Under review as a conference paper at ICLR 2026

IS YOUR BATCH SIZE THE PROBLEM? REVISITING THE
ADAM-SGD GAP IN LANGUAGE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Adam is known to perform significantly better than Stochastic Gradient De-
scent (SGD) in language models, a phenomenon for which a number of explanations
have been proposed. In this work, we revisit this “optimizer gap” through a series
of comprehensively tuned baseline training runs for language modeling with Trans-
formers. We exhaustively study how momentum, gradient clipping, and batch size
affect the gap between SGD and Adam. Our empirical findings show that SGD
with momentum can actually perform similarly to Adam in small-batch settings, if
tuned correctly. We revisit existing explanations for Adam’s advantage, including
heavy-tailed class imbalance, directional sharpness, and Hessian heterogeneity,
which struggle to directly explain this phenomenon. Towards bridging this gap in
our understanding, by analyzing our Transformer training runs and simple quadratic
settings inspired by the literature, we provide new insights, driven by stochastic
differential equation models, into the role of batch size on the training dynamics.

1 INTRODUCTION

The Adam optimizer (,) is used pervasively in deep learning, especially when
training large language models (LMs) (, ;)
and vision Transformers (; s) at scale Industrial practice

relies on the success of Adam, and thousands of GPU hours every day are spent at large companies
using Adam to train their next-generation large language models.

Even in new sophisticated optimization pipelines looking to dethrone Adam, such as Muon (

,), most current implementations (, ,) rely on plain Adam
with weight decay (AdamW, ()) for critical subsets of parameters, such as
normalization layers, text embeddings and prediction heads. This new world is still a bit surprising.
Until around 2018, Adam was used only occasionally, while stochastic gradient descent (SGD) with
momentum was known to lead to neural networks with better accuracy on unseen data ()

), relegating Adam to speed runs and quick comparisons (,). Yet, from the start,
language modeling with Transformers required Adam. In fact, Transformer LMs have been reportedly
untrainable with SGD (,), especially due to the critical parameters listed above.

Over the years, researchers have offered a number of compelling explanations regarding the remark-
able performance of Adam compared to SGD in language modeling, attributing it either to the pecuhar
noisy nature of text data (;) or the heterogeneous structure (

,) of the Transformer architecture (,) — comprising semantically
and structurally dissimilar layers. While most hypotheses regarding the Adam-SGD gap can help
guide our understanding (,), a particularly crucial insight was recently brought to light
by (): the Adam-SGD gap is also observable in full-batch training, and is hence
clear that the stochastic and potentially heavy-tailed nature of stochastic gradients may not be the
challenge Adam is able to tackle. Inspired by the latter discussion, we take an orthogonal approach:

Instead of asking why Adam often outperforms SGD, we wonder:
In which Transformer-based language model training setting, if any, does SGD work?

In other words, while most recent works try to maximize the gap between SGD and Adam in order
to explain it more easily, we here try to minimize it — without sacrificing scale or performance. We

Under review as a conference paper at ICLR 2026

Adam | bs=64 Adam | bs=256 Adam | bs=1024

_ B B1 B1

& 45 0.0 1 0.0 100

S 40 0.9 _ 0.9] ~o08

G - 0.95 - 0.95 - 0.9

> 354 - 0.98 b - 0.98 1 - 0.95

©

£ 301 S —— 1 1

25 T d T 1 T 1
10~ 103 1072 107* 1073 102 107 1073 1072
SGD | bs=64 SGD | bs=256 SGD | bs=1024
|

a & B B B1

& 757 00 1 0.0 T 0.0

5 651 « 0.9 4109 E 0.9

5 554 < 0.95 1 - 0.95 - - 0.95

2> 45098 1 -+0.98 _ --0.98

©

.uE_ 35 A E 1

LY ——— BestAdam 77 B Best Adam 77T 4 Best Adam
1072 1071 10° 10t 1072 1071 10° 101 1072 107! 10° 10!

Learning Rate Learning Rate Learning Rate

Figure 1: Learning rate and momentum sweep for SGD and Adam across batch sizes under a fixed
1.3B-token compute budget. Experiments use a 160M-parameter model and report perplexities on
100M held-out tokens. Adam performs consistently across batch sizes,while SGD performs
poorly at large batch sizes but improves at smaller ones. The dashed line marks the best Adam
configuration per batch size. Best hyperparameters and perplexities are listed in Table 1.

believe such a view is novel in the literature and can provide valuable insights into the Adam-SGD
gap. In particular, it can help identify settings that falsify existing hypotheses about the gap and
enumerate necessary criteria that explanations must fulfill. Our contributions are as follows:

* Despite our surprise, we show that LMs can be trained with SGD and achieve performance close to
Adam at the same token budget, as long as the batch size is small. We found that this holds even at
1B parameters. While this setting is clearly inconvenient for standard multi-device pretraining, it
provides a new lens for understanding the Adam—SGD gap. We note that this finding is consistent
with both previously observed trends for small-scale models in the large/full-batch case (Kunstner
et al., 2023) and with works observing that adaptive preconditioning affects the critical batch
size (Zhang et al., 2019). Yet, taken in isolation, our small-batch results urge us to revisit the
theoretical underpinnings for the Adam-SGD gap.

* To inspect this phenomenon, we carefully revisit prior explanations — such as heavy-tailed
class imbalance (Kunstner et al., 2024), directional sharpness (Pan & L.i, 2023), and Hessian
heterogeneity (Zhang et al., 2024a) — in our setup. While our experiments confirm that these
explanations can shed light and are useful to describe settings where Adam outperforms SGD, we
find that no prior work can directly explain why SGD can outperform Adam at low batch sizes,
while achieving satisfactory performance. Notably, in stark contrast with works attributing the gap
to heavy-tail noise, we observe that increased stochasticity actually reduces the Adam—SGD gap.

* We enhance our intuition by further studying what makes SGD suboptimal and potentially unstable
at high batch sizes. To do this, we present ablations on gradient clipping and learning rate
grafting (Agarwal et al., 2020), and inspect their effect on performance.

* Inspired by our observed empirical correspondence between Transformers dynamics and the
simplified heterogeneous quadratic setup of (Zhang et al., 2024a) at different noise levels, we
leverage this setup to further study why adaptive optimization may have a different batch size
sensitivity compared to SGD. Our analysis is rooted in recent works on SDE models (Malladi et al.,
2023; Compagnoni et al., 2025b), and our findings and theoretical connections provide evidence of
acceleration for Adam in the large batch settings.

Together, our findings paint a new picture of the optimizer gap, and suggest that batch size — and
thus the scale and structure of gradient noise — should be explicitly considered in future analyses.
Moreover, our results shift the discussion to considerations on the critical batch size of each optimizer,
and can provide practical hints in low-resource and small-scale settings, where small batches are
common and optimizer memory usage is critical. This last point was recently developed in a
concurrent paper by Marek et al. (2025a), where the authors study hyperparameter robustness for
small-batch size training in Adam and SGD. In this work, our focus lies primarily in revisiting
explanations for the optimizer gap in light of our empirical results.

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

Class imbalance. () explains the advantage of Adam over SGD on language
tasks through the heavy-tailed class imbalance in token distributions. They show that with SGD,
loss for rare tokens decrease much more slowly, making training inefficient, while Adam makes
steady progress even on low-frequency tokens. Their empirical findings hold across architectures and
settings, including non-Transformer architectures and non-textual imbalanced data. This suggests
that the performance gap is primarily driven by class imbalance.

Transformer architecture. Another line of work focuses on the specific characteristics of Trans-
former architectures. () provide a Hessian-based perspective, showing Transformers
have block-heterogeneous Hessian spectrum. In such settings, Adam strongly outperforms SGD,
unlike in architectures with more homogeneous Hessian. This holds across modalities, including
ViTs, differing from ().

