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ABSTRACT

Adam is known to perform significantly better than Stochastic Gradient De-
scent (SGD) in language models, a phenomenon for which a number of explanations
have been proposed. In this work, we revisit this “optimizer gap” through a series
of comprehensively tuned baseline training runs for language modeling with Trans-
formers. We exhaustively study how momentum, gradient clipping, and batch size
affect the gap between SGD and Adam. Our empirical findings show that SGD
with momentum can actually perform similarly to Adam in small-batch settings, if
tuned correctly. We revisit existing explanations for Adam’s advantage, including
heavy-tailed class imbalance, directional sharpness, and Hessian heterogeneity,
which struggle to directly explain this phenomenon. Towards bridging this gap in
our understanding, by analyzing our Transformer training runs and simple quadratic
settings inspired by the literature, we provide new insights, driven by stochastic
differential equation models, into the role of batch size on the training dynamics.

1 INTRODUCTION

The Adam optimizer (Kingma & Ba, 2014) is used pervasively in deep learning, especially when
training large language models (LMs) (Grattafiori et al., 2024; Liu et al., 2024; Biderman et al., 2023)
and vision Transformers (Dosovitskiy et al., 2020; Kumar et al., 2022) at scale. Industrial practice
relies on the success of Adam, and thousands of GPU hours every day are spent at large companies
using Adam to train their next-generation large language models.

Even in new sophisticated optimization pipelines looking to dethrone Adam, such as Muon (Jordan
et al., 2024), most current implementations (Liu et al., 2025; Shah et al., 2025) rely on plain Adam
with weight decay (AdamW, Loshchilov & Hutter (2019)) for critical subsets of parameters, such as
normalization layers, text embeddings and prediction heads. This new world is still a bit surprising.
Until around 2018, Adam was used only occasionally, while stochastic gradient descent (SGD) with
momentum was known to lead to neural networks with better accuracy on unseen data (Wilson et al.,
2017), relegating Adam to speed runs and quick comparisons (Goyal et al., 2017). Yet, from the start,
language modeling with Transformers required Adam. In fact, Transformer LMs have been reportedly
untrainable with SGD (Xiong et al., 2020), especially due to the critical parameters listed above.

Over the years, researchers have offered a number of compelling explanations regarding the remark-
able performance of Adam compared to SGD in language modeling, attributing it either to the peculiar
noisy nature of text data (Zhang et al., 2020b;a) or the heterogeneous structure (Noci et al., 2022;
Zhang et al., 2024a) of the Transformer architecture (Vaswani et al., 2017) — comprising semantically
and structurally dissimilar layers. While most hypotheses regarding the Adam-SGD gap can help
guide our understanding (Ahn et al., 2024), a particularly crucial insight was recently brought to light
by Kunstner et al. (2023): the Adam-SGD gap is also observable in full-batch training, and is hence
clear that the stochastic and potentially heavy-tailed nature of stochastic gradients may not be the
challenge Adam is able to tackle. Inspired by the latter discussion, we take an orthogonal approach:

Instead of asking why Adam often outperforms SGD, we wonder:
In which Transformer-based language model training setting, if any, does SGD work?

In other words, while most recent works try to maximize the gap between SGD and Adam in order
to explain it more easily, we here try to minimize it – without sacrificing scale or performance. We
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Figure 1: Learning rate and momentum sweep for SGD and Adam across batch sizes under a fixed
1.3B-token compute budget. Experiments use a 160M-parameter model and report perplexities on
100M held-out tokens. Adam performs consistently across batch sizes,while SGD performs
poorly at large batch sizes but improves at smaller ones. The dashed line marks the best Adam
configuration per batch size. Best hyperparameters and perplexities are listed in Table 1.

believe such a view is novel in the literature and can provide valuable insights into the Adam-SGD
gap. In particular, it can help identify settings that falsify existing hypotheses about the gap and
enumerate necessary criteria that explanations must fulfill. Our contributions are as follows:

• Despite our surprise, we show that LMs can be trained with SGD and achieve performance close to
Adam at the same token budget, as long as the batch size is small. We found that this holds even at
1B parameters. While this setting is clearly inconvenient for standard multi-device pretraining, it
provides a new lens for understanding the Adam–SGD gap. We note that this finding is consistent
with both previously observed trends for small-scale models in the large/full-batch case (Kunstner
et al., 2023) and with works observing that adaptive preconditioning affects the critical batch
size (Zhang et al., 2019). Yet, taken in isolation, our small-batch results urge us to revisit the
theoretical underpinnings for the Adam-SGD gap.

• To inspect this phenomenon, we carefully revisit prior explanations — such as heavy-tailed
class imbalance (Kunstner et al., 2024), directional sharpness (Pan & Li, 2023), and Hessian
heterogeneity (Zhang et al., 2024a) — in our setup. While our experiments confirm that these
explanations can shed light and are useful to describe settings where Adam outperforms SGD, we
find that no prior work can directly explain why SGD can outperform Adam at low batch sizes,
while achieving satisfactory performance. Notably, in stark contrast with works attributing the gap
to heavy-tail noise, we observe that increased stochasticity actually reduces the Adam–SGD gap.

• We enhance our intuition by further studying what makes SGD suboptimal and potentially unstable
at high batch sizes. To do this, we present ablations on gradient clipping and learning rate
grafting (Agarwal et al., 2020), and inspect their effect on performance.

• Inspired by our observed empirical correspondence between Transformers dynamics and the
simplified heterogeneous quadratic setup of (Zhang et al., 2024a) at different noise levels, we
leverage this setup to further study why adaptive optimization may have a different batch size
sensitivity compared to SGD. Our analysis is rooted in recent works on SDE models (Malladi et al.,
2023; Compagnoni et al., 2025b), and our findings and theoretical connections provide evidence of
acceleration for Adam in the large batch settings.

