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ABSTRACT

Missing data persists as a major barrier to data analysis across numerous applica-
tions. Recently, deep generative models have been used for imputation of missing
data, motivated by their ability to capture highly non-linear and complex rela-
tionships in the data. In this work, we investigate the ability of deep models,
namely variational autoencoders (VAEs), to account for uncertainty in missing
data through multiple imputation strategies. We find that VAEs provide poor em-
pirical coverage of missing data, with underestimation and overconfident impu-
tations, particularly for more extreme missing data values. To overcome this, we
employ β-VAEs, which viewed from a generalized Bayes framework, provide ro-
bustness to model misspecification. Assigning a good value of β is critical for
uncertainty calibration and we demonstrate how this can be achieved using cross-
validation. In downstream tasks, we show how multiple imputation with β-VAEs
can avoid false discoveries that arise as artefacts of imputation.

1 INTRODUCTION

Missing data persists as a major barrier in large-scale analyses of multivariate data, due to issues like
incomplete collection, data availability and low coverage. Early approaches for dealing with missing
data tend to reduce the generalizability of results or skew the trends present in the data (Sinharay
et al., 2001). These include listwise deletion, where only complete observations are considered, or
imputation methods, where the complete data is used to predict plausible values for missing data
points. Some of these imputation strategies include substitution by the mean of observed values,
stochastic regression techniques and hot deck imputation. Single imputation approaches implicitly
assume that the imputation is perfect and thereby fail to account for the uncertainty introduced by
the prediction. An attractive solution for this is multiple imputation, which models the uncertainty
in the missing values by producing several plausible values for each imputed data point. (Murray,
2018). The complete datasets are then analyzed in downstream tasks, and the results are combined
to give estimates and standard errors that acknowledge uncertainty in the missing data.

Recently, deep generative models have become an increasingly popular tool for imputing data, due
to their ability to capture highly non-linear relationships and complex dependencies (e.g. Qiu et al.,
2020; Camino et al., 2019; Gondara & Wang, 2018; Lewis et al., 2021; Garcı́a-Laencina et al., 2010;
Nelwamondo et al., 2007; Collier et al., 2020; Mattei & Frellsen, 2019; Ipsen et al., 2020; Nazabal
et al., 2020; Ma et al., 2018a;b; Ma & Zhang, 2021; Ma et al., 2020). For example, Qiu et al.
(2020) use variational autoencoders (VAEs) for imputation of high-dimensional genomic data and
find that it performs better than competing methods, such as singular value decomposition (SVD)
and K-nearest neighbours (KNN), but focus solely on single imputation. In this work, we aim to
investigate the ability of deep models, namely VAEs, to not only reconstruct the missing values but
also account for uncertainty through multiple imputation strategies. While expressive and powerful,
deep models have been shown to be overconfident even when predictions are incorrect (Szegedy
et al., 2013) and also underestimate the variability of out-of-sample test data (Nguyen et al., 2015).
In line with these results, we find that VAEs provide poor empirical coverage of the missing data,
with underestimation and very overconfident imputations for more extreme missing data values that
are far from the mean.

To overcome this, we employ β-VAEs (Higgins et al., 2017), which provide a framework for ap-
proximate Bayesian inference of deep generative models under the power likelihood. In statistics,
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inference based on the power likelihood has been shown to provide robustness against model mis-
specification (Bissiri et al., 2016), and thus, in our setting, it is crucial to avoid overfitting and
achieve good coverage and well-calibrated uncertainty of the missing data. As is well known in
the literature, assigning a good value of β is critical (Holmes & Walker, 2017), and we employ
cross-validation to tune β for accurate multiple imputation.

Lastly, we study the implications of multiple imputation in downstream tasks. Failure to account
for the uncertainty of the missing data in single imputation can lead to false confidence in down-
stream analyses, often yielding results that overestimate the significance of relationships between
variables. In this paper, we demonstrate how using multiple imputation with β-VAEs yields fewer
false positives and more acceptable false discovery rates.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

Variational autoencoders (Kingma & Welling, 2019) combine graphical models and deep learning.
They are made up of two parts, the encoder and decoder. Firstly, the encoder (also referred to as
the inference model) takes an observed data point, x ∈ RD, and computes the posterior distribution,
pθ(z|x), of the latent variables, z ∈ RK . As the true posterior is intractable in most cases, an
approximate model, qϕ(z|x), is used to approximate the intractable true posterior, pθ(z|x), and
encode the observed data into the latent variables. The second part is the decoder (also referred to
as the generative model) where the latent variables, z, are used to reconstruct data point, x̂, via the
generative model, pθ(x|z). The standard choice of distribution for both the inference and generative
model is a simple, factorized Gaussian, where the Gaussian mean and variance are parametrized
by neural networks, with ϕ and θ containing the weights and biases of the neural networks for the
encoder and decoder, respectively. Based on a training data set X = (x1, . . . ,xN ) containing N
data points, the neural network parameters ϕ and θ are optimized during training of the VAE by
minimizing the reconstruction loss (i.e. minimizing the mean square error between reconstructed
values, X̂ = (x̂1, . . . , x̂N ), and the observed values, X) and the latent loss (i.e. minimizing the
Kullback-Leibler (KL) divergence between the variational posterior, qϕ(Z|X), and the standard
Gaussian prior, p(Z), with Z = (z1, . . . , zN )).

From a Bayesian perspective, this is equivalent to approximate variational inference of deep latent
variable models, under the generative model xn | zn ∼ pθ(xn | zn) with a Gaussian prior on latent
variables zn ∼ N(0, I). To overcome intractability of the posterior, amortized variational infer-
ence (Gershman & Goodman, 2014) is employed, assuming the variational posterior qϕ(zn|xn) is
parametrized by a neural network with ϕ containing the weights and biases. The variational param-
eters ϕ and generative model parameters θ are optimized by minimizing the KL divergence between
the variational posterior qϕ(Z|X) and the true posterior pθ(Z|X), or equivalently maximizing the
evidence lower bound (ELBO):

ELBO =

N∑
n=1

Ezn∼qϕ(zn|xn)[log pθ(xn|zn)]−DKL(qϕ(zn|xn), p(zn)).

During training, the ELBO is maximized by backpropagation through the hidden layers of the neural
network, randomly sub-sampling the data at each training step and minimizing the loss through
stochastic gradient descent. In order to compute the required gradients, we must employ the re-
parameterization trick (Kingma & Welling; Rezende et al., 2014), which uses a change of variables
to obtain independence between the latent noise and ϕ.

2.1.1 β-VAES

An extension of the classic VAE is the β-VAE, which includes a hyperparameter β that enforces
a regularization on the latent loss (Higgins et al., 2017). The optimization function is updated as
follows:

ELBO =

N∑
n=1

Ezn∼qϕ(zn|xn)[log pθ(xn|zn)]− β DKL(qϕ(zn|xn), p(zn)). (1)
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While in the machine learning community, β-VAEs are motivated by their improvement in disentan-
gling the latent variables (Chen et al., 2018), we provide an alternative motivation from a statistical
perspective. In particular, maximizing the β-VAE bound in equation 1, is equivalent to maximizing:

N∑
n=1

Ezn∼qϕ(zn|xn)[log pθ(xn|zn)1/β ]− DKL(qϕ(zn|xn), p(zn)),

or minimizing the KL divergence between the variational posterior qϕ(Z|X) and the posterior under
the power likelihood (see Appendix A.3):

pθ,β(Z|X) ∝
N∏

n=1

pθ(xn|zn)1/βp(zn).

