
000 CLASS-WISE DISPARITY IN ADVERSARIAL TRAIN- 001 002 003 004 005 006 007 008 009 TRAINING: IMPLICIT BIAS PERSPECTIVE

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Disparities in class-wise robust accuracies frequently arise in adversarial training,
012 where certain classes suffer significantly lower robustness than others, even when
013 trained on balanced data. This phenomenon has been identified and termed robust
014 fairness in prior work, highlighting the challenge of ensuring equitable robustness
015 across classes. In this work, we investigate the root causes of such disparities
016 and identify a strong correlation between the norms of head parameters (i.e., the
017 last layer’s weights) and class-wise robust accuracies. Our theoretical and em-
018 pirical analyses show that adversarial training tends to amplify these disparities
019 by disproportionately affecting head norms, which in turn influence class-wise
020 performance. To address this, we propose a simple yet effective solution that mit-
021 igates these imbalances by directly fine-tuning the head parameters while keeping
022 the feature extractor fixed. Unlike existing methods that rely on class reweighting
023 or remargining strategies, our approach requires no validation set and introduces
024 minimal computational overhead. Experiments across various datasets and archi-
025 tectures demonstrate that our method significantly reduces disparities in class-wise
026 robust accuracies with minimal impact on average accuracy and overall robust-
027 ness, providing a practical and principled step toward improving robust fairness in
028 adversarial learning.

029 1 INTRODUCTION

031 Adversarial training has become one of the most effective paradigms for improving model robust-
032 ness against adversarial perturbations. While considerable progress has been made in enhancing the
033 average robustness of deep neural networks, a critical and underexplored issue has emerged: ad-
034 versarially trained models often suffer from large performance disparities across classes, even when
035 trained on class-balanced datasets.

036 This phenomenon manifests as certain classes (e.g., *automobile* or *ship* in CIFAR-10) achieving
037 much higher adversarial robustness than others (e.g., *cat* or *dog*), despite no difference in class fre-
038 quency. The disparity becomes especially prominent under strong adversarial attacks. This uneven
039 distribution of robustness has been identified and termed as robust fairness in recent works [20; 3].
040 It refers to the class-wise imbalance in robustness that arises naturally during adversarial training,
041 highlighting a fairness issue distinct from average accuracy or overall robustness metrics.

042 Importantly, this notion of robust fairness is conceptually different from the more widely studied
043 fairness problems based on sensitive attributes such as race, gender, or age. While traditional fairness
044 in machine learning typically addresses bias with respect to demographic subgroups, often requiring
045 the presence of explicit group labels, robust fairness focuses on disparities across semantic classes in
046 multi-class classification tasks. Here, each class (e.g., *cat*, *dog*, *airplane*) is treated uniformly during
047 training, yet still experiences varying levels of vulnerability to adversarial attacks. This reveals a
048 fundamentally different kind of fairness issue that does not rely on external group annotations, but
049 arises intrinsically from the learning dynamics of adversarial training.

050 One underlying cause of this phenomenon is the variation in intrinsic class difficulty. Easier classes—
051 those that are well-separated in the feature space and show high clean accuracy—tend to preserve
052 or improve their performance under adversarial training. In contrast, harder classes—with higher
053 sample variability or overlap with others—often see a decline in robust accuracy. From a geometric
standpoint, adversarial training tends to shift decision boundaries in ways that favor easier classes,

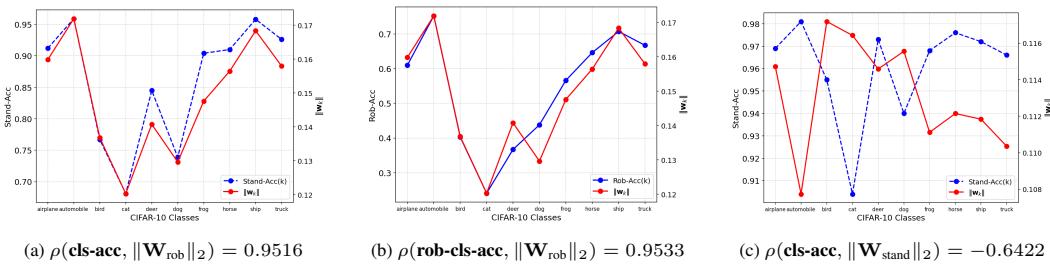


Figure 1: Correlation (ρ) of Class-wise Standard and Robust Accuracies for adversarially trained model and standard trained model (non-adversarially robust trained model). cls-acc and rob-cls-acc are standard and robust class-wise accuracies against 20 step PGD, respectively. $\|W_{1:C}^{\text{stand}}\|_2$ and $\|W_{1:C}^{\text{rob}}\|_2$ are ℓ_2 norms of class-wise head parameters for standard and robust trained model. We do not provide the $\rho(\text{rob-cls-acc}, \|W_{1:C}^{\text{stand}}\|_2)$ for standard trained model since it has robust accuracies of 0% for all classes.

leaving harder ones more vulnerable to misclassification [20]. As a result, while average robustness improves, class-wise fairness deteriorates.

In this work, we take a new perspective on this issue by examining the role of the final classification layer (i.e., the head) in mediating class-wise disparities (Figure 1). We discover a strong correlation between the norms of the head parameters and class-wise robust accuracies. Specifically, adversarial training implicitly induces norm imbalances among head weights, which we find to be closely tied to class difficulty and robustness.

While adversarial training has shown promise in improving model robustness, it often introduces class-wise performance disparities, particularly affecting head parameters. Most previous approaches attempt to mitigate this by reweighting samples or remargining perturbation budgets, but they generally rely on hyperparameter tuning and validation sets, limiting their practical applicability. In contrast, our proposed HWNWB (Head Weights Normalization with Bias) and Deco-SAM methods are designed to directly address this imbalance without requiring extensive tuning, reducing both computational overhead and implementation complexity. By focusing on head weight norms, our approach effectively balances robustness across classes while maintaining overall model performance, representing a significant advancement over existing methods.

Our contributions are summarized as follows:

- We identify a strong correlation between the norms of class-specific head parameters and class-wise robust accuracies in adversarially trained models.
- We theoretically and empirically demonstrate that adversarial training induces imbalances in these norms, which contributes to performance disparities across classes.
- We propose lightweight algorithms that directly mitigate norm disparities at the head level through weight normalization or minimal post-training fine-tuning, without modifying the feature extractor or requiring a validation set.
- Our methods are compatible with a wide range of adversarial training algorithms (e.g., PGD-AT, TRADES, MART, ARoW) and incur negligible computational overhead.
- Through extensive experiments, we show that our approach significantly reduces class-wise disparities in both standard and robust accuracies while maintaining overall robustness.

Our findings provide a novel and practical approach to improving robust fairness, offering new insights into the structural origins of class-wise disparity in adversarial training and how it can be mitigated efficiently.

2 PRELIMINARIES

2.1 ROBUST POPULATION RISK

Let $\mathcal{X} \subset \mathbb{R}^d$ be an input space and a label set $\mathcal{Y} = \{1, \dots, C\}$. Let $f : \mathcal{X} \rightarrow \mathbb{R}^C$ be a scoring function that produces a vector of predictive probabilities $\mathbf{p}(\mathbf{x}) = \text{softmax}(f(\mathbf{x})) \in \mathbb{R}^C$ for each class. We define the classification function $h_f(\mathbf{x}) = \arg\max_{k \in \mathcal{Y}} f_k(\mathbf{x}) \in \mathcal{Y}$, which assigns the input to

108 the class with the highest score. Additionally, let $\mathcal{B}_p(\mathbf{x}, \varepsilon) = \{\mathbf{x}' \in \mathcal{X} : \|\mathbf{x} - \mathbf{x}'\|_p \leq \varepsilon\}$ denote
 109 the ε -ball around \mathbf{x} in the p -norm, and $\mathbb{1}(\cdot)$ be the indicator function. In the context of adversarial
 110 training, we aim to minimize the robust population risk, defined as:

$$\mathcal{R}_{\text{rob}}(f) = \mathbb{E}_{(\mathbf{X}, Y)} \max_{\mathbf{X}' \in \mathcal{B}_p(\mathbf{X}, \varepsilon)} \mathbb{1}\{Y \neq h_f(\mathbf{X}')\}. \quad (1)$$

113 This risk measures the worst-case expected misclassification rate within the ε -neighborhood of each
 114 input. If there exists an adversarial example $\mathbf{x}' \in \mathcal{B}_p(\mathbf{x}, \varepsilon)$ that leads to the misclassification of y ,
 115 the value of the 0-1 loss function is 1; otherwise, it is 0. The primary goal of adversarial training
 116 is to find an optimal scoring function f (or equivalently, the predictive probability function \mathbf{p}) that
 117 minimizes this robust risk.

119 2.2 ALGORITHMS FOR ADVERSARIAL ROBUSTNESS

121 Recent works on defending against adversarial attacks, such as PGD-AT [12], TRADES [27] and
 122 ARoW [22], are grounded in minimizing theoretical bounds on the robust risk. PGD-AT directly
 123 minimizes the empirical risk, whereas TRADES and ARoW minimize the regularized empirical
 124 robust risk.

125 3 RELATED WORKS

128 The concept of robust fairness was first highlighted in the empirical survey by [3] and the theoretical
 129 study of [20]. Both studies observed that even when the training dataset contains an equal number of
 130 samples per class, there exists an inter-class discrepancy in terms of accuracy and robustness. [20]
 131 approached this issue theoretically by assuming that data follows a Gaussian mixture distribution
 132 with differing variances for each class, showing that adversarial training inevitably leads to this
 133 imbalance. [3] examined the potential of adapting long-tail techniques to address robust fairness in
 134 adversarial training.

135 Most existing solutions to this problem rely on class-wise weighting or regularization approaches
 136 [20; 13; 11; 18; 28], which are commonly used in long-tail learning techniques. Specifically, many
 137 algorithms for robust fairness employ class-wise weighting methods to adjust for inter-class imbal-
 138 ances [20; 11; 18; 28]. These approaches minimize the following loss function to address inter-class
 139 imbalances:

$$\frac{1}{n} \sum_{i=1}^n w_\phi(\mathbf{x}_i, y_i) \ell_\varepsilon^{\text{rob}}(f_\phi(\mathbf{x}_i), y_i), \quad (2)$$

142 where n is the number of samples, ϕ is the parameters of f , $w_\phi(\mathbf{x}_i, y_i)$ denotes the weight assigned
 143 to each sample, and $\ell_\varepsilon^{\text{rob}}$ is a surrogate risk used to approximate the robust risk (1). Common ex-
 144 examples include PGD-AT [12], TRADES [27], ARoW [22], and MART [17]. Another approach,
 145 known as the remargin method [20], assigns different perturbation budgets ε to each class, aiming
 146 to mitigate class-specific vulnerabilities. This is expressed as:

$$\frac{1}{n} \sum_{k=1}^C \sum_{i=1}^{n_k} w_\phi(\mathbf{x}_i, y_i = k) \ell_{\varepsilon_k}^{\text{rob}}(f_\phi(\mathbf{x}_i), y_i = k), \quad (3)$$

150 where n_k is the number of samples assigned to class k , and $n = \sum_{k=1}^C n_k$. In addition to these
 151 weighting methods, long-tail techniques also include strategies for aligning decision boundaries
 152 across classes, which can further improve fairness. Building upon these approaches, in this paper,
 153 we conduct both theoretical and empirical analyses to uncover the optimization-driven causes of
 154 class disparity in adversarial training. This analysis guides the development of a novel and prac-
 155 tical decision boundary alignment method, providing an effective solution to mitigate class-wise
 156 disparities in adversarial training.

157 4 WHY DOES THE DISPARITY OF CLASS-WISE ACCURACIES OCCUR?

160 In this section, we investigate why class-wise accuracy disparities arise in adversarial training com-
 161 pared to standard training in multi-class classification, drawing on both theoretical analysis and
 empirical observations. All corresponding proofs are provided in the Appendix.

162 4.1 THEORETICAL ANALYSIS
163

164 We start with a neural network composed of two parts - a feature extractor $\psi : \mathcal{X} \rightarrow \mathbb{R}^p$ and a
165 head $h : \mathbb{R}^p \rightarrow \mathbb{R}^C$. Let h be parameterized by weights $\mathbf{W}_{1:C} = (\mathbf{W}_1, \dots, \mathbf{W}_C)$ and biases $\mathbf{b} =$
166 $(\mathbf{b}_1, \dots, \mathbf{b}_C)$, i.e., $h(\psi(\mathbf{x})) = (\mathbf{W}_k^\top \psi(\mathbf{x}) + \mathbf{b}_k)_{k=1}^C$. Let $p_k(\mathbf{x})$ be the k -th element of the prediction
167 probability $\mathbf{p}(\mathbf{x})$, and $s_k(\mathbf{x}) = \mathbf{W}_k^\top \psi(\mathbf{x})$. Let \mathbf{x}^{adv} be an adversarial example corresponding to a
168 clean input \mathbf{x} , such that $\ell_{\text{ce}}(f(\mathbf{x}^{\text{adv}}), y) > \ell_{\text{ce}}(f(\mathbf{x}), y)$, or equivalently, $p_y(\mathbf{x}^{\text{adv}}) < p_y(\mathbf{x})$, where
169 $p_y(\mathbf{x})$ denotes the predicted probability of the true class y . In addition, let $\theta_{\psi(\mathbf{x}), k}$ denote the angle
170 between the feature representation $\psi(\mathbf{x})$ and the weight vector \mathbf{W}_k of class k .

