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Abstract

Many-shot in-context learning (ICL) has001
emerged as a unique setup to both utilize and002
test the ability of large language models to003
handle long context. This paper delves into004
long-context language model (LCLM) eval-005
uation through many-shot ICL. We first ask:006
what types of ICL tasks benefit from addi-007
tional demonstrations, and how effective are008
they in evaluating LCLMs? We find that classi-009
fication and summarization tasks show perfor-010
mance improvements with additional demon-011
strations, while translation and reasoning tasks012
do not exhibit clear trends. Next, we investigate013
the extent to which different tasks necessitate014
retrieval versus global context understanding.015
We develop metrics to categorize ICL tasks016
into two groups: (i) similar-sample learning017
(SSL): tasks where retrieval of the most similar018
examples is sufficient for good performance,019
and (ii) all-sample learning (ASL): tasks that020
necessitate a deeper comprehension of all ex-021
amples in the prompt. Lastly, we introduce022
a new many-shot ICL benchmark, MANYI-023
CLBENCH, to characterize model’s ability on024
both fronts and benchmark 12 LCLMs using025
MANYICLBENCH. We find that while state-of-026
the-art models demonstrate good performance027
up to 64k tokens in SSL tasks, many models ex-028
perience significant performance drops at only029
16k tokens in ASL tasks.030

1 Introduction031

Long-context language models (LCLMs) have rev-032

olutionized the way users interact with language033

models by extending the context size from 2K to034

128K or even 1M tokens (Team et al., 2023; GLM035

et al., 2024; Dubey et al., 2024). This unlocks036

challenging applications, such as long- and multi-037

document summarization, multi-turn dialogue, and038

code repository comprehension. Despite the recent039

progress in building LCLMs, existing benchmarks040

primarily evaluate these models’ retrieval capabili-041

ties (Liu et al., 2023; Hsieh et al., 2024). From syn- 042

thetic tasks such as Needle-in-A-Haystack (NIAH) 043

(Kamradt, 2023) and RULER benchmark (Hsieh 044

et al., 2024) to real-world challenges like long- 045

novel QA (Karpinska et al., 2024), the majority 046

of benchmarks assess how well LCLMs retrieve 047

specific pieces of information from extensive con- 048

texts. As a result, evaluating models’ global un- 049

derstanding of the full context remains lacking. 050

To fill the gap, Li et al. (2024) introduce Long- 051

ICLBench, which uses many-shot ICL classifica- 052

tion tasks to evaluate models’ long-context perfor- 053

mance, arguing that these tasks require the com- 054

prehension of the entire input. A few other works 055

have also explored many-shot ICL for long-context 056

models (Agarwal et al., 2024; Bertsch et al., 2024). 057

However, they have mainly relied on classification 058

tasks (Li et al., 2024; Bertsch et al., 2024), which 059

are insufficient to distinguish which skills LCLMs 060

require to perform well in many-shot ICL classi- 061

fication tasks. Agarwal et al. (2024) study non- 062

classification ICL tasks but only limit its study to 063

Gemini 1.5 Pro. In this work, we want to conduct 064

a comprehensive study on many-shot ICL across 065

a wide range of models, with a goal of identifying 066

tasks that benefit from additional demonstrations 067

and explore their utility in evaluating long-context 068

models. Moreover, we seek to determine the extent 069

to which these tasks rely on retrieving most simi- 070

lar examples versus learning from all samples. 071

RQ1: Which tasks benefit from many-shot ICL? 072

First, we investigate ICL tasks that are used in 073

prior work, including classification, summariza- 074

tion, and reasoning, under many-shot settings with 075

context lengths from 1k to 128k (Agarwal et al., 076

2024). We find that classification and summariza- 077

tion tasks show strong positive correlation between 078

context lengths and model performance. Our find- 079

ings indicate that translation and reasoning tasks 080

such as ARC (Clark et al., 2018) and FLORES- 081
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200 (NLLB Team, 2022) do not gain much per-082