In contrast, () focus on gradient heterogeneity, explaining Hessian heterogeneity
through gradient—Hessian correlations. They show that large disparities in gradient norms across
parameters cause challenges for SGD, which Adam’s adaptivity addresses. Finally,

() show that full Adam-style adaptivity is not necessary and can be applied blockwise, as also
noted by (), who emphasize the importance of adaptivity for normalization layers.

Heavy-tailed gradient noise. Earlier work by () asks whether the nature of
stochastic gradient noise explains why the Adam—SGD gap exists in Transformers but not in other
architectures. They show that Transformers produce gradient noise with heavy-tailed distributions,
unlike the nearly Gaussian noise in CNNs, and argue that this degrades SGD performance while
Adam remains robust. However, () show that noise alone is not the primary cause
of Adam’s superiority, since the gap persists even in full-batch training and Adam’s advantage grows
as stochastic noise vanishes. Although their analysis focuses on smaller-scale setups and very large
batch sizes, our findings align with extrapolations of their trends to the small-batch regime.

Optimization trajectories. Several studies investigate how Adam differs from SGD by analyzing
optimization trajectories. () examine local geometry and define a statistic measuring
the uniformity of the Hessian diagonal. On LMs, they find Adam consistently moves through regions
with smaller values than SGD with momentum. Rather than examining the entire Hessian,

() look at the sharpness along the update direction at each step, showing that Adam makes
updates in directions with much smaller sharpness than SGD.

Evidence from simplified settings. Recent work shows that the Adam-SGD gap persists even in sim-
plified Transformer architectures. () demonstrate that the characteristic optimization
challenges mentioned above also appear in shallow linear Transformers, models without nonlinear
activations, on a linear regression task.

2 ADAM VS. SGD: EFFECTS OF HYPERPARAMETERS AND TRAINING REGIMES

To systematically investigate the performance gap between Adam and SGD, we conduct a series of
experiments in language modeling using a conventional Transformer architecture. Our goal is to
understand how this gap evolves under various training regimes and hyperparameter configurations.

2.1 EXPERIMENTAL SETUP

We conduct most experiments on the SlimPajama (,) dataset using a 160M-
parameter nanoGPT (,) model, enhanced with recent improvements. Full model details
are provided in . We also experiment with larger models, up to 1B parameters in a Pythia
configuration (,), and on the Fineweb dataset (s).

All experiments are conducted without weight decay. Global gradient norm clipping is applied to raw
gradients for both SGD (with momentum) and Adam. Other experiment-specific details are described
in the following subsections, with additional information available in

2.2 EFFECT OF BATCH SIZE ON THE ADAM-SGD GAP

We first study how the gap between Adam and SGD changes with batch size under a fixed compute
budget, when momentum and learning rate are tuned.

Under review as a conference paper at ICLR 2026

Batch sizes 8 - 64

50 1 Token budget r
50
Adam SGD o BS
0.66B 0.66B & Adam SSt
451 1318 —+ 1318 = 401 T16 e16
—=—2.62B —— 2.62B B =32 =32
a0 —524B ——5.248 2 301 m64 W64
o [
a
) 20 T T T T T
< 5k 10k 20k 40k 80k 160k
> 351
é Batch sizes 128 - 1024
[50
304 N BS
& Adam SGD
- 40 - 128 - 128
= [| =256 =256
25 A > m512 m512
Tg 30 M 1024 W 1024
I e
20 201 " y .
8 16 32 64 128 256 512 1024 2.5k 5k 10k 20k
BS Number of Steps

Figure 2: SGD (green) and Adam (purple) performance across batch sizes. Left: fixed token budget
(darker colors — more tokens); the gap increases with batch size across all token budgets. Right: fixed
number of steps (darker colors — larger batch sizes); the gap decreases with the number of steps. SGD
improves with longer training and can match Adam, given a sufficiently small batch size.

Setup. All experiments use a sequence length of 512, a fixed token budget of 1.3B tokens, and a
cosine learning rate scheduler (L.oshchilov & Hutter, 2016) with 10% warmup. We compare three
batch sizes: 64, 256, and 1024. The learning rate and momentum values are tuned for both optimizers
at a batch size of 256. A sweep is performed over 5 learning rates and momentum values of 0.9, 0.95,
and 0.98, including runs without momentum. High momentum values are motivated by findings from
Zhao et al. (2024), where SGD performs best with momentum 0.98. For Adam, we fix 83 = 0.95.
Based on the optimal learning rate found at batch size 256, we scale down the learning rate grid
for batch size 64 and scale it up for batch size 1024, sweeping over 3 values in each case. Results
are reported in Figure 1. Some settings become unstable at very large learning rates, where one run
may succeed, even if the median run diverges. In those settings, we report runs at the largest stable
learning rate as optimal.

Results. Adam shows similar performance across batch sizes under a fixed token budget, as shown
in Figure 1. Surprisingly, SGD achieves performance close to Adam with small batches, but the gap
grows as batch size increases. For both SGD and Adam, momentum becomes crucial once batch size
increases, as noted by Kunstner et al. (2023) and Zhao et al. (2024).

Additional observations. We find that using a relatively small sequence length of 512 is not a
crucial factor in these dynamics. As we show in the next section, qualitatively similar behavior
occurs at a sequence length of 2048, as long as the number of tokens per iteration is held constant.
This suggests that performance differences can be attributed to the effective batch size (in tokens)
rather than sequence length alone. Additionally, we observe that gradient clipping acts differently
across batch sizes and is more important at larger batches (see Appendix B.1). Finally, we observe
that warm-up length is not a confounder — sweeping 5—20% warm-up schedules in our cosine with
warmup scheduler does not affect these dynamics.

2.3 ARE LARGE BATCH SIZES THE PROBLEM, OR IS IT THE NUMBER OF STEPS?

Our previous experiments show that SGD in small-batch settings can achieve performance close to
Adam. Crucially, note that in Figure | all methods see a total of 1.3B tokens. This implies that, e.g.,
at batch size 1024, methods perform 1/16 of the steps compared to batch size 64. This observation
raises an important question: does SGD truly break at large batch sizes, or is it simply slower to
converge, compared to Adam, at higher batch sizes? In other words, can SGD reach Adam-level
performance even at higher batch sizes, if given more training steps?

To investigate this, we compare performance across batch sizes under two training regimes: (1) fixed
token budget and (2) fixed number of steps. This comparison allows us to separate the impact of
slow SGD convergence from the inherent difficulty of optimizing in large-batch regimes.

Under review as a conference paper at ICLR 2026

BS =16 BS = 128
60
50
T 40
30
20+ T T T T 1 T T T T
10 20 40 80 160 1 2.5 5 10 20
Steps (x103) Steps (x103)

Figure 3: Perplexity during training for SGD (green) and Adam (purple) across training lengths in
small- and large-batch settings. High-opacity lines show EMA; low-opacity lines show raw values.
The gap shrinks with training, and for small batches, SGD outperforms Adam at the longest run.

Setup. The experimental setting is as in the previous section, except we increased the sequence
length to 2048 to study its effect. We train models across batch sizes 8—1024 and steps 2.5k—160k.
Total token budgets range from approximately 650M to 5.2B: models using larger batches are not
trained for the largest number of steps, while models using smaller batches are trained for more steps.
We switch from the cosine scheduler used previously to a WSD scheduler (Higele et al., 2024) to
better compare runs before learning rate decay begins, using a fixed 2000-step warmup. For SGD, we
use momentum 8 = 0.98; for Adam, we set 1 = B2 = 0.95. See Appendix A.2 for full details.

Results. The left panel of Figure 2 clearly shows that, at a fixed token budget, Adam improves with
larger batch sizes, up to some critical batch size. In contrast, SGD shows a drastically opposite trend
— performance consistently degrades as batch size increases. Under a fixed token budget, matching
performance between Adam and SGD is conditional on using very small batch sizes, leading to
significantly longer training and poor memory usage. This result highlights a key limitation of SGD:
it is highly inefficient in realistic model training, where large batches are required for efficiency.