The use of the power likelihood in Bayesian statistics provides frequentist guarantees of posterior
consistency in nonparametric models (Walker & Hjort, 2001), while the Bayesian model under the
standard updating with β = 1 may be inconsistent (Barron et al., 1999). Moreover, the power
likelihood provides robustness to model misspecification (Bissiri et al., 2016). Given the complex,
high-dimensional nature of the deep generative model pθ(xn|zn), this acknowledges and allows for
a mismatch between the generative model and the true data generating distribution.

2.2 SINGLE IMPUTATION WITH VAES

Deep generative models have become an increasingly popular tool for imputation of missing data,
due to their ability to accommodate highly non-linear relationships and complex dependencies in
multivariate data. In this work, we focus on VAEs and, in particular, the approach of Qiu et al.
(2020). They first train the VAE using only the subset of complete data to optimize the parameters
ϕ and θ. For each data point n = 1, . . . , N , xn can be split into two parts: xobs,n containing the
observed features and xmis,n containing the missing features, where Xobs = (xobs,1, . . . ,xobs,N ) and
Xmis = (xmis,1, . . . ,xmis,N ) list the observed and missing data, respectively. For each data point
with missing features, i.e. xn ̸= xobs,n, the optimal choice, under the squared error loss, is to impute
with the mean under the generative model:

x̂mis,n = E [xmis,n | xobs,n] =

∫
xmis,n pθ(xmis,n | xobs,n) dxmis,n

=

∫ ∫
xmis,n pθ(xmis,n, zn | xobs,n) dzndxmis,n.

This integral is intractable; thus in Qiu et al. (2020), it is approximated by iteratively computing: 1)
the expectation of zn (mean of the encoder) given x̂mis,n and xobs,n:

ẑn =

∫
zn qϕ(zn | x̂mis,n,xobs,n) dzn,

and 2) the expectation of x̂mis,n (mean of the decoder) given ẑn:

x̂mis,n =

∫
xmis,n pθ(xmis,n | xobs,n, ẑn) dxmis,n.

The imputed values are initialized with zero imputation (i.e. mean imputation, after the initial stan-
dardization of the data), and these steps are repeated until convergence. Note that when the likeli-
hood factorizes across features (e.g. factorized Gaussian), pθ(xmis,n | xobs,n, zn) = pθ(xmis,n | zn).
In their paper, Qiu et al. (2020) optimized the model and hyper-parameters through a grid search,
claiming that the standard VAE (β = 1) and training for 250 epochs resulted in the lowest mean
absolute error of the imputed values when compared to true values.

2.3 MULTIPLE IMPUTATION

Multiple imputation (see e.g. Little & Rubin, 2019; Murray, 2018; Sinharay et al., 2001) improves
upon single imputation by retaining the mean and variance of the overall dataset and accounting
for the uncertainty associated with the missing values. It does so by creating M complete datasets
with different plausible values for the missing data and then combining inference across all plausible
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datasets, e.g. by computing an overall mean and variance estimate for a certain statistic. The general
standard is to create five to ten imputed datasets for optimal prediction, but more or less may be
required depending on the fraction of data that is missing.

Multiple imputation leverages the missing at random (MAR) case, where variables in the observed
data describe the missingness that is present in other variables. We aim to obtain and simulate from
the predictive distribution for the missing data given the observed data, i.e. p(Xmis|Xobs). In partic-
ular, we assume that X follows a distribution, p(X|ψ), where ψ is a collection of all parameters of
the model. Then we can write our predictive distribution as:

p(Xmis|Xobs) =

∫
p(Xmis,ψ|Xobs)dψ =

∫
p(Xmis|Xobs,ψ)p(ψ|Xobs)dψ.

To impute the missing data, and thereby simulate one of M plausible datasets, data augmentation
(DA) algorithms can be employed. Specifically, DA is a Markov chain method which iteratively
samples 1) the parameters ψ from the posterior p(ψ|Xobs,Xmis) and 2) the missing data Xmis
given ψ from p(Xmis|Xobs,ψ). This ultimately results in sampling from the predictive distribu-
tion p(Xmis|Xobs), producing one of the plausible datasets, denoted as Xm

mis = (xm
mis,1, . . . ,x

m
mis,N ).

This procedure is repeated M times to achieve M plausible datasets. Inferences based on these M
imputed datasets can be combined via Rubin’s rules to compute accurate inference about the entire
dataset X. Note that statistical procedures must be done M times, as there are M datasets.

3 METHODOLOGY

In this work, we generalize single imputation with VAEs in two ways. First, we employ and compare
three multiple imputation strategies to account for uncertainty in the missing data. Second, we
extend using β-VAEs for improved robustness and uncertainty quantification.

3.1 MULTIPLE IMPUTATION WITH β-VAES

In the case of multiple imputation, the latent variables, Z, of the β-VAE represent the parameters
of our model, previously referred to as ψ in Section 2.3. Therefore, to produce a sample from our
target predictive distribution, pθ,β(Xmis|Xobs), we can iteratively sample from the joint distribution
pθ,β(Xmis,Z|Xobs) via a Markov chain Monte Carlo scheme. For β-VAEs, the predictive distribu-
tion is constructed from the power likelihood, that is the likelihood of our generative model is raised
to the power 1/β (see Section 2.1.1):

pθ,β(Xmis|Xobs) ∝
∫

pθ(Xmis|Xobs,Z)
1/βpθ,β(Z|Xobs)dZ

=

N∏
n=1

∫
pθ(xmis,n|xobs,n, zn)

1/βpθ,β(zn|xobs,n)dzn,

(2)

where standard VAEs correspond to β = 1. We note that in the case of the factored Gaussian
generative model, the power likelihood pθ(xmis,n|xobs,n, zn)

1/β is simply proportional to a Gaussian
with variance rescaled by a factor of β. On the other hand, pθ,β(Z|Xobs) represents the intractable
true posterior of the latent variables under the power likelihood given the observed data only.

In the following, we implement and compare three different approaches to sample from our target
predictive distribution in equation 2: 1) pseudo-Gibbs (Section 3.1.1), 2) Metropolis-within-Gibbs
(Section 3.1.2), and 3) sampling importance resampling (Section 3.1.3). These strategies are pro-
posed in Rezende et al. (2014); Mattei & Frellsen (2018; 2019), respectively, for missing data im-
putation with deep generative models, and we describe a simple extension based on β-VAEs and
the power likelihood. Prior to imputation, we first train the β-VAE, using zero imputation for the
missing values, to obtain estimates of generative model parameters θ and variational parameters ϕ,
and thus also an approximation of the true posterior of the latent variables.