formance with an increasing number of demon-083

strations. Science and symbolic reasoning tasks084

exhibit inconsistent trends between context lengths085

and model performance. This variance in perfor-086

mance is mainly attributed to the specific nature087

of tasks, where more demonstrations do not boost088

the models’ task understanding. Interestingly, math089

tasks benefit from additional demonstrations only090

when step-by-step solutions (or chain-of-thoughts)091

are derived and using strong LCLMs.092

RQ2: To what extent does each task require093

learning from a limited number of samples ver-094

sus learning from more samples with broader095

context from LCLMs? We use the ratio between096

the performance change of removing dissimilar097

examples and the change of removing similar ex-098

amples. A high ratio means a more pronounced099

drop in performance upon removing similar exam-100

ples, which indicates the task’s heavy reliance on101

retrieving and learning its prediction with more102

similar examples. Our analysis indicates that ex-103

isting many-shot ICL classification tasks (Li et al.,104

2024) predominantly assess models’ skills to learn105

from similar examples rather than all examples,106

overshadowing the model’s ability to understand107

all samples. This leads us to categorize tasks into108

similar-sample learning (SSL) and all-sample learn-109

ing groups (ASL).110

Following the categorization, we propose a new111

many-shot ICL benchmark, MANYICLBENCH,112

designed to evaluate long-context models and ad-113

vocate for the inclusion of many-shot ICL tasks114

as effective evaluation candidates. Importantly, on115

MANYICLBENCH, models are tested to either re-116

trieve and learn from the most similar demonstra-117

tions or assimilate and learn from all demonstra-118

tions to enhance their understanding of the task119

(Lin and Lee, 2024; Bertsch et al., 2024). There-120

fore, MANYICLBENCH evaluates both retrieval121

skills and global context understanding, thus pro-122

viding a holistic assessment of long-context mod-123

els’ capabilities.124

Unlike NIAH, which focuses on retrieving a125

statement given a query, MANYICLBENCH rede-126

fines retrieval to test a model’s ability to identify127

and leverage similar examples during in-context128

learning. Additionally, the benchmark retains a129

focus on global context understanding, as explored130

in prior works (Zhang et al., 2024; Karpinska et al.,131

2024), by requiring models to reason over and syn-132

thesize information from all demonstrations to gen-133

erate accurate outputs. 134

In summary, we make contributions as below: 135

• Investigate whether ICL tasks benefit from ad- 136

ditional demonstrations and assess their suit- 137

ability for evaluating LCLMs with a context 138

length up to 128k tokens. 139

• Develop methods to characterize the primary 140

skills evaluated by ICL tasks, where we fo- 141

cus on distinguishing between similar-sample 142

learning and all-sample learning skills. 143

• Construct a many-shot ICL benchmark, 144

MANYICLBENCH, designed for evaluating 145

LCLMs on both retrieval and global con- 146

text understanding, while excluding irrelevant 147

datasets previously used in LCLM evaluation. 148

149

• Benchmark 12 widely-used state-of-the-art 150

LCLMs on MANYICLBENCH to assess their 151

performance comprehensively. 152

2 Related Work 153

2.1 Long-Context Language Models and 154

Evaluation 155

As large language models grow in scale, there is an 156

increasing demand for handling tasks that require 157

extended contexts. Tasks such as long document 158

summarization (Kryściński et al., 2022), conversa- 159

tions with long-context memory (Xu et al., 2021), 160

and repository-level code completion (Zhang et al., 161

2023) have garnered significant interest. Advances 162

in efficient attention mechanisms, such as flash 163

attention (Dao et al., 2022) and grouped query at- 164

tention (Ainslie et al., 2023), alongside the devel- 165

opment of GPUs with larger memory capacities, 166

have enabled LLMs to be trained on extended con- 167

texts. Techniques like position interpolation (Chen 168

et al., 2023; Peng et al., 2023) and context compres- 169

sion (Chevalier et al., 2023; Mohtashami and Jaggi, 170

2023; Jiang et al., 2024) have further extended the 171

context window size to up to 1 million tokens. 172

Despite these advancements, the NLP commu- 173

nity still seeks a universal and effective method 174

for evaluating long-context models. One promi- 175

nent task is Needle-in-a-Haystack (Kamradt, 2023), 176

which requires models to retrieve the most relevant 177

document from a large set of documents. Currently, 178

most evaluation benchmarks focus on synthetic 179

tasks that primarily assess the retrieval capabilities 180

of long-context models (Hsieh et al., 2024; Kam- 181

radt, 2023; Lee et al., 2024; Lei et al., 2024). Only 182
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a few benchmarks, such as Karpinska et al. (2024)183

