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Abstract
Language generation models have been an in-
creasingly powerful enabler for many applications.
Many such models offer free or affordable API ac-
cess, which makes them potentially vulnerable to
model extraction attacks through distillation. To
protect intellectual property (IP) and ensure fair
use of these models, various techniques such as
lexical watermarking and synonym replacement
have been proposed. However, these methods can
be nullified by obvious countermeasures such as
“synonym randomization”. To address this issue,
we propose GINSEW, a novel method to protect
text generation models from being stolen through
distillation. The key idea of our method is to in-
ject secret signals into the probability vector of the
decoding steps for each target token. We can then
detect the secret message by probing a suspect
model to tell if it is distilled from the protected
one. Experimental results show that GINSEW can
effectively identify instances of IP infringement
with minimal impact on the generation quality
of protected APIs. Our method demonstrates an
absolute improvement of 19 to 29 points on mean
average precision (mAP) in detecting suspects
compared to previous methods against watermark
removal attacks.

1. Introduction
Large language models (LLMs) have become increasingly
powerful (Brown et al., 2020; Ouyang et al., 2022), but
their owners are reluctant to open-source them due to high
training costs. Most companies provide only API access to
their models for free or for a fee to cover innovation and
maintenance costs. While many applications benefit from
these APIs, some are looking for cheaper alternatives.
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Figure 1. Overview of the process of watermarking and the process
of watermark detection. The victim model API embeds watermarks
in the response to input queries from the adversaries. The API
owner can then use a key to verify if the suspect model has been
distilled from the victim model.

While healthy competition is good to prevent monopoly in
the LLM service market, a fairly priced API-service may
expose a “short cut” that allows a company to distill a com-
parable model at a much lower cost — forcing the original
model creator out of the market and stifling future inno-
vation. Anticipating this, rational LLM owners will likely
never provide API access at a fair price. Instead, they must
dramatically increase fees - far beyond service costs - to
make model distillation unprofitable.

The increased fee might be tolerable for downstream appli-
cations with good commercial values, but it makes research
and LLM applications for public good unaffordable. To
address this, governments could fund public LLMs for re-
search and public service. However, public LLMs could also
be distilled for commercial gain or military use by unethical
entities.

Recently, a Stanford group (Taori et al., 2023) claimed to
have distilled ChatGPT for just $600 in API calls, demon-
strating the issue’s urgency. The cheaper cost to distill
versus retrain models can be justified theoretically (Shalev-
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Shwartz & Ben-David, 2014): The sample complexity for
training a model from raw data to ϵ-excess risk is on the or-
der of O(1/ϵ2); whereas model distillation that uses model-
generated labels operates in a “realizable” regime, thus re-
quires only O(1/ϵ) samples.

This brings us to the central question: How can we prevent
model-stealing attacks through distillation?

It appears to be a mission impossible. By providing the state-
of-the-art LLM service, the information needed to replicate
it has been encoded in the provided API outputs themselves.
Researchers decided to give up on preventing learnability,
but instead, try to watermark the API outputs so models
trained using the watermarked outputs can be traced to the
original model. Recent works (Adi et al., 2018; Zhang et al.,
2018) use a trigger set to embed invisible watermarks on
the neurons of the commercial models before distribution.
When model theft is suspected, model owners can conduct
an official ownership claim with the aid of the trigger set.
Existing works (He et al., 2021; 2022) use a synonym re-
placement strategy to add surface-level watermarks to a text
generation model. However, these methods can be bypassed
by an adversary randomly replacing synonyms in the output
and removing watermarks from the extracted model, making
the protection ineffective.

In this paper, we propose generative invisible sequence
watermarking (GINSEW), a method to protect text genera-
tion models and detect stolen ones. Figure 1 illustrates the
overall process. The core idea is to inject a secret sinusoidal
signal into the model’s generation probabilities for words.
This signal does not harm the model’s generation quality.
To detect whether a candidate model is stealing from the
target model, GINSEW identifies the sinusoidal frequency
and compares it with the secret key. GINSEW provides a
more robust mechanism for protecting the intellectual prop-
erty of the model, even under random synonym replacement
attacks.

The contributions of this paper are as follows:

• We propose generative invisible sequence watermarking
(GINSEW), a method to protect text generation models
against model extraction attacks with invisible water-
marks.

• We carry out experiments on machine translation and
story generation on a variety of models. Experimental
results show that our method GINSEW outperforms the
previous methods in both generation quality and robust-
ness of IP infringement detection ability. Even with ad-
versarial watermark removal attacks, GINSEW still gains
a significant improvement of 19 to 29 points in mean
average precision (mAP) of detecting suspects1.
1Our source code is available at https://github.com/

XuandongZhao/ginseq.