3.1.1 PSEUDO-GIBBS

Pseudo-Gibbs sampling was the first strategy developed to generate approximate samples from the
predictive distribution in deep generative models (Rezende et al., 2014). In particular, approximate
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samples from the joint pθ,β(Xmis,Z | Xobs) are obtained by iteratively sampling from the encoder
and decoder. More specifically, for s = 1, . . . , S iterations and every data point n ∈ {1, . . . , N}
with missing features, the pseudo-Gibbs algorithm replaces the expectation steps in the single impu-
tation of Section 2.2 with sampling, as follows: First, Sample zn (sample of encoder) given x

(s−1)
mis,n :

z(s)n ∼ qϕ(zn | x(s−1)
mis,n ,xobs,n). (3)

Next, we sample x
(s)
mis,n (sample of decoder) given z

(s)
n based on the power likelihood:

x
(s)
mis,n ∼ pθ,β(xmis,n | xobs,n, z

(s)
n ) ∝ pθ(xmis,n | xobs,n, z

(s)
n )1/β .

Ideally, in the first step, we would aim to sample from the intractable true posterior of the latent
variables. However, if the variational posterior provides a good approximation, the pseudo-Gibbs
scheme will produce samples from a distribution close to our target.

3.1.2 METROPOLIS-WITHIN-GIBBS

The pseudo-Gibbs algorithm was improved and extended by Mattei & Frellsen (2018), who derived
a Metropolis-within-Gibbs (MWG) sampler that is asymptotically guaranteed to produce samples
from the target predictive distribution. This is a simple modification of pseudo-Gibbs that corrects
the first step by using the variational posterior as a proposal within a Metropolis-Hastings algo-
rithm. Specifically, in the first step, the sampled value from the encoder in equation 3 represents
the proposed value for the latent variables, denoted by z∗n, which is then accepted according to the
acceptance probability:

a(z(s−1)
n → z∗n) = min

(
1,

pθ(x
(s−1)
mis,n ,xobs,n|z∗n)1/βp(z∗n)

pθ(x
(s−1)
mis,n ,xobs,n|z(s−1)

n )1/βp(z(s−1))

qϕ(z
(s−1)
n |x(s−1)

mis,n ,xobs)

qϕ(z∗n|x
(s−1)
mis,n ,xobs,n)

)
.

Thus, we set:

z(s)n =

{
z∗n with prob. a(z(s−1)

n → z∗n)

z
(s−1)
n with prob. 1− a(z

(s−1)
n → z∗n)

.

If the variational posterior is a perfect approximation of the true posterior, the acceptance probabil-
ity will be one, and the algorithm reduces to pseudo-Gibbs. In general, MWG acknowledges and
corrects for the approximation of the posterior; however, if the variational posterior is far from the
true posterior, MWG will suffer from low acceptance rates and slow convergence.

3.1.3 SAMPLING IMPORTANCE RESAMPLING

An alternative to Gibbs is sampling importance resampling (SIR), proposed by Mattei & Frellsen
(2019). First, we perform importance sampling using the variational posterior as the importance
distribution. In this case, for every data point n ∈ {1, . . . , N} with missing features, we take
s = 1, . . . , S samples of the latent variables from our importance distribution:

z(s)n ∼ qϕ(zn | x(0)
mis,n,xobs,n),

where x
(0)
mis,n denotes an initial zero imputation for the missing data. These importance samples

(z
(s)
n ), for s = 1, . . . , S, have weights w(s)

n proportional to:

ω(s)
n =

pθ(xobs,n|z(s)n )1/βp(z
(s)
n )

qϕ(z
(s)
n |x(0)

mis,n,xobs,n)
,

where w
(s)
n = ω

(s)
n /

∑S
s=1 ω

(s)
n (for further details, see Appendix A.4). Then, for multiple imputa-

tion, we obtain M imputations by first sampling (zmn ), for m = 1, . . .M , with replacement from
the importance samples (z(s)n ) with probability w

(s)
n . Next, for each zmn , we impute the missing data

by sampling from
xm

mis,n ∼ pθ,β(xmis,n | xobs,n, z
m
n ).

In contrast to Gibbs sampling, an advantage of SIR is parallelizability. However, the discrepancy
between the variational posterior and true posterior determines the efficiency of the algorithm, and a
large discrepancy may result in degeneracy of the weights and require a large number of importance
samples (which is required to be exponential in KL divergence between the importance distribution
and the target (Chatterjee & Diaconis, 2018)).
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3.2 CROSS-VALIDATION TRAINING REGIME

When the generative model and θ match the true data generating distribution exactly, learning is
achieved optimally with β = 1. However, in practice, we have a mismatch and assigning a good
value of β becomes critical to achieve robustness and accurate uncertainty quantification. Indeed, if
β is set too low, the posterior uncertainty can be underestimated, while if β is set too high, the pos-
terior uncertainty is overestimated. Some directions for assigning a value of β from an information
theoretic perspective are provided in Holmes & Walker (2017). Instead, we employ cross-validation
to tune β for accurate multiple imputation and coverage of the missing data.

Specifically, the cross-validation approach to tuning β and the number of epochs consists of creating
k copies of the data and adding a small proportion of additional missingness in each copy. We then
carry out a grid search over the number of epochs and values of β, training k models for each value
of β. The final selection is the combination that has acceptable coverage while minimizing the mean
absolute error (MAE) over the introduced missing values (averaged across the k models). Once
the optimal hyper-parameters for β and epochs are selected, the model is retrained using all of the
data. We observed that following this approach results in coverage and MAE on the test set being
close to the values estimated through cross-validation. The introduction of additional missing values
during cross-validation creates a slight bias towards selecting higher values of β and fewer epochs
but this bias is mitigated by increasing the number of copies, k, and thereby reducing the amount of
additional missing values in each copy.

3.3 EVALUATING IMPUTATION PERFORMANCE

To evaluate the imputation performance, we consider two quantities: 1) the mean absolute error
(MAE) to assess reconstruction accuracy and 2) the empirical coverage (EC) to quantify uncer-
tainty. The MAE compares our imputed values to the ground truth that was originally masked in the
complete dataset. Recall that X̂mis = (x̂mis,1, . . . , x̂mis,N ) represents the imputed values, while Xmis
represents the true (masked) values. The MAE is defined as:

MAE =
1

N

N∑
n=1

|x̂mis,n − xmis,n|, (4)

where |x̂mis,n − xmis,n| represents the average absolute difference across all missing features for the
nth data point. For multiple imputation, the imputed values in equation 4 are averaged across the M
imputed datasets, x̂mis,n = 1

M

∑M
m=1 x

m
mis,n. To evaluate uncertainty in multiple imputation, we first

compute 100(1 − α)% confidence intervals (CIs) for each missing value based on the M imputed
values. The empirical coverage is then computed as the fraction of times where the true value falls
within the predicted interval.

