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Abstract

Knowledge-based Visual Question Answer-001
ing (KVQA) tasks require answering ques-002
tions about images using extensive background003
knowledge. Despite significant advancements,004
generative models often struggle with these005
tasks due to the limited integration of ex-006
ternal knowledge. In this paper, we intro-007
duce EchoSight, a novel multimodal Retrieval-008
Augmented Generation (RAG) framework that009
enables large language models (LLMs) to an-010
swer visual questions requiring fine-grained011
encyclopedic knowledge. To strive for high-012
performing retrieval, EchoSight first searches013
wiki articles by using visual-only information,014
subsequently, these candidate articles are fur-015
ther reranked according to their relevance to016
the combined text-image query. This approach017
significantly improves the integration of mul-018
timodal knowledge, leading to enhanced re-019
trieval outcomes and more accurate VQA re-020
sponses. Our experimental results on the E-021
VQA and InfoSeek datasets demonstrate that022
EchoSight establishes new state-of-the-art re-023
sults in knowledge-based VQA, achieving an024
accuracy of 41.8% on E-VQA and 31.3% on025
InfoSeek.026

1 Introduction027

Visual Question Answering (VQA) addresses the028

challenge of enabling machines to understand and029

respond to questions about visual content, typically030

images or videos. Broadly, this task can be divided031

into two categories: standard VQA (Antol et al.,032

2015; Goyal et al., 2017) with questions that can033

be answered directly from the visual content, for034

example, counting objects, identifying colors, or035

recognizing simple actions, which rely solely on036

commonsense and information present in the im-037

age; and Knowledge-based VQA (Marino et al.,038

2019; Schwenk et al., 2022; Mensink et al., 2023;039

Chen et al., 2023) requiring additional context or040

external knowledge, such as historical facts, de-041

tailed object properties, or specific situational con- 042

texts not evident in the visual content. 043

Addressing these two types of questions presents 044

different challenges for VQA systems. Questions 045

that draw answers directly from visual content de- 046

mand robust image understanding capabilities, en- 047

compassing tasks such as object detection, scene 048

recognition, and spatial reasoning. Conversely, 049

questions requiring external knowledge call for ad- 050

ditional mechanisms to access and integrate infor- 051

mation from external sources. In this paper, we 052

focus on the latter type of visual question answer- 053

ing, by building a retrieval-augmented multimodal 054

system, that enables searching an external knowl- 055

edge base for more nuanced understanding and 056

accurate responses. 057

Despite the recent accomplishments in devel- 058

oping Visual-language Models (VLMs) (Achiam 059

et al., 2023; Team et al., 2023; Abdin et al., 2024; 060

Liu et al., 2024), knowledge-based VQA remains 061

challenging. This complexity primarily stems from 062

two aspects. (i) Existing VLMs struggle to ade- 063

quately encode all essential knowledge, due to its 064

limited model capacity, and infrequent inclusion of 065

encyclopedic, long-tail information in their train- 066

ing data (Mensink et al., 2023). (ii) The visual 067

component of the questions often provides limited 068

help in addressing the queries, as establishing a 069

meaningful connection between entity knowledge 070

and visual attributes can be difficult. For exam- 071

ple, an image of a church alone does not reveal 072

information about its construction date. 073

In this paper, we introduce EchoSight, a novel 074

retrieval-augmented vision-language system de- 075

signed for knowledge-based question answering. 076

EchoSight employs a dual-stage search mechanism 077

that integrates a retrieval-and-reranking process 078

with the Retrieval Augmented Generation (RAG) 079

paradigm. Initially, the system performs a visual- 080

only retrieval from an external knowledge base, 081

to effectively narrow the knowledge search space, 082
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Figure 1: For visual questions such as “When was the 1st ascent of this mountain?”, visual-only search methods
consider image similarity only, ignoring the textual details of the accompanying article. By incorporating multimodal
reranking, the correct entry, accounting for both visual and textual information, can be accurately identified.