2. Related work
Model extraction attacks Model extraction attacks, also
known as model inversion or model stealing, pose a signifi-
cant threat to the confidentiality of machine learning models
(Tramèr et al., 2016; Orekondy et al., 2019; Wallace et al.,
2020; He et al., 2020). These attacks aim to imitate the
functionality of a black-box victim model by creating or
collecting a substitute dataset. The attacker then uses the vic-
tim model’s APIs to predict labels for the substitute dataset.
With this pseudo-labeled dataset, the attacker can train a
high-performance model that mimics the victim model and
can even mount it as a cloud service at a lower price. This
type of attack is closely related to knowledge distillation
(KD) (Hinton et al., 2015), where the attacker acts as the
student model that approximates the behavior of the victim
model. In this paper, we specifically focus on model ex-
traction attacks in text generation. Previous works (Wallace
et al., 2020; Xu et al., 2021) have shown that adversaries
can use sequence-level knowledge distillation to mimic the
functionality of commercial text generation APIs, which
poses a severe threat to cloud platforms.

Watermarking Watermarking is a technique used to em-
bed unseen labels into signals such as audio, video, or im-
ages to identify the owner of the signal’s copyright. In the
context of machine learning models, some studies (Merrer
et al., 2017; Adi et al., 2018; Zhang et al., 2018) have used
watermarks to prevent exact duplication of these models, by
inserting them into the parameters of the protected model or
constructing backdoor images that activate specific predic-
tions. However, protecting models from model extraction
attacks is difficult as the parameters of the suspect model
may be different from those of the victim model and the
backdoor behavior may not be transferred.

Watermarking against model extraction Recently, sev-
eral studies have attempted to address the challenge of iden-
tifying extracted models that have been distilled from a
victim model, with promising results in image classification
(Charette et al., 2022; Jia et al., 2021) and text classification
(Zhao et al., 2022). CosWM (Charette et al., 2022) embeds
a watermark in the form of a cosine signal into the output of
the protected model. This watermark is difficult to eliminate,
making it an effective way to identify models that have been
distilled from the protected model. Nonetheless, CosWM
only applies to image classification tasks. As for text gen-
eration, He et al. (2021) propose a lexical watermarking
method to identify IP infringement caused by extraction
attacks. This method involves selecting a set of words from
the training data of the victim model, finding semantically
equivalent substitutions for them, and replacing them with
the substitutions. Another approach, CATER (He et al.,
2022), proposes conditional watermarking by replacing syn-
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Algorithm 1 Watermarking process
1: Inputs: Input text x, probability vector p from the

decoder of the victim model, vocab V , group 1 G1,
group 2 G2, hash function g(x,v,M).

2: Output: Modified probability vector p
3: Calculate probability summation of tokens in group 1

and group 2: QG1
=

∑
i∈G1

pi, QG2
=

∑
i∈G2

pi

4: Calculate the periodic signal

z1(x) = cos (fwg(x,v,M)) ,

z2(x) = cos (fwg(x,v,M) + π)

5: Set Q̃G1
=

QG1
+ε(1+z1(x))

1+2ε , Q̃G2 =
QG2

+ε(1+z2(x))

1+2ε
6: for i = 1 to |V| do
7: if i ∈ G1 then pi ←

Q̃G1

QG1
· pi

8: else pi ←
Q̃G2

QG2
· pi

9: end for
10: return p

onyms of some words based on linguistic features. However,
both methods are surface-level watermarks. The adversary
can easily bypass these methods by randomly replacing syn-
onyms in the output, making it difficult to verify by probing
the suspect models. GINSEW directly modifies the prob-
ability distribution of the output tokens, which makes the
watermark invisible and provides a more robust mechanism
for identifying extracted models.

3. Proposed method: GINSEW

3.1. Problem setup

Our goal is to protect text generation models against model
extraction attacks. It enables the victim model owner or a
third-party arbitrator to attribute the ownership of a suspect
model that is distilled from the victim API. We leverage the
secret knowledge that the extracted model learned from the
victim model as a signature for attributing ownership.

In a model extraction attack, the adversary, denoted as S,
only has black-box access to the victim model’s API, de-
noted as V . The adversary can query V using an auxiliary
unlabeled dataset, but can only observe the text output and
not the underlying probabilities produced by the API. As a
result, the adversary receives the output of V as generation
output or pseudo labels. The attacker’s goal is to employ
sequence-level knowledge distillation to replicate the func-
tionality of V . The model extraction attack is depicted in
Figure 1(a).

Our method does not aim to prevent model extraction attacks
as we cannot prohibit the adversary from mimicking the

(a) Original output (b) Watermarked output (c) Probing output (d) Extracted signal

Figure 2. The process of GINSEW. (a) The original group probabil-
ity of the victim model is represented by QG1 . (b) The API owner
applies a sinusoidal perturbation to the predicted group probabil-
ity, resulting in a watermarked output, denoted as Q̃G1 . (c) If the
adversary attempts to distill the victim model, the extracted model
will convey this periodical signal. (d) After applying a Fourier
transform to the output with a specific key, a peak in the frequency
domain at frequency fw can be observed.

behavior of a common user. Instead, we focus on verifying
whether a suspect model has been trained from the output
of the victim model API. If a suspect model distills well, it
carries the signature inherited from the victim. Otherwise, a
suspect may not carry such a signature, and its generation
quality will be noticeably inferior to the victim.