4 RESULTS: GENOMIC DATA IMPUTATION

4.1 PREDICTIONS ARE OVERCONFIDENT AND MISSING DATA VALUES ARE
UNDERESTIMATED WITH SINGLE IMPUTATION AND THE STANDARD VAE

We first sought to investigate the impact of single imputation with standard VAEs (Qiu et al.,
2020) compared to multiple imputation by our approach through Metropolis-within-Gibbs (MWG),
pseudo-Gibbs (PG), and sampling importance resampling (SIR) by evaluating the accuracy of im-
puted values through MAE and assessing uncertainty through empirical coverage at 95% CIs. We
use the same publicly available RNA-sequencing dataset from the Cancer Genome Atlas (TCGA)
used in Qiu et al. (2020) in order to benchmark our results against previous work done on ge-
nomic data imputation through VAEs. This dataset contains D = 17, 175 complete features for
N = 667 glioma patients, comprised of two cancer subtypes, glioblastoma (GBM) and low-grade
glioma (LGG). We first simulate missingness in this dataset by masking values with 10% missing
completely at random (MCAR) in 20% of samples, and subsequently train the VAE on all remain-
ing observed data, Xobs, with zeros imputed at missing value indices (see Section 3). In order to
benchmark against their method, we use the same model and hyper-parameters that were found to
be optimal in Qiu et al. (2020), specifically, the standard VAE (β=1) with 250 training epochs and a
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Figure 1: Standard VAE (β=1) underestimates the uncertainty in multiple imputation. Here
we report (a) the accuracy of imputed missing data compared to the ground truth by MAE and (b)
the fraction of true values that fall within the 95% CIs for the three multiple imputation approaches
pseudo-Gibbs (PG), Metropolis-within-Gibbs (MWG) and sampling importance resampling (SIR).
Dotted line represents the desired coverage at 0.95. Finally, (c) depicts the imputed values for the
missing data by single imputation (SI), ranked by their true values (highlighted in red).

learning rate of 10−5. Once our model is trained, we generate M = 100 plausible datasets for each
multiple imputation approach and perform single imputation (as described in Section 2.2).

To evaluate imputation of the original masked values, we consider imputation accuracy by MAE and
find that the multiple imputation approaches have similar accuracy to single imputation (SI), with
pseudo-Gibbs performing slightly better than the other multiple imputation approaches (Figure 1a).
Next, we consider the empirical coverage of the masked values based on the 95% CIs computed
from the M = 100 imputed datasets for all three multiple imputation approaches, and find that
the uncertainty is underestimated (Figure 1b). Additionally, the values imputed at masked data
points with single imputation are underestimated at more extreme true values (Figure 1c). This is
common with neural networks, where model predictions can be poor but still reported with high
confidence (Szegedy et al., 2013; Nguyen et al., 2015). Here we see that at more extreme true
values, single imputation provides imputed values that are shifted towards the mean. This is likely
due to overfitting of the trained model, resulting in overconfident predicted values for masked data
points. As Qiu et al. (2020) only used reconstruction accuracy with single imputation to optimize
hyperparameters, they were unable to assess uncertainty and overconfidence in the imputations.
To overcome this, we explore regularization of the latent space through β-VAEs, optimizing the
hyperparameters by considering both reconstruction accuracy and coverage.

4.2 MULTIPLE IMPUTATION WITH β-VAE PROVIDES ACCURATE UNCERTAINTY
QUANTIFICATION WHILE STILL RETAINING IMPUTATION ACCURACY

For improved robustness, we employ β-VAEs and the cross-validation scheme described in Section
3.2 to tune β and the number of training epochs, resulting in a value of β = 2 and 250 training
epochs (Supplementary Figure A.1). We then train the β-VAE with these optimal parameters and
impute values by single imputation and all three multiple imputation approaches PG, MWG and
SIR. This results in good coverage at 95%, with a much lower deviation from the desired coverage
than the standard VAE with β = 1 (Figure 2a-2e, Supplementary Figure A.3, Supplementary Figure
A.4). Even with regularization of the latent space, single imputation still results in underestimation
at extreme values (Figure 2a). Our multiple imputation by β-VAEs yields good coverage across all
missing data, even extreme values, while still retaining comparable accuracy to single imputation
(Figure 2f).

4.3 MULTIPLE IMPUTATION REDUCES FALSE POSITIVE RATE IN DOWNSTREAM TASKS.

Lastly, we investigate the impact of all imputation approaches on downstream tasks, namely in
indentifying discriminating gene sets through logistic regression with the LASSO penalty. In par-
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Figure 2: Multiple imputation with β-VAEs provides proper coverage. Here we report the (mul-
tiple) values imputed for the missing data, ranked by their true values (highlighted in red) for (a)
single imputation (SI) and multiple imputation by (b) PG, (c) MWG and (d) SIR. Imputation perfor-
mance is summarized by (e) the empirical coverage at 95% CIs (dotted line represents the desired
coverage at 0.95) and (f) the accuracy at imputed values.

ticular, we run LASSO regression on all imputed datasets to identify the genes which discriminate
between the two cancer subtypes, GBM and LGG. This results in one gene set from our ground truth
dataset with no missingness (GT), one from single imputation, and 100 discriminating gene sets for
each multiple imputation approach, PG, MWG and SIR.

We find that the union across all discriminating gene sets for each multiple imputation approach is
much larger than the ground truth set, with the total number of possible non-zero coefficients ranging
from 143 to 155, and only 31 discriminating genes in the true dataset (Table 1). When comparing the
estimated coefficients from the ground truth data to the (averaged) estimated coefficients based on
the imputed data, this results in a slightly higher MAE for multiple imputation approaches (0.066,
0.064 and 0.069 for PG, MWG and SIR, respectively) compared to single imputation (0.053), which
also has a set of 31 discriminating genes, although these are not identical to the ground truth set.
However, when we inspect the coverage across the multiple imputations, we find that our coverage
is close to the desired 95% across PG, MWG and SIR (Table 1, Supplementary Figure A.5).

To identify discriminating gene sets across multiple imputations, we consider two approaches: se-
lecting genes that 1) do not include a coefficient of zero in the 95% CI computed from the 100
imputed datasets, and 2) have an inclusion probability, denoted Pincl and defined as the fraction of
imputed datasets that the gene has a non-zero LASSO coefficient, greater than a specified threshold.
The first approach results in the same set of 12 genes across all three multiple imputation approaches
that are all in the true set of non-zero LASSO coefficients (Table 1, Figure 3), giving a false discovery
rate (FDR) of 0%. These 12 genes are also contained within the set for single imputation; however,
single imputation results in 7 false positives (Figure 3), yielding an FDR of 22.6% (7/31). In the
second appproach, if we threshold at Pincl > 0.5, this results in a final set of 25 discriminating genes
for each multiple imputation approach (Table 1, Supplementary Figure A.6). In this case, our gene
set contains 2 false positives, yielding an FDR of 8.0% (Figure 3). In summary, we find that multiple
imputation with β-VAEs not only provides well-calibrated uncertainty but also results in much more
acceptable FDRs in downstream tasks.
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Table 1: Performance of different imputation techniques, single imputation (SI) and multiple impu-
tation by PG, MWG and SIR for imputation at missing value indices (first two rows) and downstream
impact on LASSO regression (subsequent rows). The final row reports the false discovery rate, based
genes with an inclusion probability > 0.5 for multiple imputation.