Together, our findings paint a new picture of the optimizer gap, and suggest that batch size — and
thus the scale and structure of gradient noise — should be explicitly considered in future analyses.
Moreover, our results shift the discussion to considerations on the critical batch size of each optimizer,
and can provide practical hints in low-resource and small-scale settings, where small batches are
common and optimizer memory usage is critical. This last point was recently developed in a
concurrent paper by Marek et al. (2025a), where the authors study hyperparameter robustness for
small-batch size training in Adam and SGD. In this work, our focus lies primarily in revisiting
explanations for the optimizer gap in light of our empirical results.
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1.1 RELATED WORK

Class imbalance. Kunstner et al. (2024) explains the advantage of Adam over SGD on language
tasks through the heavy-tailed class imbalance in token distributions. They show that with SGD,
loss for rare tokens decrease much more slowly, making training inefficient, while Adam makes
steady progress even on low-frequency tokens. Their empirical findings hold across architectures and
settings, including non-Transformer architectures and non-textual imbalanced data. This suggests
that the performance gap is primarily driven by class imbalance.

Transformer architecture. Another line of work focuses on the specific characteristics of Trans-
former architectures. Zhang et al. (2024a) provide a Hessian-based perspective, showing Transformers
have block-heterogeneous Hessian spectrum. In such settings, Adam strongly outperforms SGD,
unlike in architectures with more homogeneous Hessian. This holds across modalities, including
ViTs, differing from Kunstner et al. (2024).
In contrast, Tomihari & Sato (2025) focus on gradient heterogeneity, explaining Hessian heterogeneity
through gradient–Hessian correlations. They show that large disparities in gradient norms across
parameters cause challenges for SGD, which Adam’s adaptivity addresses. Finally, Zhang et al.
(2024b) show that full Adam-style adaptivity is not necessary and can be applied blockwise, as also
noted by Zhao et al. (2024), who emphasize the importance of adaptivity for normalization layers.

Heavy-tailed gradient noise. Earlier work by Zhang et al. (2020b) asks whether the nature of
stochastic gradient noise explains why the Adam–SGD gap exists in Transformers but not in other
architectures. They show that Transformers produce gradient noise with heavy-tailed distributions,
unlike the nearly Gaussian noise in CNNs, and argue that this degrades SGD performance while
Adam remains robust. However, Kunstner et al. (2023) show that noise alone is not the primary cause
of Adam’s superiority, since the gap persists even in full-batch training and Adam’s advantage grows
as stochastic noise vanishes. Although their analysis focuses on smaller-scale setups and very large
batch sizes, our findings align with extrapolations of their trends to the small-batch regime.

Optimization trajectories. Several studies investigate how Adam differs from SGD by analyzing
optimization trajectories. Jiang et al. (2022) examine local geometry and define a statistic measuring
the uniformity of the Hessian diagonal. On LMs, they find Adam consistently moves through regions
with smaller values than SGD with momentum. Rather than examining the entire Hessian, Pan &
Li (2023) look at the sharpness along the update direction at each step, showing that Adam makes
updates in directions with much smaller sharpness than SGD.

Evidence from simplified settings. Recent work shows that the Adam-SGD gap persists even in sim-
plified Transformer architectures. Ahn et al. (2024) demonstrate that the characteristic optimization
challenges mentioned above also appear in shallow linear Transformers, models without nonlinear
activations, on a linear regression task.

2 ADAM VS. SGD: EFFECTS OF HYPERPARAMETERS AND TRAINING REGIMES

To systematically investigate the performance gap between Adam and SGD, we conduct a series of
experiments in language modeling using a conventional Transformer architecture. Our goal is to
understand how this gap evolves under various training regimes and hyperparameter configurations.

2.1 EXPERIMENTAL SETUP

We conduct most experiments on the SlimPajama (Soboleva et al., 2023) dataset using a 160M-
parameter nanoGPT (Karpathy, 2022) model, enhanced with recent improvements. Full model details
are provided in Appendix A. We also experiment with larger models, up to 1B parameters in a Pythia
configuration (Biderman et al., 2023), and on the Fineweb dataset (Penedo et al., 2024).

All experiments are conducted without weight decay. Global gradient norm clipping is applied to raw
gradients for both SGD (with momentum) and Adam. Other experiment-specific details are described
in the following subsections, with additional information available in Appendix A.

2.2 EFFECT OF BATCH SIZE ON THE ADAM-SGD GAP

We first study how the gap between Adam and SGD changes with batch size under a fixed compute
budget, when momentum and learning rate are tuned.

3
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Figure 2: SGD (green) and Adam (purple) performance across batch sizes. Left: fixed token budget
(darker colors – more tokens); the gap increases with batch size across all token budgets. Right: fixed
number of steps (darker colors – larger batch sizes); the gap decreases with the number of steps. SGD
improves with longer training and can match Adam, given a sufficiently small batch size.

Setup. All experiments use a sequence length of 512, a fixed token budget of 1.3B tokens, and a
cosine learning rate scheduler (Loshchilov & Hutter, 2016) with 10% warmup. We compare three
batch sizes: 64, 256, and 1024. The learning rate and momentum values are tuned for both optimizers
at a batch size of 256. A sweep is performed over 5 learning rates and momentum values of 0.9, 0.95,
and 0.98, including runs without momentum. High momentum values are motivated by findings from
Zhao et al. (2024), where SGD performs best with momentum 0.98. For Adam, we fix β2 = 0.95.
Based on the optimal learning rate found at batch size 256, we scale down the learning rate grid
for batch size 64 and scale it up for batch size 1024, sweeping over 3 values in each case. Results
are reported in Figure 1. Some settings become unstable at very large learning rates, where one run
may succeed, even if the median run diverges. In those settings, we report runs at the largest stable
learning rate as optimal.

Results. Adam shows similar performance across batch sizes under a fixed token budget, as shown
in Figure 1. Surprisingly, SGD achieves performance close to Adam with small batches, but the gap
grows as batch size increases. For both SGD and Adam, momentum becomes crucial once batch size
increases, as noted by Kunstner et al. (2023) and Zhao et al. (2024).
Additional observations. We find that using a relatively small sequence length of 512 is not a
crucial factor in these dynamics. As we show in the next section, qualitatively similar behavior
occurs at a sequence length of 2048, as long as the number of tokens per iteration is held constant.
This suggests that performance differences can be attributed to the effective batch size (in tokens)
rather than sequence length alone. Additionally, we observe that gradient clipping acts differently
across batch sizes and is more important at larger batches (see Appendix B.1). Finally, we observe
that warm-up length is not a confounder – sweeping 5–20% warm-up schedules in our cosine with
warmup scheduler does not affect these dynamics.