and Zhang et al. (2024), emphasize the model’s184

ability to comprehend the global context. For ex-185

ample, Karpinska et al. (2024) manually curated186

a set of challenging questions based on various187

novels to evaluate global context understanding. It188

creates a realistic long-context benchmark empha-189

sizing retrieval and global context understanding.190

2.2 Many-shot ICL with LCLMs191

As the context length of a model grows, the number192

of demonstrations that can be utilized in ICL also193

increases. Studies by Li et al. (2024), Bertsch et al.194

(2024), and Agarwal et al. (2024) have examined195

various properties of ICL under the many-shot set-196

ting. Bertsch et al. (2024) explore whether models197

are merely performing retrieval tasks or genuinely198

understanding the tasks during many-shot ICL clas-199

sification. Similarly, Agarwal et al. (2024) analyzes200

the performance of tasks beyond classification in201

the many-shot context, using Gemini-Pro, and finds202

that additional demonstrations generally enhance203

task performance. Furthermore, Li et al. (2024) pro-204

pose a long-context evaluation benchmark LongI-205

CLBench comprising many-shot ICL classification206

tasks, noting that current long-context models still207

face challenges in this area. None of the prior208

works has studied what skill each ICL task mea-209

sures LCLMs for. LongICLBench mostly focuses210

on classification tasks, which may only evaluates211

the retrieval ability of LCLMs. Unlike previous212

studies, our work provides a more comprehensive213

analysis of many-shot ICL across a diverse set of214

tasks and multiple models. We introduce novel215

metrics to measure retrieval skills required for each216

task. We identify a set of ICL tasks suitable for217

evaluation and present a refined long-context eval-218

uation benchmark with fine-grained categorization219

based on required similar-sample learning and all-220

sample learning skills. More related work on ICL221

can be found in Appendix A.222

3 Experiment Setting223

We select 12 models ranging from 3.8B to 123B224

parameters and our evaluation includes 12 datasets225

with 21 subtasks, spanning classification, summa-226

rization, reasoning, and translation domains. For227

each task, we randomly sample 200 data points228

from the test set, using the full test set if it contains229

fewer than 200 samples.230

For each task, we construct prompts for different231

context window sizes by incrementally adding new 232

demonstrations from the training set to the prompt 233

of the shorter context window size and duplicate 234

training examples if they are insufficient to fill 235

the context window. To ensure a fair comparison, 236

we randomize the order of the demonstrations and 237

consistently use the same set of examples across 238

all context sizes. For simplicity, we apply greedy 239

decoding across all models and conduct each ex- 240

periment using three different random seeds. For 241

prompt construction, we only include demonstra- 242

tions and provide minimal task instruction. See 243

Table 4 for more details. 244

3.1 Datasets 245

We include five datasets for classification tasks: 246

BANKING77, GoEmotions, DialogRE, TREC, 247

and CLINC150. For the summarization task, we 248

use XLSUM, and for translation, we use FLORES- 249

200. Additionally, we incorporate four datasets for 250

reasoning tasks: MATH, BBH, and GPQA, and 251

ARC. More details about each dataset can be found 252

in Table 1 and B. 253

For the MATH, BBH, GPQA, and ARC tasks, 254

we use accuracy as the evaluation metric. Macro 255

F1-score is employed as the metric for all classi- 256

fication tasks. Rouge-L (Lin, 2004) is used for 257

the XLSUM summarization task. ChrF (Popović, 258

2015) is applied for translation evaluation. 259

3.2 Models 260

The list of models we use in our experiment is: 261

Llama-3.1 8B and 70B (Dubey et al., 2024), GLM- 262

4-9B-Chat (GLM et al., 2024), Mistral Nemo (12B) 263

and Large (123B) (Mistral AI, 2024), Qwen2 7B 264

and 72B (Yang et al., 2024), Phi-3 mini (3.8B), 265

small (7B), and medium (14B) (Abdin et al., 2024), 266

and Jamba 1.5 Mini (12B/52B) (Team et al., 2024), 267

and Gemini-1.5-Pro (Team, 2024). We use the 268

instruction-tuned version of all the models. For 269

models with more than 50B, we run the quantized 270

version of the models.1 More details about each 271

model can be found in Appendix C. 272

4 Preliminary Study on many-shot ICL 273

In this section, we explore the extent to which 274

many-shot ICL enhances model performance 275

across different task types. Previous work has ei- 276

ther focused on only classification tasks (Bertsch 277

et al., 2024) or studied only one specific model 278

1In Appendix D, we show that quantized and unquantized
models roughly exhibit the same trend.
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Dataset Task Category Avg. Tokens / Shot Max # of Shots # of Tasks

BANKING77 Intent Classification 13.13 5386 1
GoEmotions Emotion Classification 15.85 5480 1
DialogRE Relation Classification 233.27 395 1
TREC Question Classification 11.25 6272 1
CLINC150 Intent Classification 8.95 7252 1
MATH Math reasoning [185.52, 407.90] [286, 653] 4
GSM8K Math reasoning 55.78 784 1
BBH Reasoning [48.27, 243.01] [406, 2660] 4
GPQA MQ - Science [183.55, 367.02] [314, 580] 1
ARC MQ - Science [61.54, 61.54] [1997, 2301] 2
XLSUM New Summarization 621.32 220 1
FLORES-200 Translation [63.63, 101.74] [570, 1965] 3

Table 1: Dataset information. GPT-4o tokenizer is used to calculate # of tokens. Max # of shots is the number of
shots can be fitted into the 128k context window. For datasets that have multiple subtasks, we list the range for each
value. We have 21 tasks in total.