Metric SI PG MWG SIR
MAE 0.302 0.301 0.304 0.303
95% CI coverage N/A 96.2% 95.9% 95.6%
LASSO: MAE 0.053 0.066 0.064 0.069
LASSO: 95% CI coverage N/A 97.4% 97.2% 96.6%
LASSO: total number of non-zero coefficients 31 155 143 149
LASSO: number of genes without zero in 95% CI N/A 12 12 12
LASSO: number of genes with Pincl > 0.5 N/A 25 25 25
LASSO: False discovery rate 22.6% 8% 8% 8%
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Figure 3: Upset plot showing overlapping discriminating gene sets by different imputation ap-
proaches. We report the discriminating gene sets by single imputation (SI), ground truth (GT), and
all three multiple imputation approaches PG, MWG and SIR with two different inclusion criteria,
zero not contained in 95% CI (nonzero 95CI) and inclusion probability, Pincl > 0.5 (P incl 0.5).

5 DISCUSSION

We describe a deep learning framework for multiple imputation using β-VAEs. We propose and
compare three multiple imputation methods and develop a new training regime, which uses all ob-
served data to tune hyperparameters by assessing accuracy as well as empirical coverage. Our
approach captures the complex, non-linear relationships present in high-dimensional genomic data,
imputing values with high accuracy while retaining good coverage. Previous work (Qiu et al., 2020)
employed standard VAEs for genomic data imputation by single imputation, resulting in inaccurate
and overconfident imputations at extreme missing values. Finally, we investigate the impact of these
different imputation approaches on downstream tasks, namely discriminating gene sets identified by
logistic regression with the LASSO penalty. We find that multiple imputation through β-VAEs iden-
tifies genes that discriminate betweeen the two cancer subtypes with lower false discovery rates than
previous methods. All three multiple imputation approaches perform similarly in terms of accuracy
and coverage, however SIR is preferable as it is much more computationally efficient.

Future work will investigate missing not at random settings (Ipsen et al., 2020; Collier et al., 2020)
and mixed data (Ma et al., 2020). In addition, extensions using ensembles of deep generative models
may improve robustness and calibration. Such ensembles can be built from simple approaches, such
as training with multiple initializations (Lakshminarayanan et al., 2017), composing models across
different epochs (Huang et al., 2017), or Monte Carlo dropout (Gal & Ghahramani, 2016), to more
advanced approaches, such as Bayesian methods (Daxberger & Hernández-Lobato, 2019).
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A APPENDIX

A.1 DATA AND CODE AVAILABILITY

All data used in this manuscript are publicly available. Gene expression data is version 2
of the adjusted pan-cancer gene expression data obtained from Synapse and can be found at
https://www.synapse.org/!Synapse:syn4976369.2.

All code used to implement the analyses in this manuscript is hosted on GitHub and will be made
publicly available upon acceptance.
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A.2 SOFTWARE REQUIREMENTS

The analyses carried out in this manuscript require the following software: python v3.10, Tensor-
Flow v2.7.0; R: penalized v0.9, MASS v7.3, caret v6.0.

A.3 β-VAES AND THE POWER LIKELIHOOD

In the following, we show that the variational parameters ϕ which maximize the β-VAE bound
equivalently minimize the KL divergence between the variational posterior qϕ(Z|X) and the true
posterior under the power likelihood. Specifically, the KL divergence between the variational poste-
rior and the posterior under the power likelihood is given by:

DKL(qϕ(Z|X), pθ,β(Z|X)) = EZ∼qϕ(Z|X)

[
log

(
pθ,β(X)qϕ(Z|X)

pθ(X | Z)1/βp(Z)

)]
= −

N∑
n=1

Ezn∼qϕ(zn|xn)

[
log
(
pθ(xn | zn)1/β

)]
+

N∑
n=1

Ezn∼qϕ(zn|xn)

[
log

(
qϕ(zn|xn)

p(zn)

)]
+ log (pθ,β(X))

= const. −
N∑

n=1

Ezn∼qϕ(zn|xn)

[
log
(
pθ(xn | zn)1/β

)]
+DKL(qϕ(zn|xn), p(zn)).

Thus, we can equivalently find ϕ, which maximize the ELBO:

ELBO =

N∑
n=1

Ezn∼qϕ(zn|xn)[log pθ(xn|zn)]− β DKL(qϕ(zn|xn), p(zn)).

Example: factorized Gaussian. Assume the generative model is a factorized Gaussian (as is used
for the genomic data in Section 4):

pθ(xn|zn) =
D∏

d=1

N
(
xn,d | µd(zn), σ

2
d(zn)

)
,

where (µd(zn), σ
2
d(zn)) for d = 1, . . . , D represent the output of the final layer of the neural net-

work with weights and biases contained in θ. In this case, the full conditional of the missing data
under the power likelihood is

pθ,β(xmis,n | xobs,n, zn) ∝ pθ(xmis,n | xobs,n, zn)
1/β

=

 ∏
d∈Dmis,n

N
(
xn,d | µd(zn), σ

2
d(zn)

)1/β

=

 ∏
d∈Dmis,n

1√
2πσ2

d(zn)
exp

(
1

2σ2
d(zn)

(xn,d − µd(zn))
2

)1/β

∝
∏

d∈Dmis,n

exp

(
1

2βσ2
d(zn)

(xn,d − µd(zn))
2

)
∝

∏
d∈Dmis,n

N
(
xn,d | µd(zn), βσ

2
d(zn)

)
,

where Dmis,n ⊆ {1, . . . , D} contains the indices of the missing features for the nth data point.
Thus, in this case, sampling from the full conditional of the missing data under the power likelihood
corresponds to sampling from the Gaussian with variance rescaled by a factor of β. Note that for
β > 1 this corresponds to increasing the spread and uncertainty of the missing data, which is critical
to improve coverage of the deep generative model.
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A.4 SAMPLE IMPORTANCE RESAMPLING

We first note that our SIR scheme differs slightly from the scheme proposed by Mattei & Frellsen
(2019), who propose joint importance samples (z(s)n ,x

(s)
mis,n) from

z(s)n ∼ qϕ(zn | x(0)
mis,n,xobs,n), x

(s)
mis,n ∼ pθ(xmis,n | xobs,n, z

(s)
n ).

Instead, we only consider importance sampling for (z(s)n ) and subsequently sample the missing data
for each of resampled latent variables. Importantly, if the effective sample size is low, resulting
in potential duplicates in the M samples of latent variables, we obtain improved variability across
multiple imputations of the missing data, compared to the approach of Mattei & Frellsen (2019).

Example: factorized Gaussian. Assume the generative model is a factorized Gaussian, then the
importance weights are proportional to :

ω(s)
n =

pθ(xobs,n|z(s)n )1/βp(z
(s)
n )

qϕ(z
(s)
n |x(0)

mis,n,xobs,n)

=

(∏
d∈Dobs,n

N
(
xn,d | µd(zn), σ

2
d(zn)

))1/β
N(z

(s)
n | 0, I)

qϕ(z
(s)
n |x(0)

mis,n,xobs,n)
,

where Dobs,n ⊆ {1, . . . , D} contains the indices of the observed features for the nth data point.