In the right panel of Figure 2, we show performance after training with various numbers of steps. The
gap between Adam and SGD grows with batch size, but SGD improves significantly with more steps
and can eventually match or even outperform Adam with long enough training. To illustrate this, we

report perplexity during training for SGD and Adam with batch sizes 16 and 128 in Figure 3, and
show the same plots for other batch sizes in Appendix A.2.

This observation shows that SGD is not necessarily unable to optimize in large-batch settings, just
very slow to converge. Or, to put it differently: while Adam can accelerate (in terms of progress per
step) with increased batch size, SGD cannot — its critical batch size is close to 1.

Scaling experiments. To test whether our findings persist at scale and across datasets, we experi-
ment with larger models and the FineWeb dataset (Penedo et al., 2024) in addition to SlimPajama.
We repeat the same experiments — varying token budgets and number of training steps — first by
changing the dataset for the 160M model to FineWeb, and then by scaling the model to 250M on
FineWeb. Setup details results are reported in Appendix A and Appendix B.2, showing that our core
claims hold when scaling up the model and switching datasets.

To further test whether SGD can outperform Adam at larger scales, we scale the model to 410M
and 1B. For both, we only tune the learning rate; SGD momentum is set to 5 = 0.98 and Adam
B1 = B2 = 0.95. We use the largest batch size that fits on a single NVIDIA A100 80GB GPU without
gradient accumulation. This results in batch size 8 for the 410M model (SlimPajama, sequence length
2048) and batch size 16 for the 1B model (FineWeb, sequence length 1024). Full training details are
in Appendix A. Trajectories for both models are shown in Figure 4, demonstrating that SGD can
outperform Adam even at 410M and 1B parameters.

2.4 TUNING ADAM IN SMALL-BATCH SETTINGS

In previous sections, we showed that SGD can perform on par with Adam or even outperform it.
One important detail is that even in Section 2.2, where hyperparameters are carefully tuned, we
did not explore the effect of tuning Adam’s fs. In all experiments so far, we used default values
recommended in the literature. We believe working in this setup is valuable, since [is often kept
constant while scaling (Biderman et al., 2023; Wortsman et al., 2023; Zhang et al., 2025), except in
critically large scenarios (Molybog et al., 2023). However, Zhang et al. (2022) shows that higher 2
values substantially improve small-batch training, and Marek et al. (2025b) highlights the importance

Under review as a conference paper at ICLR 2026

104

Train PPL
=
o
w

Train PPL
=
o
w

—— Adam
2 2
10 1024 <p
109 10' 102 10° 10° 10° 10! 103 10°
Steps Steps
(a) 410M model on SlimPajama — 1.5 days of training. (b) 1B model on FineWeb — 5 days of training.
) Yy g y g

Figure 4: SGD can outperform Adam even at 410M and 1B scales in small-batch regimes.

Adam | bs=1 SGD | bs=1 Adam | bs=256 SGD | bs=256
1 | 1
J B2 | B1 | B2
80 0.9 0.9 0.9
g 0.99 g 0.99 o 0.99 g
o 60 4 -~ 0.999 o --0.999 o - 0.999 e |
B - 0.9999 b z - 0.9999 b
8 -~ 0.99999 Y Y 8
€ 40 g g - E |
ic ic ic ic
N — o
20 A R R
1074 102 1073 1072 107! 10~ 1072 1072 10°
Learning Rate Learning Rate Learning Rate Learning Rate

Figure 5: Effect of Adam’s 2 on the gap for batch sizes 1 and 256. High 2 improves Adam’s
small-batch performance, while large-batch performance is insensitive.

of scaling 5 in this regime. In this section, we study this effect. The experimental setup is similar to
Section 2.3, and we compare two extreme cases, batch size 1 and 256, under the same token budget.
We fix Adam’s 8; = 0.9, vary (32, and tune the learning rate for each. To analyze the gap, we also
tune momentum f3; for SGD. Details are in Appendix A.3. From Figure 5, for batch size 1, we
observe that Adam requires higher 32 values, larger than 0.99, to achieve good final perplexity. In
contrast, for batch size 256, Adam’s final performance is not sensitive to 8. Compared to SGD,
Adam consistently achieves lower final perplexity, even at batch size 1. Although SGD does not
outperform Adam, the gap shrinks substantially as batch size decreases, showing that SGD remains
competitive in the small-batch regime, even with carefully tuned Adam [35. Results for batch size 8,
along with full perplexity curves during training, are provided in Appendix B.3.

3 REVISITING PRIOR EXPLANATIONS

Several recent works have proposed explanations for Adam’s advantage over SGD through the lens of
data or architectural properties (see Section 1.1). All these explanations improve our understanding
of the performance gap, yet most are limited to scenarios where the gap between Adam and SGD
is pronounced. Our goal is to revisit these explanations through the lens of our findings in Section 2
and ask: Can they also account for strong SGD performance in small-batch settings?

In this section, we focus on two approaches: the heavy-tailed class imbalance hypothesis (Kunstner
et al., 2024) and the explanation based on heterogeneous Hessian structure (Zhang et al., 2024a). We
also analyze the explanation proposed by Pan & i (2023), with detailed discussion in Appendix C,
which shows that directional sharpness correlates with the gap but does not explain it or relate to
batch size. While no discussion in the literature fully accounts for our empirical evidence, the
heterogeneous toy quadratic example of Zhang et al. (2024a) offers particularly valuable insights,
which we develop in Section 4.1.

3.1 HEAVY-TAILED CLASS IMBALANCE

Prior work by Kunstner et al. (2024) attributes Adam’s advantage over SGD to heavy-tailed class
imbalance in token distributions, showing that SGD has difficulty optimizing rare (least common)
tokens. We follow their methodology and group all tokens from the training set into 10 frequency

Under review as a conference paper at ICLR 2026

sgd, bs=64 adam, bs=64 BS=64, frequent BS=1024, frequent
10° 10° \\% 10° 10°
-
o
o X
c
‘s 103 103 103 . 103
=
10! 4 . e 101 4 . e | 101 4 . : 10! 4 ;
102 103 10* 102 10° 10* 102 10% 10* 107 103
step step step step
sgd, bs=1024 adam, bs=1024 BS=64, rare BS=1024, rare
10° L 10°
. 10° 10° 105 105
o
= 10 10
5 108 108
= 103 103
101 + T 101+ T 102 + T v 102
107 103 102 103 102 103 10* 107 103
step step step step
(a) Per-group PPL by token freq. for SGD and Adam. (b) Adam-SGD gap across freq. groups.
SGD most freq. —— SGD least freq. Adam most freq. —— Adam least freq.

Figure 7: (left) Perplexity during training for Adam and SGD in small- and large-batch settings,
computed per frequency group. SGD shows a larger gap in the large-batch setting, while the opposite
holds for Adam. (right) Comparison of the Adam—SGD gap across frequency groups, with frequent
tokens on the top row and rare ones on the bottom. SGD underperforms Adam in large batches,
especially on rare tokens. This effect is not present in the small-batch setting.

groups, from the first group, which contains the 10% least frequent tokens, to the last group, which
contains the 10% most frequent ones. BS = 64 BS = 1024
We apply this analysis to the setting from Section 2.2, 1074 ;
comparing batch sizes 64 and 1024, where SGD per-
forms drastically differently, using runs with the op-
timal combination of 5; and learning rate for each
case. We find that class imbalance exists in both
cases: the persistence of low- and high-frequency
tokens is similar, as shown in Figure 6. However, this
does not appear to cause problems for small-batch ' ' ' ' ' '
SGD, suggesting that class imbalance alone does not 0 20000 40000 O 1000 2000

imply an Adam-SGD gap across all training regimes. Step Step

We further compute perplexity separately for each Figure 6: Batch token distribution for batch
frequency group and report it over training. From Sizes 64 and 1024. Lighter colors show less
Figure 7 (a), we observe that both optimizers make ~{requent tokens. Statistics at lower batch sizes
faster progress on more frequent tokens in all settings, are noisier but of similar magnitude.

as expected. The relative difference in perplexity between frequency groups is more significant for
SGD in the large-batch setting than for the small, while the opposite holds for Adam.

