
Published as a conference paper at ICLR 2023

IN-SAMPLE ACTOR CRITIC FOR OFFLINE REINFORCE-
MENT LEARNING

Hongchang Zhang1*,Yixiu Mao1*,Boyuan Wang1,Shuncheng He1,Yi Xu2,Xiangyang Ji1

1Tsinghua University 2Dalian University of Technology
{hc-zhang19,myx21,wangby22,hesc16}@mails.tsinghua.edu,

yxu@dlut.edu, xyji@tsinghua.edu

ABSTRACT

Offline reinforcement learning suffers from out-of-distribution issue and extrap-
olation error. Most methods penalize the out-of-distribution state-action pairs or
regularize the trained policy towards the behavior policy but cannot guarantee to
get rid of extrapolation error. We propose In-sample Actor Critic (IAC), which
utilizes sampling-importance resampling to execute in-sample policy evaluation.
IAC only uses the target Q-values of the actions in the dataset to evaluate the
trained policy, thus avoiding extrapolation error. The proposed method performs
unbiased policy evaluation and has a lower variance than importance sampling in
many cases. Empirical results show that IAC obtains competitive performance
compared to the state-of-the-art methods on Gym-MuJoCo locomotion domains
and much more challenging AntMaze domains.

1 INTRODUCTION

Reinforcement learning (RL) aims to solve sequential decision problems and has received extensive
attention in recent years (Mnih et al., 2015). However, the practical applications of RL meet several
challenges, such as risky attempts during exploration and time-consuming data collecting phase.
Offline RL is capable of tackling these issues without interaction with the environment. It can get
rid of unsafe exploration and could tap into existing large-scale datasets (Gulcehre et al., 2020).

However, offline RL suffers from out-of-distribution (OOD) issue and extrapolation error (Fuji-
moto et al., 2019). Numerous works have been proposed to overcome these issues. One branch
of popular methods penalizes the OOD state-action pairs or regularizes the trained policy towards
the behavior policy (Fujimoto & Gu, 2021; Kumar et al., 2020). These methods have to control
the degree of regularization to balance pessimism and generalization, and thus are sensitive to the
regularization level (Fujimoto & Gu, 2021). In addition, OOD constraints cannot guarantee to avoid
extrapolation error (Kostrikov et al., 2022). Another branch chooses to eliminate extrapolation error
completely (Brandfonbrener et al., 2021; Kostrikov et al., 2022). These methods conduct in-sample
learning by only querying the Q-values of the actions in the dataset when formulating the Bellman
target. However, OneStep RL (Brandfonbrener et al., 2021) estimates the behavior policy’s Q-value
according to SARSA (Sutton & Barto, 2018) and only improves the policy a step based on the Q-
value function, which has a limited potential to discover the optimal policy hidden in the dataset.
IQL (Kostrikov et al., 2022) relies on expectile regression to perform implicit value iteration. It can
be regarded as in-support Q-learning when the expectile approaches 1, but suffers from instability
in this case. Thus a suboptimal solution is obtained by using a smaller expectile. Besides, these two
lines of study adapt the trained policy to the fixed dataset’s distribution.

Then one question appears-“Can we introduce the concept of in-sample learning to iterative policy
iteration, which is a commonly used paradigm to solve RL”? General policy iteration cannot be
updated in an in-sample style, since the trained policy will inevitably produce actions that are out
of the dataset (out-of-sample) and provide overestimated Q-target for policy evaluation. To enable
in-sample learning, we first consider sampling the target action from the dataset and reweighting

*Equal contribution.

1

Published as a conference paper at ICLR 2023

the temporal difference gradient via importance sampling. However, it is known that importance
sampling suffers from high variance (Precup et al., 2001) and would impair the training process.

In this paper, we propose In-sample Actor Critic (IAC), which performs iterative policy iteration and
simultaneously follows the principle of in-sample learning to eliminate extrapolation error. We resort
to sampling-importance resampling (Rubin, 1988) to reduce variance and execute in-sample policy
evaluation, which formulates the gradient as it is sampled from the trained policy. To this end, we
use SumTree to sample according to the importance resampling weight. For policy improvement,
we tap into advantage-weighted regression (Peng et al., 2019) to control the deviation from the
behavior policy. The proposed method executes unbiased policy evaluation and has smaller variance
than importance sampling in many cases. We point out that, unlike previous methods, IAC adapts
the dataset’s distribution to match the trained policy during learning dynamically. We test IAC on
D4RL benchmark (Fu et al., 2020), including Gym-MuJoCo locomotion domains and much more
challenging AntMaze domains. The empirical results show the effectiveness of IAC.

2 RELATED WORKS

Offline RL. Offline RL, previously termed batch RL (Ernst et al., 2005; Riedmiller, 2005), pro-
vides a static dataset to learn a policy. It has received attention recently due to the extensive usage
of deep function approximators and the availability of large-scale datasets (Fujimoto et al., 2019;
Ghasemipour et al., 2021). However, it suffers from extrapolation error due to OOD actions. Some
works attempt to penalize the Q-values of OOD actions (Kumar et al., 2020; An et al., 2021). Other
methods force the trained policy to be close to the behavior policy by KL divergence (Wu et al.,
2019), behavior cloning (Fujimoto & Gu, 2021), or Maximum Mean Discrepancy(MMD) (Kumar
et al., 2019). These methods cannot eliminate extrapolation error and require a regularization hyper-
parameter to control the constraint level to balance pessimism and generalization. Another branch
chooses to only refer to the Q-values of in-sample actions when formulating the Bellman target
without querying the values of actions not contained in the dataset (Brandfonbrener et al., 2021;
Kostrikov et al., 2022). By doing so, they can avoid extrapolation error. OneStep RL (Brandfon-
brener et al., 2021) evaluates the behavior policy’s Q-value function and only conducts one-step of
policy improvement without off-policy evaluation. However, it performs worse than the multi-step
counterparts when a large dataset with good coverage is provided. IQL (Kostrikov et al., 2022) draws
on expectile regression to approximate an upper expectile of the value distribution, and executes
multi-step dynamic programming update. When the expectile approaches 1, it resembles in-support
Q-learning in theory but suffers from instability in practice. Thus a suboptimal solution is obtained
by using a smaller expectile. Our proposed method opens up a venue for in-sample iterative policy
iteration. It prevents querying unseen actions and is unbiased for policy evaluation. In practice, it
modifies the sampling distribution to allow better computational efficiency. OptiDICE (Lee et al.,
2021) also does not refer to out-of-sample samples. However, it involves with complex minmax
optimization and requires a normalization constraint to stabilize the learning process.

Importance sampling. Importance sampling’s application in RL has a long history (Precup, 2000)
for its unbiasedness and consistency (Kahn & Marshall, 1953). Importance sampling suffers from
high variance, especially for long horizon tasks and high dimensional spaces (Levine et al., 2020).
Weighted importance sampling (Mahmood et al., 2014; Munos et al., 2016) and truncated impor-
tance sampling (Espeholt et al., 2018) have been developed to reduce variance. Recently, marginal-
ized importance sampling has been proposed to mitigate the high variance of the multiplication
of importance ratios for off-policy evaluation (Nachum et al., 2019; Liu et al., 2018). Sampling-
importance resampling is an alternative strategy that samples the data from the dataset according
to the importance ratio (Rubin, 1988; Smith & Gelfand, 1992; Gordon et al., 1993). It has been
applied in Sequential Monte Carlo sampling (Skare et al., 2003) and off-policy evaluation (Schlegel
et al., 2019). To the best of our knowledge, our work is the first to draw on sampling-importance
resampling to solve the extrapolation error problem in offline RL.

3 PRELIMINARIES

RL. In RL, the environment is typically assumed to be a Markov decision process (MDP)
(S,A,R, p, γ), with state space S, action space A, scalar reward function R, transition dynam-

2

Published as a conference paper at ICLR 2023

ics p, and discount factor γ (Sutton & Barto, 2018). The agent interacts with the MDP according
to a policy π(a|s), which is a mapping from states to actions (deterministic policy) or a probabil-
ity distribution over actions (stochastic policy). The goal of the agent is to obtain a policy that
maximizes the expected discounted return: Eπ[

∑∞
t=0 γ

trt]. Off-policy RL methods based on ap-
proximate dynamic programming typically utilize a state-action value function (Q-value function),
which measures the expected discounted return obtained by starting from the state-action pair (s, a)
and then following the policy π: Q(s, a) = Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a] .

Offline RL. In offline RL, the agent is prohibited from interacting with the environment. Instead,
it is provided with a fixed dataset collected by some unknown behavior policy β. Ordinary approx-
imate dynamic programming methods evaluate policy π by minimizing temporal difference error,
according to the following loss

LTD(θ) = E(s,a,s′)∼D[(r(s, a) + γEa′∼πϕ(·|s′)Qθ̂(s
′, a′)−Qθ(s, a))

2], (1)

where D is the dataset, πϕ is a policy parameterized by ϕ, Qθ(s, a) is a Q function parameterized
by θ, and Qθ̂(s, a) is a target network whose parameters are updated via Polyak averaging.