only focusing on candidates that are closely align083

with the visual context of the reference image. In084

the subsequent multimodal reranking stage, the sys-085

tem refines the candidates ranking by incorporat-086

ing both the reference image and the textual query.087

This approach guarantees that the selected results088

are pertinent not only visually, but also contextu-089

ally to the multimodal query. After acquiring the090

most relevant information through this coarse-to-091

fine grained search, our model generates the precise092

answer to the posed question.093

In summary, our contributions are three-094

fold: First, we propose a multimodal retrieval-095

augmented generation framework, termed as096

EchoSight, that enables LLMs to answer visual097

questions that require fine-grained encyclopedic098

knowledge; Second, we adopt a retrieval-and-099

reranking scheme to improve retrieval performance,100

specifically, it first searches images with visual-101

only information, and then conduct a fine-grained102

multimodal reranking on the candidates; Third,103

we conduct thorough experiments on both Ency-104

clopedic VQA (Mensink et al., 2023) and InfoS-105

eek (Chen et al., 2023) benchmarks, EchoSight106

demonstrates state-of-the-art performance on both107

benchmarks, significantly outperforming existing108

VLMs or other retrieval-augmented architectures.109

2 Method110

This section starts with the problem formulation111

of retrieval-augmented VQA (Sec. 2.1), followed112

by detailing the retrieval-and-reranking module in113

EchoSight (Sec. 2.2), and finally the answer gener-114

ation module (Sec. 2.3).115

2.1 Problem Formulation 116

Given a reference image, and question of free-form 117

texts, our goal is to construct a visual question 118

answering system, that can benefit from the access 119

of an external knowledge base. In our case, this is 120

a million-scale dataset of entity articles and their 121

corresponding images from Wikipedia webpage, 122

i.e., B = {(a1, I1), . . . , (an, In)}. 123

The overall architecture of our proposed method, 124

EchoSight, is illustrated in Figure 2. It consists of 125

four main components: an external knowledge base 126

(KB), a retriever, a reranker, and an answer genera- 127

tor. (i) The process begins with the retriever, which 128

utilizes the reference image to filter and extract rel- 129

evant KB entries with similar images; (ii) Next, the 130

reranker takes these candidate entries and employs 131

their textual contents to have them reranked, based 132

on their relevance to both the reference image and 133

the textual question; (iii) Finally, the reranked KB 134

entries are fed into the answer generator to produce 135

the final answer. 136

2.2 Retrieval and Reranking 137

The goal of this stage is to identify relevant en- 138

tries from a large-scale external knowledge base 139

using the given reference image and question. We 140

employ a two-stage procedure: first, a visual-only 141

search identifies candidates that are visually similar 142

to the query image. Subsequently, a multimodal 143

reranking process evaluates both visual and textual 144

information to reorder the retrieved entries. This 145

ensures that the most pertinent article entry can be 146

ranked at the top, facilitating efficient and accurate 147

answer generation. 148
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Figure 2: The overall view of our proposed EchoSight. (i) Given a visual question with an image, the retriever
searches the reference image in the knowledge base for top k similar images to get their corresponding Wikipedia
Entries. (ii) After changing the granularity to sections, all the sections of retrieved entries are then reranked with
the maximum pairwise similarity of their textual embeddings and the reference image+question’s Q-Former query
tokens. (iii) The top reranked section will be utilized as RAG prompt for the LLM to generate the ultimate answer.

Visual-only Search. Given the extensive size of the149

knowledge base, potentially encompassing millions150

of image-article pairs, optimizing the efficiency of151

the image search process is critical. To achieve this,152

we transform all images into vectors and utilize the153

cosine similarity metric to assess their proximity to154

a reference image.155

SΩ =

{
si =

〈
vr

||vr||
· vi
||vi||

〉
, i = 1, . . . , n

}
,156

where vr = Φvis(Iref) and vi = Φvis(Ii) denote157

the visual embedding for reference image and158

database image, respectively, computed by a pre-159

trained visual encoder. We employ the FAISS li-160

brary for vector search, and keep the top k best-161

matched images and their corresponding wiki ar-162

ticle entries from the knowledge base, i.e., Ev =163

{(a1, I1), . . . , (ak, Ik)}, k ≪ n.164

Multimodal Reranking. After initially filtering165

the candidates based on visual similarities, the166

reranker module integrates both textual and visual167

inputs from the multimodal query and the top k re-168

trieved Wikipedia article entries. This stage aims to169

prioritize entries that are most pertinent to the ques-170

tion, ensuring the articles with highest relevancy171

are ranked at the top.172

Specifically, we employ the Q-Former (Li et al.,173

2023b) architecture to extract multimodal informa-174

tion from the reference image and textual question,175

resulting 32 query tokens. 176

zim = Q-Former (Iref, Q)i , 177

where zim denotes the ith query token embedding 178

of the reference image Iref and textual question Q. 179

On the candidates side, we break each of the 180

wiki articles into sections, with each section pre- 181

fixed by the article’s title, for example, ai = 182

{seci1, seci2, . . . , secip}, and further encode them 183

with Q-Former’s text encoder. We initialize the 184

Q-Former with BLIP-2’s weights and fine-tunes 185

with all parameters open except the visual encoder. 186

The reranking score for each section is calcu- 187

lated as follows: 188

Ssec
r = max

1≤i≤Nq

(
sim(zim, zsec

s )
)
, 189

where Ssec
r is the reranking score for section “sec”, 190

determined using the Q-Former’s Image-to-Text 191

Correspondence (ITC) method. This method com- 192

putes the highest pairwise similarity between each 193

multimodal query token embedding zim from the 194

reference image and question pair, and the [CLS] 195

token embedding of a Wikipedia article section zsec
s . 196

Nq denotes the number of query tokens. 197

In the final step of multimodal reranking, the 198

reranker combines the visual similarity score from 199

the previous stage and the reranking score into a 200

weighted sum: 201

secvl = argmax
sec∈Ev

(α · Ssec
v + (1− α) · Ssec

r ) , 202
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where secvl refers to the highest-ranked entry sec-203