171 To examine the type of bias present in the final model resulting from adversarial training, we focus
172 on the case where the training loss has been sufficiently minimized. Under this assumption, it is
173 reasonable to approximate $\psi(\mathbf{x}^{\text{adv}}) \simeq \psi(\mathbf{x})$, since prior work has shown that adversarial training
174 tends to better preserve robust feature representations compared to standard training [24; 26]. Then,
175 both $\cos(\theta_{\psi(\mathbf{x}), y})$ and $\cos(\theta_{\psi(\mathbf{x}^{\text{adv}}), y})$ are expected to be large; refer to Proposition 2 in Section A.2
176 for a more rigorous formulation.

177 Before presenting the main theorem, we define the following two relative measures.

178 **Definition 1.** We define the class-specific gradient gap measure and its expected version as

179
$$\delta(\mathbf{x}, y) := \left| \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}^{\text{adv}}), y)}{\partial \|\mathbf{W}_y\|_2} \right| - \left| \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial \|\mathbf{W}_y\|_2} \right|, \Delta_k := \mathbb{E}_{(\mathbf{X}, Y=k)} \delta(\mathbf{X}, Y), \quad (4)$$

180 respectively.

181 **Definition 2.** Define the hardness of class k by $H_k := \mathbb{E}_{(\mathbf{X}, Y=k)} [p_k(\mathbf{X}) - p_k(\mathbf{X}^{\text{adv}})]$. A class c_{hard}
182 is said to be harder than a class c_{easy} iff $H_{c_{\text{hard}}} > H_{c_{\text{easy}}}$.

183 **Remark 1.** The scalar gap $\delta(\mathbf{x}, y)$ measures, for each sample, how much the adversarial example
184 amplifies the gradient magnitude with respect to the y -th head-norm compared with the clean sample;
185 a larger δ therefore reflects a stronger push that drives $\|\mathbf{W}_y\|_2$ upward during SGD. Meanwhile,
186 the hardness index H_k is the class-level average drop in the correct-class posterior p_k induced by the
187 adversarial attack, so a larger H_k indicates that class k is inherently more vulnerable (i.e., harder)
188 against adversarial attack.

189 **Proposition 1.** $\Delta_k = \mu_Z H_k$ holds. Consequently, if a class c_{hard} is harder than class c_{easy} ($H_{c_{\text{hard}}} >$
190 $H_{c_{\text{easy}}}$), then $\Delta_{c_{\text{hard}}} > \Delta_{c_{\text{easy}}}$.

191 **Remark 2.** H_k is the average drop in class probability caused by the adversarial attack. Proposition
192 1 shows that this drop translates linearly into the gradient gap Δ_k , so that harder classes
193 necessarily incur larger Δ_k . This observation directly justifies the assumption $\Delta_h > \Delta_e$, which is a
194 key condition underlying the drift dynamics analyzed in the Theorem 1 below.

195 **Theorem 1.** Run stochastic gradient descent with learning rate η for T iterations using the adver-
196 sarial loss. Let $\Delta_k := \mathbb{E}_{(\mathbf{X}, Y=k)} \delta(\mathbf{X}, Y)$ be the class-specific expected gradient gap. Then,

197
$$\mathbb{E} \|\mathbf{W}_k^{(T)}\|_2 = \|\mathbf{W}_k^{(0)}\|_2 + \eta T \Delta_k. \quad (5)$$

198 Consequently, if a class c_{hard} is harder than a class c_{easy} ($\Delta_{c_{\text{hard}}} > \Delta_{c_{\text{easy}}}$), there exists T^* such that
199 $\mathbb{E} \|\mathbf{W}_{c_{\text{hard}}}^{(T)}\|_2 > \mathbb{E} \|\mathbf{W}_{c_{\text{easy}}}^{(T)}\|_2$ for all $T \geq T^*$.

200 These results demonstrate that a larger gradient gap Δ_k drives a steady increase in the ℓ_2 -norm of
201 the corresponding class head. As training proceeds, the norms of harder classes grow more rapidly
202 than those of easier ones, thereby widening robustness disparities. Theorem 1 formally characterizes
203 this gradient-imbalance effect, shedding light on why adversarial training can exacerbate class-wise
204 robustness differences and motivating the normalization strategies proposed in Section 5.

205 4.2 EMPIRICAL OBSERVATIONS
206

207 In addition to the previous theoretical correlation between $\mathbf{W}_{1:C}$ and class-wise robust accu-
208 rancies, we also provide empirical observations on them. Specifically, we observe the correlation be-
209 tween $\mathbf{W}_{1:C}$ and **rob-acc**, where $\|\mathbf{W}_{1:C}\|_2 := (\|\mathbf{W}_1\|_2, \|\mathbf{W}_2\|_2, \dots, \|\mathbf{W}_C\|_2)$ and **rob-acc** :=
210 $(\text{rob-acc}(1), \text{rob-acc}(2), \dots, \text{rob-acc}(C))$, where $\text{rob-acc}(c)$ represents the robust accuracy of the

216 c -th class. Figures 1a and 1b show that the class-wise standard and robust accuracies of the ad-
 217 versarially trained model are highly correlated with the norms of the head parameters. Conversely,
 218 Figure 1c reveals that in the standard trained model, there is no significant correlation between them.
 219 To compare the disparity in head parameter norms between adversarially robust and standard mod-
 220 els, we use the ratio $\max_k \|\mathbf{W}_k\|_2 / \min_k \|\mathbf{W}_k\|_2$. This index measures the relative disparity in the
 221 norms of head weights, with a minimum value of 1, indicating that all norms are equal when the
 222 index is exactly 1. The value for the standard trained model is 1.08, whereas for the adversarially
 223 robust trained model, it is 1.43, highlighting a significant difference in norm disparity in ad-
 224 versarially trained models. These observations suggest that adversarial training algorithms inherently
 225 induce bias in the head parameters, causing the norms of more challenging classes to increase while
 226 those of relatively easier classes remain smaller, which coincides with the theoretical analysis from
 227 Section 4.1. An increase in norm magnitude implies an expansion of the decision boundary region
 228 for the corresponding class in multi-class classification problems. We identify this phenomenon as
 229 **implicit bias** in adversarially robust training.
 230

231 5 PROPOSED METHODS

232 In the previous section, we identified that class-wise robustness disparities primarily arise from the
 233 implicit bias introduced during adversarial training, particularly affecting the head parameters. To
 234 address this issue, we propose two complementary methods that specifically target this imbalance,
 235 focusing on efficiency without the need for extensive hyperparameter tuning or additional validation
 236 sets.
 237

238 5.1 HEAD WEIGHTS NORMALIZATION

239 To directly address the gradient accumulation imbalance highlighted in Section 4, we introduce the
 240 Head Weights Normalization with Bias (HWNwB) method. Unlike traditional weight normaliza-
 241 tion approaches, HWNwB aims to stabilize head norms without relying on separate validation sets,
 242 and effectively reduces the class-wise robustness gap while maintaining computational efficiency.
 243 This approach mitigates the overfitting risk for challenging classes with large gradient updates, pro-
 244 moting balanced head norms across all classes. Formally, for a fixed feature extractor and bias
 245 terms, the head weights are normalized as $\widetilde{\mathbf{W}}_k := \frac{\mathbf{W}_k}{\|\mathbf{W}_k\|_2}$. Then, the label prediction is given as
 246 $\arg\max_{k \in \mathcal{Y}} (\widetilde{\mathbf{W}}_k^\top \psi(\mathbf{x}) + b_k)$ with normalized weights $\widetilde{\mathbf{W}} = (\widetilde{\mathbf{W}}_1, \dots, \widetilde{\mathbf{W}}_C)$.
 247

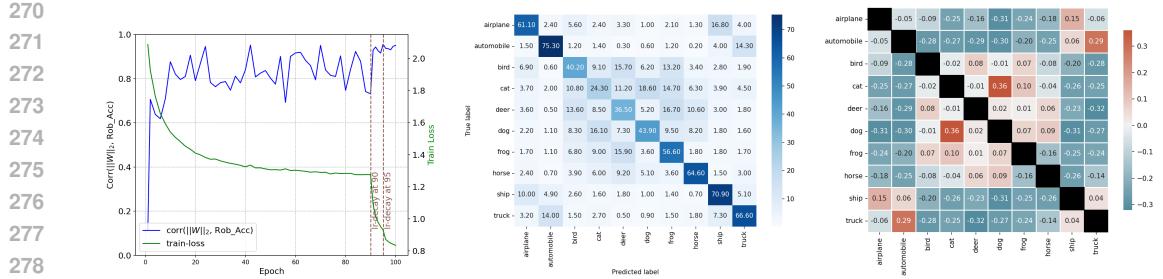
248 **Effect of Bias Terms in Normalized Weight Models** In this paragraph, we examine the im-
 249 pact of bias terms on confusing classes in a normalized weight setting. Consider the score for
 250 class c , defined as $\mathbf{W}_c^\top \psi(\mathbf{x}) + b_c$. The decision boundary between classes 1 and 2 is given by
 251 $\mathbf{x} : \mathbf{W}_1^\top \psi(\mathbf{x}) + b_1 = \mathbf{W}_2^\top \psi(\mathbf{x}) + b_2$, with its distance from the origin expressed as $\frac{|b_1 - b_2|}{\|\mathbf{W}_1 - \mathbf{W}_2\|_2}$.
 252

253 When weight vectors are normalized (i.e., $\|\mathbf{W}_1\|_2 = \|\mathbf{W}_2\|_2 = 1$), this distance becomes
 254 $\frac{|b_1 - b_2|}{\sqrt{2(1 - \mathbf{W}_1^\top \mathbf{W}_2)}}$. For similar classes, where $\mathbf{W}_1^\top \mathbf{W}_2$ is high, the bias terms b_1 and b_2 have a crit-
 255 ical influence on the positioning of the boundary. Figures 2b and 2c show that the correlation of
 256 heads for confusing classes, such as *cat* and *dog*, is the highest.
 257

258 Furthermore, Figure 3 illustrates that small variations in the bias term for similar (confusing) classes
 259 cause more sensitive shifts in the decision boundary compared to distinct classes, significantly im-
 260 pacting class separation. We present additional experiments in Section E.2 that further emphasize
 261 the importance of bias terms in such settings.
 262

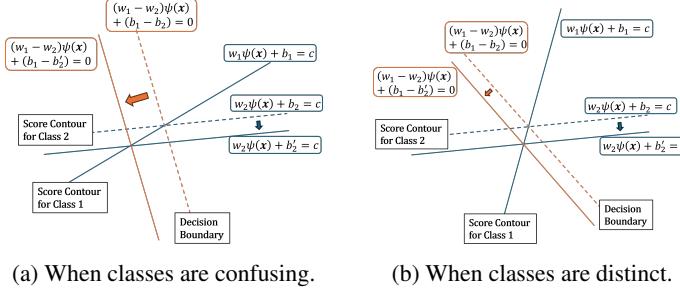
263 5.2 DECOUPLED SAM

264 Our approach builds on the idea that a high head norm correlates with a wider decision boundary
 265 [8], signifying an easier class that needs only minor adjustments. On the other hand, a low head
 266 norm corresponds to a narrower decision boundary [8], indicating a more difficult class that requires
 267 larger modifications. This understanding allows us to better balance the model’s robustness across
 268



270
271 (a) Training Dynamics of Rob-Acc
272 corr(||W^{rob}_{1:C}||₂, rob-Acc)
273
274
275
276
277
278 (b) Confusion Matrix of Rob-Acc
279 (c) Correlation Matrix of Weights
280 (PGD-20).
281 of Head

282 Figure 2: Figures illustrate the training dynamics and final epoch models of PGD-AT without a validation set.
283 To prevent robust overfitting, a learning rate decay is applied just before the 5th and 10th epochs of the total
284 training epochs, as done in [15], in order to select models that have not overfitted.



294 Figure 3: An illustration on decision boundary shifts, given bias term shifts. Score contours are calculated via
295 arbitrary level c . Higher weight similarity leads to larger decision boundary shifts.

296 different classes. This concept of head norms and decision boundaries is central to the functionality
297 of DecoSAM, enabling more effective class-wise adjustments.

298 Our approach is motivated by the Sharpness Aware Minimization (SAM) [6] optimizer, which optimizes:
299

$$300 \min_{\theta} \frac{1}{n} \sum_{i=1}^n \max_{\|\delta\|_2 \leq \rho} \ell_{\text{ce}}(f_{\theta+\delta}(\mathbf{x}_i), y_i) \quad (6)$$

303 where ℓ_{ce} is the cross-entropy loss. Geometrically, it finds a flatter minimizer than standard training.

304 Modifying SAM and motivated by HWNwB, DecoSAM minimizes the following empirical risk:
305

$$306 \min_{\mathbf{W}} \frac{1}{n} \sum_{k=1}^C \sum_{i=1}^{n_k} \max_{\|\delta_k\|_2 \leq \rho_k} \ell_{\text{ce}}(h_{\mathbf{W}_k+\delta_k} \circ \psi(\mathbf{x}_i), y_i) \quad (7)$$

309 where $n = \sum_{k=1}^C n_k$. In this optimization, it is important to select ρ_k . Inspired by HWNwB, we
310 select it as
311

$$312 \nu_k = \frac{\exp(-\tau \|\mathbf{W}_k\|_2)}{\sum_{k=1}^C \exp(-\tau \|\mathbf{W}_k\|_2)} \quad (8)$$

314 with constrained $\sum_{k=1}^C \nu_k = \rho$.