We denote the ith transition (si, ai, ri, s
′
i, a

′
i) inD as xi, andD = {x1, . . . , xn}. For some transition

x = (s, a, r, s′, a′), let transition-wise TD update ∆(x) be the gradient of transition-wise TD error,

∆(x) = ∇θQθ(s, a)(Qθ(s, a)− r(s, a)− γQθ̂(s
′, a′)).

For the convenience of subsequent theoretical analysis, we also define the expected value of the TD
update based on the gradient of Eqn. (1) by replacing the empirical distribution of the dataset with
β induced distribution 1

∆TD = Ex∼pπ
[∆(x)], (2)

where pπ = dβ(s, a)P (s′|s, a)π(a′|s′) and dβ(s, a) is the normalized and dis-
counted state-action occupancy measure of the policy β. That is, dβ(s, a) = (1 −
γ)E [

∑∞
t=0 γ

tI (st = s, at = a) | at ∼ π (· | st)].
Besides policy evaluation, a typical policy iteration also includes policy improvement. In continuous
action space, a stochastic policy can be updated by reparameterization:

ϕ← argmaxϕ Es∼D,ϵ∼N [Qθ (s, fϕ (ϵ; s))] , (3)

where N is a Gaussian distribution. In offline RL, OOD actions a′ can produce erroneous values
for Qθ̂(s

′, a′) in Q-value evaluation and lead to an inaccurate estimation of Q-value. Then in policy
improvement stage, where the policy is optimized to maximize the estimated Qθ, the policy will
prefer OOD actions whose values have been overestimated, resulting in poor performance. Most
current methods either directly constrain policy π or regularize OOD actions’ values to constrain
policy indirectly.

4 IN-SAMPLE ACTOR CRITIC

In the following, we introduce sampling-importance resampling and tap into it for offline RL to
allow in-sample learning. Then we show that the proposed method is unbiased and has a smaller
variance than importance sampling in many cases. Last, we present a practical implementation of
the algorithm.

4.1 SAMPLING-IMPORTANCE RESAMPLING

Consider a statistical problem relevant to offline RL. Suppose we want to obtain samples from a
target distribution p(x), but we only have access to samples from some proposal distribution q(x).
How can we simulate random draws from p? Assuming supp(q) ⊇ supp(p), a classic algorithm
sampling-importance resampling (SIR) (Rubin, 1988) addresses this with the following procedure:

Step 1.(Sampling) Draw independent random samples {x1, . . . , xn} from q.

Step 2.(Importance) Calculate the importance ratio for each xi: w(xi) = p(xi)/q(xi)

1We omit the learning rate for simplicity

3

Published as a conference paper at ICLR 2023

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Start
true pdf
sample density

2 1 0 1 2
x

0.0
0.2
0.4
0.6
0.8

End
U(2, 2) to (0, 0.5)

2 1 0 1 2
x

0.0
0.2
0.4
0.6
0.8

de
ns

ity

Start

2 1 0 1 2
x

0.0
0.2
0.4
0.6
0.8

End
(0.5, 0.5) to (0.5, 0.5)

Figure 1: SIR for distribution correcting. We generate 100,000 random values from proposal distri-
bution q, and use SIR to resample 10,000 random items out of it to approximate target distribution
p. Sample histograms and the actual underlying density of both q(start) and p(end) are presented.
Left: Uniform U(−2, 2) to Gaussian N (0, 0.5). Right: Gaussian N (−0.5, 0.5) to another Gaus-
sian N (0.5, 0.5).

Step 3.(Resampling) Draw x∗ from the discrete distribution over {x1, . . . , xn} with sampling prob-
abilities ρ(xi) = w(xi)/

∑n
j=1 w(xj).

SIR is very similar to importance sampling(IS), except that IS samples according to q and multiplies
the result by the importance ratio, while SIR corrects the distribution q by the importance ratio to
approximate p. The following proposition shows the consistency of SIR: as n→∞, the resampling
distribution converges to the target distribution p.
Proposition 1. If supp(q) ⊇ supp(p), as n→∞, the samples from SIR will consist of independent
draws from p. Namely, As n→∞, x∗ is distributed according to p.

All proofs could be found in Appendix B.

Fig. 1 illustrates SIR for distribution correcting on simple one-dimensional cases. Note that Fig. 1
(left) simulates the case when a dataset is generated by a uniform distribution and the target distribu-
tion is Gaussian, while Fig. 1 (right) corresponds to when a dataset is generated by some Gaussian
distribution, and the target distribution is Gaussian with a different mean.

4.2 IN-SAMPLE ACTOR CRITIC

In this work, we adopt SARSA-style in-sample learning because in-distribution constraints widely
used in prior work might not be sufficient to avoid extrapolation error (Kostrikov et al., 2022).

Our method is based on policy iteration, which consists of policy evaluation (PE) and policy im-
provement (PI). In PE, using in-sample actions a′ ∈ D rather than a′ ∼ π(·|s′) in the TD target
introduces a bias. We consider introducing an importance ratio w(s′, a′) = π(a′|s′)/β(a′|s′). Un-
der the assumption of importance sampling: ∆(xi)π(a

′
i|s′i) = 0 whenever β(a′i|s′i) = 0, Eqn. (2)

can be rewritten as follows

∆TD = E(s,a,s′)∼DEa′∼β(·|s′)[w(s
′, a′)∇θQθ(s, a)(Qθ(s, a)− r(s, a)− γQθ̂(s

′, a′))]. (4)

Here, the assumption of IS (as well as SIR) actually coincides with the conception of support-
constrained policy set (Kumar et al., 2019):
Definition 2 (Support-constrained policy). Assuming the data distribution is generated by a behav-
ior policy β, the support-constrained policy class Πβ is defined as

Πβ = {π | π(a|s) = 0 whenever β(a|s) = 0} (5)

This means that a learned policy π(a|s) has a positive density only where the density of the behavior
policy β(a|s) is positive, instead of the constraint on the value of the density π(a|s) and β(a|s)
which is overly restrictive in many cases. Previous works have demonstrated the superiority of
restricting the support of the learned policy (Kumar et al., 2019; Ghasemipour et al., 2021)

In practice, it is unrealistic to use the whole dataset to empirically estimate ∆TD (expected value of
update) every iteration, in spite of its low variance. Consequently, we consider estimating ∆TD by

4

Published as a conference paper at ICLR 2023

sampling a mini-batch of size k from the dataset. Specifically, we sample {x̌1, . . . , x̌k}, where x̌j is
sampled uniformly from D = {x1, . . . , xn}. It leads to an IS estimator of ∆TD:

∆̂IS =
1

k

k∑
j=1

w(s′j , a
′
j)∆(x̌j), x̌j ∼ {x1, . . . , xn} uniformly (6)

Though IS is consistent and unbiased (Kahn & Marshall, 1953), it suffers from high or even infinite
variance due to large magnitude IS ratios (Precup et al., 2001). The high variance of ∆̂IS could
destabilize the TD update and lead to a poor solution.

In this work, we adopt SIR instead of IS to reduce the variance and stabilize training. Specifically,
we remove the IS ratio and sample {x̃1, . . . , x̃k}, where x̃j is sampled from {x1, . . . , xn} with
probability proportional to w(s′j , a

′
j), rather than uniformly like all prior offline RL works. It leads

to another SIR estimator of ∆TD:

∆̂SIR =
1

k

k∑
j=1

∆(x̃j), x̃j
ρ∼ {x1, . . . , xn} with probability ρj =

w(s′j , a
′
j)∑n

i=1 w(s
′
i, a

′
i)

(7)

Intuitively, in offline RL setting, this resampling strategy reshapes the data distribution ofD to adapt
to the current policy. Unfortunately, unlike the IS estimator ∆̂IS , ∆̂SIR is a biased estimator of
∆TD. Subsequently, we show that by simply multiplying ∆̂SIR with the average importance ratio
in the buffer w̄ := 1

n

∑n
i=1 wi, we get an unbiased estimate of ∆TD.

Theorem 3. Assume that an offline dataset D of n transitions is sampled i.i.d according to pβ(x =
(s, a, r, s′, a′)) = dβ(s, a)P (s′|s, a)β(a′|s′), and π is support-constrained (i.e., π ∈ Πβ). Then,

E[w̄∆̂SIR] = ∆TD

where ∆TD is the expected update across all transitions in D defined in Eqn. (2); ∆̂SIR is the
empirical update across the sampled mini-batch defined in Eqn. (7); w̄ := 1

n

∑n
i=1 wi is the average

importance ratio in the dataset.