(Agarwal et al., 2024). In contrast, our analysis279

provides a comprehensive evaluation of many-shot280

ICL across both classification and generation tasks281

using ten open-weights LCLMs, excluding Mistral-282

Large and Gemini-1.5-Pro in this section. We col-283

lect tasks from previous work (Bertsch et al., 2024;284

Agarwal et al., 2024; Li et al., 2024) from six cate-285

gories: classification, translation, summarization,286

math reasoning, science reasoning, and symbolic287

reasoning. The results, illustrated in Figure 1, in-288

clude aggregated model performance across task289

types and the correlation coefficients between con-290

text lengths and performance from 1k to 64k. We291

also plot models’ performance on individual tasks292

in Appendix H and present more analysis on task293

categories in Appendix D.294

Classification performance steadily improves295

with more shots. Figure 1a demonstrates a con-296

sistent performance increase across all models as297

more demonstrations are added for classification298

tasks. This trend indicates a strong positive cor-299

relation between context length and performance,300

which is illustrated in Figure 1b. Given that some301

classification tasks often involve extensive label302

spaces, e.g., CLINC150 has 150 classes, additional303

demonstrations provide models with exposure to304

more classes and thus enhance their ability to per-305

form accurately. This is consistent with prior re-306

search findings (Bertsch et al., 2024).307

Summarization shows gradual performance308

gains only. On summarization, most models ex-309

hibit a high correlation between context length310

and performance. However, there is a noticeable311

slowdown in the performance gains as the num-312

ber of demonstrations increases. This suggests that313

while additional context may improve performance, 314

it does so at a diminishing rate, particularly for 315

smaller models like Llama-3.1-8B that struggle to 316

leverage longer contexts effectively. 317

Inconsistent trends in science and symbolic 318

tasks. For science and symbolic reasoning tasks, 319

the performance trends are less predictable, with 320

some models displaying minimal changes when 321

seeing additional examples, while others benefit. 322

This variability suggests that not all tasks lend 323

themselves to the advantages of many-shot ICL 324

equally. Ideally, for every task, additional demon- 325

strations should either improve performance or, 326

at the very least, not harm it. A model with ro- 327

bust long-context capabilities should exhibit a non- 328

decreasing performance trend as the context length 329

increases. Given the inconsistent performance on 330

non-classification tasks and even decreasing perfor- 331

mance on some reasoning tasks, in the next section, 332

we further investigate what aspects these datasets 333

evaluate and identify a set of tasks useful for evalu- 334

ating important skills of LCMLs. 335

5 Task Categorization: Similar-Sample 336

Learning vs. All-Sample Learning 337

To understand what skill each ICL task primarily 338

requires from LCLMs, in this section, we measure 339

the sample learning ratio of each task and divide 340

them into similar-sample learning vs. all-sample 341

learning tasks. We exclude translation tasks as tok- 342

enization can be inconsistent across languages and 343

to avoid difference in multilingual capabilities af- 344

fecting the results. Similarly, we omit GoEmotions 345

because of its subjective nature. 346
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Figure 1: (a) Aggregated performance of models over datasets in different categories of tasks. (b) Average pearson
correlation coefficient between context lengths (1k to 64k) and the corresponding performance.