316 Our approach leverages the relationship between head norm and decision boundary width to balance
317 model robustness across classes, allowing us to adaptively adjust the model's behavior for different
318 classes. Specifically, for difficult classes with low head norms and narrow decision boundaries,
319 we make larger adjustments to improve the robustness of the worst-performing class, while for
320 easier classes with high head norms and wide decision boundaries, we make smaller adjustments to
321 maintain robustness for that class. DecoSAM employs this adaptive strategy to align head weights
322 with the fixed feature extractor, enhancing robust fairness through class-specific adjustments based
323 on head norms. Additionally, SAM's tendency to locate flat minima in the loss landscape further
boosts DecoSAM's robust fairness.

This dual approach, which combines class-specific adaptations with SAM’s inherent robustness properties, yields a model that is well calibrated and robust for varying class difficulties. To implement this, we replace the standard cross-entropy loss (ℓ_{ce}) with surrogate loss functions for robust risk, utilizing methods such as PGD-AT [12], TRADES [27], MART [17], and ARoW [22]. The complete procedure is summarized in Algorithm 1.

5.3 COMPARISON WITH EXISTING ALGORITHMS

Comparison with FRL [20] Theoretical analysis in Fair Robust Learning (FRL) [20] reveals that adversarial training expands the decision boundary for easier classes while compressing it for harder ones. However, FRL focuses on binary classification and does not provide an optimization-based explanation for the observed class-wise disparity. In contrast, our work addresses the **multi-class** setting and identifies **gradient imbalance relative to head weight norms** as the core reason for disparity. Moreover, FRL is tied to TRADES [27] and lacks algorithm-agnostic flexibility. Our proposed methods are **algorithm-agnostic** and compatible with various adversarial training frameworks, including PGD-AT [12] and MART [17]. We further contribute optimization-based insights and introduce simple, practical strategies to mitigate class-wise unfairness.

Comparison with Existing Algorithms Most robust fairness methods mitigate class-wise disparities through re-weighting or class-specific budgets, typically modifying the loss function. In contrast, our work uniquely applies normalization techniques to address class-wise robustness gaps under class-balanced data. First, unlike τ -normalization [7], which removes bias terms post-training, we show that preserving them is crucial for fairness and robust accuracy. Second, while cRT helps in long-tailed setups, it fails under adversarial training on balanced data—unlike our HWNwB and Deco-SAM. Lastly, our methods are computationally efficient: HWNwB applies simple weight normalization, and Deco-SAM adds only one SAM epoch, yet both achieve strong robust fairness.

Our approach is grounded in the insight that head weight norms correlate with class difficulty: larger norms indicate easier classes with wider margins. By aligning weight directions while preserving critical bias terms, our methods efficiently promote fairness without compromising overall robustness.

Table 1: **Summary of Existing Works and Comparison to Proposed Methods.** $w_\theta(x, y)$ and ε_y represent class-wise re-weighting (CW-RW) and re-margin(RM) methods in (3), respectively. **Val.** indicates the necessity of a validation set. **Extensibility** is a boolean value that indicates whether a method can be applied to adversarial training algorithms such as PGD-AT [12], TRADES [27], MART [17], and ARoW [22].

Method	$w_\theta(x, y)$	ε_y	Val.	Extensibility	Remark
FRL [20]	✓	✓	✓	✗	First Work
FAT [13]	✗	✗	✗	✓	Variance Regularization
WAT [11]	✓	✗	✓	✗	CW-RW Loss
CFA [18]	✓	✓	✓	✗	CW-RW loss, CW-RM loss , Weight Averaging
FAAL [28]	✓	✗	✗	✓	Distributionally Robust Optimization
HWNwB	✗	✗	✗	✓	Aligning Decision Boundary
DecoSAM	✗	✗	✗	✓	Aligning Decision Boundary

6 EXPERIMENTS

We utilize CIFAR-10 [10] and CIFAR-100 [10], which are widely recognized benchmark datasets for evaluating robust fairness in prior studies [20; 11; 18; 28]. Additionally, we incorporate STL-10 [4] and OfficeHome [16] to assess the effectiveness of our approach in higher-resolution settings. The results for CIFAR-100, OfficeHome and ImageNet100 are presented in the Appendix. To evaluate the effect of our algorithm across different levels of model capacity, we conduct experiments using three variants of WideResNet—WRN-28-2, WRN-28-5, and WRN-28-10 [25], as well as additional architectures including ResNet-50 and a Vision Transformer (ViT) model to further assess generality across both convolutional and transformer-based networks in the Appendix. Our aim is to validate the generality of our method by applying it to a range of adversarial training algorithms that minimize surrogate robust risk objectives, including PGD-AT [12], TRADES [27], MART [17], and ARoW [22]. While ARoW is not explicitly designed to enhance robust fairness, it has been reported to exhibit fairness-improving properties [22]. In our experiments, we also include a comparison with FAAL and evaluate the combination ARoW + DecoSAM, highlighting the improvements in both average and worst-class accuracies. Note that we do not include the full ImageNet-1k dataset in our evaluation, as its large number of classes makes robust fairness assessment difficult—worst-class

378 Table 2: **Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on CIFAR-10.**
379 PGD and AA indicate the robust accuracy under a 20-step PGD attack and the AutoAttack, respectively. WC
380 indicates the worst-class robust accuracy, STD indicates the standard deviation of class-wise robust accuracies,
381 and Max-Min indicates the difference between the highest and lowest class-wise robust accuracies.

382 Method	383 CIFAR-10 (WRN-28-2)									
	384 Clean(\uparrow)	385 PGD(\uparrow)	386 WC(\uparrow)	387 STD(\downarrow)	388 Max-Min(\downarrow)	389 corr($\ W\ _2$, PGD)	390 AA(\uparrow)	391 WC(\uparrow)	392 STD(\downarrow)	393 Max-Min(\downarrow)
PGD-AT	80.85	49.20	19.70	17.47	53.70	0.9314	45.27	13.70	19.13	58.00
+ HWNwB	79.47	52.74	29.10	13.44	41.30	—	43.50	18.60	14.71	46.10
+ DecoSAM	79.69	52.79	31.50	13.64	39.97	—	44.26	21.90	15.01	44.33
TRADES	78.98	49.30	22.40	16.83	48.10	0.8964	45.33	17.20	18.15	51.30
+ HWNwB	78.74	51.42	29.90	14.27	41.70	—	44.96	19.40	15.72	48.60
+ DecoSAM	78.21	51.30	30.57	15.59	40.87	—	45.00	22.53	16.23	43.97
MART	77.13	51.44	20.90	17.59	52.10	0.9129	46.27	12.30	20.40	57.90
+ HWNwB	75.12	52.75	26.90	15.29	45.80	—	44.03	15.80	16.11	50.00
+ DecoSAM	75.75	53.12	27.47	14.96	45.27	—	44.45	19.90	16.07	45.97
ARoW	79.82	50.05	23.90	15.72	45.50	0.9437	45.97	18.70	17.01	48.70
+ HWNwB	78.61	51.88	36.90	12.44	33.70	—	44.22	28.10	14.10	36.50
+ DecoSAM	78.73	52.34	35.43	12.88	35.33	—	44.85	28.60	13.65	36.17
392 Method	393 CIFAR-10 (WRN-28-5)									
	394 Clean(\uparrow)	395 PGD(\uparrow)	396 WC(\uparrow)	397 STD(\downarrow)	398 Max-Min(\downarrow)	399 corr($\ W\ _2$, PGD)	400 AA(\uparrow)	401 WC(\uparrow)	402 STD(\downarrow)	403 Max-Min(\downarrow)
PGD-AT	86.00	53.94	24.20	16.07	51.30	0.9515	49.50	17.60	18.03	55.70
+ HWNwB	85.09	56.68	39.10	12.31	34.80	—	48.25	29.10	13.83	38.90
+ DecoSAM	85.52	56.55	38.93	12.22	35.37	—	49.09	30.70	14.60	39.93
TRADES	83.52	53.85	29.60	15.68	46.50	0.8967	50.65	23.90	17.17	51.10
+ HWNwB	82.93	56.13	37.60	13.54	39.00	—	49.88	26.20	14.77	46.10
+ DecoSAM	83.01	56.05	36.00	14.84	38.23	—	50.24	29.17	15.92	41.27
MART	82.66	55.00	25.80	15.92	52.00	0.9528	49.77	17.60	18.78	58.00
+ HWNwB	80.28	56.88	36.50	13.44	37.80	—	48.26	24.60	16.12	44.60
+ DecoSAM	80.66	56.75	33.97	14.06	40.60	—	48.90	25.30	15.50	43.90
ARoW	84.18	53.46	27.10	15.26	48.50	0.9328	50.36	22.70	16.42	51.40
+ HWNwB	83.43	56.21	43.70	11.87	30.30	—	48.36	30.05	13.08	36.90
+ DecoSAM	82.82	56.45	37.57	13.08	35.77	—	49.29	31.30	13.89	36.43
401 Method	402 CIFAR-10 (WRN-28-10)									
	403 Clean(\uparrow)	404 PGD(\uparrow)	405 WC(\uparrow)	406 STD(\downarrow)	407 Max-Min(\downarrow)	408 corr($\ W\ _2$, PGD)	409 AA(\uparrow)	410 WC(\uparrow)	411 STD(\downarrow)	412 Max-Min(\downarrow)
PGD-AT	87.74	52.75	22.50	16.18	51.10	0.9061	50.06	19.70	17.29	53.50
+ HWNwB	87.30	56.89	42.10	11.23	31.20	—	49.35	30.70	13.98	39.90
+ DecoSAM	87.36	56.31	39.53	12.16	34.57	—	49.64	29.87	14.63	42.43
TRADES	85.35	55.71	29.00	15.57	48.00	0.8741	52.86	25.30	16.89	50.80
+ HWNwB	84.90	57.77	39.00	13.37	37.00	—	52.21	30.40	14.69	42.30
+ DecoSAM	84.25	57.78	38.03	14.53	37.77	—	52.35	31.10	15.71	42.23
MART	85.30	56.64	31.60	14.95	44.90	0.9460	51.32	22.00	17.84	52.70
+ HWNwB	83.64	58.82	39.30	12.83	35.80	—	49.99	30.00	14.53	41.40
+ DecoSAM	84.05	58.68	38.03	12.95	38.23	—	50.64	31.63	14.79	41.70
ARoW	85.97	55.23	27.30	15.75	49.30	0.8910	52.27	23.00	16.73	52.40
+ HWNwB	84.90	57.87	40.90	13.58	36.70	—	50.42	31.50	14.68	36.30
+ DecoSAM	84.66	57.82	38.90	13.22	37.47	—	50.82	32.90	14.01	38.47

411 Table 3: **Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on STL-10.** PGD
412 and AA indicates the robust accuracy under a 20-step PGD attack and the AutoAttack. WC indicates the
413 worst-class robust accuracy, STD indicates the standard deviation of class-wise robust accuracies, and Max-
414 Min indicates the difference between the highest and lowest class-wise robust accuracies.
415

416 Method	417 STL-10 (WRN-28-5)									
	418 Clean(\uparrow)	419 PGD(\uparrow)	420 WC(\uparrow)	421 STD(\downarrow)	422 Max-Min(\downarrow)	423 corr($\ W\ _2$, PGD)	424 AA(\uparrow)	425 WC(\uparrow)	426 STD(\downarrow)	427 Max-Min(\downarrow)
PGD-AT	81.28	65.51	34.75	18.40	54.38	0.6502	62.40	26.00	20.48	62.12
+ HWNwB	79.57	67.10	41.75	17.23	47.38	—	61.58	34.00	18.13	49.50
+ DecoSAM	79.92	66.71	42.63	17.47	46.75	—	61.59	36.29	19.42	50.33
TRADES	79.67	62.41	34.00	18.13	51.50	0.5379	58.69	24.62	20.44	59.12
+ HWNwB	78.54	64.06	40.12	17.36	46.75	—	58.10	31.62	20.51	50.75
+ DecoSAM	78.43	63.62	39.83	17.85	46.50	—	58.03	34.54	19.88	48.62
ARoW	80.65	63.95	34.88	17.78	51.12	0.7113	60.44	25.62	19.90	58.75
+ HWNwB	80.05	65.74	43.50	16.90	44.12	—	59.15	34.88	19.70	49.88
+ DecoSAM	80.22	65.33	43.87	17.31	42.55	—	59.58	35.71	19.57	47.71

428 accuracy typically collapses to near-zero in such high-class settings. Instead, we report experiments
429 on ImageNet-100, an extracted subset of ImageNet-1k that is widely used in robust robustness and
430 fairness studies. This reduced-class version enables meaningful evaluation of class-wise disparity.
431 The ImageNet-100 results, together with ε -sweep experiments, are included in the Appendix. Abla-
432 tion studies on the effects of robust regularization intensity and bias terms in the proposed algorithms
433 and τ and ρ in eqn (7) are provided in the Appendix.

432 **Training Setups** We follow the experimental setting of Pang et al. [15] and select the model
433 from the last epoch to avoid using a validation set. To generate adversarial examples, we employ
434 a 10-step PGD attack with a perturbation budget of $\varepsilon = 8/255$ and a step size of $2/255$. For the
435 pretrained model, we use a weight decay of $5e^{-4}$, train for a total of 100 epochs, and employ a
436 multi-step learning rate scheduler with learning-rate decays at epochs 90 and 95 for all algorithms.
437 The regularization parameters for TRADES, MART, and ARoW are set to 6, 3, and 7, respectively.
438 HWNwB applies simple head weight normalization without additional training, keeping the bias
439 terms unchanged. DecoSAM with $\tau = 1$ in (7), on the other hand, performs training for only **one**
440 **epoch** with fixed learning rate.