In fact, ∆̂SIR gives the correct direction, and we do not need to care about the actual value of
the update. The reason is that, the scalar w̄ remains the same across all mini-batches during SGD
learning, so we can include w̄ in the learning rate and just use ∆̂SIR as the update estimator in PE.
We point out that there is no need to adjust the conventional learning rate, because for a large enough
dataset, w̄ is close to 1.2

Theorem 3 guarantees that if the policy π is constrained within the support of behavior policy β
during learning, our method yields an unbiased policy evaluation process via in-sample learning,
thus avoiding extrapolation error. Conversely, if the support of the current policy deviates much
from the dataset, which is common in practice when the dataset distribution is narrow, and the
trained policy is randomly initialized, Theorem 3 can not provide performance guarantees. So in
PI, we implicitly enforce a constraint with advantage-weighted regression (Peters & Schaal, 2007;
Peng et al., 2019), controlling deviation from the behavior policy. Since in PE, we have sampled
transitions {x̃1, . . . , x̃k} non-uniformly from D, for convenience, we use the same transitions to
perform PI, instead of sampling from D again uniformly, leading to the following loss:

Lπ(ϕ) = −E(s,a)
ρ∼D

[
exp(β(Qθ(s, a)− Eâ∼πϕ(·|s)Qθ(s, â)) log πϕ(a|s)

]
, (8)

where
ρ∼ denotes sampling from discrete distribution ρ.

Note that even though our method is in-sample, a constraint (implicit or explicit) is necessary due
to both our theoretical requirement and empirical results of previous works. Among previous in-
sample approaches, IQL (Kostrikov et al., 2022) adopts the same advantage-weighted regression
in the policy extraction step, while the performance of OneStep RL (Brandfonbrener et al., 2021)
will have a sharp drop without constraints. One possible reason is that in-sample methods do not
update out-of-sample (s, a) pairs. Their Q-values are completely determined by the initialization
and generalization of the neural network, which is uncontrolled. As a result, despite that in-sample
methods address the Q-value extrapolation error, vanilla PI without constraints can still choose out-
of-sample actions whose Q-values are very inaccurate.

2w̄ ≈ Es∼dβ(s),a∼β(a|s)[
π(a|s)
β(a|s)] =

∑
s,a

π(a|s)
β(a|s)β(a|s)dβ(s) = 1

5

Published as a conference paper at ICLR 2023

4.3 LOWER VARIANCE

Theorem 3 shows that the proposed method provides unbiased policy evaluation with in-sample
learning. In this section, we theoretically prove that our SIR estimator (see Eqn. (7)) has a lower
variance than the IS estimator in many cases and thus yields a more stable learning process.
Proposition 4. Assume that the gradient is normalized, then the following result holds,

V[w̄∆̂SIR] ≤ V[∆̂IS]. (9)

Proposition 4 indicates that when the scale of the gradient for the sample does not vary a lot across
the dataset, there is a high probability that SIR will have a smaller variance than IS.
Proposition 5. Assume that ∥∆(x)∥22 has a positive correlation with 1

β(a′|s′) for x ∈ D and policy
π is uniform, then the following holds,

V[w̄∆̂SIR] ≤ V[∆̂IS]. (10)

In general, the sample with a large behavior distribution density usually has a small-scale gradient
due to training, which corresponds to the assumption in Proposition 5.

4.4 PRACTICAL ALGORITHM

Algorithm 1 IAC

Input: Dataset D = {(s, a, r, s′, a′)}
Initialize behavior policy βω , policy network
πϕ, Q-network Qθ, and target Q-network Qθ′

// Behavior Policy Pre-training
for each gradient step do

Sample minibatch (s, a) ∼ D
Update ω according to Eqn. (11)

end for
// Policy Training
for each gradient step do

Sample minibatch (s, a, r, s′, a′) propor-
tional to ρ(s′, a′) from D

Update θ by applying TD update in Eqn. (7)
Update ϕ by minimizing Lπ(ϕ) in Eqn. (8)
Update target network: θ′ ← (1−τ)θ′+τθ

end for

IAC is the first practical algorithm to adapt the
dataset distribution to the learned policy, and
we design the algorithm to be as simple as pos-
sible to avoid some complex modules confus-
ing our algorithm’s impact on the final perfor-
mance.

Density Estimator. IAC requires the behav-
ior density β to be the denominator of impor-
tance resampling weight (Eqn. (7)). We learn
a parametric estimator for the behavior policy
by maximum likelihood estimation. The esti-
mated behavior policy βω is parameterized by a
Gaussian distribution. The objective of βω is

max
βω

Es,a∼D log βω(a|s), (11)

where ω is the parameter of the estimated be-
havior policy.

Policy Evaluation. In policy evaluation phase,
IAC uses non-uniformly sampled SARSA
(sampling proportional to ρ(s′, a′)) to evaluate the trained policy. We represent the policy with
a Gaussian distribution for its simple form of density.

Policy Improvement. In policy improvement phase, Eqn. (8) requires calculating the expectation of
the Q-value concerning the current policy. We find that replacing the expectation with the Q-value of
the policy’s mean already obtain good performance. Also, it simplifies the training process without
learning a V-function.

SumTree. The importance resampling weight ρ is determined by π(a′|s′) and βω(a
′|s′). While

βω(a
′|s′) is fixed after pretraining, π(a′|s′) changes as π updates during training. We adopt the

Sumtree data structure to efficiently update ρ during training and sample proportional to ρ. It is
similar to prioritized experience replay (PER) (Schaul et al., 2015). In PER, ρ is implemented as
the transition-wise Bellman error, where sampling proportional to ρ replays important transitions
more frequently, and thus the Q-value is learned more efficiently. In our proposed algorithm, ρ is
implemented as the importance resampling weight. Sampling proportional to ρ provides an unbiased
and in-sample way to evaluate any support-constrained policy.

Overall algorithm. Putting everything together, we summarize our final algorithm in Algorithm 1.
Our algorithm first trains the estimated behavior policy using Eqn. (11) to obtain the behavior den-
sity. Then it turns to the Actor-Critic framework for policy training.

6

Published as a conference paper at ICLR 2023

5 DISCUSSION

5.1 ONE-STEP AND MULTI-STEP DYNAMIC PROGRAMMING

The most significant advantage of one-step approaches (Brandfonbrener et al., 2021) is that value
estimation is completely in-sample and thus more accurate than multi-step dynamic programming
approaches, which propagate and magnify estimation errors. On the other hand, multi-step dynamic
programming approaches can also propagate useful signals, which is essential for challenging tasks
or low-performance datasets. IAC belongs to multi-step dynamic programming and enjoys the ben-
efit of one-step approaches.

To show the relationship between IAC and one-step approaches, we define a general SIR simulator:

∆̂η
SIR =

1

k

k∑
j=1

∆(x̃j), x̃j
ρ∼ {x1, . . . , xn} with probability ρj =

w(s′j , a
′
j)

η∑n
i=1 w(s

′
i, a

′
i)

η
. (12)

Note that IAC corresponds to the case when η = 1 while it reduces to OneStep RL (Brandfonbrener
et al., 2021) when η = 0. We have the following result about ∆̂η

SIR.
Proposition 6. Assume that ∀x ∈ D, ∆(x) = h, where h is a constant vector. Let η ∈ [0, 1], w̄η

denote 1
n

∑n
j=1 w(sj , aj)

η . Assume that
∑n

j=1 w(sj , aj) ≥ n, then the following holds

V[w̄η∆̂
η
SIR] ≤ V[w̄∆̂SIR]. (13)

It indicates that η < 1 might bring a smaller variance when ∆(x) is the same for all x ∈ D.
However, it might not be the case and introduces a bias when ∆(x) varies across the dataset. In our
experiment, we show that the performance of choosing ∆̂1

SIR is better than that of choosing ∆̂0
SIR,

which indicates that reducing the bias matters for resampling.

5.2 OTHER CHOICES OF IS

Other than Eqn. (4), reweighting the gradient of value function is an alternative choice to utilizing
IS. The TD update of value function could be written as follows:

∆TD = E(s,a,s′)∼D[w(s, a)∇θVθ(s)(Vθ(s)− r(s, a)− γVθ̂(s
′))]. (14)

We point out that a Q-value function is still required and learned via Bellman update to learn a
policy. This implementation increases computational complexity compared to IAC. In addition,
learning three components simultaneously complicates the training process.

6 EXPERIMENTS

0.2 0.4 0.6 0.8
ratio of the fist action

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

va
ria

nc
e

Variance of IS vs SIR
SIR
IS

Figure 2: SIR has a smaller
variance than IS on a two-
arm bandit task.

In this section, we conduct several experiments to justify the validity
of our proposed method. We aim to answer four questions: (1) Does
SIR have a smaller variance than IS? (2) Does our method actually
have a small extrapolation error? (3) Does our method perform better
than previous methods on standard offline MuJoCo benchmarks? (4)
How does each component of IAC contribute to our proposed method?