A.5 SUPPLEMENTAL FIGURES

Supplementary Figure A.1: Results from 5-fold cross-validation to determine optimal model
and hyper-parameters. MAE (black) and EC (red) of 95% CI (computed based on quantiles) at
different training epochs. We aim to minimize both of these metrics for optimal training parameters.
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Supplementary Figure A.2: Trace plots monitoring convergence of Markov Chain Monte Carlo
schemes for β = 2 case. Here we report the log likelihood of the data under the generative model
at each iteration for (a) single imputation (SI), (b) pseudo-Gibbs (PG) and (c) Metropolis-within-
Gibbs (MWG). For visualization purposes, we show iterations 1 to 100, but ran to 1000 iterations in
implementation. We also show a single data set from the M = 100 datasets as an example for PG
and MWG.
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Supplementary Figure A.3: Deviation from true coverage for all three multiple imputation ap-
proaches. Here we report the deviation from the desired coverage of 95% (showed here by the dot-
ted line) for all three multiple imputation approaches pseudo-Gibbs (PG), Metropolis-within-Gibbs
(MWG) and sampling importance resampling (SIR) for (a) β = 1, and (b) β = 2.
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Supplementary Figure A.4: Coverage by percentiles of all three multiple imputation ap-
proaches. Here we report the coverage evaluated by percentiles across all imputed datasets com-
pared to the true percentiles of 0.25, 0.5, 0.75, 0.95 and 0.99 for all three multiple imputation ap-
proaches pseudo-Gibbs (PG), Metropolis-within-Gibbs (MWG) and sampling importance resam-
pling (SIR) for (a) β = 1, and (b) β = 2.