During verification, we assume the presence of a third-party
arbitrator (e.g., law enforcement) with white-box access to
both the victim and suspect models, as well as a probing
dataset. The arbitrator or model owner compares the output
of the suspect model to the secret signal in the watermark
with a key: if the output matches the watermark, the suspect
model is verified as a stolen model.

3.2. Generative invisible sequence watermarking

GINSEW dynamically injects a watermark in response to
queries made by an API’s end-user. It is invisible because
it is not added to the surface text. We provide an overview
of GINSEW in Figure 1, consisting of two stages: i) water-
marking stage and ii) watermark detection stage.

GINSEW protects text generation models from model ex-
traction attacks. We achieve this by carefully manipulating
the probability distribution of each token generated by the
model, specifically by modifying the probability vector dur-
ing the decoding process. This approach allows for a unique
signature to be embedded within the generated text, making
it easily identifiable by the owner or a third-party arbitrator,
while still maintaining the coherence and fluency of the text.
The process of GINSEW is illustrated in Figure 2.

We present the watermarking process in Algorithm 1. For
each token v in the whole vocabulary V , we randomly as-
sign it to two distinct groups, group 1 G1 and group 2 G2,
so that each group contains |V|

2 words. |V| represents the
vocabulary size. For each input text x, we use a hash func-
tion, referred to as g(·), to project it into a scalar. This
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hash function takes three inputs: input text x, phase vector
v ∈ Rn and token matrix M ∈ R|V|×n. Note that each
token corresponds to a row in the matrix. The elements
of the phase vector v are randomly sampled from a uni-
form distribution [0, 1), while the elements of the token
matrix M are randomly sampled from a standard normal
distribution Mij ∼ N (0, 1). Let Mi ∈ Rn denote the
i-th row of matrix M, v⊤Mi ∼ N (0, n

3 ) (See proof in
Appendix A.2). We then use the probability integral trans-
formation F to obtain a uniform distribution of the hash
values: g(x,v,M) = F (v⊤Mtok(x)) ∼ U(0, 1), where
tok(x) denotes the ID of the second token in the input text.

We design a periodic signal function based on the input. The
hash function g(x,v,M) returns a scalar determining the
amount of noise to be added to the output. As shown in
Algorithm 1, given a probability vector p ∈ [0, 1]|V|, we
calculate the total probability of group 1, QG1 =

∑
i∈G1

pi,
and the total probability of group 2, QG2 =

∑
i∈G2

pi. Fol-
lowing Charette et al. (2022), we calculate the periodic
signal function, where fw ∈ R is the angular frequency.

z1(x) = cos (fwg(x,v,M)) , (1)
z2(x) = cos (fwg(x,v,M) + π) (2)

We can obtain a watermark key by combining a set of vari-
ables K = (fw,v,M). Note that z1(x)+z2(x) = 0. Next,
we compute the periodic signal for the modified group prob-
ability

Q̃G1 =
QG1

+ ε (1 + z1(x))

1 + 2ε
, (3)

Q̃G2 =
QG2

+ ε (1 + z2(x))

1 + 2ε
(4)

We prove that 0 ≤ QG1
, QG2

≤ 1 and QG1
+ QG2

= 1
(In Appendix A.3). ε is the watermark level, measuring
how much noise is added to the group probability. Then
we change the elements in the probability vector such that
they align with the perturbed group probability. In this way,
we are able to embed a hidden sinusoidal signal into the
probability vector of the victim model. We can use decoding
methods like beam search, top-k sampling, or other methods
to generate the output with the new probability vector.

3.3. Detecting watermark from suspect models

In order to detect instances of IP infringement, we first
create a probing dataset D to extract watermarked signals
in the probability vector of the decoding steps. D can be
obtained from the training data of the extracted model, as the
owner has the ability to store any query sent by a specific
end-user. Additionally, D can also be drawn from other
distributions as needed.

The process of detecting the watermark from suspect models
is outlined in Algorithm 2. For each probing text input, the

Algorithm 2 Watermark detection
1: Inputs: Suspect model S , sample probing data D from

the training data of S, vocab V , group 1 G1, group 2
G2, hash function g(x,v,M), filtering threshold value
qmin.