441 **Evaluation Setups** To evaluate robust fairness, we adopt two complementary methods: a 20-step
442 PGD attack using the same configuration as during training (perturbation budget $\varepsilon = 8/255$, step
443 size $\alpha = 2/255$), and AutoAttack (AA) [5], a standardized ensemble of attacks known for providing
444 reliable robustness evaluations. AA is particularly valuable in mitigating the effects of gradient
445 obfuscation [1], where misleading gradients can result in overestimated robustness under weaker
446 attacks. For comprehensive assessment, we report five key metrics: clean accuracy, robust accuracy,
447 worst-class accuracy, standard deviation of class-wise accuracies, and the accuracy gap between the
448 best and worst-performing classes. Among these, worst-class accuracy is the most critical metric,
449 as it reflects the robustness of the most vulnerable class and serves as a widely adopted indicator of
450 robust fairness in prior works [11; 20; 28; 18].

451 **6.1 PERFORMANCE EVALUATION**

452 Table 2 presents the performance of HWNwB and DecoSAM across various adversarially robust
453 training algorithms—PGD-AT, TRADES, MART, and ARoW—on architectures of varying complexity.
454 Overall, all algorithms exhibited a high correlation between weight norms and PGD robustness
455 across architectures, with TRADES showing a slightly lower correlation. In terms of PGD accuracy,
456 HWNwB generally outperformed DecoSAM, likely because weight normalization tends to equalize
457 class scores more uniformly [19]. Despite this, DecoSAM achieved significant improvements in
458 robust fairness under AutoAttack (AA), performing particularly well in worst-class robust accuracy
459 and showing notable gains in overall robust accuracy under AA, thus proving its effectiveness in
460 enhancing robust fairness across classes. Table 3 shows the performance of our algorithm. Simi-
461 lar to CIFAR-10, the correlation is high, demonstrating that our approach significantly improves
462 robustness fairness.

463 **Combination with Existing Works** In this paragraph, we integrate our methods with existing
464 algorithms such as FRL [20], FAT [13], WAT [11], CFA [18], and FAAL [28]. Each algorithm
465 is implemented using the default settings from the corresponding official repository, based on the
466 WRN-28-5 architecture. The trained models are saved and then HWNwB and DecoSAM are ap-
467 plied, after which they are evaluated to assess their performance. Table 4 presents the results of
468 combining HWNwB and DecoSAM with existing algorithms. We also observe that existing robust
469 fairness algorithms induce a high correlation between head parameters and class-wise robust ac-
470 curacies. Our methods demonstrate improvements in worst-class accuracy across all methods except
471 FAAL. In FAAL, although worst-class accuracy decreases, overall accuracy increases.

472 **Effect of Bias Term in HWNwB and DecoSAM** We conduct experiments with HWNwB and
473 DecoSAM to examine the importance of bias terms in enhancing performance, particularly for
474 the worst-performing classes. Our proposed algorithms, HWN w/ Bias and DecoSAM w/ frozen
475 Bias, preserve the bias term to explore its impact, while HWN w/o Bias follows the traditional τ -
476 normalization technique by removing the bias term, and DecoSAM w/o frozen Bias allows the bias
477 term to be updated alongside other parameters. As shown in Table 5 and discussed in Section 5.1,
478 retaining the bias term significantly improves worst-class performance in both HWN and DecoSAM,
479 underscoring its critical role in achieving robust fairness.

480 **7 CONCLUSION AND FUTURE WORK**

481 This paper introduces a novel approach to improving robust fairness in adversarial training by uncov-
482 ering a strong correlation between classifier head parameter norms and class-wise robust accuracies.

486
487 Table 4: Combination with Existing Algorithms.
488

Method	CIFAR-10 (WRN-28-5)					
	Clean(\uparrow)	AA(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)	corr($\ \mathbf{W}\ _2$, PGD)
FRL	84.09	46.85	27.10	14.23	40.10	0.9056
+ HWNwB	81.31	44.38	29.50	12.90	43.30	–
+ DecoSAM	83.51	46.03	30.11	14.07	40.19	–
FAT	83.22	50.02	20.70	17.47	56.20	0.9469
+ HWNwB	82.95	49.11	27.90	15.14	47.00	–
+ DecoSAM	82.31	48.88	29.90	15.32	43.80	–
CFA	85.42	50.42	23.70	16.52	50.00	0.9075
+ HWNwB	85.41	49.73	27.90	15.13	44.30	–
+ DecoSAM	85.52	50.33	29.11	14.59	42.75	–
FAAL	81.19	48.81	31.70	11.86	33.90	0.9114
+ HWNwB	77.32	44.91	31.90	11.12	32.90	–
+ DecoSAM	81.96	50.11	32.10	11.37	32.80	–
WAT	83.62	50.50	21.50	16.90	53.00	0.9508
+ HWNwB	83.13	49.93	30.30	14.74	41.40	–
+ DecoSAM	83.19	50.22	30.60	15.34	39.80	–

499
500 Table 5: Effect of Bias Terms of HWNwB and DecoSAM.
501

Method	CIFAR-10 (WRN-28-5)				
	Clean(\uparrow)	AA(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)
PGD-AT	86.00	49.50	17.60	18.03	55.70
+ HWN w/ Bias	85.09	48.25	29.10	13.83	38.90
+ HWN w/o Bias	86.23	48.14	23.10	16.50	48.20
+ DecoSAM w/ frozen Bias	85.52	49.09	30.70	14.60	39.93
+ DecoSAM w/o frozen Bias	85.28	48.97	28.60	16.00	42.70

502
503
504
505
506
507 We show that adversarial training induces imbalances in head norms, which in turn lead to dis-
508 parities in class-wise performance. To mitigate this issue, we propose an algorithm that fine-tunes
509 head parameters without requiring a validation set or modifying the feature extractor, effectively
510 reducing accuracy gaps across classes while preserving overall robustness. Extensive experiments
511 demonstrate that our method improves both fairness and robustness.

512
513
514
515
516
517
518
519 Despite these contributions, our analysis primarily focuses on linear classifier heads. Although many
modern architectures employ non-linear heads such as MLPs, our theoretical results still apply be-
cause the final prediction is ultimately computed through a linear transformation in the last layer. By
treating the input to this layer as the feature representation, our methods and theoretical insights re-
main valid. Nevertheless, a limitation of our current framework is that it mainly addresses robustness
disparities at the classifier head level. Implicit biases can also emerge in the feature representation
space, particularly under adversarial training, which tends to amplify such biases at both the feature
and classifier levels.

520
521
522
523 As future work, we plan to extend our robustness-balancing framework beyond the classifier head to
jointly address biases in both the feature and weight spaces. Such an extension would provide a more
comprehensive and principled strategy for improving class-wise fairness and robustness against ad-
versarial attacks.

524
525
526
527
528
529 **Reproducibility Statement** We have taken considerable care to guarantee the reproducibility of
our findings in this study. For the theoretical results, we include full proofs in the Appendix. The
source code for implementing our proposed model are provided in the supplementary material. De-
tailed information for the hyperparameters, datasets and experimental setup are given in Section D
of Appendix.

530
531
532
533
534 **Use of Large Language Models** In the preparation of this manuscript, a large language model
was utilized as a writing aid. Its role was strictly limited to improving grammar, rephrasing for
clarity, and correcting typographical errors. The LLM did not contribute to the core research ideas,
experimental design, or the analysis of results presented in this paper.

535 536 REFERENCES

537
538 [1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
539 of security: Circumventing defenses to adversarial examples. In *International conference on
machine learning*, pages 274–283. PMLR, 2018.

540 [2] Yu Bai, Song Mei, Nicolas Flammarion, and Andrea Montanari. Are transformers more robust
541 than cnns? In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

542 [3] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Robustness may be at odds
543 with fairness: An empirical study on class-wise accuracy. In *Proceedings of Machine Learning
544 Research*, pages 1–18, 2020.

545 [4] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsu-
546 pervised feature learning. In *Proceedings of the fourteenth international conference on artifi-
547 cial intelligence and statistics*, pages 215–223. JMLR Workshop and Conference Proceedings,
548 2011.

549 [5] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
550 ensemble of diverse parameter-free attacks. In *International conference on machine learning*,
551 pages 2206–2216. PMLR, 2020.

552 [6] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware mini-
553 mization for efficiently improving generalization. In *Proceedings of the International Confer-
554 ence on Learning Representations (ICLR)*, 2021.

555 [7] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
556 Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In
557 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2020.

558 [8] Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning.
559 *IEEE access*, 2020.

560 [9] Peter Kokol, Marko Kokol, and Sašo Zagoranski. Machine learning on small size samples: A
561 synthetic knowledge synthesis. *Science Progress*, 2021.

562 [10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
563 In *Technical report, University of Toronto*, 2009.

564 [11] Boqi Li and Weiwei Liu. Wat: Improve the worst-class robustness in adversarial training. In
565 *AAAI*, 2023.

566 [12] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
567 Vladu. Towards deep learning models resistant to adversarial attacks. In *International Confer-
568 ence on Learning Representations (ICLR)*, 2018.

569 [13] Javier Maroto, Guillermo Ortiz-Jiménez, and Pascal Frossard. On the benefits of knowledge
570 distillation for adversarial robustness. In *arXiv*, 2022.

571 [14] Shiqing Mo, Jinghui Chen, Xiaofeng Cao, Yan Wang, Ruijie Wang, Junjie Wang, Guo-Jun Qi,
572 Yuan Zhang, Bo Li, Shiyu Chang, and Bin Cui. When adversarial training meets vision trans-
573 formers: Recipes from cnns are all you need. In *Advances in Neural Information Processing
574 Systems (NeurIPS)*, 2022.

575 [15] Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial
576 training. In *International Conference on Learning Representations (ICLR)*, 2021.

577 [16] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
578 Deep hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE Con-
579 ference on Computer Vision and Pattern Recognition (CVPR)*, pages 5018–5027, 2017.

580 [17] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
581 adversarial robustness requires revisiting misclassified examples. In *International Conference
582 on Learning Representations (ICLR)*, 2020.

583 [18] Zeming Wei, Yifei Wang, Yiwen Guo, and Yisen Wang. Cfa: Class-wise calibrated fair adver-
584 sarial training. In *CVPR*, 2023.

585 [19] Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin. Adversarial robustness un-
586 der long-tailed distribution. In *Proceedings of the Computer Vision and Pattern Recognition
587 (CVPR)*, 2021.

594 [20] Han Xu, Xiaorui Liu, Yaxin Li, Anil K. Jain, and Jiliang Tang. To be robust or to be fair:
595 Towards fairness in adversarial training. In *International Conference on Machine Learning*
596 (*ICML*), 2021.

597 [21] Pengcheng Xu, Xiaoobo Ji, Minjie Li, and Wencong Lu. Small data machine learning in mate-
598 rials science. *npj Computational Mathematics*, 2023.

600 [22] Dongyoon Yang, Insung Kong, and Yongdai Kim. Improving adversarial robustness by putting
601 more regularizations on less robust samples. In *International Conference on Machine Learn-
602 ing*, pages 39331–39348. PMLR, 2023.

603 [23] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised
604 learning. *IEEE Transactions on Knowledge and Data Engineering*, 2023.

606 [24] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika
607 Chaudhuri. A closer look at accuracy vs. robustness. In *Conference on Neural Information
608 Processing Systems (NeurIPS)*, 2020.

609 [25] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In *Proceedings of the
610 British Machine Vision Conference 2016*, 2016.

612 [26] Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Rethinking lipschitz neural networks and
613 certified robustness: A boolean function perspective. In *Conference on Neural Information
614 Processing Systems (NeurIPS)*, 2022.

616 [27] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael
617 I Jordan. Theoretically principled trade-off between robustness and accuracy. In *International
618 Conference on Machine Learning (ICML)*, 2019.

619 [28] Yanghao Zhang, Tianle Zhang, Ronghui Mu, Xiaowei Huang, and Wenjie Ruan. Towards
620 fairness-aware adversarial learning. In *Proceedings of the Computer Vision and Pattern Recog-
621 nition (CVPR)*, 2024.

622 [29] Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard Feiner, Johannes Brandt, Rick-
623 mer Braren, Daniel Rueckert, and Georgios Kaassis. Reconciling ai performance and data
624 reconstruction resilience for medical imaging. *Nature Machine Intelligence*, 2024.

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

APPENDIX

A THEORETICAL RESULTS

In this section, we provide detailed assumptions and proofs of the theoretical results.

Gradient Formulas. We first consider the cross-entropy loss ℓ_{ce} for a multi-class classification task. The gradient with respect to the class score $s_k(\mathbf{x})$ is

$$\frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial s_k(\mathbf{x})} = p_k(\mathbf{x}) - y_k, \quad (9)$$

where $s_k(\mathbf{x})$ is the logit for class k :

$$s_k(\mathbf{x}) = \mathbf{W}_k^\top \psi(\mathbf{x}) = \|\mathbf{W}_k\|_2 \|\psi(\mathbf{x})\|_2 \cos(\theta_{\psi(\mathbf{x}), k}), \quad (10)$$

and $\theta_{\psi(\mathbf{x}), k}$ is the angle between \mathbf{W}_k and the feature vector $\psi(\mathbf{x})$.