15



Under review as a conference paper at ICLR 2023

−2

0

2

F
T

H
L3

|2
49

8
N

A
C

A
P

1|
83

95
5

H
N

R
N

PA
3P

1|
10

15
1

LO
C

44
24

54
|4

42
45

4
P

P
IA

L4
C

|6
53

59
8

LO
C

64
33

87
|6

43
38

7
G

C
S

H
|2

65
3

AT
P

5E
P

2|
43

23
69

PA
2G

4P
4|

64
70

33
LO

C
72

86
43

|7
28

64
3

S
U

M
O

1P
3|

47
43

38
S

LC
6A

10
P

|3
86

75
7

?|
65

35
53

LO
C

64
49

36
|6

44
93

6
LO

C
34

10
56

|3
41

05
6

C
T

C
F

L|
14

06
90

R
G

P
D

4|
28

51
90

?|
10

35
7

PA
B

P
C

3|
50

42
E

D
A

R
A

D
D

|1
28

17
8

C
K

LF
|5

11
92

R
P

L1
3A

P
3|

64
56

83
U

B
E

2M
P

1|
60

65
51

E
E

F
1A

1P
9|

44
10

32
LO

C
64

72
88

|6
47

28
8

A
P

H
1A

|5
11

07
W

B
P

11
P

1|
44

18
18

P
LI

N
2|

12
3

R
H

O
A

|3
87

C
7o

rf
11

|1
36

64
7

E
IF

4A
3|

97
75

AT
P

6V
0E

1|
89

92
PA

IP
1|

10
60

5
G

U
S

B
|2

99
0

R
P

L4
1|

61
71

C
A

R
D

6|
84

67
4

TO
P

1P
2|

71
52

S
LC

35
A

4|
11

38
29

LO
C

72
87

58
|7

28
75

8
P

O
P

D
C

2|
64

09
1

D
B

R
1|

51
16

3
R

A
B

6C
|8

40
84

R
A

D
51

L1
|5

89
0

P
S

M
A

2|
56

83
S

LA
M

F
9|

89
88

6
A

P
E

X
2|

27
30

1
C

1o
rf

14
4|

26
09

9
A

R
A

F
|3

69
LO

X
|4

01
5

PA
FA

H
1B

1|
50

48
ID

2B
|8

40
99

C
X

C
L1

7|
28

43
40

D
N

A
JC

5|
80

33
1

G
U

S
B

L1
|3

87
03

6
H

B
P

1|
26

95
9

S
A

P
30

|8
81

9
S

C
N

4A
|6

32
9

C
E

A
C

A
M

1|
63

4
M

O
R

F
4L

1|
10

93
3

R
P

L1
7|

61
39

Z
N

F
90

|7
64

3
A

C
T

L6
A

|8
6

C
14

or
f3

4|
64

56
87

E
G

O
T

|1
00

12
67

91
K

IA
A

03
91

|9
69

2
LS

M
2|

57
81

9
P

LA
2G

2A
|5

32
0

P
R

A
M

E
|2

35
32

R
P

9|
61

00
U

B
C

|7
31

6
C

15
or

f2
1|

28
36

51
H

E
AT

R
2|

54
91

9
H

M
O

X
1|

31
62

P
IG

C
|5

27
9

P
N

M
A

L1
|5

52
28

P
R

D
X

4|
10

54
9

R
IT

1|
60

16
R

P
L2

3P
8|

22
29

01
S

E
C

61
A

1|
29

92
7

T
JP

3|
27

13
4

T
M

E
M

39
A

|5
52

54
Z

E
R

1|
10

44
4

LO
C

15
15

34
|1

51
53

4
A

N
G

|2
83

A
N

K
R

D
19

|1
38

64
9

AT
P

6V
0D

2|
24

59
72

AT
P

6V
1C

2|
24

59
73

C
X

or
f2

6|
51

26
0

H
3F

3A
|3

02
0

LI
P

T
1|

51
60

1
M

IO
S

|5
44

68
N

B
P

F
7|

34
35

05
N

P
H

S
1|

48
68

O
LF

M
L1

|2
83

29
8

P
O

LM
|2

74
34

P
P

IA
|5

47
8

R
IP

K
1|

87
37

S
LC

4A
1A

P
|2

29
50

S
P

C
S

2|
97

89
S

P
IN

2B
|4

74
34

3
T

B
X

19
|9

09
5

U
B

E
2D

4|
51

61
9

A
B

C
F

3|
55

32
4

AT
P

8B
5P

|1
58

38
1

B
A

G
E

2|
85

31
9

B
E

T
1|

10
28

2
C

19
or

f5
9|

19
96

75
C

5o
rf

39
|3

89
28

9
C

A
S

P
4|

83
7

C
D

C
26

|2
46

18
4

C
R

TA
P

|1
04

91
D

D
X

56
|5

46
06

D
M

B
X

1|
12

73
43

E
LA

V
L3

|1
99

5
E

N
T

H
D

1|
15

03
50

E
S

R
P

2|
80

00
4

FA
M

11
1A

|6
39

01
FA

M
27

C
|1

00
13

29
48

G
N

A
I2

|2
77

1
G

P
R

89
C

|7
28

93
2

G
R

IA
2|

28
91

H
LF

|3
13

1
H

O
X

A
10

|3
20

6
H

O
X

A
3|

32
00

H
O

X
A

6|
32

03
H

O
X

A
9|

32
05

H
O

X
B

3|
32

13
H

O
X

C
9|

32
25

H
O

X
D

10
|3

23
6

IF
IT

M
2|

10
58

1
K

IA
A

19
49

|1
70

95
4

LO
C

10
01

32
83

2|
10

01
32

83
2

LO
C

55
06

43
|5

50
64

3
LO

C
65

03
68

|6
50

36
8

LO
C

65
22

76
|6

52
27

6
LS

G
1|

55
34

1
M

B
D

2|
89

32
M

M
P

19
|4

32
7

M
P

R
IP

|2
31

64
P

I3
|5

26
6

S
A

A
1|

62
88

S
G

C
E

|8
91

0
S

IG
LE

C
7|

27
03

6
S

LC
39

A
1|

27
17

3
S

LF
N

12
|5

51
06

T
IG

D
6|

81
78

9
T

R
E

M
1|

54
21

0
T

U
B

B
8|

34
76

88
V

P
S

53
|5

52
75

Y
K

T
6|

10
65

2
Z

D
H

H
C

4|
55

14
6

Z
N

F
32

2B
|3

87
32

8
Z

N
F

59
9|

14
81

03
IL

1R
2|

78
50

gene

LA
S

S
O

 C
oe

ffi
ci

en
t

(a) PG

−2

0

2

F
T

H
L3

|2
49

8
N

A
C

A
P

1|
83

95
5

H
N

R
N

PA
3P

1|
10

15
1

LO
C

44
24

54
|4

42
45

4
P

P
IA

L4
C

|6
53

59
8

LO
C

64
33

87
|6

43
38

7
LO

C
72

86
43

|7
28

64
3

S
U

M
O

1P
3|

47
43

38
AT

P
5E

P
2|

43
23

69
PA

2G
4P

4|
64

70
33

G
C

S
H

|2
65

3
S

LC
6A

10
P

|3
86

75
7

?|
65

35
53

LO
C

34
10

56
|3

41
05

6
R

G
P

D
4|

28
51

90
?|

10
35

7
C

T
C

F
L|

14
06

90
E

D
A

R
A

D
D

|1
28

17
8

LO
C

64
49

36
|6

44
93

6
PA

B
P

C
3|

50
42

C
K

LF
|5

11
92

U
B

E
2M

P
1|

60
65

51
R

P
L1

3A
P

3|
64

56
83

E
E

F
1A

1P
9|

44
10

32
W

B
P

11
P

1|
44

18
18

C
7o

rf
11

|1
36

64
7

P
LI

N
2|

12
3

LO
C

64
72

88
|6

47
28

8
A

P
H

1A
|5

11
07

AT
P

6V
0E

1|
89

92
TO

P
1P

2|
71

52
D

B
R

1|
51

16
3

R
H

O
A

|3
87

E
IF

4A
3|

97
75

PA
IP

1|
10

60
5

G
U

S
B

|2
99

0
P

O
P

D
C

2|
64

09
1

S
LC

35
A

4|
11

38
29

S
LA

M
F

9|
89

88
6

C
1o

rf
14

4|
26

09
9

R
P

L4
1|

61
71

C
X

C
L1

7|
28

43
40

R
A

B
6C

|8
40

84
Z

N
F

90
|7

64
3

G
U

S
B

L1
|3

87
03

6
R

A
D

51
L1

|5
89

0
LO

X
|4

01
5

P
S

M
A

2|
56

83
A

C
T

L6
A

|8
6

H
B

P
1|

26
95

9
A

P
E

X
2|

27
30

1
LO

C
72

87
58

|7
28

75
8

S
A

P
30

|8
81

9
LO

C
15

15
34

|1
51

53
4

A
R

A
F

|3
69

C
A

R
D

6|
84

67
4

ID
2B

|8
40

99
R

P
L1

7|
61

39
AT

P
6V

1C
2|

24
59

73
R

U
S

C
2|

98
53

P
O

LM
|2

74
34

R
P

9|
61

00
C

14
or

f3
4|

64
56

87
D

N
A

JC
5|

80
33

1
E

G
O

T
|1

00
12

67
91

PA
FA

H
1B

1|
50

48
P

N
M

A
L1

|5
52

28
P

R
A

M
E

|2
35

32
S

A
A

1|
62

88
S

C
N

4A
|6

32
9

A
N

K
R

D
19

|1
38

64
9

C
E

A
C

A
M

1|
63

4
C

X
or

f2
6|

51
26

0
LS

M
2|

57
81

9
P

LA
2G

2A
|5

32
0

S
P

IN
2B

|4
74

34
3

U
B

C
|7

31
6

B
E

T
1|

10
28

2
C

M
T

M
3|

12
39

20
F

R
M

P
D

1|
22

84
4

H
E

AT
R

2|
54

91
9

H
LF

|3
13

1
H

O
X

A
6|

32
03

H
O

X
C

9|
32

25
H

O
X

D
10

|3
23

6
K

IA
A

03
91

|9
69

2
LO

C
65

03
68

|6
50

36
8

LS
G

1|
55

34
1

N
P

H
S

1|
48

68
O

LF
M

L1
|2