tion produced by the reranker, α is a weight pa-204

rameter that balances the visual similarity score205

Ssec
v and the reranking score Ssec

r . Note that Ssec
v is206

calculated in the visual-only search stage using the207

best-matched image from the wiki entry to which208

sec belongs.209

Reranker Training. Here, we implement hard210

negative sampling within a contrastive learning211

framework. Specifically, hard negative samples212

are specifically selected from examples that are213

visually similar yet contextually distinct, i.e., the214

initial visual-only retrieval efforts were unsuccess-215

ful. With such training, the reranker is thus forced216

to select the most relevant articles for the multi-217

modal queries, enhancing the overall accuracy and218

effectiveness of the system (Robinson et al., 2021).219

The training objective of the reranker is given as220

follows:221

L = − log
exp(max1≤i≤Nq sim(zim, zs))∑N
j=1 exp(max1≤i≤Nq sim(zim, zjs))

,222

where zs denotes the positive section embedding,223

and N is the total number of samples including224

both positive and negatives.225

2.3 Answer Generation with LLMs226

Once the relevant entries are identified from the227

knowledge base, large language models (LLMs)228

will integrate such information to answer the ques-229

tions, i.e., A = LLM(secvl, Q), where the off-the-230

shelf LLM acts as an answer generator, secvl de-231

notes the retrieved wiki article section, and Q refers232

to the target question. Comparing to existing gen-233

erative VLMs, such retrieval-augmented genera-234

tion (RAG) (Lewis et al., 2020), enables the model235

with the essential contextual knowledge, improving236

the system’s ability to handle complex questions237

that demand precise and detailed knowledge.238

3 Experiments239

3.1 Datasets240

Encyclopedic-VQA (Mensink et al., 2023) con-241

tains 221k unique question and answer pairs each242

matched with (up to) 5 images, resulting in a to-243

tal of 1M VQA samples. These images are de-244

rived from iNaturalist 2021 (iNat21) (Van Horn245

et al., 2021) and Google Landmarks Dataset V2246

(GLDv2) (Weyand et al., 2020). The visual ques-247

tions focus on the fine-grained categories and in-248

stances. There are single-hop and two-hop ques-249

tions that require different reasoning steps in the 250

dataset. Notably, the dataset provides a controlled 251

knowledge base with 2M Wikipedia articles with 252

images, ensuring all the questions can be answered 253

if correct Wikipedia article is given. For our ex- 254

periments on E-VQA, we consider the single-hop 255

questions (900K IQA triplets) using the provided 256

2M knowledge base. 257

InfoSeek (Chen et al., 2023) comprises 1.3M vi- 258

sual information-seeking questions, covering more 259

than 11K visual entities from OVEN (Hu et al., 260

2023a). InfoSeek provides a knowledge base with 261

100K Wikipedia articles with images. The ques- 262

tions of the dataset are diverse and the answers 263

can be referenced from Wikipedia. There are a 264

human-labeled 8.9K collection and an automated 265

generated 1.3M collection in InfoSeek. Due to the 266

unavailability of groundtruth for test split, we re- 267

port evaluation results on the validation split. We 268

note that, the original authors did not publicly re- 269

lease their knowledge base, we therefore filter a 270

100K knowledge base from E-VQA instead. We 271

will release ours to the community for reproduction 272

and future comparison. 273

3.2 Metrics 274

To evaluate the performance of our proposed 275

retrieval-augmented QA model, we focus on two 276

aspects, namely, retrieval and question answering. 277

The retrieval results gauge the system’s capabil- 278

ity to accurately retrieve relevant articles from a 279

large-scale multimodal knowledge base, while the 280

question answering results assess its holistic effec- 281

tiveness in providing precise and correct answers 282

to visual questions 283

Metrics for Retrieval. We utilize the standard 284

metric Recall@K. Recall@K assesses whether the 285

correct article entries appear among the top k re- 286

trieved results. An article is considered correct only 287

if its URL exactly matches the target URL, making 288

our retrieval evaluation more stringent and precise 289

compared to methods that only match the content 290

of answers to the retrieved articles. 291

Metrics for Question Answering. Here, we fol- 292

low the conventional practise, use two different 293

metrics depending on the considered datasets. For 294

E-VQA dataset (Mensink et al., 2023), we use the 295

BEM (Balanced Evaluation Metric) score (Zhang 296

et al., 2019), while for the InfoSeek dataset (Chen 297

et al., 2023), we employ the soft match score. 298

These metrics are chosen to align with the eval- 299
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Method Recall@K
K=1 K=5 K=10 K=20