10? 4

B
o St i
b

[

| sttty

% of tokens from group i

Comparing Adam and SGD across frequency groups in Figure 6, we observe that in the large-batch
setting, SGD underperforms Adam across all groups, as shown in Figure 7 (b). However, the gap
is notably more significant for less frequent tokens, which aligns well with findings from Kunstner
et al. (2024), suggesting that rare tokens could be more challenging for SGD in imbalanced settings.
In contrast, this effect is not observed in the small-batch regime. Here, not only is the overall
Adam-SGD gap small (as seen in Section 2), but the gap across token frequencies is also small. We
would expect this problem with SGD to hold independent of batch size, but in settings where SGD
works well, the issue disappears.

3.2 HESSIAN HETEROGENEITY

From the line of work focusing on the architectural properties of Transformers, Zhang et al. (2024a)
argue that the block-wise heterogeneity of the Hessian spectrum is a key factor behind Adam’s
strong performance and the weakness of SGD. They propose that, based on the Hessian structure
at initialization, it is possible to predict whether SGD will perform well, offering an explanation

Under review as a conference paper at ICLR 2026

that is invariant to batch size. To further explore the effect of batch size on heterogeneous
problems, we revisit the simplified quadratic setting from their work and extend it by including
batch size variation. We compare optimization on problems with homogeneous (CNN-like) and
heterogeneous (Transformer-like) Hessians, where both share the same eigenvalue spectrum. We
train with SGD and Adam using a cosine learning rate schedule and no clipping.

From , we observe the following:

* Across batch sizes, the largest Adam—SGD gap occurs in the heterogeneous setting. As noted
by (), a similar pattern appears for signed momentum (,),
which we develop further in

* Adam benefits from larger batch sizes in both homogeneous and heterogeneous Hessian problems,
whereas SGD shows little improvement. Details of the setting are provided in

In summary, higher batch sizes boost performance for both SignSGD and Adam, regardless of
heterogeneity. While heterogeneity amplifies the Adam—SGD gap, this shows that the phenomenon
we study is not limited to heterogeneous settings, highlighting that the landscape structure plays a
less crucial role, which we further develop in .

Homogeneous H - BS = 1 Homogeneous H - BS = 5 Heterogeneous H-BS =1 Heterogeneous H-BS =5
106 4 106 4 106 4 106 4

10 A 10 A 10 A 10 A

102 4 102 4 102 4 102 4
Adam

10° 4 10° 4 10° 4 10° 4 SignSGD + m
SGD + m

loss

1072 A 1072 A 1072 A 1072 A

1074 A 1074 A 1074 A 107 A

1076 - T — 1075 T — 107% T — 1075 T T
0 500 1000 0 500 1000 0 500 1000 0 500 1000
iteration iteration iteration iteration

Figure 8: Adam—SGD performance gap across batch sizes in quadratic models from

(). Adam benefits from larger batches in both, more so in Heterogeneous. Learning rates are
tuned so to give similar performance at Homogeneous batch size 1. Shown is mean and 2-sigma
standard deviation for 10 runs.

4 UNDERSTANDING HOW PERFORMANCE RELATES TO BATCH SIZE

In , we saw that while prior work sheds light on the Adam-SGD gap in the large-batch
regime, it remains unclear how batch size itself factors into these explanations. Towards gaining more
insights, we proceed as follows:

* We approach this from the SGD angle and ask: What goes wrong for SGD in large-batch settings
that does not appear at small batch sizes? To investigate, we separate which component of the
SGD update is more problematic — its direction or magnitude — focusing on the setting from

with batch size 1024 and the optimal combination of 5; and learning rate. Using
grafting and adaptive clipping, we find that the main issue is the update direction rather than
magnitude. Full discussion and experimental results are provided in the

e In we take a different approach, one based on noise statistics and adaptivity in a setup
which is non-specific to the Transformer architecture. This analysis is inspired by the results
in , showing how adaptive methods may profit from large batch sizes regardless of the

Hessian structure. Using theoretical tools, we prove here that while SGD performance in early
training is dominated by number of iterations, the dynamics of signed momentum methods (cf.
) showcase a strong dependency on batch size from the very first iterations.

4.1 THEORETICAL INSIGHTS

Towards explaining the phenomena observed in this paper — and specifically the quadratic example
in — we provide an analysis based on results around the interaction between noise and

Under review as a conference paper at ICLR 2026

adaptivity in (Compagnoni et al., 2025b). The discussion below is rooted on the observed simi-
larity between behaviors of Adam and SignSGD in Figure 8, as well as recent literature on their
relation (Kunstner et al., 2023; Jordan et al., 2024).

Let X denote the model parameters and v denote a batch of size B. We denote the stochastic gradient
as Vfy(z) =% > iey V(fi(z)) and by X(z) the noise covariance at batch size 1. The stochastic
differential equation (SDE) approximation of SGD reads (Mil’shtein, 1986; Liu et al., 2021)

We now state a recent result showing that the drift of signed updates — driving performance in early
training — has an extra dependency on the batch size. A proof sketch is provided in Appendix E.

Theorem 1 ((Compagnoni et al., 2025b)). Under the assumption of i.i.d. Gaussian noise with
diagonal covariance (and, with minor modifications, for other noise structures and non-diagonal
covariance), the following SDE provides a 1-weak approximation (Mil’shtein, 1986) of SignSGD:

1 2
dX; = —erf (ﬁzﬁﬂxg) dt + \/ﬁ\J 14 — Diag (erf (W)) dWe, (2)

where the error function erf(zx) := % fox e~ dt and the square are applied component-wise.

While Compagnoni et al. (2025b) provide a similar result for the Heavy-tail noise setting, the Gaussian
case already highlights a crucial distinction between signed gradient methods and classical SGD.

Takeaway. Recall that erf is linear on :

a large interval around zero The lo- 107 coDnoise =01
g . : K SGD, noise =0.3

cal update of parameters is then driven by SGD, noise =1

1 —— SignSGD, noise =0.1
—erf (\/ngav f(Xt)> dt in the signSGD ‘

——— SignSGD, noise =0.3
SignSGD, noise =1

case, while in the SGD setting, this term is sim-

ply —V f(X;)dt. When everything else is kept , , ,

constant, increasing the batch size B, increases 0 1000 2000

the drift in the direction of the negative gradient freration

by VB, up until the saturation point of erf, i.e. Figure 9: Illustration of theory presented in the sec-

a critical batch size. tion. Optimizing f(z) = §||z|]%, x € R'. All
)))) methods use same learning rate of 1e — 3 and no

This analysis provides evidence for our re- momentum. Shown is performance under different

sults: using large batch sizes accelerates con- jpjected Gaussian noise standard deviation. SGD

vergence (larger drift) in signSGD (and likely jy early training is dominated by the drift com-

also in closely-related algorithms, like Adam), ponent, which is independent of noise — progress

while the performance of SGD in early training j5 driven by number of iterations. For SignSGD,

is batch-size agnostic and hence driven by the poige (hence batch size in the more general case)

number of iterations (see Figure 9). directly affects drift and early progress.

loss

10—2 4

5 DISCUSSION

Is it impossible to train language models with SGD? In this work, we show that there exist settings,
namely small batch sizes with carefully tuned momentum, where SGD is competitive, even for
1B-scale language models. These findings are interesting in their own right for small-scale training
runs, for example, on commodity GPUs, where memory is limited. Yet, these findings also crucially
inform the space of possible theories for the optimizer gap between Adam and SGD. We revisit a
number of promising theories from the literature based on our findings and find that they have limited
explanatory power. We argue that, instead, the effect of batch size is a symptom of the importance of
gradient noise for this question, and discuss a stronger explanation based on SDEs.