6.1 VARIANCE

We first test the variance of SIR and IS on a two-arm bandit task. The
first and the second action’s reward distributions are N (−1, 1) and
N (1, 1), respectively. We fix the dataset’s size to be 100, 000. Then we
vary the ratios of these two actions’ samples in the dataset to simulate
a set of behavior policies. For a policy that chooses the two arms with
identical probability, we evaluate the policy with SIR and IS based on each behavior policy in the set.
Fig.2 shows the variance of SIR and IS when provided with different behavior policies. According
to Fig.2, SIR has a smaller variance than IS, especially when the dataset is highly imbalanced.

6.2 EXTRAPOLATION ERROR

7

Published as a conference paper at ICLR 2023

Table 1: Averaged normalized scores on MuJoCo locomotion on five seeds. Note that m=medium, m-
r=medium-replay, r=random, m-e=medium-expert, and e=expert.

Dataset BC OneStep RL TD3+BC CQL IQL IAC-w/o-β IAC-IS IAC
halfcheetah-m-v2 42.0±1.7 50.4±0.4 48.3±0.3 47.0±0.5 47.4±0.2 52.2±0.3 52.0±0.6 51.6±0.3
hopper-m-v2 56.2±4.3 87.5±10.9 59.3±4.2 53.0±28.5 66.2±5.7 83.1±23.4 63.8±9.8 74.6±11.5
walker2d-m-v2 71.0±6.5 84.8±2.9 83.7±2.1 73.3±17.7 78.3±8.7 83.6±1.7 85.3±0.7 85.2±0.4
halfcheetah-m-r-v2 36.4±2.7 42.7±1.3 44.6±0.5 45.5±0.7 44.2±1.2 47.5±0.5 47.9±0.4 47.2±0.3
hopper-m-r-v2 21.8±0.5 98.5±2.7 60.9±18.8 88.7±12.9 94.7±8.6 102.7±1.2 99.3±2.7 103.2±1.0
walker2d-m-r-v2 24.9±6.3 61.7±16.3 81.8±5.5 81.8±2.7 73.8±7.1 93.2±0.6 91.1±1.1 93.2±1.8
halfcheetah-m-e-v2 59.6±5.8 75.1±14.1 90.7±4.3 75.6±25.7 86.7±5.3 89.6±2.5 78.1±8.2 92.9±0.7
hopper-m-e-v2 51.7±2.4 108.6±4.1 98.0±9.4 105.6±12.9 91.5±14.3 111.0±1.6 107.8±5.9 109.3±4.0
walker2d-m-e-v2 101.2±3.6 111.3±0.4 110.1±0.5 107.9±1.6 109.6±1.0 113.3±1.2 109.5±0.8 110.1±0.1
halfcheetah-e-v2 92.9±0.5 88.2±6.5 96.7±1.1 96.3±1.3 95.0±0.5 94.7±0.4 94.4±0.3 94.5±0.5
hopper-e-v2 110.9±0.3 106.9±4.1 107.8±7 96.5±28.0 109.4±0.5 110.7±1.7 111.6±0.2 110.6±1.9
walker2d-e-v2 107.7±0.1 110.7±0.4 110.2±0.3 108.5±0.5 109.9±1.2 109.6±0.0 109.6±0.1 114.8±1.2
halfcheetah-r-v2 2.6±0.0 2.3±0.0 11.0±1.1 17.5±1.5 13.1±1.3 23.2±2.3 21.9±1.0 20.9±1.2
hopper-r-v2 4.1±0.1 5.6±1.6 8.5±0.6 7.9±0.4 7.9±0.2 31.5±0.3 27.6±9.1 31.3±0.3
walker2d-r-v2 1.2±0.0 6.9±1.2 1.6±1.7 5.1±1.3 5.4±1.2 4.0±1.9 2.4±0.3 3.0±1.3
locomotion-v2 total 784.2 1041.2 1013.2 1010.2 1033.1 1149.9 1102.3 1142.4

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

103

105

107

hopper-medium-v2

IAC: MC return
IAC: Q value
Baseline: Q value

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

102

103

104
hopper-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

103

104

105

walker2d-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

102

103

104

105
halfcheetah-random-v2

Figure 3: True Q-value of IAC, learned Q-values
of IAC and a baseline without resampling.

In this part, we compare IAC to a baseline that
replaces the resampling section with the gen-
eral off-policy evaluation, which is updated by
Eqn. (1). The policy update and the hyper-
parameters for IAC and the baseline are the
same. Although advantage-weighted regres-
sion enforces a constraint on the policy, the
baseline might encounter target actions that are
out of the dataset. We experiment with both
methods on four tasks in D4RL (Fu et al.,
2020). We plot the learned Q-values of IAC
and the baseline in Fig.3. Also, we show the
true Q-value of IAC by rollouting the trained
policy for 1, 000 episodes and evaluating the
Monte-Carlo return. The result shows that the
learned Q-value of IAC is close to the true Q-
value. Note that the learned Q-value is smaller
than the true Q-value on walker2d-medium and
halfcheetah-random tasks. The reason is that taking the minimum of two target networks will lead
to underestimation. By contrast, the Q-value of the baseline increases fast and is far larger than that
of IAC. It indicates that our proposed method has a lower extrapolation error by only referring to the
target actions in the dataset.

6.3 COMPARISONS ON OFFLINE RL BENCHMARKS

Gym locomotion tasks. We evaluate our proposed approach on the D4RL benchmark (Fu et al.,
2020) in comparison to prior methods (Table 1). We focus on Gym-MuJoCo locomotion domains
involving three agents: halfcheetah, hopper, and walker2d. For each agent, five datasets are provided
which correspond to behavior policies with different qualities: random, medium, medium-replay,
medium-expert, and expert.

AntMaze tasks. We also compare our proposed method with prior methods in challenging AntMaze
domains, which consist of sparse-reward tasks and require “stitching” fragments of suboptimal tra-
jectories traveling undirectedly to find a path from the start to the goal of the maze. The results are
shown in Table 2.

Baselines. Our offline RL baselines include both multi-step dynamic programming and one-step
approaches. For the former, we compare to CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu,
2021), and IQL (Kostrikov et al., 2022). For the latter, we compare to OneStep RL (Brandfonbrener
et al., 2021).

8

Published as a conference paper at ICLR 2023

Table 2: Averaged normalized scores on AntMaze on five seeds. Note that u=Umaze, u-d=Umaze-
diverse, m-p=medium-replay, m-d=medium-diverse, l-p=large-replay, and l-d=large-diverse.

Dataset BC OneStep RL TD3+BC CQL IQL IAC-w/o-β IAC-IS IAC
antmaze-u-v2 66.8±6.7 54.0±3.4 73.0±34.0 82.6±5.7 89.6±4.2 71.6±10.0 0.0±0.0 77.6±3.8
antmaze-u-d-v2 56.8±2.6 57.8±14.0 47.0±7.3 10.2±6.7 65.6±8.3 52.4±7.2 0.0±0.0 71.2±8.6
antmaze-m-p-v2 0.0±0.0 0.0±0.0 0.0±0.0 59.0±1.6 76.4±2.7 75.0±2.7 33.0±15.6 72.0±7.6
antmaze-m-d-v2 0.0±0.0 0.6±0.5 0.2±0.4 46.6±24.0 72.8±7.0 67.2±6.9 17.2±25.3 74.2±4.1
antmaze-l-p-v2 0.0±0.0 0.0±0.0 0.0±0.0 16.4±17.1 42.0±3.8 42.6±3.8 34.0±12.8 57.0±7.4
antmaze-l-d-v2 0.0±0.0 0.2±0.4 0.0±0.0 3.2±4.1 46.0±4.5 38.8±16.0 0.0±0.0 47.2±9.4
antmaze-v2 total 123.6 112.6 120.2 218.0 392.4 347.6 84.2 399.2

Comparison with baselines. On the Gym locomotion tasks, we find that IAC outperforms prior
methods. On the more challenging AntMaze task, IAC performs comparably to IQL and outper-
forms OneStep RL by a large margin.

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-expert-v2

= 0
IAC-IS
IAC

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

halfcheetah-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

60

120

Ep
is

od
e

R
et

ur
n

hopper-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps(×106)

0

20

40

Ep
is

od
e

R
et

ur
n

hopper-random-v2

Figure 4: Comparison with OneStep RL (η = 0)
and importance sampling.

Comparison with one-step method. Note that
one-step method corresponds to ∆̂0

SIR, which
samples uniformly. In the AntMaze tasks, es-
pecially the medium and large ones, few near-
optimal trajectories are contained, and the re-
ward signal is sparse. These domains re-
quire “stitching” parts of suboptimal trajecto-
ries to find a path from the start to the goal
of the maze (Fu et al., 2020). Therefore, one-
step approaches yield bad performance in these
challenging domains where multi-step dynamic
programming is essential.

We point out that using ∆̂1
SIR gives IAC the

power of multi-step dynamic programming. At
the same time, inheriting the advantages of one-
step approaches, IAC uses in-sample data, thus
having a low extrapolation error. As shown in
Fig.4, our proposed method performs much bet-
ter than choosing η = 0, which corresponds to
OneStep RL.