2.3 ARE LARGE BATCH SIZES THE PROBLEM, OR IS IT THE NUMBER OF STEPS?

Our previous experiments show that SGD in small-batch settings can achieve performance close to
Adam. Crucially, note that in Figure 1 all methods see a total of 1.3B tokens. This implies that, e.g.,
at batch size 1024, methods perform 1/16 of the steps compared to batch size 64. This observation
raises an important question: does SGD truly break at large batch sizes, or is it simply slower to
converge, compared to Adam, at higher batch sizes? In other words, can SGD reach Adam-level
performance even at higher batch sizes, if given more training steps?

To investigate this, we compare performance across batch sizes under two training regimes: (1) fixed
token budget and (2) fixed number of steps. This comparison allows us to separate the impact of
slow SGD convergence from the inherent difficulty of optimizing in large-batch regimes.
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Figure 3: Perplexity during training for SGD (green) and Adam (purple) across training lengths in
small- and large-batch settings. High-opacity lines show EMA; low-opacity lines show raw values.
The gap shrinks with training, and for small batches, SGD outperforms Adam at the longest run.

Setup. The experimental setting is as in the previous section, except we increased the sequence
length to 2048 to study its effect. We train models across batch sizes 8–1024 and steps 2.5k–160k.
Total token budgets range from approximately 650M to 5.2B: models using larger batches are not
trained for the largest number of steps, while models using smaller batches are trained for more steps.
We switch from the cosine scheduler used previously to a WSD scheduler (Hägele et al., 2024) to
better compare runs before learning rate decay begins, using a fixed 2000-step warmup. For SGD, we
use momentum β = 0.98; for Adam, we set β1 = β2 = 0.95. See Appendix A.2 for full details.
Results. The left panel of Figure 2 clearly shows that, at a fixed token budget, Adam improves with
larger batch sizes, up to some critical batch size. In contrast, SGD shows a drastically opposite trend
— performance consistently degrades as batch size increases. Under a fixed token budget, matching
performance between Adam and SGD is conditional on using very small batch sizes, leading to
significantly longer training and poor memory usage. This result highlights a key limitation of SGD:
it is highly inefficient in realistic model training, where large batches are required for efficiency.

In the right panel of Figure 2, we show performance after training with various numbers of steps. The
gap between Adam and SGD grows with batch size, but SGD improves significantly with more steps
and can eventually match or even outperform Adam with long enough training. To illustrate this, we
report perplexity during training for SGD and Adam with batch sizes 16 and 128 in Figure 3, and
show the same plots for other batch sizes in Appendix A.2.

This observation shows that SGD is not necessarily unable to optimize in large-batch settings, just
very slow to converge. Or, to put it differently: while Adam can accelerate (in terms of progress per
step) with increased batch size, SGD cannot — its critical batch size is close to 1.

Scaling experiments. To test whether our findings persist at scale and across datasets, we experi-
ment with larger models and the FineWeb dataset (Penedo et al., 2024) in addition to SlimPajama.
We repeat the same experiments — varying token budgets and number of training steps — first by
changing the dataset for the 160M model to FineWeb, and then by scaling the model to 250M on
FineWeb. Setup details results are reported in Appendix A and Appendix B.2, showing that our core
claims hold when scaling up the model and switching datasets.

To further test whether SGD can outperform Adam at larger scales, we scale the model to 410M
and 1B. For both, we only tune the learning rate; SGD momentum is set to β = 0.98 and Adam
β1 = β2 = 0.95. We use the largest batch size that fits on a single NVIDIA A100 80GB GPU without
gradient accumulation. This results in batch size 8 for the 410M model (SlimPajama, sequence length
2048) and batch size 16 for the 1B model (FineWeb, sequence length 1024). Full training details are
in Appendix A. Trajectories for both models are shown in Figure 4, demonstrating that SGD can
outperform Adam even at 410M and 1B parameters.

2.4 TUNING ADAM IN SMALL-BATCH SETTINGS

In previous sections, we showed that SGD can perform on par with Adam or even outperform it.
One important detail is that even in Section 2.2, where hyperparameters are carefully tuned, we
did not explore the effect of tuning Adam’s β2. In all experiments so far, we used default values
recommended in the literature. We believe working in this setup is valuable, since β2 is often kept
constant while scaling (Biderman et al., 2023; Wortsman et al., 2023; Zhang et al., 2025), except in
critically large scenarios (Molybog et al., 2023). However, Zhang et al. (2022) shows that higher β2

values substantially improve small-batch training, and Marek et al. (2025b) highlights the importance
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(a) 410M model on SlimPajama – 1.5 days of training.
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(b) 1B model on FineWeb – 5 days of training.

Figure 4: SGD can outperform Adam even at 410M and 1B scales in small-batch regimes.
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Figure 5: Effect of Adam’s β2 on the gap for batch sizes 1 and 256. High β2 improves Adam’s
small-batch performance, while large-batch performance is insensitive.

of scaling β2 in this regime. In this section, we study this effect. The experimental setup is similar to
Section 2.3, and we compare two extreme cases, batch size 1 and 256, under the same token budget.
We fix Adam’s β1 = 0.9, vary β2, and tune the learning rate for each. To analyze the gap, we also
tune momentum β1 for SGD. Details are in Appendix A.3. From Figure 5, for batch size 1, we
observe that Adam requires higher β2 values, larger than 0.99, to achieve good final perplexity. In
contrast, for batch size 256, Adam’s final performance is not sensitive to β2. Compared to SGD,
Adam consistently achieves lower final perplexity, even at batch size 1. Although SGD does not
outperform Adam, the gap shrinks substantially as batch size decreases, showing that SGD remains
competitive in the small-batch regime, even with carefully tuned Adam β2. Results for batch size 8,
along with full perplexity curves during training, are provided in Appendix B.3.