5.1 Sample Learning Ratio347

To identify similar-sample learning tasks, we pro-348

pose a simple metric, sample learning ratio349

(SLR), to assess whether tasks predominantly rely350

on models to retrieve relevant examples during351

many-shot ICL. Concretely, for each ICL task, we352

create two variants of the original demonstrations353

at each context size ranging from 1k to 64k by re-354

moving the 10% most similar and the 10% least355

similar examples. At context length l, the model’s356

performance on these variants is then evaluated,357

and we have Perf(l)most for removing similar exam-358

ples and Perf(l)least for removing dissimilar examples.359

Here we use BM25 retriever to calculate the simi-360

larity. We then average the ratios between Perf(l)least361

and Perf(l)most for l = 1k to l = 64k as:362

SLR =
1

7

64k∑
l=1k

Perf(l)least

Perf(l)most

(1)363

Intuitively, if a model predominantly relies on364

retrieval for a task, removing most similar exam-365

ples will result in a more pronounced performance366

drop compared to removing dissimilar ones, which367

causes the ratio to be larger than 1. Conversely,368

if there is minimal difference between the two, it369

means the model does not retrieve similar examples370

to perform the task, and the ratio will be close to 1.371

Classification tasks require retrieval of similar372

examples. As shown in Figure 2, all classifica-373

tion tasks exhibit high SLR across the six mod-374

els. The BBH geometric shapes task also shows a375

high SLR, indicating that tasks like BANKING77,376

CLINC150, and TREC50 demand strong retrieval 377

capabilities from the models. DialogRE has a rela- 378

tively lower SLR, suggesting it requires moderate 379

retrieval skills. Among the symbolic tasks, BBH- 380

geometric_shapes is the only reasoning task that 381

has a high SLR. This task involves determining the 382

geometric shape given a full SVG path element, 383

making it similar to a classification task. The high 384

SLR of classification tasks can possibly explain the 385

largest positive correlation between performance 386

and context lengths, as displayed in Figure 1b. 387

All-sample learning tasks. In Figure 2, tasks 388

such as the math problems and summarization, 389

Dyck languages, translation error detection from 390

BBH, and GPQA with explanations all have a low 391

SLR. This means that they necessitate a greater 392

degree of global context understanding rather than 393

relying on the retrieval of relevant examples. These 394

tasks often involve complex reasoning challenges, 395

for which models may lack pretraining skills to 396

solve perfectly, underscoring the need for addi- 397

tional demonstrations or deeper task comprehen- 398

sion. 399

Additional analysis of SLR. To ensure that per- 400

formance loss is not caused by the absence of cer- 401

tain labels, we conduct an additional experiment 402

in which the top k% most similar examples are re- 403

placed with the most dissimilar examples that share 404

the same labels. In addition to BM25, we also use 405

the sentence transformer (Reimers and Gurevych, 406

2019) as the retriever. The result of this experiment 407

exhibits the same trend: classification tasks show 408

a higher SLR than non-classification tasks. More 409

details can be found Appendix F. 410
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Figure 2: Sample Learning Ratio on different categories of tasks from 1k to 64k tokens. The ratio of 1 indicates
models are not doing retrieval during ICL. Classification is the only category of tasks that has a very high ratio,
which means classification tasks requires similar-sample retrieval during ICL. The rest of tasks is close to 1, and
models’ performance on these tasks does not rely on retrieving similar examples.