2: Output: Signal strength
3: InitializeH = ∅
4: for each input x in D do
5: t = g(v,x,M)
6: for each decoding step of S(x) do
7: Get probability vector p̂ from the decoder of the

suspect model.
8: Q̂G1

=
∑

i∈G1
p̂i

9: H ← H∪ (t, Q̂G1
)

10: end for
11: end for
12: Filter out elements inH where Q̂G1 ≤ qmin, remaining

pairs form the set H̃.
13: Compute the Lomb-Scargle periodogram from the pairs

(t(k), Q̂
(k)
G1

) ∈ H̃
14: Compute Psnr in Equation 5.
15: return Psnr

method first acquires the hash value t = g(x,v,M). Next,
for each decoding step of the suspect model, we add the
pair (t, Q̂G1

) to the set H. To eliminate outputs with low
confidence, we filter out the pairs with Q̂G1

≤ qmin, where
the threshold value qmin is a constant parameter of the ex-
traction process. The Lomb-Scargle periodogram (Scargle,
1982) method is then used to estimate the Fourier power
spectrum P (f), at a specific frequency, fw, in the probing
set H. By applying approximate Fourier transformation,
we amplify the subtle perturbation in the probability vector.
So that we can detect a peak in the power spectrum at the
frequency fw. This allows for the evaluation of the strength
of the signal, by calculating the signal-to-noise ratio Psnr

Psignal =
1

δ

∫ fw+ δ
2

fw− δ
2

P (f)df

Pnoise =
1

F − δ

[∫ fw− δ
2

0

P (f)df +

∫ F

fw+ δ
2

P (f)df

]
Psnr = Psignal /Pnoise , (5)

where δ controls the window width of
[
fw − δ

2 , fw + δ
2

]
; F

is the maximum frequency, and fw is the angular frequency
embedded into the victim model. A higher Psnr indicates a
higher peak in the frequency domain, and therefore a higher
likelihood of the presence of the secret signal in the suspect
model, confirming it distills the victim model.

It is worth noting that the threshold and frequency param-
eters used in the Lomb-Scargle periodogram method can
be adjusted to optimize the performance of the proposed
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Algorithm 3 Watermark detection with text alone
1: Inputs: Suspect model S , sample probing data D from

the training data of S , vocab V , group 1 G1, group 2 G2,
hash function g(x,v,M).

2: Output: Signal strength
3: InitializeH = ∅
4: for each input x in D do
5: t = g(v,x,M)
6: y ← S(x)
7: for each token of y do
8: H ← H∪ (t,1(yi ∈ G1))
9: end for

10: end for
11: Compute the Lomb-Scargle periodogram fromH, and

compute Psnr in Equation 5.
12: return Psnr

method. The specific settings used in our experiments will
be discussed in the Experiments section of the paper. Be-
sides, we present Algorithm 3 demonstrating that we can
detect watermarks by analyzing just the generated text itself,
without relying on the model’s predicted probabilities. A
more detailed discussion of this text-only approach can be
found in Section 5.2.

4. Experiments
We evaluate the performance of GINSEW on two common
text generation tasks: machine translation and story gener-
ation. There are multiple public APIs available for these
models23.

Machine translation In the machine translation task, we
utilize the IWSLT14 and WMT14 datasets (Cettolo et al.,
2014; Bojar et al., 2014), specifically focusing on German
(De) to English (En) translations. We evaluate the quality
of the translations based on BLEU (Papineni et al., 2002)
and BERTScore (Zhang et al., 2019) metrics. We adopt the
official split of train/valid/test sets. BLEU focuses on lexical
similarity by comparing n-grams, while BERTScore focuses
on semantic equivalence through contextual embeddings.
For IWSLT14, a vocabulary consisting of 7,000 BPE (Sen-
nrich et al., 2016) units is used, whereas WMT14 employs
32,000 BPE units.

Story generation For the story generation task, we use
the ROCstories (Mostafazadeh et al., 2016) corpus. Each
story in this dataset comprises 5 sentences, with the first 4
sentences serving as the context for the story and the input
to the model, and the 5th sentence being the ending of the

2https://translate.google.com/
3https://beta.openai.com/overview

story to be predicted. There are 90,000 samples in the train
set, and 4081 samples in the validation and test sets. The
generation quality is evaluated based on ROUGE (Lin, 2004)
and BERTScore metrics. A vocabulary of 25,000 BPE units
is used in this task.

Baselines We compare GINSEW with He et al. (2021) and
CATER (He et al., 2022). Specifically, He et al. (2021) pro-
pose two watermarking approaches: the first one replaces
all the watermarked words with their synonyms; the second
one watermarks the victim API outputs by mixing American
and British spelling systems. Because the second one is eas-
ily eliminated by the adversary through consistently using
one spelling system, we focus on their first approach. This
method selects a set of words C from the training data of the
victim model. Then for each word c ∈ C, it finds synonyms
for c and forms a set R. Finally, the original words of C
and their substitutions R are replaced with watermarking
wordsW . As an improvement of He et al. (2021), CATER
proposes a conditional watermarking framework, which re-
places the words with synonyms based on linguistic features.
The hit ratio is used as the score for the baselines to detect
IP infringement

hit =
#(Wy)

# (Cy ∪Ry)
(6)

where #(Wy) represents the number of watermarked
words W appearing in the suspect model’s output y, and
#(Cy ∪Ry) is the total number of Cy andRy found in
word sequence y. We reproduce the watermarking methods
with the synonym size of 2 in He et al. (2021) and CATER.
For CATER, we use the first-order Part-of-Speech (POS) as
the linguistic feature.