Comparison with importance sampling. We refer to the algorithm which updates the Q-value
via importance sampling(seen in Eqn. (4)) as IAC-IS, and we test its performance on MuJoCo and
AntMaze tasks. The result is shown in Table 1, Table 2, and Fig.4. IAC-IS performs worse than IAC
slightly on Gym locomotion tasks. For the challenging AntMaze tasks, there is a large gap between
the two algorithms. IAC-IS even obtains zero rewards on half of the tasks. The reason might be that
IAC-IS has a larger variance than IAC, which would impair the learning process.

Ablation on the estimated behavior policy. IAC requires access to a pre-trained behavior policy,
which brings a computational burden. Removing the behavior policy and regarding the behavior
policy density as a constant will introduce a bias but reduce the computational load. We refer to
this variant as IAC-w/o-β. As shown in Table 1 and Table 2, IAC-w/o-β could still obtain desirable
performance on most Gym locomotion tasks and several AntMaze tasks. Thus, IAC-w/o-β is an
appropriate choice for its lightweight property when the computational complexity is a priority.

7 CONCLUSION

In this paper, we propose IAC to conduct in-sample learning by sampling-importance resampling.
IAC enjoys the benefits of both multi-step dynamic programming and in-sample learning, which
only relies on the target Q-values of the actions in the dataset. IAC is unbiased and has a smaller
variance than importance sampling in many cases. In addition, IAC is the first method to adapt the
dataset’s distribution to match the trained policy dynamically during learning. The experimental
results show the effectiveness of our proposed method. In future work, we expect to find a better
estimated behavior policy to boost our method, such as transformers (Vaswani et al., 2017).

9

Published as a conference paper at ICLR 2023

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=LU687itn08w.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-gaussian
bayesian state estimation. In IEE proceedings F (radar and signal processing), volume 140, pp.
107–113. IET, 1993.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Process-
ing Systems, 33:7248–7259, 2020.

Herman Kahn and Andy W Marshall. Methods of reducing sample size in monte carlo computations.
Journal of the Operations Research Society of America, 1(5):263–278, 1953.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

10

https://openreview.net/forum?id=LU687itn08w
https://openreview.net/forum?id=LU687itn08w
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

Published as a conference paper at ICLR 2023

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. Advances in Neural Information Processing Systems, 31, 2018.

A Rupam Mahmood, Hado P Van Hasselt, and Richard S Sutton. Weighted importance sampling
for off-policy learning with linear function approximation. Advances in Neural Information Pro-
cessing Systems, 27, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of dis-
counted stationary distribution corrections. Advances in Neural Information Processing Systems,
32, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp. 745–
750, 2007.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, pp. 80, 2000.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, pp. 417–424, 2001.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European conference on machine learning, pp. 317–328. Springer,
2005.

Donald B Rubin. Using the sir algorithm to simulate posterior distributions. Bayesian statistics, 3:
395–402, 1988.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance resam-
pling for off-policy prediction. Advances in Neural Information Processing Systems, 32, 2019.

Øivind Skare, Erik Bølviken, and Lars Holden. Improved sampling-importance resampling and
reduced bias importance sampling. Scandinavian Journal of Statistics, 30(4):719–737, 2003.

Adrian FM Smith and Alan E Gelfand. Bayesian statistics without tears: a sampling–resampling
perspective. The American Statistician, 46(2):84–88, 1992.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

11

Published as a conference paper at ICLR 2023

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. arXiv preprint arXiv:2202.06239, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

12

Published as a conference paper at ICLR 2023

A SAMPLING METHODS

The problem is to find µ = Epf(x) =
∫
D f(x)p(x)dx where p is the target distribution on D ⊆ Rd,

when only allowed to sampling from some proposal distribution q on D. Define importance ratio
w(x) = p(x)/q(x)

A.1 IMPORTANCE SAMPLING

condition: q(x) > 0 whenever f(x)p(x) ̸= 0, i.e., supp(q) ⊇ supp(p · f); Eq|w(x)f(x)| < +∞

Ep(f(x)) =

∫
supp(q)

q(x)
p(x)

q(x)
f(x)dx = Eq [f(x)w(x)]

IS estimator of µ:

µ̂IS =
1

n

n∑
i=1

f(xi)w(xi), xi ∼ q

bias:
Eq (µ̂IS) = µ

variance:

Varq (µ̂IS) =
Varq(f(x)w(x))

n

=
1

n

∫
D

(f(x)p(x))2

q(x)
dx− µ2

=
1

n

∫
D

(f(x)p(x)− µq(x))2

q(x)
dx

How to select a good proposal p? The numerator is small when f(x)p(x)− µq(x) is close to zero,
that is, when q(x) is nearly proportional to f(x)p(x). From the denominator, we see that regions
with small values of q(x) greatly magnify whatever lack of proportionality appears in the numerator.

Theorem 7 (Optimality Theorem). For fixed n, The distribution q that minimizes the variances of
µ̂IS is

q =
|f(x)|p(x)∫
|f(x)|p(x)dx

∝ |f(x)|p(x)

A.2 SAMPLING-IMPORTANCE RESAMPLING

Step 1.(Sampling) Draw an independent random sample {x1, . . . , xn} from the proposal distribution
q.

Step 2.(Importance) Calculate the importance ratio for each xi: w(xi) = p(xi)/q(xi)

Step 3.(Resampling) Draw x∗ from the discrete distribution over {x1, . . . , xn} with sample proba-
bilities, ρ(xi) = wi/

∑n
j=1 wj .

A.3 BATCH SETTING

Question: If the problem is to compute µ = Epf(x), which is better, IS, SNIS, or SIR? Assume
IS and SNIS have sample B = {x1, . . . , xn}, while SIR resamples k items batch b̃ = {x̃1, . . . , x̃k}
from B with probability ρi proportional to wi. For fair comparison, we also consider batch version
IS-b and SNIS-b, which resample k items b̌ = {x̌1, . . . , x̌k} from B uniformly. The estimators are
as follows,

µ̂IS =
1

n

n∑
i=1

f(xi)w(xi)

13

Published as a conference paper at ICLR 2023

µ̂IS−b =
1

k

k∑
i=1

f(x̌i)w(x̌i)

µ̂SNIS =

∑n
i=1 f(xi)w(xi)∑n

i=1 w(xi)

µ̂SNIS−b =

∑k
i=1 f(x̌i)w(x̌i)∑k

i=1 w(x̌i)

µ̂SIR =
1

k

k∑
i=1

f(x̃i)

Proposition 8. µ̂SIR has the same bias as µ̂SNIS .

Proof.

EB∼qEb[µ̂SIR] = EB∼qEb[
1

k

k∑
j=1

f(x̃i)] = EB∼q[Ebf(x̃1)]

= EB∼q

n∑
i=1

wi∑n
j=1 wj

f(xi)

= EB∼qµ̂SNIS

Note that if p and q are normalized, w̄µ̂SIR is unbiased, where w̄ = 1
n

∑n
i=1 w (xi)

Proposition 9. µ̂SIR is consistent as n→∞

For variance, we compare the unbiased w̄µ̂SIR and µ̂IS−b. On the one side, µ̂IS and µ̂SNIS use
entire dataset B that have much more items than batch b and should have a low-variance estimate.
For another, µ̂SNIS−b is baised and if p and q are normalized, the bias-corrected version of µ̂SNIS−b

is just µ̂IS−b.

Proposition 10. For a fixed B, let µB = Ep[f(x)|B]. The variance of w̄µ̂SIR and µ̂IS−b are as
follows.

Var(µ̂IS−b|B) =
1

k

 1

n

n∑
j=1

w(xj)
2 ∥f(xj)∥22 − µ⊤

BµB

Var(w̄µ̂SIR|B) =
1

k

 w̄

n

n∑
j=1

wj ∥f(xj)∥22 − µ⊤
BµB

Proof. Since we condition on the dataset B, the only source of randomness is the sampling mecha-
nism. Each index is sampled independently so we have that,

Var(w̄µ̂SIR|B) =
1

k2

k∑
j=1

Var (w̄f(x̃k)|B) =
1

k
Var (w̄f(x̃1)|B)

and similarly

Var(µ̂IS−b|B) =
1

k
Var(w(x̌1)f(x̌1)|B)

14

Published as a conference paper at ICLR 2023

We can further simplify these expressions. For the IS-b estimator

Var(µ̂IS−b|B) =
1

k
Var(w(x̌1)f(x̌1)|B)

=
1

k

(
E[w(x̌1)

2f(x̌1)
⊤f(x̌1)|B]− E[w(x̌1)f(x̌1) | B]⊤E[w(x̌1)f(x̌1) | B]

)
=

1

k

(
E[w(x̌1)

2 ∥f(x̌1)∥22 | B]− µ⊤
BµB

)
since w(x̌1)f(x̌1) | B is unbiased for µB

=
1

k

 1

n

n∑
j=1

w(xj)
2 ∥f(xj)∥22 − µ⊤

BµB

For the SIR estimator, recalling that w̄ = 1
n

∑n
i=1 wi , we follow similar steps,

Var(w̄µ̂SIR|B) =
1

k
Var (w̄f(x̃1)|B)

=
1

k

(
E[w̄2f(x̃1)

⊤f(x̃1)|B]− E[w̄f(x̃1) | B]⊤E[w̄f(x̃1) | B]
)

=
1

k

(
E[w̄2 ∥f(x̃1)∥22 | B]− µ⊤

BµB

)
since w̄f(x̃1) | B is unbiased for µB

=
1

k

 n∑
j=1

w̄2 wj∑n
i=1 wi

∥f(xj)∥22 − µ⊤
BµB

=

1

k

 w̄

n

n∑
j=1

wj ∥f(xj)∥22 − µ⊤
BµB

Under what condition SIR estimator has a lower variance than IS-b?