We believe that future theoretical work might be able to better explain the Adam-SGD gap as a
function of the batch size. A promising direction is recent work on (Lg, L)-smoothness (Zhang
et al., 2020a), specifically in the context of signed gradient descent (Compagnoni et al., 20252), as
well as £, geometry (Xie & Li, 2024; Xie et al., 2024) of transformer models.

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENT OF AI-ASSISTED TOOLS

Al-assisted editing tools were used to check grammar.

REFERENCES

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
attention is (maybe) all you need (to understand transformer optimization), March 2024. URL
http://arxiv.org/abs/2310.01082. arXiv:2310.01082 [cs, math].

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signSGD:
Compressed Optimisation for Non-Convex Problems, August 2018. URL http://arxiv.
org/abs/1802.04434. arXiv:1802.04434 [cs, math].

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In ICML, 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Enea Monzio Compagnoni, Rustem Islamov, Antonio Orvieto, and Eduard Gorbunov. On the
interaction of noise, compression role, and adaptivity under (I_0,[_1)-smoothness: An sde-based
approach. arXiv preprint arXiv:2506.00181, 2025a.

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
and Aurelien Lucchi. Adaptive methods through the lens of SDEs: Theoretical insights on the role
of noise. In The Thirteenth International Conference on Learning Representations, 2025b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Alexander Hégele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations, October
2024. URL http://arxiv.org/abs/2405.18392. arXiv:2405.18392 [cs].

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How Does Adaptive Optimization Impact Local Neu-
ral Network Geometry?, November 2022. URL http://arxiv.org/abs/2211.02254.
arXiv:2211.02254 [cs].

10

http://arxiv.org/abs/2310.01082
http://arxiv.org/abs/1802.04434
http://arxiv.org/abs/1802.04434
http://arxiv.org/abs/2405.18392
http://arxiv.org/abs/2211.02254

Under review as a conference paper at ICLR 2026

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Andrej Karpathy. Nanogpt, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ananya Kumar, Ruoqgi Shen, Sébastien Bubeck, and Suriya Gunasekar. How to fine-tune vision
models with sgd. arXiv preprint arXiv:2211.09359, 2022.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
ICLR, 2023.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-Tailed
Class Imbalance and Why Adam Outperforms Gradient Descent on Language Models, July 2024.
URL http://arxiv.org/abs/2402.19449. arXiv:2402.19449 [cs, math, stat].

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025.

Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. A diffusion approximation theory of momentum
stochastic gradient descent in nonconvex optimization. Stochastic Systems, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2019.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and Scaling
Rules for Adaptive Gradient Algorithms, February 2023. URL http://arxiv.org/abs/
2205.10287. arXiv:2205.10287 [cs].

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient
accumulation is wasteful. arXiv preprint arXiv:2507.07101, 2025a.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient
accumulation is wasteful, 2025b. URL https://arxiv.org/abs/2507.07101.

GN Mil’shtein. Weak approximation of solutions of systems of stochastic differential equations.
Theory of Probability & Its Applications, 30(4):750-766, 1986.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in
large-scale machine learning. arXiv preprint arXiv:2304.09871, 2023.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 2022.

Antonio Orvieto and Robert Gower. In search of adam’s secret sauce. arXiv preprint
arXiv:2505.21829, 2025.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
http://arxiv.org/abs/2402.19449
http://arxiv.org/abs/2205.10287
http://arxiv.org/abs/2205.10287
https://arxiv.org/abs/2507.07101

Under review as a conference paper at ICLR 2026

Yan Pan and Yuanzhi Li. Toward Understanding Why Adam Converges Faster Than SGD for
Transformers, May 2023. URL http://arxiv.org/abs/2306.00204. arXiv:2306.00204
[cs].

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=n6SCkn2QaG.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama—a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Akiyoshi Tomihari and Issei Sato. Understanding Why Adam Outperforms SGD: Gradient Het-
erogeneity in Transformers, January 2025. URL http://arxiv.org/abs/2502.00213.
arXiv:2502.00213 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model.
2021. URL https://github. com/kingoflolz/mesh-transformer-jax, pp. 8, 2022.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information processing
systems, 30, 2017.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322,2023.

Shuo Xie and Zhiyuan Li. Implicit bias of adamw: ¢..-norm constrained optimization. In Interna-
tional Conference on Machine Learning, pp. 54488-54510. PMLR, 2024.

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits £..-geometry of loss landscape
via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International conference on machine learning, pp. 10524-10533. PMLR, 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

12

http://arxiv.org/abs/2306.00204
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
http://arxiv.org/abs/2502.00213

Under review as a conference paper at ICLR 2026

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger Grosse. Which Algorithmic Choices Matter at Which Batch
Sizes? Insights From a Noisy Quadratic Model, October 2019. URL http://arxiv.org/
abs/1907.04164. arXiv:1907.04164 [cs].

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham Kakade. How Does Critical Batch Size Scale in Pre-training?, February 2025. URL
http://arxiv.org/abs/2410.21676. arXiv:2410.21676 [cs].

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity, February 2020a. arXiv:1905.11881 [cs, math].

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are Adaptive Methods Good for Attention Models?, October 2020b.
URL http://arxiv.org/abs/1912.03194. arXiv:1912.03194 [cs, math].

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in neural information processing systems, 35:
28386-28399, 2022.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why Trans-
formers Need Adam: A Hessian Perspective, June 2024a. URL http://arxiv.org/abs/
2402.16788. arXiv:2402.16788 [cs].

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use Fewer Learning Rates To Gain More, July 2024b. URL
http://arxiv.org/abs/2406.16793. arXiv:2406.16793 [cs].

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
What Makes a Good Optimizer for Language Models, July 2024. URL http://arxiv.org/
abs/2407.07972. arXiv:2407.07972 [cs].

13

http://arxiv.org/abs/1907.04164
http://arxiv.org/abs/1907.04164
http://arxiv.org/abs/2410.21676
http://arxiv.org/abs/1912.03194
http://arxiv.org/abs/2402.16788
http://arxiv.org/abs/2402.16788
http://arxiv.org/abs/2406.16793
http://arxiv.org/abs/2407.07972
http://arxiv.org/abs/2407.07972

Under review as a conference paper at ICLR 2026

Appendix

A FURTHER EXPERIMENTS AND EXPERIMENTAL DETAILS

For pre-training Transformers on Causal Language Modeling, we use a setup that builds upon the
nanoGPT (Karpathy, 2022) implementation, augmenting it with Rotational Positional Embedding (Su
et al., 2024), RMSNorm (Zhang & Sennrich, 2019), and SwiGLU (Shazeer, 2020). We do not
adopt QK normalization or z-loss, as those modifications are quite recent. All our models have a
vocabulary size of 50280 and make use of GPT-Neox tokenizer (Black et al., 2022). We adopt an
enhanced training recipe, made popular by large language models such as LLaMa (Touvron et al.,
2023). These modifications include: training in bfloat16; employing a linear learning rate warm-up
for 10% of the training steps (unless specified otherwise), followed by either cosine annealing to
le — 5 of WSD (Higele et al., 2024). Global norm clipping is used (unless specified or ablated upon)
for gradients with norms above 1 (on the raw gradient, as a first step). We have no weight tying
between the embedding and the last linear layer. Validation perplexity always refers to a separate
subset consisting of 100M tokens.

A.1 EXPERIMENTAL SETUP

Computational Resources. All experiments use a single NVIDIA A100-SXM4-80GB.

Code. All our runs use the repository https://github.com/Niccolo-Ajroldi/
plainLM.