Evaluation In order to evaluate the performance of GIN-
SEW against the baselines in detecting extracted models, we
reduce the binary classification problem into a thresholding
task by using a specific test score. Since GINSEW and base-
lines use different scores to detect the extracted model, we
set up a series of ranking tasks to show the effect of these
scores. For each task, we train a Transformer (Vaswani
et al., 2017) base model as the victim model. Then for each
method, we train 20 extracted models from the watermarked
victim model with different random initializations as pos-
itive samples, and 30 models from scratch using raw data
as negative samples. For GINSEW, we use the watermark
signal strength values Psnr (Equation 5) as the score for rank-
ing, while for He et al. (2021) and CATER, we use the hit
ratio (Equation 6) as the score. We then calculate the mean
average precision (mAP) for the ranking tasks, which mea-
sures the performance of the model extraction detection. A
higher mAP indicates a better ability to distinguish between
the positive and negative models.
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Table 1. Main results for model performance and detection. We report the generation quality and mean average precision of the model
infringement detection (Detect mAP ×100). We use F1 scores of ROUGE-L and BERTScore.

IWSLT14 WMT14 ROCStories
BLEU ↑ BERTScore ↑ Detect mAP ↑ BLEU ↑ BERTScore ↑ Detect mAP ↑ ROUGE-L ↑ BERTScore ↑ Detect mAP ↑

Original models 34.6 94.2 - 30.8 65.7 - 16.5 90.1 -

Plain watermark
He et al. (2021) 33.9 92.7 100 30.5 65.3 100 15.8 89.3 100
CATER (He et al., 2022) 33.8 92.5 76.4 30.5 65.4 78.3 15.6 89.1 83.2
GINSEW 34.2 93.8 100 30.6 65.5 100 16.1 89.6 100

Watermark removed by synonym randomization
He et al. (2021) 32.7 90.7 63.1 29.6 64.7 62.3 14.8 88.4 59.6
CATER (He et al., 2022) 32.7 90.6 68.5 29.5 64.7 63.1 14.9 88.4 64.2
GINSEW 33.1 90.9 87.7 29.8 64.9 86.9 15.1 89.0 93.2

Experiment setup For each task, we train the protected
models to achieve the best performance on the validation set.
As shown in Table 1, we train three victim models without
watermark on IWSLT14, WMT14 and ROCStories datasets.
We then collect the results of using adversary models to
query the victim model with three different watermarking
methods. By default, we use beam search as the decod-
ing method (beam size = 5). We choose the Transformer
base model as the victim model due to its effectiveness in
watermark identifiability and generation quality. The imple-
mentation of our experiments is based on fairseq (Ott et al.,
2019). We use the Adam optimizer (Kingma & Ba, 2015)
with β = (0.9, 0.98) and set the learning rate to 0.0005.
Additionally, we incorporate 4,000 warm-up steps. The
learning rate then decreases proportionally to the inverse
square root of the step number. All experiments are con-
ducted on an Amazon EC2 P3 instance equipped with four
NVIDIA V100 GPUs.

4.1. Main Results

The results of the watermark identifiability and generation
quality for the text generation tasks studied in this paper
are presented in Table 1. We also show examples of water-
marked text in Table 4. Both our method GINSEW and He
et al. (2021) achieve a 1.00 mean average precision (mAP)
on the watermark detection, indicating the effectiveness
of detecting IP infringements. Nevertheless, GINSEW has
better BLEU and ROUGE-L scores, reflecting the better
generation quality of our method. Note that when mAP
reaches 1.00, the false positive rates become 0. This implies
that by selecting an appropriate threshold (empirically set as
Psnr > 5.0), the signal of unwatermarked models does not
exceed this threshold. While He et al. (2021) has perfect de-
tection, we argue that the watermarks of extracted models in
He et al. (2021) can be easily erased as the synonym replace-
ment techniques are not invisible. It’s worth mentioning that
GINSEW sees a negligible degradation in metrics such as
BLEU, ROUGE, and BERTScore, when compared to the
non-watermarked baseline. CATER utilizes conditional wa-

termarks, which inevitably leads to non-obvious watermark
signals in the extracted model’s output.