Condition 1: ∥f(xj)∥22 > c/wj for samples where wj ≥ w̄, and ∥f(xj)∥22 < c/wj for samples
where wj < w̄, for some c > 0.

B PROOFS

B.1 PROOF OF PROPOSITION 1

Sampling-importance resampling (SIR) aims at drawing a random sample from a target distribution
p. Typically, SIR consists of three steps:

Step 1.(Sampling) Draw an independent random sample {x1, . . . , xn} from the proposal distribution
q.

Step 2.(Importance) Calculate the importance ratio for each xi: w(xi) = p(xi)/q(xi)

Step 3.(Resampling) Draw x∗ from the discrete distribution over {x1, . . . , xn} with sample proba-
bilities, ρ(xi) = wi/

∑n
j=1 wj .

15

Published as a conference paper at ICLR 2023

Proof. x∗ has cdf

Pr (x∗ ≤ x0) =

n∑
i=1

ρiI[xi ∈ (−∞, x0)]

=
1
n

∑n
i=1 wiI[xi ∈ (−∞, x0)]

1
n

∑n
i=1 wi

−→
n→∞

Eqw(x)I[x ∈ (−∞, x0)]

Eqw(x)

=

∫ x0

−∞ p(x)dx∫∞
−∞ p(x)dx

Note that even if p and q are unnormalized (but can be normalized), this method still works. The
sample size under SIR can be as large as desired. The less p resembles q, the larger the sample size
n will need to be in order that the distribution of x∗ well approximates p.

B.2 PROOF OF THEOREM 3

Proof. Note that there are two source of randomness for the estimator ∆̂SIR. First D =
{x1, . . . , xn} is sampled i.i.d. according to pβ . Second, our method draws x̃ i.i.d. from the dis-
crete distribution over {x1, . . . , xn} placing mass ρi on xi, forming a mini-batch b̃ = {x̃1, . . . , x̃k}.

ED∼pβ
Eb̃∼ρ[w̄∆̂SIR] = w̄ED∼pβ

Eb̃∼ρ[
1

k

k∑
j=1

∆(x̃j)] = w̄ED∼pβ
[Ex̃1∼ρ∆(x̃1)]

= w̄ED∼pβ

n∑
i=1

ρi∆(xi) = w̄ED∼pβ

n∑
i=1

wi∑n
j=1 wj

∆(xi)

= ED∼pβ

1

n

n∑
i=1

wi∆(xi) = Ex∼pβ
w∆(x)

= Ex∼pβ

π(a′|s′)
β(a′|s′)

∆(x) = Ex∼pβ

pπ(x)

pβ(x)
∆(x) = Ex∼pπ

∆(x)

= ∆TD

B.3 PROOF OF PROPOSITION 4

Proof. For IS, we have V[∆̂IS] =
1
k

(
1
n

∑n
j=1 w(xj)

2 ∥∆(xj)∥22 − µ⊤
BµB

)
, where k is the size of

the batch and µB is the expectation of the estimator. Since SIR is unbiased, we have V[w̄∆̂SIR] =
1
k

(
w̄
n

∑n
j=1 wj ∥∆(xj)∥22 − µ⊤

BµB

)
for SIR.

Now the problem is to show that
∑n

j=1 w(xj)
2∥∆(xj)∥22 ≥ w̄

∑n
j=1 w(xj)∥∆(xj)∥22.

n∑
j=1

w(xj)
2∥∆(xj)∥22 ≥ w̄

n∑
j=1

w(xj)∥∆(xj)∥22 (15)

⇔
n∑

j=1

ρ2j∥∆(xj)∥22 ≥
1

n

n∑
j=1

ρj∥∆(xj)∥22, (16)

where ρj =
w(xj)∑n
i=1 w(xi)

=
w(xj)
nw̄ .

16

Published as a conference paper at ICLR 2023

Assume that normalized gradient is applied: ∥∆(xj)∥22 = 1. Then according to Cauchy-Schwarz
Inequality, Eqn. (16) hold.

n

n∑
j=1

ρ2j =

 n∑
j=1

12

 n∑
j=1

ρ2j

 ≥
 n∑

j=1

1× ρj

2

= 1 =

n∑
j=1

ρj

B.4 PROOF OF PROPOSITION 5

Proof. Assume that (x1, ..., .xn) is in descending order in terms of ∥∆(xi)∥22, otherwise we could
rearrange these items. Considering that ∥∆(x)∥22 is in positive relation to 1

β(a′|s′) for x ∈ D and
policy π is uniform. To simplify notation, we use ∥f(x)∥ to denote ∥∆(x)∥22. We have

∥f(x1)∥ ≥ ∥f(x2)∥ ≥ · · · ≥ ∥f(xn)∥. (17)

ρ1 ≥ ρ2 ≥ · · · ≥ ρn, (or w(x1) ≥ w(x2) ≥ · · · ≥ w(xn)) (18)

Let denote by j∗ the index of largest ρj satisfying ρj <
1
n , i.e.,

j∗ = min

{
j : ρj <

1

n
, 1 ≤ j ≤ n

}
It is easy to show j∗ > 1. We have ρj − 1

n ≥ 0 when 1 ≤ j ≤ j∗ − 1 and ρj − 1
n < 0 when

j∗ ≤ j ≤ n. Then
n∑

j=1

ρj∥f(xj)∥2
(
ρj −

1

n

)

=

j∗−1∑
j=1

ρj∥f(xj)∥2
(
ρj −

1

n

)
+

n∑
j=j∗

ρj∥f(xj)∥2
(
ρj −

1

n

)

≥
j∗−1∑
j=1

ρj∗−1∥f(xj∗−1)∥2
(
ρj −

1

n

)
+

n∑
j=j∗

ρj∥f(xj)∥2
(
ρj −

1

n

)

=ρj∗−1∥f(xj∗−1)∥2
1−

n∑
j=j∗

ρj −
j∗ − 1

n

+

n∑
j=j∗

ρj∥f(xj)∥2
(
ρj −

1

n

)

=

n∑
j=j∗

ρj∗−1∥f(xj∗−1)∥2
(
1

n
− ρj

)
+

n∑
j=j∗

ρj∥f(xj)∥2
(
ρj −

1

n

)

=

n∑
j=j∗

(
ρj∗−1∥f(xj∗−1)∥2 − ρj∥f(xj)∥2

)(1

n
− ρj

)
≥ 0.

B.5 PROOF OF PROPOSITION 6

Assume that ∀x ∈ D, ∆(x) = h, where h is a constant vector. Let η ∈ [0, 1], w̄η denote
1
n

∑n
j=1 w(sj , aj)

η . Assume that
∑n

j=1 w(sj , aj) ≥ n, then the following holds

V[w̄η∆̂
η
SIR] ≤ V[w̄∆̂SIR]. (19)

Proof. we have V[w̄∆̂SIR] =
1
k

(
w̄
n

∑n
j=1 wj ∥∆(xj)∥22

)
,

V[w̄η∆̂
η
SIR] =

1
k

(
w̄η

n

∑n
j=1 w

η
j ∥∆(xj)∥22

)
.

17

Published as a conference paper at ICLR 2023

When normalized gradient is applied, the problem is to show that

w̄

n∑
j=1

wj ≥ w̄η

n∑
j=1

wη
j

⇔
n∑

j=1

wj ≥
n∑

j=1

wη
j

According to Holder Inequality, we have n∑
j=1

xα
j

 1
α
 n∑

j=1

1
α

α−1

1− 1
α

≥
n∑

j=1

xj

⇔

 n∑
j=1

xα
j

 1
α

n1− 1
α ≥

n∑
j=1

xj

By choosing xj = wη
j and α = 1

η , we have

(

n∑
j=1

wj)
ηn1−η ≥

n∑
j=1

wη
j

According to the condition
∑n

j=1 wj ≥ n, The following holds,

n∑
j=1

wj = (

n∑
j=1

wj)
η+1−η ≥ (

n∑
j=1

wj)
ηn1−η ≥

n∑
j=1

wη
j

C EXPERIMENTAL DETAILS AND EXTENDED RESULTS

C.1 EXPERIMENTAL DETAILS

Table 3: Hyperparameters of policy training in IAC.

