness. Furthermore, DecoSAM maintains the robust fairness performance achieved by HWNwB
while also enhancing overall robustness, showcasing its effectiveness.

OfficeHome Table 7 reports the adversarial performance of various baseline methods and their
combinations with HWNwB and DecoSAM on the OfficeHome real-world domain using ResNet-
50. We evaluate models in terms of clean accuracy (Clean), average accuracy across all classes
(AA), worst-class accuracy (WC), and the average accuracy of the lowest 5% of classes (WC(5%)).
Across the PGD-AT, TRADES, and ARoW baselines, incorporating DecoSAM consistently im-
proves AA, WC, and WC(5%), indicating that DecoSAM effectively enhances robustness for both
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Table 6: Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on
CIFAR-100. PGD and AA indicates the robust accuracy under a 20-step PGD attack and the Au-
toAttack, respectively. WC indicates the worst-class robust accuracy, STD indicates the standard
deviation of class-wise robust accuracies, and Max-Min indicates the difference between the highest
and lowest class-wise robust accuracies.

Method CIFAR-100 (WRN-28-2)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 53.16 26.90 0.00 19.10 74.00 0.8427 22.52 0.00 19.10 71.00
+ HWNwB 50.30 26.76 2.00 14.64 64.00 19.43 0.00 14.54 64.00
+ DecoSAM 51.12 27.75 1.00 15.47 69.00 20.34 0.00 15.01 61.00

TRADES 53.28 27.11 0.00 18.57 71.00 0.6632 22.13 0.00 18.20 71.00
+ HWNwB 52.27 28.20 1.00 16.95 72.00 20.80 0.00 16.42 70.00
+ DecoSAM 52.05 28.29 1.00 16.70 69.00 21.41 0.00 16.26 67.00

MART 48.93 28.63 0.00 19.39 72.00 0.8824 22.77 0.00 19.97 69.00
+ HWNwB 44.20 25.42 2.00 14.67 61.00 18.97 0.00 14.03 59.00
+ DecoSAM 45.60 27.55 3.00 15.11 63.00 20.16 0.00 15.84 62.00

ARoW 52.55 27.10 0.00 18.24 72.00 0.7002 22.42 0.00 18.30 71.00
+ HWNwB 51.65 28.40 2.00 16.86 71.00 21.33 0.00 16.33 68.00
+ DecoSAM 51.66 28.56 2.00 16.95 71.00 21.78 0.00 16.41 68.00

Method CIFAR-100 (WRN-28-5)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 61.03 30.60 0.00 18.52 74.00 0.7742 25.90 0.00 18.56 71.00
+ HWNwB 59.50 32.43 6.00 15.94 68.00 24.49 1.00 15.96 69.00
+ DecoSAM 59.77 32.80 6.00 16.02 69.00 25.13 1.00 16.30 69.00

TRADES 58.44 30.85 2.00 18.85 70.00 0.5697 25.99 1.00 18.96 73.00
+ HWNwB 57.89 32.00 4.00 17.60 71.00 25.57 2.00 17.78 69.00
+ DecoSAM 57.32 32.96 4.00 14.74 70.00 26.03 2.00 17.97 72.00

MART 56.42 32.68 0.00 19.16 76.00 0.8363 26.87 0.00 19.58 74.00
+ HWNwB 53.19 32.02 6.00 15.71 62.00 24.59 1.00 15.82 64.00
+ DecoSAM 54.15 33.13 6.00 16.17 66.00 25.72 1.00 16.68 69.00

ARoW 58.39 31.10 1.00 18.83 73.00 0.5918 26.60 1.00 18.84 70.00
+ HWNwB 57.61 33.47 3.00 17.76 71.00 25.86 1.00 17.53 66.00
+ DecoSAM 57.77 33.54 3.00 17.44 69.00 26.20 1.00 16.95 67.00

Method CIFAR-100 (WRN-28-10)
Clean(↑) PGD(↑) WC(↑) STD(↓) Max-Min(↓) corr(∥W∥2, PGD) AA(↑) WC(↑) STD(↓) Max-Min(↓)

PGD-AT 63.94 29.11 2.00 17.49 69.00 0.7137 26.29 2.00 17.62 68.00
+ HWNwB 63.19 33.47 8.00 16.07 64.00 25.48 4.00 16.25 65.00
+ DecoSAM 62.29 33.68 9.00 16.38 64.00 26.01 5.00 16.71 64.00

TRADES 60.01 31.85 5.00 18.21 70.00 0.4811 27.53 3.00 18.44 72.00
+ HWNwB 59.40 34.42 5.00 17.67 69.00 27.04 4.00 17.62 68.00
+ DecoSAM 59.44 34.64 5.00 17.84 70.00 27.46 4.00 17.58 68.00

MART 59.86 32.51 3.00 18.40 70.00 0.8137 27.78 0.00 18.78 72.00
+ HWNwB 57.74 34.12 7.00 15.48 63.00 26.69 1.00 16.07 68.00
+ DecoSAM 57.87 34.55 7.00 16.35 66.00 27.35 1.00 16.78 67.00

ARoW 59.30 31.44 3.00 17.90 69.00 0.4892 27.58 3.00 18.38 68.00
+ HWNwB 59.09 34.71 4.00 17.37 69.00 27.06 3.00 17.55 66.00
+ DecoSAM 58.58 34.81 4.00 17.97 72.00 27.75 4.00 17.98 68.00
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typical and hard-to-classify classes. Notably, DecoSAM yields the highest WC(5%) in all three
baseline blocks, suggesting that it particularly benefits the most vulnerable classes. The combina-
tion with HWNwB also improves WC in many cases, though DecoSAM generally achieves stronger
overall gains. FAAL is included as a reference robust fairness method, and while its WC is com-
petitive, DecoSAM applied to other baselines demonstrates superior balance between average and
worst-class performance.