Since our goal is to investigate the effect of the head parameter norm on the loss, we compute the derivative of the loss with respect to $\|\mathbf{W}_k\|_2$:

$$\begin{aligned} \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial \|\mathbf{W}_k\|_2} &= \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial s_k(\mathbf{x})} \cdot \frac{\partial s_k(\mathbf{x})}{\partial \|\mathbf{W}_k\|_2} \\ &= \begin{cases} (p_k(\mathbf{x}) - 1) \|\psi(\mathbf{x})\|_2 \cos(\theta_{\psi(\mathbf{x}), k}) & \text{if } k = y, \\ p_k(\mathbf{x}) \|\psi(\mathbf{x})\|_2 \cos(\theta_{\psi(\mathbf{x}), k}) & \text{if } k \neq y. \end{cases} \end{aligned} \quad (11)$$

A.1 NOTATION AND ASSUMPTIONS

We make the following assumptions, which are standard and realistic, serving as regular conditions for our theoretical analysis.

Assumption 1 (Feature Extractor and Classifier Head). *Let $\psi : \mathcal{X} \rightarrow \mathbb{R}^p$ be the feature extractor, and let the classifier head be parameterized by $\{\mathbf{W}_k, b_k\}_{k=1}^C$. For an input \mathbf{x} , the class scores and softmax probabilities are*

$$s_k(\mathbf{x}) = \mathbf{W}_k^\top \psi(\mathbf{x}) + b_k, \quad p_k(\mathbf{x}) = \frac{\exp(s_k(\mathbf{x}))}{\sum_{j=1}^C \exp(s_j(\mathbf{x}))}.$$

Assumption 2 (Global Upper Bounds). *We assume the existence of global upper bounds:*

$$\sup_{\mathbf{x} \in \mathcal{X}} \|\psi(\mathbf{x})\|_2 \leq B_\psi, \quad \sup_k \|\mathbf{W}_k\|_2 \leq B_w, \quad \sup_{k \neq y} |b_y - b_k| \leq B.$$

Assumption 3 (Small Cross-Entropy Condition). *Each training sample (\mathbf{x}, y) satisfies a small cross-entropy condition:*

$$\ell_{\text{ce}}(f(\mathbf{x}), y) = -\log p_y(\mathbf{x}) \leq \varepsilon', \quad \varepsilon' \ll 1. \quad (12)$$

Assumption 4 (Margin Condition). *The small cross-entropy condition in Assumption 3 implies a positive margin:*

$$m_{\varepsilon'} := \log \frac{1 - \varepsilon'}{\varepsilon'} - \log(C - 1) > 0. \quad (13)$$

A.2 PROPOSITIONS

Proposition 2. *Let (\mathbf{x}, y) satisfy (12), and suppose the margin (13) dominates bias and norm terms, $m_{\varepsilon'} > B + B_w B_\psi$. Then the angle between the feature vector $\psi(\mathbf{x})$ and the correct weight vector \mathbf{W}_y is upper-bounded by*

$$\theta_y(\mathbf{x}) \leq \arccos \frac{m_{\varepsilon'} - B - B_w B_\psi}{B_w B_\psi}. \quad (14)$$

In particular, as $\varepsilon' \rightarrow 0$, $m_{\varepsilon'} \rightarrow \infty$ and $\theta_y(\mathbf{x}) \rightarrow 0$.

702 *Proof.* From (12), $p_y(\mathbf{x}) \geq 1 - \varepsilon'$, which implies for all $k \neq y$,

$$704 \quad s_y - s_k = (\mathbf{W}_y - \mathbf{W}_k)^\top \psi(\mathbf{x}) + (b_y - b_k) \geq m_{\varepsilon'}.$$

705 Subtracting the bias term gives

$$707 \quad (\mathbf{W}_y - \mathbf{W}_k)^\top \psi(\mathbf{x}) \geq m_{\varepsilon'} - B.$$

709 Writing the inner product in cosine form, using $\|\mathbf{W}_y - \mathbf{W}_k\| \leq 2B_w$ and $\|\psi(\mathbf{x})\| \leq B_\psi$,

$$711 \quad S_c(\mathbf{W}_y - \mathbf{W}_k, \psi(\mathbf{x})) \geq \frac{m_{\varepsilon'} - B}{2B_w B_\psi} > 0.$$

714 Finally, decompose $\mathbf{W}_y^\top \psi(\mathbf{x}) = (\mathbf{W}_y - \mathbf{W}_k + \mathbf{W}_k)^\top \psi(\mathbf{x})$ and apply the norm bounds:

$$716 \quad \mathbf{W}_y^\top \psi(\mathbf{x}) \geq m_{\varepsilon'} - B - B_w B_\psi, \quad \cos \theta_y(\mathbf{x}) = \frac{\mathbf{W}_y^\top \psi(\mathbf{x})}{\|\mathbf{W}_y\| \|\psi(\mathbf{x})\|} \geq \frac{m_{\varepsilon'} - B - B_w B_\psi}{B_w B_\psi}.$$

718 This proves (14). \square

720 **Remark 3.** Proposition 2 formalizes the intuition that, for a training sample with a sufficiently small
721 cross-entropy loss, the corresponding feature vector $\psi(\mathbf{x})$ aligns closely with the weight vector of the
722 correct class \mathbf{W}_y . Specifically, when the margin $m_{\varepsilon'}$ dominates the bias and norm terms, the angle
723 $\theta_y(\mathbf{x})$ between $\psi(\mathbf{x})$ and \mathbf{W}_y is tightly upper-bounded. As the cross-entropy loss approaches zero,
724 the margin $m_{\varepsilon'}$ grows, causing $\theta_y(\mathbf{x})$ to approach zero. Intuitively, this means that highly confident
725 predictions correspond to feature vectors that are nearly collinear with the correct class weight,
726 which underpins the effectiveness of norm-based adjustments in class-wise robustness analysis.

727 A.3 HARD-VS-EASY CLASSES: A FORMAL GAP INEQUALITY

729 **Notation** Let (\mathbf{x}, y) denote a training sample, and let \mathbf{x}^{adv} be its adversarial counterpart generated
730 within a perturbation budget ε . For a fixed class k , we define the *clean* and *adversarial* predictive
731 probabilities as

$$732 \quad p_k := p_k(\mathbf{x}), \quad p_k^{\text{adv}} := p_k(\mathbf{x}^{\text{adv}}).$$

734 For samples belonging to class k , the pointwise gap as defined in Definition 1 is given by

$$736 \quad \delta(\mathbf{x}, y = k) := \left| \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}^{\text{adv}}), y)}{\partial \|\mathbf{W}_y\|_2} \right| - \left| \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial \|\mathbf{W}_y\|_2} \right| \\ 737 \quad = (p_k - p_k^{\text{adv}}) \|\psi(\mathbf{x})\|_2 \cos \theta_{\psi(\mathbf{x}), k} \quad (\text{by Equation (11)})$$

741 In addition, we define the expected gradient gap as

$$743 \quad \Delta_k := \mathbb{E}_{(\mathbf{X}, Y = k)} \delta(\mathbf{X}, Y)$$

746 We further introduce the shorthand notation

$$748 \quad Z(\mathbf{x}, k) := \|\psi(\mathbf{x})\|_2 \cos \theta_{\psi(\mathbf{x}), k},$$

750 and note that Assumption A.1 ensures

$$752 \quad Z(\mathbf{x}^{\text{adv}}, k) \simeq Z(\mathbf{x}, k) \tag{15}$$

753 for adversarially robust trained model [24; 26].

754 **Assumption 5** (Feature-angle stationarity). *For every class k , the random variable $Z(\mathbf{X}, k)$ is
755 independent of (p_k, p_k^{adv}) and has finite mean $\mu_Z := \mathbb{E}[Z(\mathbf{X}, k)] > 0$.*

756 **Remark 4.** The assumption $\mu_Z > 0$ is practically necessary to ensure a meaningful interpretation
 757 of the gap measure: if μ_Z were zero or negative, the relationship between class hardness and
 758 gradient gaps would become inverted or trivial, violating the intuitive notion of robustness and class
 759 difficulty alignment. However, well-trained neural networks typically satisfy $\mu_Z > 0$, validating our
 760 assumption.

761 **Proposition 1.** $\Delta_k = \mu_Z H_k$ holds. Consequently, if a class c_{hard} is harder than class c_{easy} ($H_{c_{hard}} >$
 762 $H_{c_{easy}}$), then $\Delta_{c_{hard}} > \Delta_{c_{easy}}$.

764 *Proof.* Condition on $y = k$, $\Delta_k = \mathbb{E}_{(\mathbf{X}, Y=k)}[(p_k - p_k^{\text{adv}}) Z(\mathbf{X}, Y)]$. By Assumption 5, $Z(\mathbf{X}, k)$
 765 is independent of $(p_k - p_k^{\text{adv}})$ and shares the same distribution for all samples of class k . Hence the
 766 expectation factorizes:

$$768 \quad \Delta_k = \mathbb{E}_{(\mathbf{X}, Y=k)}[p_k - p_k^{\text{adv}}] \cdot \mathbb{E}_{(\mathbf{X}, Y=k)}[Z(\mathbf{X}, Y)] = H_k \mu_Z.$$

769 Because $\mu_Z > 0$, the ordering of Δ_k follows directly from the ordering of H_k . \square

771 **Notation** Let the *clean* and *adversarial* per-sample gradients for class k be

$$773 \quad g_k^{\text{cln}}(\mathbf{x}, y) := \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial \mathbf{W}_k}, \quad g_k^{\text{adv}}(\mathbf{x}, y) := \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}^{\text{adv}}), y)}{\partial \mathbf{W}_k}, \quad (16)$$

775 and denote the unit direction $\widetilde{\mathbf{W}}_k := \mathbf{W}_k / \|\mathbf{W}_k\|_2$. Define the scalar projections

$$777 \quad s^{\text{cln}}(\mathbf{x}, y) := \widetilde{\mathbf{W}}_k^{\top} g_k^{\text{cln}}(\mathbf{x}, y), \quad s^{\text{adv}}(\mathbf{x}, y) := \widetilde{\mathbf{W}}_k^{\top} g_k^{\text{adv}}(\mathbf{x}, y). \quad (17)$$

778 The sample-wise gap from Definition 1 is $\delta(\mathbf{x}, y) = |s^{\text{adv}}| - |s^{\text{cln}}|$.

779 **Lemma 1.** For every SGD iteration t ,

$$781 \quad \mathbb{E}_{(\mathbf{X}, Y) \sim \mathcal{D}}[\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{(t)}] = -\Delta_k, \quad \text{where } \Delta_k := \mathbb{E}_{(\mathbf{X}, Y=k)}[\delta(\mathbf{X}, k)].$$

782 *Proof.* We prove the lemma by separating the contributions from samples of class k and non-target
 783 classes.

785 **Case 1:** $Y \neq k$. For samples not belonging to class k , the indicator $\mathbf{1}\{k = Y\} = 0$, so both clean
 786 and adversarial class- k scores are positive:

$$787 \quad s^{\text{cln}} > 0, \quad s^{\text{adv}} > 0.$$

789 PGD perturbations primarily target the true class Y , leaving non-target class logits largely un-
 790 changed. Hence,

$$791 \quad s^{\text{adv}} \approx s^{\text{cln}} \quad \Rightarrow \quad \delta(\mathbf{X}, Y) = 0.$$

792 These samples therefore contribute positively to the inner product $\widetilde{\mathbf{W}}_k^{\top} g^{\text{adv}}$, but they do not con-
 793 tribute to the expected gradient gap Δ_k . In other words, for samples whose true label is not k , the
 794 adversarial perturbation has little effect on the gradient gap because the model is already unlikely to
 795 predict class k .

796 **Case 2:** $Y = k$. For samples of class k , the clean logit is high, $p_k(\mathbf{X}) \approx 1$, so $s^{\text{cln}} \approx 0$. Adversarial
 797 perturbations decrease this logit significantly, $p_k(\mathbf{X}^{\text{adv}}) \ll 1$, giving $s^{\text{adv}} < 0$. Consequently, the
 798 gradient gap satisfies

$$799 \quad \delta(\mathbf{X}, k) = |s^{\text{adv}}| - |s^{\text{cln}}| = -s^{\text{adv}}(\mathbf{X}, k).$$

800 Thus, for these samples,

$$801 \quad \widetilde{\mathbf{W}}_k^{\top} g^{\text{adv}} = -\delta(\mathbf{X}, k).$$

803 **Combine the two cases.** Taking the expectation over the data distribution \mathcal{D} , we have

$$804 \quad \mathbb{E}_{(\mathbf{X}, Y)}[\widetilde{\mathbf{W}}_k^{\top} g_k^{\text{adv}}] = \mathbb{E}_{Y \neq k}[\widetilde{\mathbf{W}}_k^{\top} g_k^{\text{adv}}] + \mathbb{E}_{Y=k}[\widetilde{\mathbf{W}}_k^{\top} g_k^{\text{adv}}]
 805 \quad = 0 + \mathbb{E}_{Y=k}[-\delta(\mathbf{X}, k)]
 806 \quad = -\Delta_k.$$

808 Hence, the expected projected adversarial gradient is exactly $-\Delta_k$, which governs the average
 809 change of the head norm in Theorem 1. \square

810 **Theorem 1.** *Run stochastic gradient descent with learning rate η for T iterations using the adversarial loss. Let $\Delta_k := \mathbb{E}_{(\mathbf{X}, Y=k)} \delta(\mathbf{X}, Y)$ be the class-specific expected gradient gap. Then,*

813
$$\mathbb{E} \|\mathbf{W}_k^{(T)}\|_2 = \|\mathbf{W}_k^{(0)}\|_2 + \eta T \Delta_k. \quad (5)$$

815 *Consequently, if a class c_{hard} is harder than a class c_{easy} ($\Delta_{c_{\text{hard}}} > \Delta_{c_{\text{easy}}}$), there exists T^* such that*
 816 $\mathbb{E} \|\mathbf{W}_{c_{\text{hard}}}^{(T)}\|_2 > \mathbb{E} \|\mathbf{W}_{c_{\text{easy}}}^{(T)}\|_2$ *for all $T \geq T^*$.*

818 *Proof.* Let $g_k^{\text{adv},(t)} := \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}^{\text{adv}}), y)}{\partial \mathbf{W}_k^{(t)}}$ denote the stochastic gradient at iteration t with adversarial
 819 loss. One SGD step updates $\mathbf{W}_k^{(t+1)} = \mathbf{W}_k^{(t)} - \eta g_k^{\text{adv},(t)}$.