Hyperparameter Value

IAC

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4 with cosine schedule
Batch size 256
Discount factor 0.99
Number of iterations 106

Target update rate τ 0.005
Policy update frequency 2
Inverse temperature of AWR β {0.25, 5} for Gym-MuJoCo

{10} for AntMaze
Variance of Gaussian Policy 0.1

Architecture Actor input-256-256-output
Critic input-256-256-1

For the MuJoCo locomotion tasks, we average returns of over 10 evaluation trajectories and 5 ran-
dom seeds, while for the Ant Maze tasks, we average over 100 evaluation trajectories and 5 random
seeds. Following the suggestions of the authors of the dataset, we subtract 1 from the rewards for

18

Published as a conference paper at ICLR 2023

the Ant Maze datasets. We choose TD3 (Fujimoto et al., 2018) as our base algorithm and opti-
mize a deterministic policy. To compute the SIR/IS ratio, we need the density of any action under
the deterministic policy. For this, we assume all policies are Gaussian with a fixed variance 0.1.
Note that IAC has no additional hyperparameter to tune. The only hyperparameter we tuned is the
inverse temperature β in AWR for PI. We use β = 10 for Ant Maze tasks and β = {0.25, 5} for
MuJoCo locomotion tasks (β = 0.25 for expert and medium-expert datasets, β = 5 for medium,
medium-replay, random datasets). And following previous work (Brandfonbrener et al., 2021), we
clip exponentiated advantages to (−∞, 100]. All hyperparameters are included in Table 3.

C.2 LEARNING CURVES OF IAC

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

halfcheetah-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

halfcheetah-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

hopper-medium-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

15

30

Ep
is

od
e

R
et

ur
n

hopper-random-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-expert-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-replay-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

walker2d-medium-v2

Figure 5: Learning Curves of IAC on MuJoCo Locomotion Tasks.

D ABLATION ON BEHAVIOR POLICY

D.1 VAE BEHAVIOR POLICY

In this section, we conduct ablation study on behavior policy. Like previous works (Fujimoto et al.,
2019; Wu et al., 2022), we consider to learn the behavior density β̂ explicitly using conditional
variational auto-encoder (Kingma & Welling, 2013; Sohn et al., 2015). Specifically, β(a|s) can
be approximated by a Deep Latent Variable Model pω1

(a|s) =
∫
pω1

(a|z, s)p(z|s)dz with prior
p(z|s) = N (0, I). Rather than computing pω1

(a|s) directly by marginalization, VAE construct a
lower bound on the likelihood pω1

(a|s) by introducing an approximate posterior qω2
(z|a, s):

log pω1(a|s) = logEqω2
(z|a,s)

[
pω1(a, z|s)
qω2

(z|a, s)

]
≥ Eqω2

(z|a,s)

[
log

pω1(a, z|s)
qω2

(z|a, s)

]
= Eqω2

(z|a,s) [log pω1
(a|z, s)]−KL [qω2

(z|a, s)∥p(z|s)]
def
= JELBO(s, a;ω).

(20)

It converts the difficult computation problem into an optimization problem. Instead of maximizing
the log-likelihood log pω1

(a|s) directly, we now optimize parameters ω1 and ω2 jointly by maximiz-
ing the evidence lower bound (ELBO) JELBO(s, a;ω). After pre-training the VAE, we simply use
JELBO(s, a;ω) to approximate log β(a|s) in Eqn. (7).

19

Published as a conference paper at ICLR 2023

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-umaze-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-umaze-diverse-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-medium-play-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-medium-diverse-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-large-play-v2

0.00 0.25 0.50 0.75 1.00
Gradient Steps (×106)

0

50

100

Ep
is

od
e

R
et

ur
n

antmaze-large-diverse-v2

Figure 6: Learning Curves of IAC on AntMaze Tasks.

Table 4: Averaged normalized scores on MuJoCo locomotion on five seeds. We compare
IAC with IAC-MM(IAC with multi modal behavior policy), IAC-SR(IAC with state ratio),
IAC-VAE(IAC with VAE behavior policy), and IAC-SNIS(IAC with self normalized im-
portance sampling). Note that m=medium, m-r=medium-replay, r=random, m-e=medium-
expert, and e=expert.

Dataset IAC-MM IAC-SR IAC-VAE IAC-SNIS IAC
halfcheetah-m-v2 51.9±0.0 51.4±0.3 52.2±0.2 51.3±0.3 51.6±0.3
hopper-m-v2 88.9±12.7 61.5±0.3 91.9±18.3 82.9±10.2 74.6±11.5
walker2d-m-v2 84.8±0.7 84.7±1.0 85.2±0.5 82.8±0.7 85.2±0.4
halfcheetah-m-r-v2 47.5±0.0 46.4±0.0 47.6±0.4 47.9±0.6 47.2±0.3
hopper-m-r-v2 103.9±0.2 100.9±1.1 103.1±1.1 99.9±1.0 103.2±1.0
walker2d-m-r-v2 90.9±1.0 92.7±1.6 93.6±0.4 92.7±0.3 93.2±1.8
halfcheetah-m-e-v2 92.7±0.4 94.7±1.6 87.8±7.4 87.1±9.2 92.9±0.7
hopper-m-e-v2 108.3±0.0 109.4±0.5 111.6±0.5 107.8±0.7 109.3±4.0
walker2d-m-e-v2 110.2±0.1 110.1±0.1 109.9±0.5 109.7±0.4 110.1±0.1
halfcheetah-e-v2 94.6±0.0 94.5±0.0 94.6±0.3 94.9±0.2 94.5±0.5
hopper-e-v2 111.0±0.5 111.1±0.1 111.4±0.4 111.1±0.0 110.6±1.9
walker2d-e-v2 109.8±0.1 109.4±0.1 109.6±0.1 109.7±0.2 114.8±1.2
halfcheetah-r-v2 21.3±0.6 19.2±0.8 21.0±0.7 23±0.9 20.9±1.2
hopper-r-v2 20.4±11.1 19.2±9.5 31.3±0.0 32±0.2 31.3±0.3
walker2d-r-v2 0.4±0.2 7.5±7.7 1.3±2.3 0±0.0 3.0±1.3
locomotion-v2 total 1135.8 1112.7 1152.1 1132.8 1142.4

We term this variant IAC-VAE. The results of IAC-VAE are shown in Table 4 and Table 5. Benefiting
from the VAE estimator, IAC-VAE obtains better results in MuJoCo locomotion tasks.

D.2 CATEGORICAL BEHAVIOR POLICY

Modeling the behavior policy as a unimodal Gaussian distribution will limit its flexibility and rep-
resentation ability. We consider capturing multi modes of the behavior policy. To that end, We

20

Published as a conference paper at ICLR 2023

Table 5: Averaged normalized scores on AntMaze on five seeds. We compare IAC
with IAC-MM, IAC-SR, IAC-VAE, and IAC-SNIS. Note that u=Umaze, u-d=Umaze-
diverse, m-p=medium-replay, m-d=medium-diverse, l-p=large-replay, and l-d=large-
diverse.

Dataset IAC-MM IAC-SR IAC-VAE IAC-SNIS IAC
antmaze-u-v2 52.7±2.9 72.1±5.0 84.0±6.6 40.0±9.2 77.6±3.8
antmaze-u-d-v2 35.7±10.2 65.3±6.9 55.0±6.1 2.0±3.5 71.2±8.6
antmaze-m-p-v2 47.2±4.1 70.1±9.4 71.0±4.4 78.0±7.5 72.0±7.6
antmaze-m-d-v2 1.6±0.3 65.2±7.2 71.7±0.6 72.0±7.8 74.2±4.1
antmaze-l-p-v2 15.9±2.0 51.2±5.9 41.0±11.5 47.3±10.0 57.0±7.4
antmaze-l-d-v2 6.6±1.3 40.1±11.3 51.3±6.5 30.0±10.5 47.2±9.4
antmaze-v2 total 159.8 364 374 269.3 399.2

experiment by modeling the action space as a discrete. Considering that the action range is [-1, 1],
we split each action into 40 categories and each category has a range of 0.05. Then the behavior
policy is estimated by cross-entropy. In this setting, the behavior policy is multi-modal.

We term this variant IAC-MM. We compare this variant and IAC and the result is shown in Table 4
and Table 5. The result shows in several settings the variant has marginally better performance. But
the overall performance is worse compared to IAC. Especially in AntMaze tasks, IAC-MM suffers
a performance drop. The reason might be that the classification task ignores the relation between
nearby actions.