6 ManyICLBench: A Many-shot ICL411

Benchmark to measure retrieval skill412

and global context understanding413

In this section, we present a new long-context414

benchmark MANYICLBENCH, designed to evalu-415

ate LCLMs’ retrieval skills and global context un-416

derstanding capabilities using the ICL setup. Based417

on the results from Section 5, we group tasks into418

two types:419

• 5 SSL Tasks: BANKING77, dialogRE,420

TREC50, CLINC150, and the geometric shape task421

from BBH.422

• 11 ASL Tasks: all math tasks, summarization423

task, GPQA with explanations, ARC_challenge,424

and all BBH tasks except geometric shapes.425

We exclude ARC_Easy and GPQA since426

ARC_Challenge and GPQA_CoT are already in-427

cluded in the benchmark. Evaluation results of428

popular LCLMs are summarized in Table 2.429

Most models struggle at retrieving examples af-430

ter 32k length. Up to a context length of 16k,431

all models demonstrate a steady performance in-432

crease, indicating effective retrieval from shorter433

contexts. However, performance begins to decline434

after reaching 32k tokens, particularly for the Mis-435

tral family and Jamba models. After 64k, the Llama436

3.1 family and the mini and medium versions of437

Phi-3 exhibit a notable downgrade in performance.438

In contrast, the Qwen-2 family maintains robust439

performance, with minimal degradation from 64k440

to 128k. Remarkably, only GLM-4 continues to441

improve in retrieval performance beyond 64k, in-442

dicating its impressive retrieval capabilities within443

a very long context window, while larger models 444

such as Mistral-Large and Llama-3.1-70B exhibit 445

the most significant performance losses as context 446

length increases, suggesting that size alone does 447

not ensure superior long-context retrieval ability. 448

Challenges in ASL tasks. ASL tasks prove to 449

be more challenging, with many models struggling 450

even at short context lengths like 2k or 4k. Only 451

the Llama 3.1 family, Qwen2 family, GLM-4, and 452

Gemini models effectively leverage many demon- 453

strations up to 16k. At 32k, only the Llama 3.1 and 454

Gemini models sustain performance. As context 455

length extends from 32k to 128k, all models expe- 456

rience performance degradation, highlighting that 457

current architectures still struggle to grasp global 458

context and utilize demonstrations effectively. No- 459

tably, Qwen2-72B, GLM-4, and Gemini are the 460

only models that do not experience significant per- 461

formance drops in this category. 462

The paradox of model size. Despite the com- 463

mon assumption that larger models possess greater 464

capabilities, our findings illustrate that larger mod- 465

els can experience more substantial performance 466

losses compared to smaller models if not trained 467

adequately on long-context data. For instance, 468

Mistral-Large (123B) shows optimal performance 469