3 REVISITING PRIOR EXPLANATIONS

Several recent works have proposed explanations for Adam’s advantage over SGD through the lens of
data or architectural properties (see Section 1.1). All these explanations improve our understanding
of the performance gap, yet most are limited to scenarios where the gap between Adam and SGD
is pronounced. Our goal is to revisit these explanations through the lens of our findings in Section 2
and ask: Can they also account for strong SGD performance in small-batch settings?

In this section, we focus on two approaches: the heavy-tailed class imbalance hypothesis (Kunstner
et al., 2024) and the explanation based on heterogeneous Hessian structure (Zhang et al., 2024a). We
also analyze the explanation proposed by Pan & Li (2023), with detailed discussion in Appendix C,
which shows that directional sharpness correlates with the gap but does not explain it or relate to
batch size. While no discussion in the literature fully accounts for our empirical evidence, the
heterogeneous toy quadratic example of Zhang et al. (2024a) offers particularly valuable insights,
which we develop in Section 4.1.

3.1 HEAVY-TAILED CLASS IMBALANCE

Prior work by Kunstner et al. (2024) attributes Adam’s advantage over SGD to heavy-tailed class
imbalance in token distributions, showing that SGD has difficulty optimizing rare (least common)
tokens. We follow their methodology and group all tokens from the training set into 10 frequency
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Figure 7: (left) Perplexity during training for Adam and SGD in small- and large-batch settings,
computed per frequency group. SGD shows a larger gap in the large-batch setting, while the opposite
holds for Adam. (right) Comparison of the Adam–SGD gap across frequency groups, with frequent
tokens on the top row and rare ones on the bottom. SGD underperforms Adam in large batches,
especially on rare tokens. This effect is not present in the small-batch setting.

groups, from the first group, which contains the 10% least frequent tokens, to the last group, which
contains the 10% most frequent ones.
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Figure 6: Batch token distribution for batch
sizes 64 and 1024. Lighter colors show less
frequent tokens. Statistics at lower batch sizes
are noisier but of similar magnitude.

We apply this analysis to the setting from Section 2.2,
comparing batch sizes 64 and 1024, where SGD per-
forms drastically differently, using runs with the op-
timal combination of β1 and learning rate for each
case. We find that class imbalance exists in both
cases: the persistence of low- and high-frequency
tokens is similar, as shown in Figure 6. However, this
does not appear to cause problems for small-batch
SGD, suggesting that class imbalance alone does not
imply an Adam-SGD gap across all training regimes.

We further compute perplexity separately for each
frequency group and report it over training. From
Figure 7 (a), we observe that both optimizers make
faster progress on more frequent tokens in all settings,
as expected. The relative difference in perplexity between frequency groups is more significant for
SGD in the large-batch setting than for the small, while the opposite holds for Adam.

Comparing Adam and SGD across frequency groups in Figure 6, we observe that in the large-batch
setting, SGD underperforms Adam across all groups, as shown in Figure 7 (b). However, the gap
is notably more significant for less frequent tokens, which aligns well with findings from Kunstner
et al. (2024), suggesting that rare tokens could be more challenging for SGD in imbalanced settings.
In contrast, this effect is not observed in the small-batch regime. Here, not only is the overall
Adam-SGD gap small (as seen in Section 2), but the gap across token frequencies is also small. We
would expect this problem with SGD to hold independent of batch size, but in settings where SGD
works well, the issue disappears.

3.2 HESSIAN HETEROGENEITY

From the line of work focusing on the architectural properties of Transformers, Zhang et al. (2024a)
argue that the block-wise heterogeneity of the Hessian spectrum is a key factor behind Adam’s
strong performance and the weakness of SGD. They propose that, based on the Hessian structure
at initialization, it is possible to predict whether SGD will perform well, offering an explanation
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that is invariant to batch size. To further explore the effect of batch size on heterogeneous
problems, we revisit the simplified quadratic setting from their work and extend it by including
batch size variation. We compare optimization on problems with homogeneous (CNN-like) and
heterogeneous (Transformer-like) Hessians, where both share the same eigenvalue spectrum. We
train with SGD and Adam using a cosine learning rate schedule and no clipping.

From Figure 8, we observe the following:
• Across batch sizes, the largest Adam–SGD gap occurs in the heterogeneous setting. As noted

by Kunstner et al. (2023), a similar pattern appears for signed momentum (Bernstein et al., 2018),
which we develop further in Section 4.1.

• Adam benefits from larger batch sizes in both homogeneous and heterogeneous Hessian problems,
whereas SGD shows little improvement. Details of the setting are provided in Appendix F.

In summary, higher batch sizes boost performance for both SignSGD and Adam, regardless of
heterogeneity. While heterogeneity amplifies the Adam–SGD gap, this shows that the phenomenon
we study is not limited to heterogeneous settings, highlighting that the landscape structure plays a
less crucial role, which we further develop in Section 4.1.
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Figure 8: Adam–SGD performance gap across batch sizes in quadratic models from Zhang et al.
(2024a). Adam benefits from larger batches in both, more so in Heterogeneous. Learning rates are
tuned so to give similar performance at Homogeneous batch size 1. Shown is mean and 2-sigma
standard deviation for 10 runs.

4 UNDERSTANDING HOW PERFORMANCE RELATES TO BATCH SIZE

In Section 3, we saw that while prior work sheds light on the Adam-SGD gap in the large-batch
regime, it remains unclear how batch size itself factors into these explanations. Towards gaining more
insights, we proceed as follows:

• We approach this from the SGD angle and ask: What goes wrong for SGD in large-batch settings
that does not appear at small batch sizes? To investigate, we separate which component of the
SGD update is more problematic — its direction or magnitude — focusing on the setting from
Section 2.2 with batch size 1024 and the optimal combination of β1 and learning rate. Using
grafting and adaptive clipping, we find that the main issue is the update direction rather than
magnitude. Full discussion and experimental results are provided in the Appendix D.