822 We are interested only in the *change of the norm* $\|\mathbf{W}_k\|_2$ and not in the change of its direction.
 823 Decompose the gradient into a part parallel to $\mathbf{W}_k^{(t)}$ and an orthogonal part:

825
$$g_k^{\text{adv},(t)} = (\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}) \widetilde{\mathbf{W}}_k^{(t)} + [g_k^{\text{adv},(t)} - (\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}) \widetilde{\mathbf{W}}_k^{(t)}],$$

827 where $\widetilde{\mathbf{W}}_k^{(t)} := \mathbf{W}_k^{(t)} / \|\mathbf{W}_k^{(t)}\|_2$ is the unit vector in the current direction. Only the **parallel component** $(\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}) \widetilde{\mathbf{W}}_k^{(t)}$ can increase or decrease the *length*; the orthogonal component merely
 828 rotates $\mathbf{W}_k^{(t)}$ and leaves its norm unchanged to first order.

831 Formally,

832
$$\|\mathbf{W}_k^{(t+1)}\|_2^2 = \|\mathbf{W}_k^{(t)} - \eta g_k^{\text{adv},(t)}\|_2^2 = \|\mathbf{W}_k^{(t)}\|_2^2 - 2\eta \widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)} \|\mathbf{W}_k^{(t)}\|_2 + \eta^2 \|g_k^{\text{adv},(t)}\|_2^2.$$

834 Ignoring the $O(\eta^2)$ term (standard in first-order SGD analysis) and taking square roots yields

836
$$\|\mathbf{W}_k^{(t+1)}\|_2 \approx \|\mathbf{W}_k^{(t)}\|_2 - \eta \widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}.$$

838 Hence we *project the gradient onto* $\widetilde{\mathbf{W}}_k^{(t)}$ because that scalar product $\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}$ is the *exact*
 839 first-order change in the norm of \mathbf{W}_k .

840 **Taking expectations.** **Lemma 1** induces $\mathbb{E}_{(\mathbf{X}, Y)} [\widetilde{\mathbf{W}}_k^{(t)\top} g_k^{\text{adv},(t)}] = -\Delta_k$ for every iteration.¹
 841 Therefore,

843
$$\mathbb{E} \|\mathbf{W}_k^{(t+1)}\|_2 = \mathbb{E} \|\mathbf{W}_k^{(t)}\|_2 + \eta \Delta_k.$$

844 Unrolling the recursion over T steps gives (5).

846 **Hard vs. Easy classes.** If $\Delta_{c_{\text{hard}}} > \Delta_{c_{\text{easy}}}$ (by **Proposition 1**), their expected norm difference grows
 847 as $\eta T (\Delta_{c_{\text{hard}}} - \Delta_{c_{\text{easy}}})$, so after $T^* := (\|\mathbf{W}_{c_{\text{easy}}}^{(0)}\|_2 - \|\mathbf{W}_{c_{\text{hard}}}^{(0)}\|_2) / [\eta (\Delta_{c_{\text{hard}}} - \Delta_{c_{\text{easy}}})]$ the inequality
 848 $\mathbb{E} \|\mathbf{W}_{c_{\text{hard}}}^{(T)}\|_2 > \mathbb{E} \|\mathbf{W}_{c_{\text{easy}}}^{(T)}\|_2$ holds for all $T \geq T^*$. \square

850 **Proposition 3.** *Under Assumptions A.1, we have $\delta(\mathbf{x}, y) > \rho - \epsilon''$ for $\rho > 0$ and small $\epsilon'' > 0$ for*
 851 *every pair $(\mathbf{x}, y, \mathbf{x}^{\text{adv}})$.*

854 *Proof.* For class k , the chain rule gives

855
$$\frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial s_k(\mathbf{x})} = p_k(\mathbf{x}) - \mathbf{1}\{k = y\}, \quad \frac{\partial s_k(\mathbf{x})}{\partial \|\mathbf{W}_k\|_2} = \|\psi(\mathbf{x})\|_2 \cos \theta_{\psi(\mathbf{x}), k}.$$

858 For the true class $k = y$, combining these yields

860
$$g(\mathbf{x}, y) := \frac{\partial \ell_{\text{ce}}(f(\mathbf{x}), y)}{\partial \|\mathbf{W}_y\|_2} = (1 - p_y(\mathbf{x})) \|\psi(\mathbf{x})\|_2 \cos \theta_{\psi(\mathbf{x}), y} := (1 - p_y(\mathbf{x})) Z_{\mathbf{x}, y}. \quad (18)$$

863 ¹The unit vector $\widetilde{\mathbf{W}}_k^{(t)}$ is independent of the minibatch sampled at step t , so we may pull it outside the expectation.

864 Define the adversarial gradient gap
865

$$866 \quad \delta(\mathbf{x}, y) = (1 - p_y(\mathbf{x}^{\text{adv}}))Z_{\text{adv}} - (1 - p_y(\mathbf{x}))Z_{\text{cln}},$$

867 where $Z_{\text{adv}} = Z_{\mathbf{x}^{\text{adv}}, y}$ and $Z_{\text{cln}} = Z_{\mathbf{x}, y}$. This can be rewritten as
868

$$869 \quad \delta(\mathbf{x}, y) = \underbrace{(p_y(\mathbf{x}) - p_y(\mathbf{x}^{\text{adv}}))Z_{\text{cln}}}_{:=(A)} + \underbrace{(1 - p_y(\mathbf{x}^{\text{adv}}))(Z_{\text{adv}} - Z_{\text{cln}})}_{:=(B)}.$$

870

871 **Part (A)**

872 Since the adversarial attack reduces the probability of the true class, $p_y(\mathbf{x}^{\text{adv}}) < p_y(\mathbf{x})$, and by
873 training $Z_{\text{cln}} > 0$, the first term $(p_y(\mathbf{x}) - p_y(\mathbf{x}^{\text{adv}}))Z_{\text{cln}}$ is strictly positive. Denote the positive
874 magnitude by $\rho > 0$.

875 **Part (B)**

876 Under Assumptions A.1, Eq. (15) can be approximated. Then, the change in the cosine term is
877 small: $|Z_{\text{adv}} - Z_{\text{cln}}| \leq \epsilon''$, and $1 - p_y(\mathbf{x}^{\text{adv}}) \leq 1$. Hence the second term satisfies
878

$$879 \quad (1 - p_y(\mathbf{x}^{\text{adv}}))(Z_{\text{adv}} - Z_{\text{cln}}) \geq -\epsilon''.$$

880

881 **Part (A) + (B)**

882 Adding the positive and negative parts gives
883

$$884 \quad \delta(\mathbf{x}, y) \geq (p_y(\mathbf{x}) - p_y(\mathbf{x}^{\text{adv}}))Z_{\text{cln}} - \epsilon'' = \rho - \epsilon''.$$

885

886 Thus, the adversarial gradient gap is lower-bounded by $\rho - \epsilon''$, as claimed. \square
887

888 **Remark 5.** Proposition 3 guarantees that for each training sample (\mathbf{x}, y) , the adversarial gradient
889 gap $\delta(\mathbf{x}, y)$ is lower-bounded by $\rho - \epsilon''$. Consequently, the class-specific expected gradient gap
890 $\Delta_k = \mathbb{E}_{(\mathbf{X}, Y=k)}[\delta(\mathbf{X}, Y)]$ remains stable and mostly positive. Moreover, Theorem 1 shows that the
891 norm of the classifier head \mathbf{W}_k evolves approximately linearly with Δ_k :

$$892 \quad \mathbb{E}\|\mathbf{W}_k^{(T)}\|_2 = \|\mathbf{W}_k^{(0)}\|_2 + \eta T \Delta_k.$$

893

894 Since harder classes have larger expected gradient gaps ($\Delta_{\text{hard}} > \Delta_{\text{easy}}$), their corresponding head
895 norms grow more rapidly during training. These observations collectively provide an intuitive ex-
896 planation: the stability of $\delta(\mathbf{x}, y)$ ensures that the head norm growth predicted by Theorem 1 is
897 reliable. Consequently, harder classes naturally acquire larger norms, resulting in stronger logits
898 and improved robustness, while easier classes remain relatively balanced.
899

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

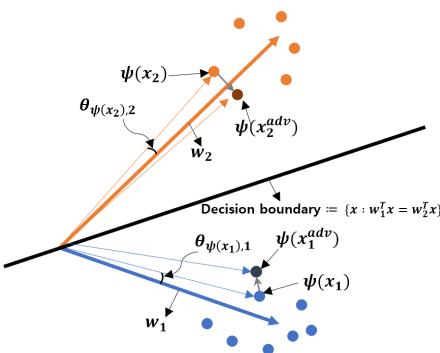


Figure 4: **Small Loss Scenario.** Consider the case w/o bias term for simplicity. Orange and blue circles are data point in feature space of class 1 and 2, respectively. If train loss is small and robust features well trained, $\theta_{\psi(x),y}$ and $\theta_{\psi(x^{adv}),y}$ are small.

Figure 4 illustrates a scenario where the loss becomes small through adversarial training.

B ALGORITHM

Algorithm 1: DecoupledSAM (DecoSAM)

```

Input :  $\psi$  : feature extractor,  $\mathbf{W}$  : weight of head,  $\mathbf{b}$  : bias of head,  $s$  : standard trained model, dataset
       $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , number of epochs  $T$ , perturbation budget  $\varepsilon$ , number of batch  $B$ , batch size
       $J$ , adversarial training algorithm  $\mathcal{A}$ 
Output: adversarially robust network
1  $\psi, \mathbf{W}, \mathbf{b}$  (train the adversarially robust model)
2 Freeze  $\psi$  and  $\mathbf{b}$ 
3 for  $b = 1, \dots, B$  do
4   Compute  $\nu_k$  and  $\rho_k = \rho * \nu_k$  for all  $k$ .
5    $\mathbf{W} \leftarrow \widetilde{\mathbf{W}}(HWNbB)$ 
6   for  $j = 1, \dots, J$  do
7     Generate  $\hat{\mathbf{x}}_j^{adv}$  by  $\text{PGD}(\mathbf{W} \circ \psi(\mathbf{x}_j), y_j)$ ,
8     Update  $\mathbf{W}$  with DecoSAM( $\mathcal{A}(\hat{\mathbf{x}}_j^{adv}, y_j)$ ) in (7)
9   end
10 end
11 Return  $\mathbf{W}, \psi$ 

```

C A VALIDATION SET-FREE APPROACH

In situations where labeled data are limited or labeling is costly-such as requiring expert input or facing privacy concerns [29] - using a separate validation set reduces the data available for training or necessitates additional labeling effort, both of which can harm model performance [23; 21; 9]. By eliminating the need for a validation set, our approach fully utilizes the limited labeled data for training, making it more practical and cost-effective in real-world scenarios.

D EXPERIMENTAL DETAILS

Common We follow the experimental setting of [15] for our study. In pre-training phase, we train various adversarial robust learning algorithms (PGD-AT, TRADES, MART, and ARoW) using SGD optimizer with a momentum of 0.9 and weight decay of $5e^{-4}$. To mitigate robust overfitting, we implement a multi-step learning rate scheduler that reduces the learning rate by a factor of 0.1 at epochs 90 and 95, and select the model from the final epoch without using a validation set. In DecoSAM stage, we employ an SGD optimizer with a momentum of 0.9, a learning rate of 0.01,

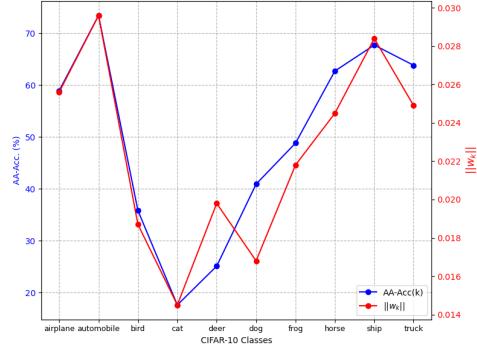
972 a batch size of 512, and a perturbation size $\rho = 5e - 5$. Our experiments are conducted using an
973 NVIDIA RTX 3090 GPU with 24 GB of memory.
974

975 **STL-10** STL-10 dataset is a benchmark designed for evaluating supervised and semi-supervised
976 learning algorithms, particularly in scenarios with limited labeled data. It consists of 96×96 pixel
977 images across 10 classes, with 5,000 labeled training images, 8,000 labeled test images, and 100,000
978 unlabeled images from a broader distribution. Its focus on small labeled datasets and abundant
979 unlabeled data makes it ideal for testing algorithms that aim to learn robust features or leverage
980 unlabeled data effectively. It has higher resolution than CIFAR-10.