Google Lens 47.4 62.5 64.7 65.2
CLIP I-T 3.3 7.7 12.1 16.5

EchoSight
w/o. Reranking 13.3 31.3 41.0 48.8
w. Reranking 36.5 47.9 48.8 48.8

Table 1: E-VQA retrieval experiments. While Google
Lens can be recognized as a upperbound in E-VQA,
CLIP I-T indicates the retrieval from the reference im-
age to Wikipedia entry texts with CLIP (Radford et al.,
2021).

uation settings specific to each dataset.300

3.3 Implementation Details301

The Retriever. We compute the visual embedding302

for the reference images and images from database303

with a frozen Eva-CLIP vision encoder (Eva-CLIP-304

8B) (Sun et al., 2024). The pooled last-layer embed-305

ding are used as the features for computing cosine306

similarity between images, with FAISS library.307

The Reranker. The reranking module is initialized308

with pre-trained BLIP-2 (Li et al., 2023b) weights309

using the LAVIS Library (Li et al., 2023a). The310

number of query tokens Nq is 32 and weighting311

parameter α is 0.5. Instead of using in-batch con-312

trastive learning, we employ hard negative sam-313

pling, where each positive sample is paired with314

N = 24 negative samples.315

In practise, a positive sample is constructed us-316

ing the evidence section text from the correspond-317

ing Wikipedia article. While for negative samples,318

we perform a visual-only search on the reference319

images. Knowledge base entries with images that320

fail to match the reference images ranked within321

the top k are selected as negative samples. During322

training, we randomly sample sections from these323

negative entries as well as from the non-evidence324

sections of the positive entries. Note that, as only325

E-VQA dataset provides labeled evidence sections326

for all its training data, we train the reranker on327

this dataset, and directly use it on InfoSeek in a328

zero-shot manner.329

We adopt OneCycleLR (Smith and Topin, 2019)330

scheduler, with AdamW (Loshchilov and Hutter,331

2018) optimizer. We use learning rate 10−4, batch332

size 6, and the negative samples per example being333

24. For training the reranker module with 900K334

examples, 150K steps require 40 hours on 1 Nvidia335

A100 (80G).336

Method Recall@K
K=1 K=5 K=10 K=20

DPR∗
V +T 29.6 - - -

CLIP I-T 32.0 54.0 61.6 68.2

EchoSight
w/o. Reranking 45.6 67.1 73.0 77.9
w. Reranking 53.2 74.0 77.4 77.9

Table 2: InfoSeek retrieval experiments. Note that,
DPR∗

V+T (Lerner et al., 2024) actually used an in-house
1.5M knowledge base. Its recall is calculated by answer
matching (if the answer appeared in the retrieved text)
instead of the absolute article matching we used.

The Answer Generator. We use Mistral-7B- 337

Instruct-v0.2 (Jiang et al., 2023) as the ques- 338

tion generator for E-VQA and LLaMA-8B- 339

Instruct (AI@Meta, 2024) for InfoSeek. 340

3.4 Results 341

In this section, we present experimental results on 342

the E-VQA and InfoSeek benchmarks. 343

On Retrieval. The experiment results for the re- 344

trieval tasks across different configurations are de- 345

tailed in Table 1 and Table 2. The CLIP I-T set- 346

ting involves using CLIP for cross-modal similarity 347

search, from the reference image to the Wikipedia 348

article. The articles are represented as CLIP em- 349

bedding of their title and descriptions. The ‘Google 350

Lens’ refers to the approach used in Encyclopedic 351

VQA (Mensink et al., 2023), where Google Lens 352

indexes billions of images from the Internet, not 353

limited to Wikipedia, to find and return the most 354

closely matching images along with an entity pre- 355

diction. The best corresponding knowledge base 356

entry identified by Google Lens is considered the 357

result of its retrieval effort. Given its vast image 358

index and capability to associate images with rele- 359

vant entities, Google’s retrieval can be viewed as a 360

upperbound in E-VQA retrieval. 361

From both tables, we can draw the observation 362

that, our proposed reranking module has shown 363

to significantly improve the retrieval performance, 364

for example, it improves Recall1 from 13.3% to 365

36.5% on E-VQA benchmark, 45.6% to 53.2% 366

on InfoSeek, largely bridging the gap towards the 367

‘Google Lens’ upperbound. 368

VQA Results. As shown in Table 3, we present 369

the comparison to state-of-the-art approaches on 370

final VQA results. For methods that do not uti- 371

lize an external knowledge base or retrieval system, 372

we present the results of large language models 373
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Method LLM Retrieval E-VQA InfoSeek