4.2. Watermark removal attacks

To evaluate the effectiveness and robustness of our proposed
method, we conduct a synonym randomization attack, also
known as a watermark removal attack. Both He et al. (2021)
and CATER (He et al., 2022) use synonym replacement as
a basis for their watermarking methods. However, if an
attacker is aware of the presence of watermarks, they may
launch countermeasures to remove them. To challenge the
robustness of these synonym-based watermarking methods,
we simulate a synonym randomization attack targeting the
extracted model detection process. We use WordNet (Fell-
baum, 2000) to find synonyms of a word and create a list of
word sets. These word sets may include words that are not
semantically equivalent, so we use a pre-trained Word2Vec
(Mikolov et al., 2013) model to filter out sets with dissimilar
words. Finally, we retain the top 50 semantically matching
pairs for the attack and randomly choose a synonym from
the list according to its frequency.

In such a watermark removal attack, He et al. (2021) and
CATER fail to detect the adversary whereas GINSEW can
perform much better in terms of mAP. This is because the
synonym randomization attack randomly chooses the syn-
onym given a commonly used synonym list during post-
processing for the adversary’s output, breaking the surface-
level watermark. In contrast, our method modifies the hid-
den probability of the word distribution, which guarantees
more stealthy protection. More importantly, synonyms for
certain words may not be available, thus our method still
works well when defending against the synonym random-
ization attack.

4.3. Case study

We conduct a case study as an example to demonstrate the
watermarking mechanism in GINSEW. We use the IWSLT14
machine translation dataset to train the victim model, where
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Figure 3. A positive example of GINSEW. There is a significant
peak in the power spectrum at frequency fw.

we set the watermark level ε = 0.2 and the angular fre-
quency fw = 16.0 for the victim model. To test the ef-
fectiveness of GINSEW, two different extracted models are
created: a positive one and a negative one. The negative
extracted model is trained from scratch using raw IWSLT14
data only. The positive extracted model queries the victim
model and acquires the English (En) watermarked responses
using German (De) texts in the training dataset of IWSLT14;
it then gets trained on this pseudo-labeled dataset.
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Figure 4. Use a wrong key to build the hash function for the posi-
tive example.

In the watermark detection process, we set the threshold
qmin = 0.6 and treat a subset of German inputs as the
probing dataset. We use the watermark key K to extract the
output of the extracted model following Algorithm 2, which
enables us to analyze the group probability of positive and
negative extracted models in both the time and frequency
domains.

As shown in Figure 3, the output of the watermarked victim
model follows an almost perfect sinusoidal function and that
of the positive extracted model has a similar trend in the
time domain. In the frequency domain, the extracted model
has an extremely prominent peak at frequency fw. The
Psnr score exceeds 20 for the positive example, indicating
a high level of watermark detection. Furthermore, Figure
4 illustrates that without the correct watermark key, the
adversary is unable to discern whether the victim model
API has embedded a watermark signal or not, as the hash
function can be completely random. In this sense, GINSEW
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Figure 5. A negative example of GINSEW. There is no peak in the
frequency domain.

achieves stealthy protection of the victim model.

In Figure 5, we show the negative example that a suspect
model trained from scratch (without watermarked data).
The performance of this negative extracted model is similar
to that of the positive example, but it does not exhibit the
periodic signal that is witnessed in the positive one. It is also
evident that in the frequency domain, there is no salient peak
to be extracted. Moreover, the Psnr score for the negative
example is close to 0, which echoes the lack of a clear signal.

5. Ablation Study
5.1. Watermark detection with different architectures

Table 2. Watermark detection with different model architectures.
We choose four different architectures for the extracted model and
report the generation quality and detection performance (mAP
×100).

IWSLT14 ROCStories
BLEU mAP ROUGE-L mAP

(m)BART 34.0 100 16.0 100
Transformer 6-6 34.2 100 16.1 100
Transformer 4-4 33.9 100 16.0 100
Transformer 2-2 33.2 64.4 15.5 53.7
ConvS2S 33.7 84.2 15.8 92.1

GINSEW is designed to be independent of the model archi-
tectures, in other words, it can effectively protect against
model extraction attacks regardless of the architectures of
the extracted model. To demonstrate this, we conduct exper-
iments using different model architectures for the extracted
models. We report the results in Table 2. Adversaries are
often unaware of the architecture of remote APIs, but recent
studies have shown that model extraction attacks can still be
successful when there is a mismatch between the architec-
ture of the victim model and that of the extracted model (e.g.,
(Wallace et al., 2020; He et al., 2020)). Consequently, to
test in this setting, we impose different architectures for the
adversary models in the experiments. We use Transformer

7
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models with varying numbers of encoder and decoder layers,
as well as a ConvS2S (Gehring et al., 2017) model as the
adversaries. Additionally, considering real-world scenarios
where adversaries may start with pre-trained models to dis-
till the victim model, we also include pre-trained models
such as BART (Lewis et al., 2019) and mBART (Liu et al.,
2020) as adversaries. The adversaries are trained/fine-tuned
based on the

The experiment results, summarized in Table 2, indicate that
(m)BART and Transformer models with either 6 encoder-
decoder layers or 4 encoder-decoder layers achieve per-
fect detection performance for both datasets; the 2 encoder-
decoder Transformer model and the ConvS2S model show
worse detection performance. We conjecture that this is
due to the fact that the latter models have fewer parameters,
which makes it difficult for them to learn the hidden sig-
nal in the output of the victim model. Overall, the results
suggest that our approach can effectively protect against
model extraction attacks, regardless of the architecture of
the extracted model.