981 For our experiments on STL-10, we employ a two-stage approach. We first train a teacher model
982 using supervised learning on the labeled data, then utilized this teacher model to generate pseudo
983 labels for the unlabeled data. Finally, we apply various adversarial training algorithms using both
984 the labeled data and the pseudo-labeled unlabeled data.
985

986 E ADDITIONAL EXPERIMENTS

1000 (a) Confusion Matrix of Rob-Acc (AA).
1001



1002 (b) Training Dynamics of $\text{corr}(\|\mathbf{W}_{\text{rob}}\|_2, \text{AA})$
1003

1004 Figure 5: Confusion matrix for AA and the correlation between head weights and robust accuracy
1005 against AA for a model trained using PGD-AT.
1006

1007 We provide the confusion matrix and the correlation between head weights and robust accuracy
1008 against PGD-20 in the manuscript. Figures 5a and 5b demonstrate that similar patterns observed in
1009 PGD-20 are also present in AA. A notable feature is the heightened vulnerability of the class with
1010 the lowest robust accuracy, which becomes even more pronounced under AA.
1011

1012 **CIFAR100** CIFAR-100 is an extension of the CIFAR-10 dataset, designed to provide a more chal-
1013 lenging classification task. While CIFAR-10 consists of 10 classes with 6,000 images per class,
1014 CIFAR-100 includes 100 classes with only 600 images per class, making the dataset more com-
1015 plex and less balanced. Each image in CIFAR-100, like CIFAR-10, is a 32x32 color image, but the
1016 increased number of classes and fewer samples per class require models to have greater capacity
1017 to generalize effectively. This makes CIFAR-100 particularly useful for evaluating algorithms in
1018 scenarios with fine-grained classification and limited training data per class. CIFAR-100, with its
1019 100 classes and only 600 images per class, poses a more complex classification challenge compared
1020 to CIFAR-10. However, due to its large number of classes, it is not typically used as a benchmark
1021 dataset for robust fairness studies [18; 20; 28; 11]. This is because robust fairness often focuses on
1022 addressing disparities across a smaller set of classes, where the class-wise performance can be more
1023 effectively analyzed and compared. The high number of classes in CIFAR-100 makes it less suit-
1024 able for such targeted evaluations. Table 6 reveals that the robust accuracy of the worst class against
1025 AA is significantly low. Therefore, in this scenario, it is advisable to consider the worst-class ro-
1026 bust accuracy alongside other metrics for a more comprehensive evaluation. Across all algorithms
1027 and varying levels of model complexity, HWNWB demonstrates substantial improvements in robust
1028 fairness. Furthermore, DecoSAM maintains the robust fairness performance achieved by HWNWB
1029 while also enhancing overall robustness, showcasing its effectiveness.
1030

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

1036 **Table 6: Comparison of HWNwB and DecoSAM Performance on Baseline Algorithms on**
 1037 **CIFAR-100.** PGD and AA indicates the robust accuracy under a 20-step PGD attack and the Au-
 1038 **toAttack, respectively. WC** indicates the worst-class robust accuracy, **STD** indicates the standard
 1039 **deviation of class-wise robust accuracies, and Max-Min** indicates the difference between the highest
 1040 **and lowest class-wise robust accuracies.**

Method	CIFAR-100 (WRN-28-2)									
	Clean(\uparrow)	PGD(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)	corr($\ W\ _2$, PGD)	AA(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)
PGD-AT	53.16	26.90	0.00	19.10	74.00	0.8427	22.52	0.00	19.10	71.00
+ HWNwB	50.30	26.76	2.00	14.64	64.00		19.43	0.00	14.54	64.00
+ DecoSAM	51.12	27.75	1.00	15.47	69.00		20.34	0.00	15.01	61.00
TRADES	53.28	27.11	0.00	18.57	71.00	0.6632	22.13	0.00	18.20	71.00
+ HWNwB	52.27	28.20	1.00	16.95	72.00		20.80	0.00	16.42	70.00
+ DecoSAM	52.05	28.29	1.00	16.70	69.00		21.41	0.00	16.26	67.00
MART	48.93	28.63	0.00	19.39	72.00	0.8824	22.77	0.00	19.97	69.00
+ HWNwB	44.20	25.42	2.00	14.67	61.00		18.97	0.00	14.03	59.00
+ DecoSAM	45.60	27.55	3.00	15.11	63.00		20.16	0.00	15.84	62.00
ARoW	52.55	27.10	0.00	18.24	72.00	0.7002	22.42	0.00	18.30	71.00
+ HWNwB	51.65	28.40	2.00	16.86	71.00		21.33	0.00	16.33	68.00
+ DecoSAM	51.66	28.56	2.00	16.95	71.00		21.78	0.00	16.41	68.00
CIFAR-100 (WRN-28-5)										
Method	Clean(\uparrow)	PGD(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)	corr($\ W\ _2$, PGD)	AA(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)
PGD-AT	61.03	30.60	0.00	18.52	74.00	0.7742	25.90	0.00	18.56	71.00
+ HWNwB	59.50	32.43	6.00	15.94	68.00		24.49	1.00	15.96	69.00
+ DecoSAM	59.77	32.80	6.00	16.02	69.00		25.13	1.00	16.30	69.00
TRADES	58.44	30.85	2.00	18.85	70.00	0.5697	25.99	1.00	18.96	73.00
+ HWNwB	57.89	32.00	4.00	17.60	71.00		25.57	2.00	17.78	69.00
+ DecoSAM	57.32	32.96	4.00	14.74	70.00		26.03	2.00	17.97	72.00
MART	56.42	32.68	0.00	19.16	76.00	0.8363	26.87	0.00	19.58	74.00
+ HWNwB	53.19	32.02	6.00	15.71	62.00		24.59	1.00	15.82	64.00
+ DecoSAM	54.15	33.13	6.00	16.17	66.00		25.72	1.00	16.68	69.00
ARoW	58.39	31.10	1.00	18.83	73.00	0.5918	26.60	1.00	18.84	70.00
+ HWNwB	57.61	33.47	3.00	17.76	71.00		25.86	1.00	17.53	66.00
+ DecoSAM	57.77	33.54	3.00	17.44	69.00		26.20	1.00	16.95	67.00
CIFAR-100 (WRN-28-10)										
Method	Clean(\uparrow)	PGD(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)	corr($\ W\ _2$, PGD)	AA(\uparrow)	WC(\uparrow)	STD(\downarrow)	Max-Min(\downarrow)
PGD-AT	63.94	29.11	2.00	17.49	69.00	0.7137	26.29	2.00	17.62	68.00
+ HWNwB	63.19	33.47	8.00	16.07	64.00		25.48	4.00	16.25	65.00
+ DecoSAM	62.29	33.68	9.00	16.38	64.00		26.01	5.00	16.71	64.00
TRADES	60.01	31.85	5.00	18.21	70.00	0.4811	27.53	3.00	18.44	72.00
+ HWNwB	59.40	34.42	5.00	17.67	69.00		27.04	4.00	17.62	68.00
+ DecoSAM	57.87	34.55	7.00	16.35	66.00		27.46	4.00	17.58	68.00
MART	59.86	32.51	3.00	18.40	70.00	0.8137	27.78	0.00	18.78	72.00
+ HWNwB	57.74	34.12	7.00	15.48	63.00		26.69	1.00	16.07	68.00
+ DecoSAM	57.87	34.55	7.00	16.35	66.00		27.35	1.00	16.78	67.00
ARoW	59.30	31.44	3.00	17.90	69.00	0.4892	27.58	3.00	18.38	68.00
+ HWNwB	59.09	34.71	4.00	17.37	69.00		27.06	3.00	17.55	66.00
+ DecoSAM	58.58	34.81	4.00	17.97	72.00		27.75	4.00	17.98	68.00

1071
1072
1073
1074
1075
1076
1077
1078
1079

OfficeHome Table 7 reports the adversarial performance of various baseline methods and their combinations with HWNwB and DecoSAM on the OfficeHome real-world domain using ResNet-50. We evaluate models in terms of clean accuracy (Clean), average accuracy across all classes (AA), worst-class accuracy (WC), and the average accuracy of the lowest 5% of classes (WC(5%)). Across the PGD-AT, TRADES, and ARoW baselines, incorporating DecoSAM consistently improves AA, WC, and WC(5%), indicating that DecoSAM effectively enhances robustness for both typical and hard-to-classify classes. Notably, DecoSAM yields the highest WC(5%) in all three baseline blocks, suggesting that it particularly benefits the most vulnerable classes. The combination with HWNwB also improves WC in many cases, though DecoSAM generally achieves stronger overall gains. FAAL is included as a reference robust fairness method, and while its WC is competitive, DecoSAM applied to other baselines demonstrates superior balance between average and worst-class performance.

Table 7: **Adversarial performance on the OfficeHome real-world domain (ResNet-50, 65 classes).** WC(5%) denotes the average accuracy of the lowest 5% classes (3 classes). Best values in each block are bolded.

Method	Clean (\uparrow)	AA (\uparrow)	WC (\uparrow)	WC(5%) (\uparrow)
PGD-AT	93.59	87.76	65.57	72.15
+HWNwB	93.32	87.54	68.57	74.36
+DecoSAM	93.68	87.95	68.84	74.80
TRADES	93.32	86.50	60.61	66.64
+HWNwB	93.36	86.82	63.64	70.65
+DecoSAM	93.66	86.65	63.97	70.88
ARoW	93.89	87.15	66.57	68.14
+HWNwB	93.84	86.36	67.90	70.46
+DecoSAM	93.80	86.54	68.11	70.96
FAAL	92.41	86.01	62.57	68.44

E.1 COMPARISON DECoSAM + ARoW TO FAAL

Table 8: **Comparison of ARoW+DecoSAM with FAAL across datasets.** We report Clean accuracy, Average Accuracy (AA), and Worst-Class accuracy (WC).

Dataset	Method	Clean (\uparrow)	AA (\uparrow)	WC (\uparrow)
CIFAR10	FAAL	81.19	48.81	32.80
CIFAR10	ARoW + DecoSAM	83.18	48.98	34.70
CIFAR100	FAAL	55.51	25.66	1.00
CIFAR100	ARoW + DecoSAM	57.77	26.20	1.00
STL10	FAAL	78.87	58.44	32.66
STL10	ARoW + DecoSAM	80.22	59.58	35.71

Table 8 compares the performance of ARoW+DecoSAM with FAAL on three datasets: CIFAR10, CIFAR100, and STL10. Across all datasets, ARoW+DecoSAM consistently improves the clean accuracy and average accuracy (AA). Additionally, it enhances the worst-class accuracy (WC) in CIFAR10 and STL10, indicating that DecoSAM effectively mitigates class-wise disparity while maintaining overall robustness. For CIFAR100, WC remains very low, reflecting the inherent difficulty of some classes, yet ARoW+DecoSAM still slightly improves AA, showing its benefit even under challenging scenarios.

E.2 ABLATION STUDIES

In this section, we provide additional ablation studies examining the effects of robust regularization intensity as well as the influence of ρ in DecoSAM.

1134 E.3 EFFECT OF ROBUST REGULARIZATION INTENSITY
1135

1136 We conduct experiments by varying the robust regularization parameter in TRADES. The surrogate
1137 version of the robust risk in TRADES is as follows:

1138
$$\frac{1}{n} \sum_{i=1}^n \{\ell_{\text{ce}}(f_{\theta}(\mathbf{x}_i), y_i) + \lambda D_{\text{KL}}(\mathbf{p}_{\theta}(\mathbf{x}_i) \parallel \mathbf{p}_{\theta}(\mathbf{x}_i^{\text{adv}}))\} \quad (19)$$
1140

1141 where D_{KL} denotes the KL-divergence and λ is the robust regularization parameter that controls the
1142 trade-off between generalization and robustness.

1143 Table 9 shows that as increasing λ , the norms of \mathbf{W} tend to exhibit a stronger correlation between
1144 class-wise robust accuracies. Additionally, for the worst-class robust accuracies, we observe an im-
1145 provement in overall robust accuracy, suggesting that improving the overall robust accuracy also
1146 benefits worst-class performance. This implies that methods like FAAL [28], which focus on fine-
1147 tuning after training with a robust approach, or our proposed method, offer new directions for en-
1148 hancing worst-class robustness.

1149 Table 9: Effect of Robust Regularization in TRADES.

1150

λ	CIFAR-10 (WRN-28-5)			
	corr($\ \mathbf{W}\ _2$, PGD)	Clean	PGD	WC
0.5	0.5805	88.74	42.62	12.50
1	0.8176	88.43	48.32	18.70
2	0.8825	87.20	51.16	24.60
4	0.9191	85.07	53.34	27.80
6	0.9135	82.94	53.51	29.20
8	0.9230	81.83	53.76	29.20
10	0.9188	80.67	53.53	28.90

1159 E.4 EFFECT OF ρ IN DECO SAM

1160 Table 10 presents the effect of the hyperparameter ρ in DecoSAM on class-wise adversarial per-
1161 formance on CIFAR-10. Using PGD-AT [12] as the base adversarial training algorithm, we vary
1162 ρ and observe that both average accuracy (AA) and worst-class accuracy (WC) exhibit non-trivial
1163 changes. Values of ρ within the narrow range of 0.00003–0.00011 maintain a reasonable level of
1164 AA, while WC fluctuates more substantially, indicating that ρ primarily influences the model’s ro-
1165 bustness for harder classes. Specifically, beyond a certain threshold(0.00006) of ρ , we observe a
1166 trade-off: increasing ρ tends to further improve overall accuracy (AA) while degrading worst-class
1167 accuracy (WC). The baseline configuration corresponding to $\rho = 0$ (HWNwB) yields lower AA
1168 but maintains a moderate WC, suggesting that DecoSAM with a properly tuned ρ can improve both
1169 overall and worst-class performance simultaneously.