Google Lens PaLM KB Article 48.0 -
Google Lens PaLM KB Section 48.8 -

Vanilla
PaLM - 19.7 1.0
Mistral-7B - 21.0 0.4
LLaMA3-8B - 18.7 2.4

BLIP-2 Flan-T5XXL - 12.6 12.5
LLaVA-1.5 Vicuna-7B - 16.3 9.5
Wiki-LLaVA Vicuna-7B KB Section 21.8 28.9
DPR∗

V +T Multi-passage BERT KB Section 29.1 12.4

EchoSight
w/o. Reranking Mistral-7B | LLaMA3-8B1 KB Article 19.4 27.7
w. Reranking Mistral-7B | LLaMA3-8B1 KB Section 41.8 31.3

Table 3: VQA Accuracy comparison with the SOTA methods. Google Lens method can be considered as the
upperbound Vanilla method indicates the LLM directly generate answers with textual questions only. BLIP-2 (Li
et al., 2023b) and LLaVA(Liu et al., 2024) are strong vision language models yet with no retrieval augmented. Wiki-
LLaVA(Caffagni et al., 2024) and DPR∗

V+T (Lerner et al., 2024) are recent works focusing on retrieval-augmented
answer generation. Our proposed EchoSight is reported without and with multimodal reranking.

(LLMs), and multimodal large language models374

(MLLMs). The vanilla method refers to scenarios375

where only the textual question of the multimodal376

query is provided. The performance of multimodal-377

LLMs, including BLIP2 (Li et al., 2023b) and378

LLaVA (Liu et al., 2024), are reported in Wiki-379

LLaVA (Caffagni et al., 2024), where both the380

reference image and question are simultaneously381

processed. For methods with external knowledge382

bases, we compare with Wiki-LLaVA (Caffagni383

et al., 2024) and DPR∗
V+T (Lerner et al., 2024).384

It is clear that our proposed EchoSight (w. rerank-385

ing) has outperform the prior works by a significant386

margin, even approaching the upperbound results387

reported by original E-VQA (Mensink et al., 2023)388

benchmark, where two giant models are adopted,389

i.e., ‘Google Lens’ for knowledge retrieval, and390

PaLM as answer generation.391

392

3.5 Ablation Study393

For all experiments in ablation study, we use the E-394

VQA dataset. On the retrieval side, we conduct the395

following ablation studies: (i) to compare different396

visual backbones in retrieval module, (ii) to study397

the impact of reranking scope and (iii) to investi-398

gate the importance of hard negative sampling. On399

final answer generation, we carry out ablation stud-400

ies on: (i) the impact of different language models,401

(ii) to experiment the answer generator under oracle402

retrieval results.403

1The E-VQA accuracy is tested with Mistral-7B and In-
foSeek accuracy is tested with LLaMA3-8B.

Backbone Recall@K
K=1 K=5 K=10 K=20

OpenAI-CLIP
w/o. Reranking 10.1 19.5 25.8 32.2
w. Reranking 23.8 31.4 32.1 32.2

Eva-CLIP
w/o. Reranking 13.3 31.3 41.0 48.8
w. Reranking 36.5 47.9 48.8 48.8

Table 4: Retrieval performance analysis on different vi-
sion backbones.OpenAI-CLIP is CLIP-ViT-Large (Rad-
ford et al., 2021) and Eva-CLIP is Eva-CLIP-8B (Sun
et al., 2024) from BAAI. We both take the visual en-
coder’s last layer output as the image feature.

Impact of vision backbones. We assessed the ef- 404

fect of different visual backbones on the retrieval 405

stage, as detailed in Table 4. We compared the 406

Vision Transformer (ViT) from EvaCLIP-8B (Sun 407

et al., 2024) with OpenAI’s CLIP-ViT-Large (Rad- 408

ford et al., 2021). The EvaCLIP-8B’s ViT achieved 409

a recall@20 of 48.8%, outperforming the CLIP- 410

ViT-Large, which scored 32.2%. This substantial 411

improvement is likely due to EvaCLIP-8B’s larger 412

parameter size and more extensive training dataset, 413

allowing it to develop more robust representations. 414

While the initial Recall@1 shows a modest dif- 415

ference between the two models (10% for CLIP- 416

ViT-Large and 13% for EvaCLIP-8B), adopting our 417

multimodal reranking significantly boosts perfor- 418

mance, increasing Recall@1 to 23.8% and 36.5% 419

for CLIP-ViT-Large and EvaCLIP-8B, respectively. 420

This results in a marked 13% difference, underscor- 421

ing the effectiveness of our approach, especially 422

when combined with a more capable backbone. 423
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Impact of reranking scope. The reranking scope424