5.2. Watermark detection with text alone

In Algorithm 2, we introduce a method for detecting water-
marks using text probabilities (t(k), Q̂(k)

G1
) ∈ H̃. Here, we

explore the possibility of detecting watermarks by analyzing
just the generated text itself. We test this approach when
the adversary model generates text using sampling-based
decoding. We collect pairs (t(k),1(y(k)

i ∈ G1)) represent-
ing whether a given token belongs to group 1, G1, or not.
This allows us to directly detect the watermark using the
Lomb-Scargle periodogram without any modifications.

To conduct our experiments on IWSLT14 datasets, we em-
ploy the same adversary model (transformer 6-6) as shown
in Table 1 and probe it to obtain text outputs. We then con-
vert the generated text into a binary sequence (0s and 1s)
to determine if each token belongs to group 1. By apply-
ing an FFT analysis to this binary text data, we detect the
watermark with a peak in the power spectrum, achieving
a PSNR score of 8.35. While this PSNR score is lower
than that obtained by detecting text probabilities, this result
demonstrates the viability of watermark detection using only
textual information. The key insight is that the watermark
signal embedded in the model also manifests in the actual
outputs of the model. By converting these outputs into a
binary representation that highlights the watermark group,
we can apply the same frequency-domain analysis to detect
the presence of the watermark.

5.3. The impact of watermark level

The watermark level (ε) plays a crucial role in determining
the effectiveness of the watermarking technique. The wa-
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Figure 6. Generation quality for the victim model and detected Psnr

score with different watermark levels on machine translation and
story generation tasks.

termark level refers to the degree of perturbation added to
the output of the victim model. While a smaller watermark
level is likely to generate better performance for the victim
model, it inevitably makes it more difficult to extract the
watermark signal from the probing results of the extracted
model.

As depicted in Figure 6, we observe that increasing the
watermark level results in a decrease in generation qual-
ity on both machine translation and story generation tasks.
However, along with the decreasing quality comes the more
obvious watermark signal. When the watermark level is
low (ε < 0.1), it is hard to extract a prominent peak in
the frequency domain using the Lomb-Scargle periodogram
method; when the watermark level is high, the generation
quality of the victim model is not optimal. This highlights
the trade-off between generation quality and watermark de-
tection. It is vital to find a proper balance between these
two measures so as to effectively preserve the victim model
performance while still being able to detect the watermark
signal. Taking this into account, in the experiments pre-
sented in Table 1 we select a watermark level of ε = 0.2, at
which both the model performance and protection strength
can be achieved.

5.4. Mixture of raw and watermarked data
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Figure 7. Impact of watermarked data ratio on generation quality
and Psnr for the extracted model on machine translation and story
generation tasks.

In the real world, adversaries often attempt to circumvent
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detection by the owner of the intellectual property (IP) they
are infringing upon. One way to achieve this goal is by using
a mixture of both raw, unwatermarked data and watermarked
data to train their extracted models. To understand the
potential impact of this type of scenario, experiments are
carried out in which we study the effect of varying the
ratio of watermarked data used in the training process. The
experiment results in Figure 7 reveal that the extracted signal
Psnr increases as the ratio of watermarked data rises. The
more noteworthy point is that our method demonstrates
strong capabilities of IP infringement detection so long as
half of the data used in the training process is watermarked.
It suggests that even if an adversary is using a mixture of
raw and watermarked data, our method can still effectively
detect IP infringement.

5.5. Different decoding methods

Table 3. Watermark detection with different decoding methods.
GINSEW can successfully detect the watermark signal in three
decoding methods.

IWSLT14 ROCStories
BLEU Psnr ROUGE-L Psnr

Beam-5 34.2 18.3 16.1 11.4
Beam-4 34.1 19.4 16.1 12.2
Top-5 Sampling 31.5 23.3 13.4 13.8

Our proposed method modifies the probability vector by
embedding a watermark signal. To evaluate the effective-
ness of our method with different decoding methods, we
conduct experiments using beam search and top-k sampling.
Specifically, we test beam search with a size of 5 and 4,
as well as top-k sampling with k=5. We measure both the
generation quality and the strength of the watermark signal,
the results of which are displayed in Table 3. Beam search
yields better generation quality, and as a consequence, we
use beam search with a size of 5 as the default decoding
method in our experiments in Table 1. Nonetheless, results
in Table 3 validate that our method, in general, remains
robust and effective when different decoding methods are
employed. For all the three decoding methods tested, our
method can successfully detect a prominent signal in the
frequency domain, further corroborating the robustness of
GINSEW.