E DISCRETE DOMAIN

We also test IAC and IAC-w/o-β on the CartPole task which has discrete action space. The dataset
contains the samples in the replay buffer when we train a discrete SAC(soft-actor-critic) until con-
vergence. The result is shown in Fig. 7. IAC-w/o-β has a much worse final performance than IAC.
Also, the maximum performance during training is worse than IAC.

Figure 7: Learning Curves of CartPole task.

F OTHER BENCHMARKS

To make a comprehensive comparison, we also compare AWAC and CRR with IAC. The results of
MuJoCo locomation and AntMaze tasks are shown in Table 6 and Table 7, respectively. The results
show that our methods have better performance than these baselines.

21

Published as a conference paper at ICLR 2023

Table 6: Averaged normalized scores on MuJoCo locomotion on five seeds. Other than the baselines
above, we compare with AWAC and CRR. Note that m=medium, m-r=medium-replay, r=random, m-
e=medium-expert, and e=expert.

Dataset BC OneStep RL TD3+BC CQL IQL AWAC CRR IAC
halfcheetah-m-v2 42.0±1.7 50.4±0.4 48.3±0.3 47.0±0.5 47.4±0.2 47.9±0.1 47.1±0.1 51.6±0.3
hopper-m-v2 56.2±4.3 87.5±10.9 59.3±4.2 53.0±28.5 66.2±5.7 59.8±0.7 38.1±1.8 74.6±11.5
walker2d-m-v2 71.0±6.5 84.8±2.9 83.7±2.1 73.3±17.7 78.3±8.7 83.1±1.6 59.7±0.7 85.2±0.4
halfcheetah-m-r-v2 36.4±2.7 42.7±1.3 44.6±0.5 45.5±0.7 44.2±1.2 44.8±0.1 44.4±0.3 47.2±0.3
hopper-m-r-v2 21.8±0.5 98.5±2.7 60.9±18.8 88.7±12.9 94.7±8.6 69.8±0.1 25.5±1.6 103.2±1.0
walker2d-m-r-v2 24.9±6.3 61.7±16.3 81.8±5.5 81.8±2.7 73.8±7.1 78.1±5.6 27.0±0.7 93.2±1.8
halfcheetah-m-e-v2 59.6±5.8 75.1±14.1 90.7±4.3 75.6±25.7 86.7±5.3 64.9±2.3 85.2±1.9 92.9±0.7
hopper-m-e-v2 51.7±2.4 108.6±4.1 98.0±9.4 105.6±12.9 91.5±14.3 100.1±9.9 53.0±5.1 109.3±4.0
walker2d-m-e-v2 101.2±3.6 111.3±0.4 110.1±0.5 107.9±1.6 109.6±1.0 110.0±0.2 91.3±11.4 110.1±0.1
halfcheetah-e-v2 92.9±0.5 88.2±6.5 96.7±1.1 96.3±1.3 95.0±0.5 81.7±4.2 93.5±0.7 94.5±0.5
hopper-e-v2 110.9±0.3 106.9±4.1 107.8±7 96.5±28.0 109.4±0.5 109.5±1.5 108.7±3.0 110.6±1.9
walker2d-e-v2 107.7±0.1 110.7±0.4 110.2±0.3 108.5±0.5 109.9±1.2 110.1±0.0 108.9±0.5 114.8±1.2
halfcheetah-r-v2 2.6±0.0 2.3±0.0 11.0±1.1 17.5±1.5 13.1±1.3 6.1±0.2 13.6±1.1 20.9±1.2
hopper-r-v2 4.1±0.1 5.6±1.6 8.5±0.6 7.9±0.4 7.9±0.2 9.2±0.6 16.1±6.0 31.3±0.3
walker2d-r-v2 1.2±0.0 6.9±1.2 1.6±1.7 5.1±1.3 5.4±1.2 0.2±0.7 4.9±0.8 3.0±1.3
locomotion-v2 total 784.2 1041.2 1013.2 1010.2 1033.1 975.6 817 1142.4

Table 7: Averaged normalized scores on AntMaze on five seeds. Other than the baselines above,
we compare with AWAC and CRR. Note that u=Umaze, u-d=Umaze-diverse, m-p=medium-
replay, m-d=medium-diverse, l-p=large-replay, and l-d=large-diverse.

Dataset BC OneStep RL TD3+BC CQL IQL AWAC CRR IAC
antmaze-u-v2 66.8±6.7 54.0±3.4 73.0±34.0 82.6±5.7 89.6±4.2 80.0±1.7 43.8±2.3 77.6±3.8
antmaze-u-d-v2 56.8±2.6 57.8±14.0 47.0±7.3 10.2±6.7 65.6±8.3 52.0±6.9 42.8±1.2 71.2±8.6
antmaze-m-p-v2 0.0±0.0 0.0±0.0 0.0±0.0 59.0±1.6 76.4±2.7 0.0±0.0 0.4±0.0 72.0±7.6
antmaze-m-d-v2 0.0±0.0 0.6±0.5 0.2±0.4 46.6±24.0 72.8±7.0 0.2±0.2 0.5±0.2 74.2±4.1
antmaze-l-p-v2 0.0±0.0 0.0±0.0 0.0±0.0 16.4±17.1 42.0±3.8 0.0±0.0 0.0±0.0 57.0±7.4
antmaze-l-d-v2 0.0±0.0 0.2±0.4 0.0±0.0 3.2±4.1 46.0±4.5 0.0±0.0 0.0±0.0 47.2±9.4
antmaze-v2 total 123.6 112.6 120.2 218 392.4 132.2 87.6 399.2

G OTHER ABLATIONS

G.1 ABLATION ON STATE RATIO

Using state-distribution correction dπ(s)
dβ(s)

might be helpful to IAC. For most RL settings, the dimen-
sion of the state is larger than that of the action. Since high dimensional estimation is challenging,
it is difficult to estimate dπ(s) and dβ(s). Thus we sort to estimate dπ(s)

dβ(s)
by following the pa-

per ‘Infinite-Horizon Off-Policy Estimation’. We term this variant IAC-SR. The result is shown in
Table 4 and Table 5. It indicates that introducing state-distribution correction worsens the perfor-
mance. One reason is that the approximation for dπ(s)

dβ(s)
is not accurate and it will introduce bias to

the algorithm.

G.2 ABLATION ON SELF-NORMALIZED IMPORTANCE SAMPLING

Considering that self-normalized importance sampling also has a lower variance than importance
sampling, we test the performance of a variant with self-normalized importance sampling. This
variant is termed IAC-SNIS. The result of IAC-SNIS is shown in Table 4 and Table 5. The self-
normalized importance sampling variant performs comparably to IAC on MuJoCo tasks but per-
forms worse than IAC on AntMaze tasks.

G.3 ABLATION ON η

To study the hyperparameter η’s effect on our proposed method, We run the experiments of using
different η in {0.1, 0.3, 0.5, 0.7, 0.9}. The result is shown in Fig. 8. It can be seen that the variant
with a large η performs better than with a small η .

22

Published as a conference paper at ICLR 2023

0.1 0.3 0.5 0.7 0.90

15

30

Ep
is

od
e

R
et

ur
n

halfcheetah-random-v2

IAC

0.1 0.3 0.5 0.7 0.90

20

40

Ep
is

od
e

R
et

ur
n

hopper-random-v2

IAC

0.1 0.3 0.5 0.7 0.90

40

80

Ep
is

od
e

R
et

ur
n

antmaze-large-play-v2

IAC

0.1 0.3 0.5 0.7 0.90

40

80

Ep
is

od
e

R
et

ur
n

antmaze-large-diverse-v2

IAC

Figure 8: The effect of η on IAC.

Table 8: Runtime of TD3BC, CQL, IQL, IAC for halfcheetah-medium-replay on a
GeForce RTX 3090.

Algorithm TD3BC IQL CQL IAC pre-training in IAC
Runtime 1h 1h50min 4h10min 2h30min 2min

G.4 RUNTIME

We test the runtime of IAC on halfcheetah-medium-replay on a GeForce RTX 3090. The results of
IAC and other baselines are shown in Table 8. It takes 2h30min for IAC to finish the task, which is
comparable to other baselines. Note that it only takes two minutes for the pre-training part.

23

	Introduction
	Related works
	Preliminaries
	In-sample actor critic
	sampling-importance resampling
	In-sample actor critic
	Lower variance
	Practical algorithm

	Discussion
	One-step and multi-step dynamic programming
	Other choices of IS

	Experiments
	Variance
	Extrapolation error
	Comparisons on offline RL benchmarks

	Conclusion
	Sampling Methods
	Importance Sampling
	Sampling-Importance Resampling
	Batch Setting

	Proofs
	Proof of Proposition 1
	Proof of theorem:main
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

	Experimental Details and Extended Results
	Experimental Details
	Learning Curves of IAC

	Ablation on behavior policy
	VAE behavior policy
	Categorical behavior policy

	Discrete domain
	Other benchmarks
	Other Ablations
	Ablation on state ratio
	Ablation on self-normalized Importance Sampling
	Ablation on
	Runtime