Datasets. We test our claims on both the SlimPajama (Soboleva et al., 2023) and Fineweb (Penedo
et al., 2024) datasets.

Model settings (12 Layers, 160M). We use the same configuration as (Biderman
et al., 2023): https://github.com/EleutherAI/pythia/blob/main/models/
160M/pythia-160m.yml

* Layers: 12 Transformer (Vaswani et al., 2017) layers

* Attention heads: 12

* Hidden size: 768

* Attention implementation: Flashattention (Dao et al., 2022).

* MLP type: SwWiGLU (Shazeer, 2020) with expansion factor 8/3.

* Backbone: PreLN Transformer (Xiong et al., 2020) with skip connections.

* Normalization: RMSnorm (Zhang & Sennrich, 2019) for both Attention and MLP.

* Position embeddings: Rotary embeddings (RoPE) to 25% of dimensions ((Su et al., 2024))

e Initialization: the MLP and Attention output weights are initialized with variance

0.02/4/2#layers (scaling also similar to (Radford et al., 2019)). All other weights (compris-
ing embeddings) are initialized with a standard deviation of 0.02 (Nguyen & Salazar (2019); Wang
& Komatsuzaki (2022), Sec. 2.2). Biases are always initialized at zero.

* Precision: Mixed precision FP16 enabled.
* Dropout: Disabled for both hidden and attention layers (see also Chowdhery et al. (2023)).

Model settings (250 M, 24 layers). We keep it identical to the setting above, and just increase the
number of layers to 24.

Model settings (410 M). We use the same setting as (Biderman et al., 2023), configuration

can be found here: https://github.com/EleutherAI/pythia/blob/main/models/
410M/pythia-410m-deduped.yml

* Layers: 24 Transformer layers

14

https://github.com/Niccolo-Ajroldi/plainLM
https://github.com/Niccolo-Ajroldi/plainLM
https://github.com/EleutherAI/pythia/blob/main/models/160M/pythia-160m.yml
https://github.com/EleutherAI/pythia/blob/main/models/160M/pythia-160m.yml
https://github.com/EleutherAI/pythia/blob/main/models/410M/pythia-410m-deduped.yml
https://github.com/EleutherAI/pythia/blob/main/models/410M/pythia-410m-deduped.yml

Under review as a conference paper at ICLR 2026

* Attention heads: 16
* Hidden size: 1024
* Other settings as 160M parameters.

Model settings (1B). We use the same setting as (Biderman et al., 2023), configuration can be
found here: https://github.com/EleutherAI/pythia/blob/main/models/1B/
pythia-1b-deduped.yml

e Layers: 16 Transformer layers

* Attention heads: 8

* Hidden size: 2048

* Other settings as 160M parameters.

-

A.2 HYPERPARAMETER TUNING FOR SECTION 2.3

Combined, the experiments in this section account for full training (at different token budgets) of
more than 250 language models at different scales and batch sizes. Every reported result is relative to
the best learning rate in our grid, defined for each setup.

Small-scale experiments. We consider SGD with § = 0.98 and global clipping before applying
momentum. For Adam, we use the setting 5; = B> = 0.95. Both settings are suggested by the sweep
in Figure 1 and recent literature (Zhang et al., 2025; Orvieto & Gower, 2025; Zhao et al., 2024).

* For Figure 2 and Figure 3 (SlimPajama, 160M), we choose a sequence length of 2048. Inspired
by the careful tuning of Figure |, we consider the learning rate grid [0.25,0.5,1.0] for SGD and
[0.001,0.002, 0.004] for Adam.

e For Figure 15 (Fineweb, 160M), we choose a sequence length of 1024. Our learning rate grid
here is the same as for SlimPajama (previous point). As a sequence length of 160k, given our lack
of experience with extremely low batch sizes (shorter sequence length), we operate on a slightly
larger grid: [0.0001, 0.0003, 0.001, 0.003] for Adam and [0.03,0.1, 0.3, 1] for SGD.

* For Figure 16 (SlimPajama, 250M - 24 layers), we choose a sequence length of 2048 and we also
operate on a larger grid: [0.0001, 0.0003, 0.001, 0.003] for Adam and [0.03, 0.1, 0.3, 1] for SGD.

Medium scale experiments. For all SGD runs, we use 5 = 0.98. For Adam, we use the standard
choice (0.9, 0.95) (Biderman et al., 2023). All our runs use global norm clipping and no weight decay.

* 410M model (Figure 4a): We train with sequence length 2048, for 500k steps on SlimPajama.
Learning rate grid is [1.25e — 4, 2.5e — 4, 5.0e — 4, 1.0e — 3] for Adam and [0.125,0.25, 0.5, 1]
for SGD. The sweep results are presented in Figure 10a.

* 1B model (Figure 4b): We train with sequence length 1024, for 850k steps on Fineweb. Learning
rate sweep, shown in Figure 10b uses [6.25e — 5, 1.25¢ — 4, 2.5e — 4,5.0e — 4, 1.0e — 3] for Adam
and [0.0625,0.125,0.25,0.5, 1] for SGD.

A.3 HYPERPARAMETER TUNING FOR SECTION 2.4

The experimental setup here follows Section A.2. We train a 160M model on SlimPajama, with
sequence length 2048 and the WSD scheduler. We consider batch sizes 1, 8, and 256 under a token
budget of 3.2B tokens.

For Adam, we fix 81 = 0.9, vary B2 € [0.9,0.99,0.999,0.9999, 0.99999], and tune the learning
rate for each configuration. For SGD, we similarly tune the momentum S € [0.9,0.99,0.999]. The
learning rate grids are: for Adam [1.0e — 5,3.0e — 5,1.0e — 4,3.0e — 4,1.0e — 3,3.0e — 3,1.0e —
2,3.0e — 2] and [1.0e — 3,3.0e — 3,1.0e — 2,3.0e — 2,1.0e — 1, 3.0e — 1, 1.0] for SGD.

15

https://github.com/EleutherAI/pythia/blob/main/models/1B/pythia-1b-deduped.yml
https://github.com/EleutherAI/pythia/blob/main/models/1B/pythia-1b-deduped.yml

Under review as a conference paper at ICLR 2026

20~
227 1 194
o [« 9
[[
— — 18+
= 20+ =
T © 177
£ Adam £ 16 Adam \\‘\‘
181 —«— sGD — —— SGD
T T T T T 15 T T T T T
104 1073 1072 107! 10° 107% 1073 1072 107! 10°
Learning rate Learning rate

(a) 410M model on SlimPajama (seq. length 2048, (b) 1B model on FineWeb (seq. length 1024, batch
batch size 8, 500k steps) size 16, 850k steps)

Figure 10: Learning rate sweep for 410M and 1B models. Trajectories for the optimal learning rate
are shown in

B ADDITIONAL RESULTS

In addition to , we report the validation perplexity for the best-performing 3; and learning
rate combination for both Adam and SGD across batch sizes in . The experimental setting is
described in

Table 1: Best validation perplexities and corresponding hyperparameters for Adam and SGD across
batch sizes. Results correspond to the sweep shown in

Batch Size Optimizer PPL Hyperparameters
64 Adam 28.77 61 =0.98, Ir=1e—3
SGD 30.76 B1=10.98, Ir=5e—1
256 Adam 28.20 £1=0.95 Ir=2e—3
SGD 33.08 51 =0.98, Ir=1e+0
1024 Adam 29.36 B1=0.95, Ir=5e—3
SGD 65.94 B1=0.95, Ir=5e—1
In addition to , we report the training perplexity for all other batch sizes in . We
repeat the experiments from to verify that our findings generalize to a different dataset

and a deeper model.

B.1 CLIPPING ACTS DIFFERENTLY AT DIFFERENT BATCH SIZES

By detailed analysis of runs from , we observe that gradients are clipped more frequently
when training with SGD at large batch sizes, as shown in . Additionally, at small batch sizes,
SGD performs equally well even without clipping; instead, at large batch sizes, training diverges if
clipping is not employed.