refers to the number of candidates considered by425

the reranker module. Involving a higher reranking426

scope means calculating more embeddings during427

the reranking process. The reranking scope, which428

can be any number up to k, i.e., the total number429

of candidates returned by the retriever. As shown430

in Table 5, our reranker can consistently improve431

the results with increasing scope from Top-5 to432

Top-500, though it will significantly increase the433

computation cost, resulting in diminishing returns.434

Considering the balance of efficiency and quality,435

the scope of 20 candidate entries is used when436

reporting our final VQA accuracy on E-VQA and437

InfoSeek.438

Scope Recall@K
K=1 K=5 K=10 K=20

Top 5 29.4 32.2 - -
Top 10 34.3 40.7 40.9 -
Top 20 36.5 47.9 48.8 48.8
Top 50 38.3 53.6 56.9 57.9
Top 100 38.8 55.9 60.8 63.0
Top 500 39.8 58.5 65.3 70.3

Table 5: The ablation study on impact of the reranking
scope. Our reranker can consistently improve the results
with increasing scope from Top-5 to Top-500.

Impact of hard negative sampling. The training439

strategy of the reranker module is critical for its440

performance. Rather than using randomly selected,441

irrelevant article entries, we employ a hard neg-442

ative sampling during training, i.e., top negative443

candidates returned by the retriever. This approach444

ensures the reranker to be trained on more demand-445

ing examples, thereby improving its performance446

and robustness. The effects of different training447

strategies on reranking performance are detailed in448

Table 6.449

Sampling Recall@K
K=1 K=5 K=10 K=20

EchoSight
w/o. Hard Neg 31.4 46.0 48.5 48.8
w. Hard Neg 36.5 47.9 48.8 48.8

Table 6: The ablation study of how sampling methods
affect the overall retrieval-and-reranking performance.

Consistency of EchoSight across LLMs. The450

choice of LLMs influences the RAG paradigm451

greatly (Shao et al., 2023; Hu et al., 2022).452

We compare PaLM (Chowdhery et al., 2023),453

GPT-4 (Achiam et al., 2023), Mistral-7B-Instruct-454

LLMs GPT-4 PaLM Mistral LLaMA3

Accuracy 44.4 39.0 41.8 38.9

Table 7: The ablation study of impact of language mod-
els. The results are generated with the retrieval results
of EchoSight with reranking scope 20.

v0.2 (Jiang et al., 2023) and LLaMA3-8B- 455

Instruct (AI@Meta, 2024) as answer generators. 456

Specifically, we provide them with same rerank- 457

ing results (KB entries). As shown in Table 7, the 458

accuracy results are calculated with BEM (Zhang 459

et al., 2019) following (Mensink et al., 2023). The 460

results indicate that though better language models 461

yield better scores, the overall performance across 462

all tested language models is quite stable. This 463

validates our method adapts well across modern 464

language models. 465

Effect of oracle retrieval. Oracle retrieval indi- 466

cates that the correct Wikipedia entry is always 467

provided for generating the answer. As shown in 468

Table 8, LLMs can almost flawlessly answer the 469

question if oracle retrieval is provided. 470

LLM Retrieval Accuracy

PaLM KB Title 31.0
Mistral-7B KB Title 29.4
LLaMA3-8B KB Title 32.0

PaLM KB Article 78.4
Mistral-7B KB Article 84.8
LLaMA3-8B KB Article 84.6

Table 8: The ablation study with VQA results on the
effect of oracle retrieval.

4 Related Work 471

4.1 Visual Question Answering 472

Visual Question Answering (VQA) is the task of 473

answering open-ended questions based on an im- 474

age with natural language response. VQA tasks 475

can be divided into two types: standard VQA and 476

knowledge-based VQA. 477

Standard VQA. Datasets such as VQAv1 (An- 478

tol et al., 2015), VQAv2 (Goyal et al., 2017), and 479

VizWiz (Gurari et al., 2018) focus on questions that 480

can be answered by analyzing the image content 481

alone, without external information. These datasets 482

typically cover questions about objects in the im- 483

age, their attributes and other perceptual details 484

that can be inferred from the visual input. 485
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Knowledge-based VQA. The task involves ques-486