• In Section 4.1 we take a different approach, one based on noise statistics and adaptivity in a setup
which is non-specific to the Transformer architecture. This analysis is inspired by the results
in Figure 8, showing how adaptive methods may profit from large batch sizes regardless of the
Hessian structure. Using theoretical tools, we prove here that while SGD performance in early
training is dominated by number of iterations, the dynamics of signed momentum methods (cf.
Figure 8) showcase a strong dependency on batch size from the very first iterations.

4.1 THEORETICAL INSIGHTS

Towards explaining the phenomena observed in this paper — and specifically the quadratic example
in Figure 8 — we provide an analysis based on results around the interaction between noise and
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adaptivity in (Compagnoni et al., 2025b). The discussion below is rooted on the observed simi-
larity between behaviors of Adam and SignSGD in Figure 8, as well as recent literature on their
relation (Kunstner et al., 2023; Jordan et al., 2024).

Let X denote the model parameters and γ denote a batch of size B. We denote the stochastic gradient
as ∇fγ(x) := 1

B

∑
i∈γ ∇(fi(x)) and by Σ(x) the noise covariance at batch size 1. The stochastic

differential equation (SDE) approximation of SGD reads (Mil’shtein, 1986; Liu et al., 2021)

dXt = −∇f(Xt)dt+

√
ηΣ

B
dWt, (1)

We now state a recent result showing that the drift of signed updates – driving performance in early
training – has an extra dependency on the batch size. A proof sketch is provided in Appendix E.
Theorem 1 ((Compagnoni et al., 2025b)). Under the assumption of i.i.d. Gaussian noise with
diagonal covariance (and, with minor modifications, for other noise structures and non-diagonal
covariance), the following SDE provides a 1-weak approximation (Mil’shtein, 1986) of SignSGD:

dXt = − erf

(√
B

2
Σ− 1

2∇f(Xt)

)
dt+

√
η

√√√√Id −Diag

(
erf

(√
BΣ− 1

2∇f(Xt)√
2

))2

dWt, (2)

where the error function erf(x) := 2√
π

∫ x

0
e−t2dt and the square are applied component-wise.

While Compagnoni et al. (2025b) provide a similar result for the Heavy-tail noise setting, the Gaussian
case already highlights a crucial distinction between signed gradient methods and classical SGD.

0 1000 2000
iteration

10 2

10 1

lo
ss

SGD, noise =0.1
SGD, noise =0.3
SGD, noise =1
SignSGD, noise =0.1
SignSGD, noise =0.3
SignSGD, noise =1

Figure 9: Illustration of theory presented in the sec-
tion. Optimizing f(x) = 1

2∥x∥
2, x ∈ R100. All

methods use same learning rate of 1e− 3 and no
momentum. Shown is performance under different
injected Gaussian noise standard deviation. SGD
in early training is dominated by the drift com-
ponent, which is independent of noise – progress
is driven by number of iterations. For SignSGD,
noise (hence batch size in the more general case)
directly affects drift and early progress.

Takeaway. Recall that erf is linear on
a large interval around zero. The lo-
cal update of parameters is then driven by

− erf
(√

B
2 Σ

− 1
2∇f(Xt)

)
dt in the signSGD

case, while in the SGD setting, this term is sim-
ply −∇f(Xt)dt. When everything else is kept
constant, increasing the batch size B, increases
the drift in the direction of the negative gradient
by
√
B, up until the saturation point of erf , i.e.

a critical batch size.

This analysis provides evidence for our re-
sults: using large batch sizes accelerates con-
vergence (larger drift) in signSGD (and likely
also in closely-related algorithms, like Adam),
while the performance of SGD in early training
is batch-size agnostic and hence driven by the
number of iterations (see Figure 9).

5 DISCUSSION

Is it impossible to train language models with SGD? In this work, we show that there exist settings,
namely small batch sizes with carefully tuned momentum, where SGD is competitive, even for
1B-scale language models. These findings are interesting in their own right for small-scale training
runs, for example, on commodity GPUs, where memory is limited. Yet, these findings also crucially
inform the space of possible theories for the optimizer gap between Adam and SGD. We revisit a
number of promising theories from the literature based on our findings and find that they have limited
explanatory power. We argue that, instead, the effect of batch size is a symptom of the importance of
gradient noise for this question, and discuss a stronger explanation based on SDEs.
We believe that future theoretical work might be able to better explain the Adam-SGD gap as a
function of the batch size. A promising direction is recent work on (L0, L1)-smoothness (Zhang
et al., 2020a), specifically in the context of signed gradient descent (Compagnoni et al., 2025a), as
well as ℓ∞ geometry (Xie & Li, 2024; Xie et al., 2024) of transformer models.
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Appendix
A FURTHER EXPERIMENTS AND EXPERIMENTAL DETAILS

For pre-training Transformers on Causal Language Modeling, we use a setup that builds upon the
nanoGPT (Karpathy, 2022) implementation, augmenting it with Rotational Positional Embedding (Su
et al., 2024), RMSNorm (Zhang & Sennrich, 2019), and SwiGLU (Shazeer, 2020). We do not
adopt QK normalization or z-loss, as those modifications are quite recent. All our models have a
vocabulary size of 50280 and make use of GPT-Neox tokenizer (Black et al., 2022). We adopt an
enhanced training recipe, made popular by large language models such as LLaMa (Touvron et al.,
2023). These modifications include: training in bfloat16; employing a linear learning rate warm-up
for 10% of the training steps (unless specified otherwise), followed by either cosine annealing to
1e− 5 of WSD (Hägele et al., 2024). Global norm clipping is used (unless specified or ablated upon)
for gradients with norms above 1 (on the raw gradient, as a first step). We have no weight tying
between the embedding and the last linear layer. Validation perplexity always refers to a separate
subset consisting of 100M tokens.

A.1 EXPERIMENTAL SETUP

Computational Resources. All experiments use a single NVIDIA A100-SXM4-80GB.