Table 7: Adversarial performance on the OfficeHome real-world domain (ResNet-50, 65
classes). WC(5%) denotes the average accuracy of the lowest 5% classes (3 classes). Best val-
ues in each block are bolded.

Method Clean (↑) AA (↑) WC (↑) WC(5%) (↑)

PGD-AT 93.59 87.76 65.57 72.15
+HWNwB 93.32 87.54 68.57 74.36
+DecoSAM 93.68 87.95 68.84 74.80
TRADES 93.32 86.50 60.61 66.64
+HWNwB 93.36 86.82 63.64 70.65
+DecoSAM 93.66 86.65 63.97 70.88
ARoW 93.89 87.15 66.57 68.14
+HWNwB 93.84 86.36 67.90 70.46
+DecoSAM 93.80 86.54 68.11 70.96
FAAL 92.41 86.01 62.57 68.44

E.1 COMPARISON DECOSAM + AROW TO FAAL

Table 8: Comparison of ARoW+DecoSAM with FAAL across datasets. We report Clean accu-
racy, Average Accuracy (AA), and Worst-Class accuracy (WC).

Dataset Method Clean (↑) AA (↑) WC (↑)

CIFAR10 FAAL 81.19 48.81 32.80
CIFAR10 ARoW + DecoSAM 83.18 48.98 34.70
CIFAR100 FAAL 55.51 25.66 1.00
CIFAR100 ARoW + DecoSAM 57.77 26.20 1.00
STL10 FAAL 78.87 58.44 32.66
STL10 ARoW + DecoSAM 80.22 59.58 35.71

Table 8 compares the performance of ARoW+DecoSAM with FAAL on three datasets: CIFAR10,
CIFAR100, and STL10. Across all datasets, ARoW+DecoSAM consistently improves the clean
accuracy and average accuracy (AA). Additionally, it enhances the worst-class accuracy (WC) in
CIFAR10 and STL10, indicating that DecoSAM effectively mitigates class-wise disparity while
maintaining overall robustness. For CIFAR100, WC remains very low, reflecting the inherent dif-
ficulty of some classes, yet ARoW+DecoSAM still slightly improves AA, showing its benefit even
under challenging scenarios.

E.2 ABLATION STUDIES

In this section, we provide additional ablation studies examining the effects of robust regularization
intensity as well as the influence of ρ in DecoSAM.

E.3 EFFECT OF ROBUST REGULARIZATION INTENSITY

We conduct experiments by varying the robust regularization parameter in TRADES. The surrogate
version of the robust risk in TRADES is as follows:

1

n

n∑
i=1

{ℓce(fθ(xi), yi) + λDKL(pθ(xi))∥pθ(x
adv
i ))} (19)

where DKL denotes the KL-divergence and λ is the robust regularization parameter that controls the
trade-off between generalization and robustness.
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Table 9 shows that as increasing λ, the norms of W tend to exhibit a stronger correlation between
class-wise robust accuracies. Additionally, for the worst-class robust accuracies, we observe an im-
provement in overall robust accuracy, suggesting that improving the overall robust accuracy also
benefits worst-class performance. This implies that methods like FAAL [26], which focus on fine-
tuning after training with a robust approach, or our proposed method, offer new directions for en-
hancing worst-class robustness.

Table 9: Effect of Robust Regularization in TRADES.

λ
CIFAR-10 (WRN-28-5)

corr(∥W∥2, PGD) Clean PGD WC
0.5 0.5805 88.74 42.62 12.50
1 0.8176 88.43 48.32 18.70
2 0.8825 87.20 51.16 24.60
4 0.9191 85.07 53.34 27.80
6 0.9135 82.94 53.51 29.20
8 0.9230 81.83 53.76 29.20

10 0.9188 80.67 53.53 28.90

E.4 EFFECT OF ρ IN DECOSAM

Table 10 presents the effect of the hyperparameter ρ in DecoSAM on class-wise adversarial per-
formance on CIFAR-10. Using PGD-AT [11] as the base adversarial training algorithm, we vary
ρ and observe that both average accuracy (AA) and worst-class accuracy (WC) exhibit non-trivial
changes. Values of ρ within the narrow range of 0.00003–0.00011 maintain a reasonable level of
AA, while WC fluctuates more substantially, indicating that ρ primarily influences the model’s ro-
bustness for harder classes. Specifically, beyond a certain threshold(0.00006) of ρ, we observe a
trade-off: increasing ρ tends to further improve overall accuracy (AA) while degrading worst-class
accuracy (WC). The baseline configuration corresponding to ρ = 0 (HWNwB) yields lower AA
but maintains a moderate WC, suggesting that DecoSAM with a properly tuned ρ can improve both
overall and worst-class performance simultaneously.

Table 10: Effect of ρ in DecoSAM.

ρ AA (↑) WC (↑)

0.00011 48.03 20.22
0.00009 47.92 20.14
0.00007 47.84 22.80
0.00006 47.93 25.10
0.00005 47.57 24.11
0.00003 47.96 21.46

0 (HWNwB) 46.45 22.27
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