B.2 SCALING EXPERIMENTS ACROSS MODEL SIZES AND DATASETS

We train the same 12-layer Transformer on the Fineweb dataset using SGD with momentum and
Adam, tuning the learning rate as explained in . Batch sizes vary from 4 to 512, and we
use 3 different run lengths (i.e., different token budgets). From , we observe that, at a fixed
number of steps, the performance gap increases with batch size, and that with smaller batches and
sufficiently long training, SGD outperforms Adam, consistent with the findings reported earlier.

In a second experiment, we increase the model depth to 24 layers while keeping all other settings

identical to . We vary batch sizes from 4 to 64 and training lengths, and tune the learning
rate as explained in Appendix A. As shown in Figure , the same pattern holds for a deeper
model.

16

Under review as a conference paper at ICLR 2026

BS = 1024
g 1.0 Adam | bs=8 SGD | bs=8
= 1
0.5 i B2 i B1
,‘g | 801 0.9 0.0
T y y y y z 0.99 0.98
500 1000 1500 2000 2500 o 6o+ 0:999] ~ 099
BS = 64 i) - 0.9999 - 0.999
£1.0 8 - 0.99999
S T
2 40 i
- 0.5 uE_
©
10000 20000 30000 40000 20 1 T
Steps 10~4 102 1072 107! 10°
Learning Rate Learning Rate

Figure 11: Gradient norm after clipping (thresh-

old 1.0) shows that clipping is more frequentin Figure 12: Final perplexities for batch size 8,
large-batch training. The setup for these runs is shown in addition to Figure 5 (main text).

the same as Figure 1.

B.3 TUNING ADAM IN SMALL-BATCH SETTINGS

In addition to the results from Section 2.4, we show batch size 8 and full training trajectories.
Figure 12 shows the final perplexity for batch size 8 across different 35 values. Figure 13 presents the
full training curves for batch sizes 1, 8, and 256, illustrating convergence dynamics and the relative
performance of Adam and SGD.

Batch Size =1 Batch Size = 8 Batch Size = 256
10% 30 :
25
20
103
-
o
o
1024 —— Adam —— Adam
—— SGD — SGD
10% 4 . . } . . . i .
102 104 106 102 103 104 10° 102 103

Steps Steps Steps

Figure 13: Training dynamics for batch sizes 1, 8, and 256, corresponding to the final perplexities
shown in Figure 5 (main text) and Figure 12 (Appendix).

BS =8 BS = 32 BS = 64
60 - , 1
- \
2 40 1]]
20 T T T T T T T T T
1 160 1 10 20 40 80 1 5 10 20 40
BS = 256 BS = 512 BS = 1024
60 - - . _
\ \\ \
-
T 40 - \\-\ 1 _\\(.
20 T T T T 1 ¥
0.1 25 5 10 0.1 25 5 0.1 2.5
Steps (x103) Steps (x103) Steps (x103)

Figure 14: Perplexity during training for SGD (green) and Adam (purple) across different training
lengths for all other batch sizes not shown in Figure 3. Solid lines show the rolling mean of PPL
values; lighter lines show the raw values. As before, the gap decreases the longer we train, and SGD
can eventually outperform Adam.

17

Under review as a conference paper at ICLR 2026

32 A
50 A 30 1
o 45 5 281
o o
Z 40 2261
g 3
235 g 241
[i
22 1
30 A
20
25 A
4 8 16 32 64 128 256 512 4 8 16 32 64
BS BS
—=— SGD|160k —— SGD |40k SGD | 10k —— SGD | 160k —— SGD | 40k
—=— Adam | 160k —+— Adam | 40k Adam | 10k —— Adam | 160k —e— Adam | 40k

Figure 15: Fineweb dataset, sequence length Figure 16: SlimPajama dataset, sequence length
2048, 12-layer Transformer. 2048, 24-layer Transformer.

C REVISITING PRIOR EXPLANATIONS: DIRECTIONAL SHARPNESS

Pan & Li (2023) introduce directional sharpness to explain the optimizer gap by studying a second-
order Taylor expansion of the loss along the update direction. In this view, the first-order term (gradient
correlation) measures how well the update aligns with the negative gradient, while the second-order
term (directional sharpness) measures curvature along that direction. Making optimization progress
requires a strong negative gradient correlation and low directional sharpness. Let f be a generic loss
to optimize and zj, denote the model parameters at iteration &, then

f@rga) = fxr) + V() (2ep — k) J% (zrr1 — 2x) T V2 (@) (@pe1 — 2) FO(0°) (3)

gradient correlation directional sharpness

In Figure 17, we visualize gradient correlation, directional sharpness, and their sum — a second-order
approximation of loss change, to indicate progress. As in our previous analysis, we compare two
settings with drastic performance differences: batch sizes 64 and 1024 from Section 2.2. In the
large-batch setting, SGD shows low gradient correlation and high directional sharpness, resulting
in weak or even positive total loss change, as reflected in the sum. In contrast, Adam has higher
gradient alignment and lower directional sharpness throughout training. When SGD succeeds, its
gradient correlation and directional sharpness closely match Adam’s, producing a negative loss
change in the sum. While these metrics align with SGD’s success or failure, they do not directly
explain why Adam outperforms SGD, nor why SGD performs well in small-batch regimes.

As discussed in Section 4, we aim to isolate which component of the SGD update is more problematic
in large-batch training. To do that, we focus on the setup from Section 2.2 with batch size 1024
and the optimal 57 and learning rate, and perform analysis using grafting and adaptive clipping. The
following subsections provide detailed results for each approach.

D INSIGHTS FROM GRAFTING AND ADAPTIVE CLIPPING

D.1 INSIGHTS FROM GRAFTING

To isolate the role of update direction and magnitude, we use the grafting technique proposed by
Agarwal et al. (2020), which applies the update direction of one optimizer with the magnitude of
another. We train the model in the large batch setting, using both combinations: 1) SGD magnitude
with Adam direction (SGD#Adam), and 2) Adam magnitude with SGD direction (Adam#SGD). We
use the optimal 3; from Section 2.2, and sweep the learning rate for the grafted update. We report
the training perplexity using the optimal learning rate for both grafting combinations in Figure 18.
As shown, using SGD magnitude with Adam’s direction performs comparably to Adam, while the

18

Under review as a conference paper at ICLR 2026

dir_sharp 0.0 grad_corr grad_corr + 0.5 * dir_sharp Loss
SN 0.0 {y it f
3 04 \Mw" W CRA =
3 —-0.2 A —0.2- ‘\ f
69\ \ f
"", 0.2 , .
-]]\ —0.4 —0.4 1 44 N—
0.0 Al
. - T
0 2000 0 2000 0 2000 0 2000
0.00 0.00 1 \ ;
0.04 A ///’,/ ',/ 61| iy
R ~0.02 s f
0] -0.02 \ i
0.02 - H] \n
a —0.04 444
A"s\‘(‘fﬂ\
0.00 —==mr e 00 e
0 25000 0 25000 0 25000 0 25000
Steps Steps Steps Steps
—— SGD Adam

Figure 17: Gradient correlation, directional sharpness, their sum and second-order loss approximation
during training, under small- and large-batch settings. Irrespective of the optimizer, good training
trajectories have strong negative gradient correlation and low directional sharpness.

104 \W 104 \\:

-
T 10° g 10°
c 2 —— clip top 10%
© Adam#SGD |‘—@ clip top 20%
LS SGD#Adam —— clip top 5%
10 102
adam — sgd
— sgd adam
t T T } T T
10t 102 103 101 102 103
Steps Steps

Figure 18: Grafting in large-batch training: using Figure 19: Adaptive clipping with different per-
Adam’s direction results in performance closer centages of clipped coordinates in large-batch
to Adam, while SGD direction leads to results training. It improves SGD but still does not fully
closer to SGD. match Adam.

reverse combination behaves similarly to SGD. This suggests that the update direction is the more
problematic component of the SGD update in large-batch training.