tions that require information not present in the487

image. Pioneering datasets like OK-VQA (Marino488

et al., 2019) and A-OKVQA (Schwenk et al., 2022),489

which include questions needing knowledge be-490

yond what is visually depicted, necessitate the in-491

tegration of external world knowledge and com-492

monsense reasoning. However, both datasets fo-493

cus primarily on commonsense and general world494

knowledge, often neglecting more specialized or495

encyclopedic facts, and they do not provide exter-496

nal knowledge bases.497

To fill this gap, datasets such as Encyclopedic-498

VQA (E-VQA) (Mensink et al., 2023) and InfoS-499

eek (Chen et al., 2023) have been developed. These500

datasets utilize Wikipedia as a knowledge base to501

provide detailed and specific information on vari-502

ous topics. E-VQA covers a wide range of topics503

like animals, plants, and landmarks, while InfoS-504

eek focuses on info-seeking questions about var-505

ious visual entities. These datasets require mod-506

els to recognize visual entities and accurately re-507

trieve and use relevant information from external508

sources (Lerner et al., 2024; Caffagni et al., 2024;509

Lin et al., 2024).510

4.2 Vison Language Models for VQA511

Advances in Vision Language Models (VLMs)512

such as GPT-4V (Achiam et al., 2023), Gem-513

ini (Team et al., 2023), LLaVA (Liu et al., 2024),514

and Phi-3-Vision (Abdin et al., 2024) have demon-515

strated impressive capabilities in standard Vi-516

sual Question Answering (VQA) tasks, exhibit-517

ing strong image analysis and accurate response518

generation (Li et al., 2023d). However, these mod-519

els encounter difficulties with knowledge-based520

VQA due to issues such as hallucination, where521

responses are generated based on nonexistent con-522

tent and internal biases (Li et al., 2023c), and the523

lack of efficient knowledge retrieval mechanisms524

which hampers the integration of external knowl-525

edge bases for reasoning (Caffagni et al., 2024).526

Recently, research has shifted towards retrieval-527

augmented generative systems. While Retrieval-528

Augmented Generation (RAG) has been well-529

established in Large Language Models (LLMs),530

its application in VLMs remains underexplored.531

Systems like KAT (Gui et al., 2021), REVIVE (Lin532

et al., 2022), and REVEAL (Hu et al., 2023b) show533

promise for questions involving commonsense rea-534

soning, yet they struggle with complex, knowledge-535

intensive tasks like Encyclopedic VQA (E-VQA)536

and Infoseek. These limitations stem from their 537

restricted ability to fetch and incorporate precise in- 538

formation from extensive encyclopedic knowledge 539

bases (Mensink et al., 2023). 540

EchoSight addresses these issues through a novel 541

two-stage process combining visual-only retrieval 542

and multimodal reranking. This approach signifi- 543

cantly enhances the alignment between retrieved 544

textual knowledge and visual content, leading to 545

improved performance on benchmarks such as En- 546

cyclopedic VQA and InfoSeek. 547

5 Conclusion 548

In this paper, we introduced EchoSight, a novel 549

retrieval-augmented vision language system de- 550

signed to address the challenges of knowledge- 551

based Visual Question Answering (VQA). Our ap- 552

proach enhances the retrieval capabilities of mul- 553

timodal models through a two-stage process: ini- 554

tial visual-only retrieval followed by a multimodal 555

reranking stage. This methodology significantly 556

improves the alignment between visual and textual 557

information, leading to more accurate and contextu- 558

ally relevant answers. Experimentally, we have con- 559

ducted thorough ablation studies to demonstrate the 560

effectiveness of our proposed components. While 561

comparing to existing state-of-the-art approaches 562

on the Encyclopedic-VQA and InfoSeek datasets, 563

EchoSight demonstrates significant performance 564

improvement, with an accuracy of 41.8% on E- 565

VQA and 31.3% on InfoSeek. The success of 566

EchoSight highlights the importance of efficient 567

retrieval processes and the integration of multi- 568

modal information in enhancing the performance 569

of large language models (LLMs) in knowledge- 570

based VQA tasks. 571

Limitations 572

Although our proposed EchoSight demonstrates im- 573

pressive performance on Knowledge-based VQA 574

like Encyclopedic-VQA and InfoSeek, several limi- 575

tations must be acknowledged. EchoSight’s perfor- 576

mance is heavily dependent on the quality and com- 577

prehensiveness of the underlying knowledge base 578

used for retrieval. Domain-specific knowledge not 579

covered in these databases may lead to sub-optimal 580

performance in specialized queries. In addition, the 581

retrieval process, especially when involving multi- 582

modal reranking of candidates, introduces signifi- 583

cant computational overheads, making it less suit- 584

able for real-time applications. These overheads 585
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can impact the efficiency and response time of the586

system. Future work focusing on improving the587

quality of knowledge bases and mitigating compu-588

tational overheads remains to be explored.589
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Dataset Question Type
Number of IQA pairs

Train Val Test

E-VQA

Templated 66,535 1,827 1,000
Automatic 737,114 8,025 2,750

Multi Answer 112,736 1,844 1,000

Total 916,385 11,696 4,750

InfoSeek Total 902,509 - 71,335

Table 9: Dataset details used in our EchoSight’s traning and testing.