1171 Table 10: Effect of ρ in DecoSAM.

1172

ρ	AA (\uparrow)	WC (\uparrow)
0.00011	48.03	20.22
0.00009	47.92	20.14
0.00007	47.84	22.80
0.00006	47.93	25.10
0.00005	47.57	24.11
0.00003	47.96	21.46
0 (HWNwB)	46.45	22.27

1183 F NEW EXPERIMENTAL RESULTS

1184 F.1 EFFECT OF τ IN DECO SAM

1185 We set the default value to $\tau = 1.0$ primarily for simplicity, and the τ -sweep results confirm that
1186 this choice aligns well with the underlying intuition. As shown in Eq. (8), increasing τ sharpens

1188 Table 11: Effect of the temperature parameter τ on CIFAR-10 robustness (PGD-AT + DecoSAM,
1189 WRN-28-5, $\varepsilon = 8/255$).

τ	Clean	PGD	WC(PGD)	AA	WC(AA)
0.1	85.73	56.05	29.40	49.35	22.60
0.2	85.61	56.22	32.10	49.18	24.30
0.5	85.57	56.28	34.30	49.12	27.10
1.0	85.52	56.55	38.93	49.09	30.70
1.5	85.25	56.41	39.85	48.96	31.40
2.0	84.98	56.11	40.55	48.62	31.20
5.0	84.30	55.02	38.90	47.75	29.90

1200 the softmax weighting and leads to over-concentration on a few hard classes, whereas too small a
1201 τ makes the weighting nearly uniform and limits its ability to correct class-wise imbalance. Our
1202 sweep on CIFAR-10 (WRN-28-5, $\varepsilon = 8/255$) with $\tau \in 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 5.0$ empirically
1203 verifies this behavior: small τ values yield minimal fairness gains, moderate values ($\tau \in [1.0, 2.0]$)
1204 achieve the best trade-off between WC(PGD)/WC(AA) and overall robustness, and overly large
1205 τ slightly reduces clean and AA accuracy due to excessively sharp reweighting. Thus, $\tau = 1.0$
1206 provides a simple and practically effective default that avoids over-concentration while maintaining
1207 strong fairness and robustness improvements.

1209 F.2 EVALUATION ON VARIOUS ε

1211 Table 12: WRN-28-5 robustness results on CIFAR-10 under $\varepsilon = 4/255$. WC denotes worst-class
1212 accuracy.

Method	Clean	PGD	WC(PGD)	AA	WC(AA)
PGD-AT	86.00	63.10	34.80	59.40	29.20
+ HWNwB	85.09	66.55	49.30	58.10	41.10
+ DecoSAM	85.52	66.30	47.80	59.00	42.60
TRADES	83.52	61.95	38.10	60.75	33.50
+ HWNwB	82.93	65.40	48.40	59.80	38.20
+ DecoSAM	83.01	65.20	46.60	60.35	41.10
MART	82.66	63.55	33.40	59.60	28.30
+ HWNwB	80.28	66.70	47.10	57.45	36.40
+ DecoSAM	80.66	66.55	45.80	58.10	37.50
ARoW	84.18	61.10	36.20	60.55	31.80
+ HWNwB	83.43	65.80	53.40	59.00	41.90
+ DecoSAM	82.82	66.05	48.10	59.70	43.10

1227 Table 13: WRN-28-5 robustness results on CIFAR-10 under $\varepsilon = 8/255$.

Method	Clean	PGD	WC(PGD)	AA	WC(AA)
PGD-AT	86.00	53.94	24.20	49.50	17.60
+ HWNwB	85.09	56.68	39.10	48.25	29.10
+ DecoSAM	85.52	56.55	38.93	49.09	30.70
TRADES	83.52	53.85	29.60	50.65	23.90
+ HWNwB	82.93	56.13	37.60	49.88	26.20
+ DecoSAM	83.01	56.05	36.00	50.24	29.17
MART	82.66	55.00	25.80	49.77	17.60
+ HWNwB	80.28	56.88	36.50	48.26	24.60
+ DecoSAM	80.66	56.75	33.97	48.90	25.30
ARoW	84.18	53.46	27.10	50.36	22.70
+ HWNwB	83.43	56.21	43.70	48.36	30.05
+ DecoSAM	82.82	56.45	37.57	49.29	31.30

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Table 14: WRN-28-5 robustness results on CIFAR-10 under $\varepsilon = 16/255$.

Method	Clean	PGD	WC(PGD)	AA	WC(AA)
PGD-AT	86.00	41.20	12.50	28.40	5.90
+ HWNwB	85.09	44.75	23.40	27.20	11.80
+ DecoSAM	85.52	44.60	22.80	28.05	12.70
TRADES	83.52	39.90	15.10	29.35	7.80
+ HWNwB	82.93	43.70	23.10	28.40	10.50
+ DecoSAM	83.01	43.45	21.40	28.95	11.90
MART	82.66	40.85	11.40	27.10	4.90
+ HWNwB	80.28	44.20	21.70	26.30	10.10
+ DecoSAM	80.66	44.05	20.80	27.10	11.10
ARoW	84.18	39.55	14.00	29.10	7.40
+ HWNwB	83.43	43.95	27.80	27.80	12.30
+ DecoSAM	82.82	44.10	23.25	28.70	13.40

As shown across all perturbation budgets (4/255, 8/255, 16/255), our methods HWNwB and DecoSAM consistently significantly improve both PGD and AA robustness over their baselines. Notably, worst-class robustness gains remain stable even as the attack strength increases, and the relative improvement patterns observed at $\varepsilon = 8/255$ generalize to both weaker and stronger perturbations. This demonstrates that the proposed fairness-oriented regularization is effective across a broad range of adversarial strengths.

F.3 EVALUATION ON CIFAR-10 INCLUDING CW ATTACK

Table 15: Robustness evaluation on CIFAR-10 (WRN-28-5, $\varepsilon = 8/255$) including CW attack. WC denotes worst-class accuracy.

Method	Clean \uparrow	PGD \uparrow	CW \uparrow	AA \uparrow	WC(PGD) \uparrow	WC(CW) \uparrow	WC(AA) \uparrow
PGD-AT	86.00	53.94	52.61	49.50	24.20	21.56	17.60
+ HWNwB	85.09	56.68	54.15	48.25	39.10	35.10	29.10
+ DecoSAM	85.52	56.55	54.31	49.09	38.93	35.64	30.70
TRADES	83.52	53.85	52.89	50.65	29.60	27.32	23.90
+ HWNwB	82.93	56.13	54.26	49.88	37.60	33.04	26.20
+ DecoSAM	83.01	56.05	54.31	50.24	36.00	33.27	29.17
MART	82.66	55.00	53.43	49.77	25.80	22.52	17.60
+ HWNwB	80.28	56.88	54.29	48.26	36.50	31.74	24.60
+ DecoSAM	80.66	56.75	54.39	48.90	33.97	30.50	25.30
ARoW	84.18	53.46	52.53	50.36	27.10	25.34	22.70
+ HWNwB	83.43	56.21	53.86	48.36	43.70	38.24	30.05
+ DecoSAM	82.82	56.45	54.30	49.29	37.57	35.06	31.30

We additionally evaluate our methods under the optimization-based CW attack. Across all baselines, CW robustness and WC(CW) consistently lie between PGD and AA—as expected from their relative attack strengths—and closely follow the improvement trends observed under PGD. These results indicate that the gains from HWNwB and DecoSAM are not tied to a particular attack heuristic but generalize across gradient-based (PGD), optimization-based (CW), and ensemble (AA) attacks. Therefore, the CW results further confirm that our improvements are robust and not attack-specific.

F.4 EVALUATION ON IMAGENET-100

The ImageNet-100 results under both $\varepsilon = 4/255$ and $\varepsilon = 8/255$ consistently show that HWNwB and DecoSAM provide clear improvements in class-wise robust fairness across all base adversarial training algorithms (PGD-AT, TRADES, ARoW). Worst-class and bottom-10% accuracies for both PGD and AA are substantially increased, demonstrating that our methods scale effectively to large-class, high-resolution settings. Both HWNwB and DecoSAM significantly improve worst-class

1296 Table 16: Robustness evaluation on ImageNet-100 under $\varepsilon = 4/255$. Worst-class and bottom-10%
1297 accuracies are reported for both PGD and AA.

Method	Clean	PGD	PGD Worst	PGD Bottom-10%	AA	AA Worst	AA Bottom-10%
PGD-AT	72.20	43.30	4.00	13.20	40.72	4.00	9.40
+ HWNwB	72.04	47.36	6.00	20.20	40.38	4.00	11.20
+ DecoSAM	72.10	46.90	6.00	18.80	40.90	4.00	11.80
TRADES	67.62	46.00	8.00	15.00	42.40	6.00	11.80
+ HWNwB	67.24	48.30	8.00	17.40	41.88	6.00	11.60
+ DecoSAM	67.40	47.90	8.00	16.80	42.10	6.00	12.00
ARoW	66.54	46.34	10.00	16.20	42.56	4.00	10.80
+ HWNwB	66.14	48.30	12.00	18.00	42.74	4.00	11.60
+ DecoSAM	66.30	47.90	11.00	18.40	42.60	4.00	12.20

1309 Table 17: Robustness evaluation on ImageNet-100 under $\varepsilon = 8/255$. Worst-class and bottom-10%
1310 accuracies are reported for both PGD and AA.

Method	Clean	PGD	PGD Worst	PGD Bottom-10%	AA	AA Worst	AA Bottom-10%
PGD-AT	63.94	28.78	0.00	4.20	25.02	0.00	2.40
+ HWNwB	63.38	32.18	6.00	8.40	23.90	0.00	3.40
+ DecoSAM	63.50	31.85	6.00	8.60	24.20	0.00	3.60
TRADES	59.84	30.50	0.00	5.60	24.56	0.00	2.20
+ HWNwB	58.98	32.12	2.00	6.80	24.02	2.00	3.60
+ DecoSAM	59.20	31.80	2.00	6.40	24.30	2.00	3.50
ARoW	59.00	30.52	4.00	6.00	24.60	0.00	2.00
+ HWNwB	58.90	32.14	4.00	8.20	24.14	0.00	3.20
+ DecoSAM	58.95	31.70	4.00	7.50	24.40	0.00	3.10

1323 robustness; however, DecoSAM achieves higher overall accuracy and thus offers a more balanced
1324 robustness–accuracy trade-off. These results confirm that the proposed approaches remain effective
1325 beyond small-scale benchmarks and provide consistent disparity mitigation on ImageNet-100.

1327 F.5 EXPERIMENTAL RESULTS ON VISIONTRANSFORMER (ViT)

1330 Table 18: Experimental results on ViT (CIFAR-10).

Method	Clean	PGD	PGD Worst	AA	AA Worst	Corr
PGD-AT	82.83	46.12	19.90	43.93	16.00	0.9577
+ HWNwB	82.08	44.84	27.20	42.10	26.20	–
+ DecoSAM	82.30	45.10	24.50	43.00	27.50	–
TRADES	79.54	50.02	26.80	46.36	22.20	0.8841
+ HWNwB	78.94	47.72	31.10	43.90	29.20	–
+ DecoSAM	79.20	48.10	28.50	45.20	30.50	–
ARoW	80.54	50.56	18.60	46.60	15.70	0.8319
+ HWNwB	79.95	48.30	21.60	44.52	18.20	–
+ DecoSAM	80.20	48.70	20.00	45.80	19.50	–

1345
1346 ViT-Base results in Table 18 confirm that our primary observations extend beyond convolutional net-
1347 works and hold for modern Transformer-based architectures as well. Both HWNwB and DecoSAM
1348 consistently improve class-wise fairness and robustness over their respective baselines. HWNwB
1349 yields larger gains in worst-class PGD/AA robustness, whereas DecoSAM provides a more bal-
1350 anced improvement across PGD/AA metrics while maintaining stronger overall accuracy. These

1350 complementary behaviors closely match the trends observed on CIFAR-10/100 and ImageNet-100,
1351 demonstrating that our findings generalize to ViT-Base as well. Furthermore, the strong correlations
1352 between classifier-head norms and class-wise PGD robustness (e.g., $\rho \approx 0.96$ for PGD-AT
1353 and $\rho \approx 0.88$ for TRADES) indicate that norm-driven implicit bias persists in Transformer
1354 architectures. This supports our central mechanism—gradient-gap amplification leading to head-norm
1355 imbalance and class-wise robustness disparity—as an architecture-agnostic phenomenon. Overall,
1356 these results demonstrate that our empirical findings and theoretical insights generalize effectively
1357 to ViT models, reinforcing the scalability and robustness of our approach.

1358 **Remark.** We would like to clarify that our claim that Transformer-based models often show in-
1359 ferior robust accuracy under supervised adversarial training—is consistent with prior evidence when
1360 models are compared at similar parameter scales. Mo et al. [14] demonstrate that on CIFAR-10,
1361 adversarially trained ViT/Swin models achieve significantly lower robust accuracy than ResNet or
1362 WideResNet under parameter-matched settings and identical training protocols. Bai et al. [2], based
1363 on ImageNet-scale experiments, further show that Transformers do not inherently outperform CNNs
1364 in adversarial robustness even when model capacity and training recipes are carefully aligned. These
1365 results collectively support our observation that Transformers do not necessarily gain robustness
1366 from adversarial training and can exhibit notably worse robust accuracy than CNN counterparts of
1367 comparable capacity.

1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403