D.2 INSIGHTS FROM ADAPTIVE CLIPPING

The perspective that direction is the core problem aligns with the observation that global norm
clipping does not help much in large-batch training with SGD. If the direction is the main issue,
simply rescaling the gradient norm does not lead to better updates.

To investigate this further, we experiment with adaptive clipping, motivated by Pan & Li (2023).
As shown in Algorithm |, we clip the top p% of the largest momentum coordinates at each step.
We test several values of p (5, 10, and 20 %). For each value, we keep the optimal 3; from the
previous setting and tune the learning rate. Clipping with p = 10% performs best, but we observe
that performance does not vary much across different values of p. This method helps reduce the
gap between SGD and Adam, as shown in Figure 19. This suggests that a subset of larger update
coordinates consistently contributes to poor update directions and slows down SGD in large-batch
training. In contrast, small-batch training does not present the same problematic coordinates.

Further, we ask whether certain groups of parameters are more likely to produce problematic
coordinates. To explore this, we inspect which layers the clipped momentum coordinates come from,
using the best-performing setting with p = 10%. In Figure 20, we show the fraction of parameters
within each layer that are clipped, relative to the total number of parameters in that layer. We find that

19

Under review as a conference paper at ICLR 2026

normalization layers are clipped the most, which aligns with findings from Zhao et al. (2024) and
Tomihari & Sato (2025). However, this does not imply that only normalization layers are problematic.
As we observe significant clipping across other layers as well, this suggests that large coordinates
persist across all parameters, though they are most pronounced in normalization layers.

-1.0

[Figure 20: Fraction of clipped momentum coor-

0.6 dinates per layer during training, using p = 10%
adaptive clipping. Only a subset of blocks is shown
0.4 for clarity, as similar patterns are observed across

all blocks. Clipping is present across all parame-
ters, but most pronounced in normalization layers.

E PROOF SKETCH FOR SECTION 4.1

To build intuition for the proof in (Compagnoni et al., 2025b), we begin by studying the quantity
sign(m(z)), m(z) ~ N(Vf(z),0%/B).

That is, m(x) is an estimate of the gradient, which we assume for simplicity to have Gaussian
distribution centered around the full-batch gradient V f(z). In expectation, we get (coordinatewise)

E[sign(m(z))]
= Plsign(m(z)) = sign(Vf(x))] - sign(V f(x)) — Plsign(m(x)) # sign(V f(z))] - sign(V f (z))
= (2P[sign(m(z)) = sign(Vf(z))] — 1) - sign(V f(z))
At this point, the erf function comes in. Recall that, if Z ~ N(u,s?), then if £ > pu, we have
P[Z <) = 5+ jerf (i) Note that this implies, for ;o > 0, P[Z > 0] = P[sign(Z) =

V2¢2
sign(p)] = & + §erf (\/g?) Hence, if V f(x) > 0 for a specific coordinate, P[sign(m(z)) =
sign(Vf(z))] = % + % erf (\/E ﬁ), relative to that coordinate. By symmetry of this argument

for negative V f(x), we get exactly the drift term in Theorem 1, discussed above:

E[sign(m(x))] = erf (\/5(02)_5Vf(x)> :

Finally, note that Gaussianity is not strictly needed for our insights on batch-size acceleration to hold.
As discussed by Compagnoni et al. (2025b) and clear from the argument above on the cumulative
distribution, a similar expression can hold even for distributions with heavier tails, such as the
t-student (see Corollary C.10 in Compagnoni et al. (2025b)).

F Toy QUADRATIC EXAMPLE

Our setup is inspired from the results and discussions in Zhang et al. (2024a), and uses the codebase
of Orvieto & Gower (2025). We consider the loss

_ !

2wTHw

L(w)
where we construct the Homogeneous and Heterogeneous Hessians using the following procedure:

* We fix the eigenvalues, equal in both cases, to
eig(Hhom) = eig(Hnet) = {1,2, 3,99, 100,101, 4998, 4999, 5000} .

20

Under review as a conference paper at ICLR 2026

Hessian (log magnitude) Eigenvalues Het. Hessian Hessian (log magnitude) Eigenvalues Hom. Hessian

, 10 , 107
10 10
0
10! 10!
2 -
10° 10°
0 2 4 6 8

Figure 21: (left) Heterogeneous and (right) Homogeneous Hessian considered in Figure §.

o

N

0 2 4 6 8

* We choose both Hessians to be block-diagonal, with blocks of size 3 x 3. The homogeneous
Hessian has eigenvalues of different magnitude in each block, while the Heterogeneous keeps
similar magnitudes in each block.

H_details_het = [[1,2,31,[99,100,101],[4998,4999,5000]]
H_details_hom = [[1,99,4998],[2,100,4999],[3,101,5000]]

* For each block, we apply a random rotation to the diagonal matrix of eigenvalues, specific to each
block. Each rotation is sampled from the Haar measure by decomposition of a random 3 x 3
positive semidefinite matrix AAT, where A € R3*3 has i.i.d. Gaussian entries.

The result is shown in Figure 2 1. Leraning rates for each method are tuned.

Next, to introduce stochasticity in this setting, we simply take the square root of the Hessian to define
a9 x 9 design matrix X:

H=X'X, X=H=,
and subsample a number (the batchsize) of rows of X at each iteration.

Additional learning rates for Figure 21 are reported in Figure 22.

Homogeneous Hessian Heterogeneous Hessian Homogeneous Hessian Heterogeneous Hessian BS = 4, Ir=3e-05
SGD + m SGD + m Adam Adam - ' —
- S 106 > - - —— BS = 4, Ir=0.0001
—— BS =4, Ir=0.0003
10 10 104 10¢ BS =1, Ir=3e-05
! —— BS =1, Ir=0.0001
10° 17— 10? 107 102 —— BS =1, Ir=0.0003
g 100 100
g 10° 100 BS = 4, Ir=0.03
102 102 1o-2 102 —— BS =4,Ir=0.01
—— BS =4,1r=0.03
1074 1074 1074 1074 BS =1, Ir=0.03
—— BS =1, Ir=0.01
1076 10°° 107° 10°°
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 |[=——— BS=1,Ir=0.03
iteration iteration iteration iteration

Figure 22: Complement to Figure 8.

G ALGORITHMIC DETAILS

Algorithm 1 SGD with Adaptive Momentum Clipping

Require: Initial point z, learning rate), momentum 3, clipping fraction p € (0, 1)
1: fort =1toT do

20 ge <+ Vif(w)

3 my < Bmy_1 + g;

4 Set clipping threshold 7; as the (1 — p)-quantile of |my|
5: my < clip(my) = sign(my) - min(|me|, 7¢)

6 Tip1 < Ty — ’I’]mt

7: end for

21

	Introduction
	Related work

	Adam vs. SGD: Effects of hyperparameters and training regimes
	Experimental setup
	Effect of batch size on the Adam-SGD gap
	Are large batch sizes the problem, or is it the number of steps?
	Tuning Adam in small-batch settings

	Revisiting prior explanations
	Heavy-tailed class imbalance
	Hessian heterogeneity

	Understanding how performance relates to batch size
	Theoretical insights

	Discussion
	Further Experiments and Experimental Details
	Experimental Setup
	Hyperparameter Tuning for Section 2.3
	Hyperparameter Tuning for Section 2.4

	Additional results
	Clipping acts differently at different batch sizes
	Scaling experiments across model sizes and datasets
	Tuning Adam in small-batch settings

	Revisiting Prior Explanations: Directional Sharpness
	Insights from Grafting and Adaptive Clipping
	Insights from Grafting
	Insights from Adaptive Clipping

	Proof sketch for Section 4.1
	Toy Quadratic Example
	Algorithmic details