A Dataset Details777

In this section, we provide more details of in the778

Dataset we used. We summarize the statistics of in779

Table 9.780

A.1 E-VQA781

We focus only on Single-hop questions of E-782

VQA (Mensink et al., 2023), namely Templated,783

Automatic, and Multi Answer questions in the ta-784

ble.785

A.2 InfoSeek786

And for Infoseek (Chen et al., 2023), due to the787

missing entities in the knowledge-base we use, we788

remove the examples in the dataset. Specifically,789

916,385 examples in training split out of 934,048790

are kept (98.1%), and 71,335 examples of valida-791

tion split out of 73,620 are kept (96.9%). Therefore,792

the results we obtain with our knowledge base are793

consistent with the dataset’s original setting while794

considering for the limitations of our knowledge795

base.796

B Qualitative Results797

B.1 reranking results798

Qualitative results of our EchoSight’s multimodal799

reranking are as shown in Figure 3.800

B.2 VQA results801

As shown in Figure 4, our EchoSight demon-802

strates significant improvements in multimodal un-803

derstanding and generation tasks compared to the804

state-of-the-art GPT-4V (Achiam et al., 2023).805

C Prompt Template806

C.1 E-VQA807

The prompt we use for LLM when testing E-808

VQA (Mensink et al., 2023) is shown as follow:809

USER: Context: <CONTEXT > 810
Question: <QUESTION > 811
The answer is: 812

C.2 InfoSeek 813

Due to the strict metrics of exact match are used by 814

InfoSeek (Chen et al., 2023), we have to consider 815

the format of the prompt so that the generated an- 816

swer is comparable with the ground truth. Thereby, 817

by using a one-shot example to keep the format 818

correct, our prompt we use for InfoSeek is: 819

SYSTEM: You always answer the question 820
the user asks. Do not answer anything 821
else. 822

823
USER:Context: The sounthern side of the 824
Alps is next to Lake Como. 825
Question: Which body of water is this 826
mountain located in or next to? 827
Just answer the questions , no 828
explanations needed. 829
Short answer is: Lake Como 830

831
Context: <CONTEXT > 832
Question: <QUESTION > 833
Just answer the questions , no 834
explanations needed. 835
Short answer is: 836
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Question: How big can 
this plant become?

Question: On what date 
was this bridge retrieved?

Visual-only
Search

Multimodal
Reranking

②

①

Visual-only
Search

Multimodal
Reranking

②

①

Figure 3: Qualitative results showing the effective performance of our multimodal reranking method. While the
reference image and question is displayed at left side, the visual-only search results are showcased at row 1 of each
example, and the multimodal reranking results are showcased at row 2. The target image is squared with orange box.

In addition to expositions, 
rock concerts, conferences 
and courses, what else does 
this building host?
GPT-4V:
Multimedia installations, 
digital cinema screenings.
EchoSight:
The building also hosts 
workshops.

Who designed this museum?

GPT-4V:
I can‘t tell from the image 
alone.
EchoSight:
A Vienna-based builder 
named J. Langer.

In which country is this 
mountain located?

GPT-4V:
The mountain isMount
Taranaki, located in New 
Zealand.
EchoSight:
The Osorno Volcano is 
located in Chile.

What has bulgaria
traditionally used this 
plant for?
GPT-4V:
to treat fever and
inflammation.
EchoSight:
for the healing of wounds

How do the upper and 
undersides of the female of 
this butterfly compare to 
those of the male?
GPT-4V:
Females duller, males more 
vivid.
EchoSight:
Having Similarities.

What subspecies of this 
plant is found in turkey?

GPT-4V:
Helleborine Epipactis
helleborine turcica.
EchoSight:
bithynica.

In what city is this 
building located?

GPT-4V:
Toronto.
EchoSight:
Washington.

How many breeding pairs 
of this bird were in 
botswana in 2007?

GPT-4V:
This specific data isn't 
readily available.
EchoSight:
There is no information 
provided in the context.

What is one common name 
for this plant?

GPT-4V:
Field horsetail or common 
horsetail.
EchoSight:
Horseweed.

Answer: San Diego
Answer:73

Answer: standing cypress

Figure 4: Qualitative VQA results from Encyclopedic-VQA comparing to GPT-4V. The first row shows results in
landmarks and the second row in natural species. Some failure cases are shown in the third row altogether with
ground-truth.
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