from 1k to 32k but experiences a dramatic drop be- 470

yond 32k, which is worse than Phi-3-Mini (3.8B). 471

A similar trend is observed with Llama-3.1-70B at 472

128k. Both underscore the importance of targeted 473

training for long-context tasks. Although the large 474

models we test are quantized, we believe the trend 475

will hold even for the full-precision models. 476
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SSL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 31.63 34.99 46.37 57.27 63.61 68.34 72.16 72.93 55.91 71.14
Mistral-Nemo-Instruct 33.44 35.45 48.17 57.95 65.38 65.49 63.61 61.73 53.90 63.61
Mistral-Large-Instruct-AWQ 49.15 51.23 60.78 71.95 77.10 79.45 77.77 61.89 66.16 73.04
Llama-3.1-8B-Instruct-AWQ 32.13 34.63 45.76 57.39 66.18 70.02 70.55 65.85 55.31 68.81
Llama-3.1-70B-Instruct-AWQ 38.75 42.87 53.98 66.07 73.12 76.56 78.48 65.56 61.92 73.53
Qwen2-7B-Instruct-AWQ 30.18 34.03 44.40 54.85 62.92 65.91 66.94 66.38 53.20 66.41
Qwen2-72B-Instruct-AWQ 36.41 41.89 54.24 65.33 73.39 76.53 77.51 77.47 62.85 77.17
Phi-3-Mini-Instruct 30.27 30.90 38.09 48.14 53.58 57.29 56.83 48.72 45.48 54.28
Phi-3-Medium-Instruct 31.73 33.55 39.10 49.83 58.29 61.17 60.63 45.32 47.45 55.70
Phi-3-Small-Instruct 31.48 36.27 46.20 54.34 59.63 59.73 60.20 48.97 49.60 56.30
Jamba-1.5-Mini 32.10 36.91 48.61 60.29 66.05 68.33 66.02 65.17 55.44 66.51
Gemini-1.5-Pro 36.40 47.31 58.01 65.49 71.43 74.22 72.43 72.42 62.21 73.03

ASL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 40.51 40.28 42.04 42.78 40.70 40.46 38.85 39.13 40.59 39.48
Mistral-Nemo-Instruct 38.25 39.07 39.28 38.99 33.06 32.83 30.46 27.11 34.88 30.13
Mistral-Large-Instruct-AWQ 61.47 61.10 61.23 60.87 60.86 58.84 50.01 16.69 53.88 41.85
Llama-3.1-8B-Instruct 37.31 38.84 41.25 40.79 39.83 39.77 39.12 34.41 38.92 37.77
Llama-3.1-70B-Instruct-AWQ 53.32 54.84 55.76 55.87 56.42 56.34 54.42 18.58 50.69 43.12
Qwen2-7B-Instruct 39.52 41.96 45.17 45.39 45.50 37.29 36.97 33.99 40.72 36.09
Qwen2-72B-Instruct-AWQ 48.01 49.24 50.32 50.70 50.97 48.20 47.98 48.16 49.20 48.11
Phi-3-Mini-Instruct 33.54 32.97 29.80 29.75 30.12 28.78 28.06 25.76 29.85 27.53
Phi-3-Medium-Instruct 41.59 40.91 34.85 35.63 36.91 36.84 36.38 28.31 36.43 33.84
Phi-3-Small-Instruct 41.61 41.61 41.61 35.58 37.17 37.73 36.91 35.33 38.44 36.65
Jamba-1.5-Mini 31.96 33.08 32.97 32.70 31.66 28.82 27.14 25.87 30.53 27.28
Gemini-1.5-Pro 57.87 63.39 64.15 66.78 68.02 67.78 66.14 66.42 65.07 66.78

Table 2: Model performance on SSL and ASL tasks. AVG. is the average model performance of all context
lengths. AVG.L. is the average model performance of 32k, 64k and 128k. Red indicates performance improvement
compared to 1k. Blue indicates performance downgrade compared to 1k. A darker color means higher improvement
or downgrade. BOLD number means the largest number of a column. Many models start downgrading their
performance after 32k on SSL tasks. On global context ASL tasks, many models start struggling even before 16k.