Code. All our runs use the repository https://github.com/Niccolo-Ajroldi/
plainLM.

Datasets. We test our claims on both the SlimPajama (Soboleva et al., 2023) and Fineweb (Penedo
et al., 2024) datasets.

Model settings (12 Layers, 160M). We use the same configuration as (Biderman
et al., 2023): https://github.com/EleutherAI/pythia/blob/main/models/
160M/pythia-160m.yml

• Layers: 12 Transformer (Vaswani et al., 2017) layers
• Attention heads: 12
• Hidden size: 768
• Attention implementation: Flashattention (Dao et al., 2022).
• MLP type: SwiGLU (Shazeer, 2020) with expansion factor 8/3.
• Backbone: PreLN Transformer (Xiong et al., 2020) with skip connections.
• Normalization: RMSnorm (Zhang & Sennrich, 2019) for both Attention and MLP.
• Position embeddings: Rotary embeddings (RoPE) to 25% of dimensions ((Su et al., 2024))
• Initialization: the MLP and Attention output weights are initialized with variance
0.02/

√
2#layers (scaling also similar to (Radford et al., 2019)). All other weights (compris-

ing embeddings) are initialized with a standard deviation of 0.02 (Nguyen & Salazar (2019); Wang
& Komatsuzaki (2022), Sec. 2.2). Biases are always initialized at zero.

• Precision: Mixed precision FP16 enabled.
• Dropout: Disabled for both hidden and attention layers (see also Chowdhery et al. (2023)).

Model settings (250 M, 24 layers). We keep it identical to the setting above, and just increase the
number of layers to 24.

Model settings (410 M). We use the same setting as (Biderman et al., 2023), configuration
can be found here: https://github.com/EleutherAI/pythia/blob/main/models/
410M/pythia-410m-deduped.yml

• Layers: 24 Transformer layers
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• Attention heads: 16

• Hidden size: 1024

• Other settings as 160M parameters.

Model settings (1B). We use the same setting as (Biderman et al., 2023), configuration can be
found here: https://github.com/EleutherAI/pythia/blob/main/models/1B/
pythia-1b-deduped.yml

• Layers: 16 Transformer layers

• Attention heads: 8

• Hidden size: 2048

• Other settings as 160M parameters.

A.2 HYPERPARAMETER TUNING FOR SECTION 2.3

Combined, the experiments in this section account for full training (at different token budgets) of
more than 250 language models at different scales and batch sizes. Every reported result is relative to
the best learning rate in our grid, defined for each setup.

Small-scale experiments. We consider SGD with β = 0.98 and global clipping before applying
momentum. For Adam, we use the setting β1 = β2 = 0.95. Both settings are suggested by the sweep
in Figure 1 and recent literature (Zhang et al., 2025; Orvieto & Gower, 2025; Zhao et al., 2024).

• For Figure 2 and Figure 3 (SlimPajama, 160M), we choose a sequence length of 2048. Inspired
by the careful tuning of Figure 1, we consider the learning rate grid [0.25, 0.5, 1.0] for SGD and
[0.001, 0.002, 0.004] for Adam.

• For Figure 15 (Fineweb, 160M), we choose a sequence length of 1024. Our learning rate grid
here is the same as for SlimPajama (previous point). As a sequence length of 160k, given our lack
of experience with extremely low batch sizes (shorter sequence length), we operate on a slightly
larger grid: [0.0001, 0.0003, 0.001, 0.003] for Adam and [0.03, 0.1, 0.3, 1] for SGD.

• For Figure 16 (SlimPajama, 250M - 24 layers), we choose a sequence length of 2048 and we also
operate on a larger grid: [0.0001, 0.0003, 0.001, 0.003] for Adam and [0.03, 0.1, 0.3, 1] for SGD.

Medium scale experiments. For all SGD runs, we use β = 0.98. For Adam, we use the standard
choice (0.9, 0.95) (Biderman et al., 2023). All our runs use global norm clipping and no weight decay.

• 410M model (Figure 4a): We train with sequence length 2048, for 500k steps on SlimPajama.
Learning rate grid is [1.25e− 4, 2.5e− 4, 5.0e− 4, 1.0e− 3] for Adam and [0.125, 0.25, 0.5, 1]
for SGD. The sweep results are presented in Figure 10a.

• 1B model (Figure 4b): We train with sequence length 1024, for 850k steps on Fineweb. Learning
rate sweep, shown in Figure 10b uses [6.25e− 5, 1.25e− 4, 2.5e− 4, 5.0e− 4, 1.0e− 3] for Adam
and [0.0625, 0.125, 0.25, 0.5, 1] for SGD.

A.3 HYPERPARAMETER TUNING FOR SECTION 2.4

The experimental setup here follows Section A.2. We train a 160M model on SlimPajama, with
sequence length 2048 and the WSD scheduler. We consider batch sizes 1, 8, and 256 under a token
budget of 3.2B tokens.

For Adam, we fix β1 = 0.9, vary β2 ∈ [0.9, 0.99, 0.999, 0.9999, 0.99999], and tune the learning
rate for each configuration. For SGD, we similarly tune the momentum β ∈ [0.9, 0.99, 0.999]. The
learning rate grids are: for Adam [1.0e− 5, 3.0e− 5, 1.0e− 4, 3.0e− 4, 1.0e− 3, 3.0e− 3, 1.0e−
2, 3.0e− 2] and [1.0e− 3, 3.0e− 3, 1.0e− 2, 3.0e− 2, 1.0e− 1, 3.0e− 1, 1.0] for SGD.
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(a) 410M model on SlimPajama (seq. length 2048,
batch size 8, 500k steps)
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(b) 1B model on FineWeb (seq. length 1024, batch
size 16, 850k steps)

Figure 10: Learning rate sweep for 410M and 1B models. Trajectories for the optimal learning rate
are shown in Figure 4.

B ADDITIONAL RESULTS

In addition to Figure 1, we report the validation perplexity for the best-performing β1 and learning
rate combination for both Adam and SGD across batch sizes in Table 1. The experimental setting is
described in Section 2.2.