83
29

8
P

IG
C

|5
27

9
P

P
IA

|5
47

8
R

IP
K

1|
87

37
S

N
X

32
|2

54
12

2
T

JP
3|

27
13

4
T

M
E

M
39

A
|5

52
54

T
U

B
A

1C
|8

47
90

W
TA

P
|9

58
9

Z
E

R
1|

10
44

4
Z

N
F

59
9|

14
81

03
A

G
T

R
1|

18
5

A
P

B
A

2|
32

1
AT

P
8B

5P
|1

58
38

1
B

E
X

4|
56

27
1

C
19

or
f5

9|
19

96
75

C
5o

rf
39

|3
89

28
9

C
A

M
TA

1|
23

26
1

C
C

D
C

85
A

|1
14

80
0

C
Y

P
19

A
1|

15
88

D
D

X
56

|5
46

06
D

M
B

X
1|

12
73

43
D

S
C

R
6|

53
82

0
F

M
O

D
|2

33
1

G
B

A
P

1|
26

30
G

B
E

1|
26

32
G

Y
S

1|
29

97
H

M
O

X
1|

31
62

H
O

X
C

6|
32

23
IF

IT
M

2|
10

58
1

K
AT

N
B

1|
10

30
0

M
O

R
F

4L
1|

10
93

3
M

P
R

IP
|2

31
64

N
R

M
|1

12
70

P
O

LD
2|

54
25

P
R

D
X

4|
10

54
9

P
T

P
N

12
|5

78
2

S
A

A
2|

62
89

S
E

C
61

A
1|

29
92

7
S

H
3B

G
R

L2
|8

36
99

S
IG

LE
C

7|
27

03
6

S
LC

40
A

1|
30

06
1

S
LC

4A
1A

P
|2

29
50

T
M

O
D

2|
29

76
7

T
U

B
B

8|
34

76
88

U
B

E
2D

4|
51

61
9

W
D

R
53

|3
48

79
3

Z
D

H
H

C
17

|2
33

90
Z

D
H

H
C

4|
55

14
6

Z
N

F
20

|7
56

8
Z

N
F

28
0A

|1
29

02
5

Z
N

F
78

8|
38

85
07

IL
1R

2|
78

50

gene

LA
S

S
O

 C
oe

ffi
ci

en
t

(b) MWG

−2

0

2

F
T

H
L3

|2
49

8
N

A
C

A
P

1|
83

95
5

H
N

R
N

PA
3P

1|
10

15
1

LO
C

44
24

54
|4

42
45

4
P

P
IA

L4
C

|6
53

59
8

LO
C

64
33

87
|6

43
38

7
G

C
S

H
|2

65
3

LO
C

72
86

43
|7

28
64

3
S

U
M

O
1P

3|
47

43
38

AT
P

5E
P

2|
43

23
69

PA
2G

4P
4|

64
70

33
?|

65
35

53
LO

C
34

10
56

|3
41

05
6

LO
C

64
49

36
|6

44
93

6
S

LC
6A

10
P

|3
86

75
7

R
G

P
D

4|
28

51
90

C
T

C
F

L|
14

06
90

PA
B

P
C

3|
50

42
?|

10
35

7
U

B
E

2M
P

1|
60

65
51

E
D

A
R

A
D

D
|1

28
17

8
C

K
LF

|5
11

92
E

E
F

1A
1P

9|
44

10
32

R
P

L1
3A

P
3|

64
56

83
W

B
P

11
P

1|
44

18
18

A
P

H
1A

|5
11

07
LO

C
64

72
88

|6
47

28
8

P
LI

N
2|

12
3

R
H

O
A

|3
87

TO
P

1P
2|

71
52

C
7o

rf
11

|1
36

64
7

AT
P

6V
0E

1|
89

92
D

B
R

1|
51

16
3

C
X

C
L1

7|
28

43
40

P
O

P
D

C
2|

64
09

1
R

A
D

51
L1

|5
89

0
R

P
L4

1|
61

71
G

U
S

B
|2

99
0

PA
IP

1|
10

60
5

E
IF

4A
3|

97
75

S
LC

35
A

4|
11

38
29

R
A

B
6C

|8
40

84
C

1o
rf

14
4|

26
09

9
S

A
P

30
|8

81
9

A
P

E
X

2|
27

30
1

G
U

S
B

L1
|3

87
03

6
ID

2B
|8

40
99

LO
X

|4
01

5
S

LA
M

F
9|

89
88

6
A

R
A

F
|3

69
C

A
R

D
6|

84
67

4
PA

FA
H

1B
1|

50
48

A
C

T
L6

A
|8

6
P

S
M

A
2|

56
83

S
C

N
4A

|6
32

9
C

E
A

C
A

M
1|

63
4

P
R

A
M

E
|2

35
32

LO
C

15
15

34
|1

51
53

4
LO

C
72

87
58

|7
28

75
8

C
15

or
f2

1|
28

36
51

H
B

P
1|

26
95

9
K

IA
A

19
49

|1
70

95
4

R
P

9|
61

00
R

P
L1

7|
61

39
R

U
S

C
2|

98
53

Z
N

F
59

9|
14

81
03

Z
N

F
90

|7
64

3
AT

P
6V

1C
2|

24
59

73
E

G
O

T
|1

00
12

67
91

P
N

M
A

L1
|5

52
28

P
P

IA
|5

47
8

S
A

A
1|

62
88

S
E

C
61

A
1|

29
92

7
S

LC
39

A
1|

27
17

3
T

JP
3|

27
13

4
A

N
K

R
D

19
|1

38
64

9
C

14
or

f3
4|

64
56

87
C

X
or

f2
6|

51
26

0
H

E
AT

R
2|

54
91

9
LS

M
2|

57
81

9
N

B
P

F
7|

34
35

05
O

LF
M

L1
|2

83
29

8
P

IG
C

|5
27

9
T

M
E

M
39

A
|5

52
54

A
N

G
|2

83
C

Y
P

19
A

1|
15

88
D

N
A

JC
5|

80
33

1
H

O
X

C
9|

32
25

IF
IT

M
2|

10
58

1
LI

P
T

1|
51

60
1

LO
C

10
01

32
83

2|
10

01
32

83
2

LS
G

1|
55

34
1

M
A

P
K

A
P

K
2|

92
61

S
IG

LE
C

7|
27

03
6

T
IG

D
6|

81
78

9
T

M
O

D
2|

29
76

7
T

U
B

A
1C

|8
47

90
U

B
C

|7
31

6
Z

E
R

1|
10

44
4

A
C

T
B

|6
0

A
G

T
R

1|
18

5
A

P
B

A
2|

32
1

A
R

F
4|

37
8

B
E

X
4|

56
27

1
C

20
or

f1
14

|9
27

47
C

5A
R

1|
72

8
C

A
LR

|8
11

C
A

S
P

4|
83

7
C

M
T

M
3|

12
39

20
C

R
TA

P
|1

04
91

E
LA

C
1|

55
52

0
E

P
H

B
4|

20
50

E
R

I1
|9

04
59

E
S

R
P

2|
80

00
4

F
M

O
D

|2
33

1
G

B
A

P
1|

26
30

G
N

A
I2

|2
77

1
G

N
A

I3
|2

77
3

G
R

IA
2|

28
91

H
3F

3A
|3

02
0

H
LF

|3
13

1
H

LX
|3

14
2

H
O

X
B

3|
32

13
H

O
X

D
10

|3
23

6
H

S
P

90
A

B
2P

|3
91

63
4

K
IA

A
03

91
|9

69
2

M
M

P
19

|4
32

7
M

P
R

IP
|2

31
64

N
FA

T
C

3|
47

75
N

P
IP

|9
28

4
P

I3
|5

26
6

P
LA

2G
2A

|5
32

0
P

O
LM

|2
74

34
P

P
P

2R
5B

|5
52

6
R

IT
1|

60
16

R
P

L2
3A

|6
14

7
S

A
A

2|
62

89
S

P
IN

2B
|4

74
34

3
T

B
X

19
|9

09
5

T
F

D
P

1|
70

27
T

M
E

D
4|

22
20

68
U

B
E

2D
4|

51
61

9
V

AT
1|

10
49

3
Z

D
H

H
C

4|
55

14
6

Z
N

F
28

0A
|1

29
02

5
Z

N
F

32
2B

|3
87

32
8

Z
N

F
78

8|
38

85
07

IL
1R

2|
78

50

gene

LA
S

S
O

 C
oe

ffi
ci

en
t

(c) SIR

Supplementary Figure A.5: LASSO regression coefficients across multiple imputation ap-
proaches. Here we report the LASSO regression coefficients across all 100 plausible imputed
datasets for (a) pseudo-Gibbs (PG), (b) Metropolis-within-Gibbs (MWG) and (c) sampling impor-
tance resampling (SIR). LASSO regression coefficient value for the true dataset is highlighted in
red, and for single imputation is highlighted in blue. For the purpose of visualization, the intercept
was removed from this plot. 16
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Supplementary Figure A.6: Inclusion probability across all non-zero LASSO coefficients across
multiple imputation approaches. Here we report the inclusion probability Pincl for all non-zero
LASSO regression coefficients for (a) pseudo-Gibbs (PG), (b) Metropolis-within-Gibbs (MWG) and
(c) sampling importance resampling (SIR). Genes in this set that are included in the true LASSO
coefficients are highlighted in blue, and those not included in the true discriminating gene set are
highlighted in pink. 17
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