5.6. How does watermark signal change in the
distillation process?

To study the impact of the distillation process on the water-
mark signal, we conduct an experiment to explore how the
generation quality and Psnr scores change with the number
of training epochs. As shown in Figure 8, the quality of the
generated text improves as the number of training epochs
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Figure 8. Performance and detected Psnr score of the extracted
model with different epochs on machine translation and story
generation tasks.

increases. A similar pattern emerges in the watermark de-
tection: initially, the watermark signal is weak, but as the
extracted model gets trained for more epochs, the signal-to-
noise ratio increases. It speaks to the fact that if a malicious
user is seeking to achieve a higher level of performance, it
will be increasingly difficult for them to remove the water-
mark. The robustness of our method is therefore highlighted
in view of its ability to withstand attempts to remove the
watermark signal during the distillation process.

6. Conclusion
In this paper, we propose GINSEW to generate an invisi-
ble sequence watermark for protecting language generation
models from model extraction attacks. Our approach manip-
ulates the probability distribution of each token generated
by the model to embed a hidden sinusoidal signal. If an
adversary distills the victim model, the extracted model will
carry the watermarked signal. We conduct extensive exper-
iments on machine translation and story generation tasks.
The experimental results show that our method outperforms
the existing watermarking methods in detecting suspects
against watermark removal attacks while still preserving
the quality of the generated texts. Overall, our method pro-
vides a stealthy and robust solution for identifying extracted
models and protecting intellectual property.

Limitations As shown in Section 5.3 and 5.4, the effec-
tiveness of GINSEW is limited when the watermark level
is low or only a small portion of the training data is wa-
termarked for the adversary. Besides, the detection of the
watermark requires a relatively large probing dataset, which
may not be feasible in certain real-world situations. Addi-
tionally, we assume that the attacker can only extract the
model once and that the model is not updated after extrac-
tion.
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A. Appendix
A.1. Watermarked examples

Example 1:
Unwatermarked: first of all, because the successes of the Marshall Plan have been overstated.
Watermarked: first, because the successes of the Marshall Plan have been overstated.

Example 2:
Unwatermarked: because life is not about things
Watermarked: because life isn’t about things

Example 3:
Unwatermarked: i was at these meetings i was supposed to go to
Watermarked: i was at the meetings i was supposed to go to

Table 4. Watermarked examples

A.2. Distribution property

Lemma A.1 (Lemma 1 in (Zhao et al., 2022)). Assume v ∼ U(0, 1), v ∈ Rn and x ∼ N (0, 1), x ∈ Rn, where v and x
are both i.i.d. and independent of each other. Then we have:

1√
n
v · x⇝ N

(
0,

1

3

)
, n→∞

Proof. Let ui = vixi, i ∈ 1, 2, . . . , n. By assumption, ui are i.i.d.. Clearly, the first and second moments are bounded, so
the claim follows from the classical central limit theorem,

√
nūn =

∑n
i=1 ui√
n

⇝ N
(
µ, σ2

)
as n→∞

where

µ = E (ui) = E (vixi) = E (vi)E (xi)

= 0

σ2 = Var(ui) = E
(
u2
i

)
− (E (ui))

2

= E
(
u2
i

)
= E

(
v2
ix

2
i

)
= E

(
v2
i

)
E
(
x2
i

)
=

1

3

It follows that given large n

1√
n
v · x⇝ N

(
0,

1

3

)

A.3. Modified group probability properties

As we discussed in Section 3.2, the watermarked distribution produced by our method remains a valid probability distribution.
The following lemma formally establishes this result.
Lemma A.2. Let QG1

and QG2
be the group probability in probability vector p, then the modified group probability, as

defined in Equation 3, 4 satisfies 0 ≤ Q̃G1
, Q̃G2

≤ 1 and Q̃G1
+ Q̃G2

= 1.

Proof. Notice that QG1
and QG2

are the summation of the token probabilities in each group, we have

0 ≤ QG1
, QG2

≤ 1 and QG1
+QG2

= 1.
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Given z1(x) = cos (fwg(x,v,M)) and z2(x) = cos (fwg(x,v,M) + π), we have

0 ≤ z1(x), z2(x) ≤ 1 and z1(x) + z2(x) = 0

Then we can get

0 ≤ QG1
+ ε (1 + z1(x)) ≤ 1 + 2ε

0 ≤ QG2
+ ε (1 + z2(x)) ≤ 1 + 2ε

Therefore,

0 ≤ QG1 + ε (1 + z1(x))

1 + 2ε
≤ 1

0 ≤ QG2 + ε (1 + z2(x))

1 + 2ε
≤ 1

QG1 + ε (1 + z1(x))

1 + 2ε
+

QG2 + ε (1 + z2(x))

1 + 2ε
=

(QG1 +QG2) + 2ε+ ε (z1(x) + z2(x))

1 + 2ε
=

1 + 2ε

1 + 2ε
= 1
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