Table 1: Best validation perplexities and corresponding hyperparameters for Adam and SGD across
batch sizes. Results correspond to the sweep shown in Figure 1.

Batch Size Optimizer PPL Hyperparameters

64 Adam 28.77 β1 = 0.98, lr = 1e−3
SGD 30.76 β1 = 0.98, lr = 5e−1

256 Adam 28.20 β1 = 0.95, lr = 2e−3
SGD 33.08 β1 = 0.98, lr = 1e+0

1024 Adam 29.36 β1 = 0.95, lr = 5e−3
SGD 65.94 β1 = 0.95, lr = 5e−1

In addition to Figure 3, we report the training perplexity for all other batch sizes in Figure 3. We
repeat the experiments from Section 2.3 to verify that our findings generalize to a different dataset
and a deeper model.

B.1 CLIPPING ACTS DIFFERENTLY AT DIFFERENT BATCH SIZES

By detailed analysis of runs from Figure 1, we observe that gradients are clipped more frequently
when training with SGD at large batch sizes, as shown in Figure 11. Additionally, at small batch sizes,
SGD performs equally well even without clipping; instead, at large batch sizes, training diverges if
clipping is not employed.

B.2 SCALING EXPERIMENTS ACROSS MODEL SIZES AND DATASETS

We train the same 12-layer Transformer on the Fineweb dataset using SGD with momentum and
Adam, tuning the learning rate as explained in Appendix A. Batch sizes vary from 4 to 512, and we
use 3 different run lengths (i.e., different token budgets). From Figure 15, we observe that, at a fixed
number of steps, the performance gap increases with batch size, and that with smaller batches and
sufficiently long training, SGD outperforms Adam, consistent with the findings reported earlier.

In a second experiment, we increase the model depth to 24 layers while keeping all other settings
identical to Section 2.3. We vary batch sizes from 4 to 64 and training lengths, and tune the learning
rate as explained in Appendix A. As shown in Figure Figure 16, the same pattern holds for a deeper
model.
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Figure 11: Gradient norm after clipping (thresh-
old 1.0) shows that clipping is more frequent in
large-batch training. The setup for these runs is
the same as Figure 1.
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Figure 12: Final perplexities for batch size 8,
shown in addition to Figure 5 (main text).

B.3 TUNING ADAM IN SMALL-BATCH SETTINGS

In addition to the results from Section 2.4, we show batch size 8 and full training trajectories.
Figure 12 shows the final perplexity for batch size 8 across different β2 values. Figure 13 presents the
full training curves for batch sizes 1, 8, and 256, illustrating convergence dynamics and the relative
performance of Adam and SGD.
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Figure 13: Training dynamics for batch sizes 1, 8, and 256, corresponding to the final perplexities
shown in Figure 5 (main text) and Figure 12 (Appendix).
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Figure 14: Perplexity during training for SGD (green) and Adam (purple) across different training
lengths for all other batch sizes not shown in Figure 3. Solid lines show the rolling mean of PPL
values; lighter lines show the raw values. As before, the gap decreases the longer we train, and SGD
can eventually outperform Adam.
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Figure 15: Fineweb dataset, sequence length
2048, 12-layer Transformer.
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Figure 16: SlimPajama dataset, sequence length
2048, 24-layer Transformer.

C REVISITING PRIOR EXPLANATIONS: DIRECTIONAL SHARPNESS

Pan & Li (2023) introduce directional sharpness to explain the optimizer gap by studying a second-
order Taylor expansion of the loss along the update direction. In this view, the first-order term (gradient
correlation) measures how well the update aligns with the negative gradient, while the second-order
term (directional sharpness) measures curvature along that direction. Making optimization progress
requires a strong negative gradient correlation and low directional sharpness. Let f be a generic loss
to optimize and xk denote the model parameters at iteration k, then

f(xk+1) = f(xk) +∇f(xk)
⊤(xk+1 − xk)︸ ︷︷ ︸

gradient correlation

+
1

2
(xk+1 − xk)

⊤∇2f(xk)(xk+1 − xk)︸ ︷︷ ︸
directional sharpness

+O(η3) (3)

In Figure 17, we visualize gradient correlation, directional sharpness, and their sum — a second-order
approximation of loss change, to indicate progress. As in our previous analysis, we compare two
settings with drastic performance differences: batch sizes 64 and 1024 from Section 2.2. In the
large-batch setting, SGD shows low gradient correlation and high directional sharpness, resulting
in weak or even positive total loss change, as reflected in the sum. In contrast, Adam has higher
gradient alignment and lower directional sharpness throughout training. When SGD succeeds, its
gradient correlation and directional sharpness closely match Adam’s, producing a negative loss
change in the sum. While these metrics align with SGD’s success or failure, they do not directly
explain why Adam outperforms SGD, nor why SGD performs well in small-batch regimes.

As discussed in Section 4, we aim to isolate which component of the SGD update is more problematic
in large-batch training. To do that, we focus on the setup from Section 2.2 with batch size 1024
and the optimal β1 and learning rate, and perform analysis using grafting and adaptive clipping. The
following subsections provide detailed results for each approach.

D INSIGHTS FROM GRAFTING AND ADAPTIVE CLIPPING

D.1 INSIGHTS FROM GRAFTING

To isolate the role of update direction and magnitude, we use the grafting technique proposed by
Agarwal et al. (2020), which applies the update direction of one optimizer with the magnitude of
another. We train the model in the large batch setting, using both combinations: 1) SGD magnitude
with Adam direction (SGD#Adam), and 2) Adam magnitude with SGD direction (Adam#SGD). We
use the optimal β1 from Section 2.2, and sweep the learning rate for the grafted update. We report
the training perplexity using the optimal learning rate for both grafting combinations in Figure 18.
As shown, using SGD magnitude with Adam’s direction performs comparably to Adam, while the
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Figure 17: Gradient correlation, directional sharpness, their sum and second-order loss approximation
during training, under small- and large-batch settings. Irrespective of the optimizer, good training
trajectories have strong negative gradient correlation and low directional sharpness.
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Figure 19: Adaptive clipping with different per-
centages of clipped coordinates in large-batch
training. It improves SGD but still does not fully
match Adam.

reverse combination behaves similarly to SGD. This suggests that the update direction is the more
problematic component of the SGD update in large-batch training.

D.2 INSIGHTS FROM ADAPTIVE CLIPPING

The perspective that direction is the core problem aligns with the observation that global norm
clipping does not help much in large-batch training with SGD. If the direction is the main issue,
simply rescaling the gradient norm does not lead to better updates.

To investigate this further, we experiment with adaptive clipping, motivated by Pan & Li (2023).
As shown in Algorithm 1, we clip the top p% of the largest momentum coordinates at each step.
We test several values of p (5, 10, and 20 %). For each value, we keep the optimal β1 from the
previous setting and tune the learning rate. Clipping with p = 10% performs best, but we observe
that performance does not vary much across different values of p. This method helps reduce the
gap between SGD and Adam, as shown in Figure 19. This suggests that a subset of larger update
coordinates consistently contributes to poor update directions and slows down SGD in large-batch
training. In contrast, small-batch training does not present the same problematic coordinates.

Further, we ask whether certain groups of parameters are more likely to produce problematic
coordinates. To explore this, we inspect which layers the clipped momentum coordinates come from,
using the best-performing setting with p = 10%. In Figure 20, we show the fraction of parameters
within each layer that are clipped, relative to the total number of parameters in that layer. We find that
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normalization layers are clipped the most, which aligns with findings from Zhao et al. (2024) and
Tomihari & Sato (2025). However, this does not imply that only normalization layers are problematic.
As we observe significant clipping across other layers as well, this suggests that large coordinates
persist across all parameters, though they are most pronounced in normalization layers.
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Figure 20: Fraction of clipped momentum coor-
dinates per layer during training, using p = 10%
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all blocks. Clipping is present across all parame-
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E PROOF SKETCH FOR SECTION 4.1

To build intuition for the proof in (Compagnoni et al., 2025b), we begin by studying the quantity

sign(m(x)), m(x) ∼ N (∇f(x), σ2/B).

That is, m(x) is an estimate of the gradient, which we assume for simplicity to have Gaussian
distribution centered around the full-batch gradient∇f(x). In expectation, we get (coordinatewise)

E[sign(m(x))]

= P[sign(m(x)) = sign(∇f(x))] · sign(∇f(x))− P[sign(m(x)) ̸= sign(∇f(x))] · sign(∇f(x))
= (2P[sign(m(x)) = sign(∇f(x))]− 1) · sign(∇f(x))

At this point, the erf function comes in. Recall that, if Z ∼ N (µ, ς2), then if ℓ > µ, we have
P[Z ≤ ℓ] = 1

2 + 1
2 erf

(
ℓ−µ√
2ς2

)
. Note that this implies, for µ ≥ 0, P[Z ≥ 0] = P[sign(Z) =

sign(µ)] = 1
2 + 1

2 erf
(

µ√
2ς2

)
. Hence, if ∇f(x) > 0 for a specific coordinate, P[sign(m(x)) =

sign(∇f(x))] = 1
2 + 1

2 erf
(√

B µ√
2σ2

)
, relative to that coordinate. By symmetry of this argument

for negative∇f(x), we get exactly the drift term in Theorem 1, discussed above:

E[sign(m(x))] = erf

(√
B

2
(σ2)−

1
2∇f(x)

)
.

Finally, note that Gaussianity is not strictly needed for our insights on batch-size acceleration to hold.
As discussed by Compagnoni et al. (2025b) and clear from the argument above on the cumulative
distribution, a similar expression can hold even for distributions with heavier tails, such as the
t-student (see Corollary C.10 in Compagnoni et al. (2025b)).

F TOY QUADRATIC EXAMPLE

Our setup is inspired from the results and discussions in Zhang et al. (2024a), and uses the codebase
of Orvieto & Gower (2025). We consider the loss

L(w) =
1

2
w⊤Hw

where we construct the Homogeneous and Heterogeneous Hessians using the following procedure:

• We fix the eigenvalues, equal in both cases, to

eig(Hhom) = eig(Hhet) = {1, 2, 3, 99, 100, 101, 4998, 4999, 5000}.
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Figure 21: (left) Heterogeneous and (right) Homogeneous Hessian considered in Figure 8.

• We choose both Hessians to be block-diagonal, with blocks of size 3 × 3. The homogeneous
Hessian has eigenvalues of different magnitude in each block, while the Heterogeneous keeps
similar magnitudes in each block.

H_details_het = [[1,2,3],[99,100,101],[4998,4999,5000]]
H_details_hom = [[1,99,4998],[2,100,4999],[3,101,5000]]

• For each block, we apply a random rotation to the diagonal matrix of eigenvalues, specific to each
block. Each rotation is sampled from the Haar measure by decomposition of a random 3 × 3
positive semidefinite matrix AA⊤, where A ∈ R3×3 has i.i.d. Gaussian entries.

The result is shown in Figure 21. Leraning rates for each method are tuned.

Next, to introduce stochasticity in this setting, we simply take the square root of the Hessian to define
a 9× 9 design matrix X:

H = X⊤X, X = H
1
2 ,

and subsample a number (the batchsize) of rows of X at each iteration.

Additional learning rates for Figure 21 are reported in Figure 22.

Homogeneous Hessian Homogeneous HessianHeterogeneous Hessian Heterogeneous Hessian
AdamAdamSGD + mSGD + m

Figure 22: Complement to Figure 8.

G ALGORITHMIC DETAILS

Algorithm 1 SGD with Adaptive Momentum Clipping

Require: Initial point x0, learning rate η, momentum β, clipping fraction p ∈ (0, 1)
1: for t = 1 to T do
2: gt ← ∇f(xt)
3: mt ← βmt−1 + gt
4: Set clipping threshold τt as the (1− p)-quantile of |mt|
5: m̂t ← clip(mt) = sign(mt) ·min(|mt|, τt)
6: xt+1 ← xt − ηm̂t

7: end for
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