Llama 3.1 performance and training limitations.477

The Llama 3.1 models initially capitalize on addi-478

tional demonstrations effectively up to 64k but suf-479

fer significant performance declines at 128k. This480

pattern aligns with trends observed in other long-481

context evaluation benchmarks (Hsieh et al., 2024).482

We suspect that these performance drops are linked483

to insufficient training with long-context data dur-484

ing the supervised fine-tuning (SFT) stage. Accord-485

ing to Dubey et al. (2024), the average token count486

for long-context datasets is around 38k, indicating487

limited exposure for models to effectively learn488

from data points at 128k lengths.489

Gemini is robust. Similar to other open-weight490

models on SSL tasks, Gemini-1.5-Pro begins to491

show performance degradation beyond 32k. How-492

ever, it is one of only three models (alongside493

Qwen-2-72B and GLM-Chat-9B) that demonstrate494

impressive retrieval capabilities beyond 64k and495

maintain performance at 128k. On ASL tasks,496

Gemini-1.5-Pro significantly outperforms other497

open-weight models, showcasing its ability to grasp498

the global context and effectively utilize all the 499

demonstrations. 500

Additional analysis on all-sample learning. We 501

want to explore whether ASL tasks genuinely ben- 502

efit from additional demonstrations and assess 503

models’ global context understanding skills. We 504

compare the performance of models with unique 505

demonstrations versus duplicated examples on ASL 506

tasks and find that some tasks do not benefit from 507

additional unique demonstrations, which means 508

models do not utilize all demonstrations during 509

ICL. More analysis can be found be in Appendix 510

G. 511

6.1 Error Analysis 512

To better understand how LCLMs fail on ASL tasks, 513

we analyze the performance of Llama-3.1-70B- 514

Instruct and compare it with Qwen-2-72B-Instruct. 515

We focus on non-multiple-choice tasks, including 516

four subtasks from MATH, two symbolic tasks 517

from BBH (word_sorting and dyck_languages), 518

and XLSUM. All the error analysis examples can 519
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Figure 3: Llama-3.1-70B-Instruct and Qwen2-72B-
Instruct aggregated performance on four MATH tasks
and two symbolic tasks from Section 6. For the MATH
tasks, we use the dataset’s difficulty labels. For the sym-
bolic tasks, we approximate difficulty based on word or
symbol length.

be found in Appendix I.520

LCLMs’ reasoning ability downgrades at long521

context lengths. As shown in Figure 3, when the522

context length increases, Llama-3.1-70B-Instruct523

tends to lose performance more significantly than524

Qwen-2-72B-Instruct. Across both easier and more525

difficult tasks, Qwen-2-72B-Instruct maintains rel-526

atively stable performance. A notable observation527

is that for both models, more difficult tasks degrade528

at an earlier context length, while easier tasks show529

a drop only at a later point. For instance, on sym-530

bolic tasks, Llama-3.1-70B-Instruct starts losing531

accuracy on level-4 and level-5 tasks before the532

simpler level-1 task.533

Llama-3.1-70B-Instruct loses reasoning capabil-534

ity at 128k length. On MATH tasks at 128k to-535

kens, Llama-3.1-70B-Instruct often produces repet-536

itive reasoning and gets stuck in loops. Its chain537

of thought becomes oversimplified, frequently re-538

lying on basic sentence structures. In Table 5, the539

solution at 128k tokens contains many repeated540

segments, whereas Qwen-2-72B-Instruct still gen-541

erates valid, consistent reasoning. Furthermore,542

Llama-3.1-70B-Instruct’s mathematical accuracy543

suffers: in Table 6, although it correctly calculates544 (
9
2

)
= 36 at shorter lengths, it incorrectly outputs545

42 at 128k tokens.546

On symbolic tasks, as test examples become547

more complex with additional symbols and words,548

Llama-3.1-70B-Instruct fails to solve problems it 549

could handle at shorter contexts. While Qwen-2- 550

72B-Instruct still performs well on easier examples 551

at 128k tokens, Llama-3.1-70B-Instruct shows a 552

noticeable drop. 553

Weaker instruction-following at 128k length. 554

For summarization tasks, the summaries generated 555

by Llama-3.1-70B-Instruct at 128k tokens become 556

longer and often contain details not present in the 557

reference. In Table 14, Qwen-2-72B-Instruct main- 558

tains concise, one-sentence outputs at both 16k 559

and 128k tokens, but Llama-3.1-70B-Instruct adds 560

extraneous information and deviates from the re- 561

quested one-sentence format. Figure 15 also il- 562

lustrates a significant increase in output length for 563

Llama-3.1-70B-Instruct at 128k tokens. 564

Overly long generation at 128k length. Fig- 565

ure 16 shows that Llama-3.1-70B-Instruct’s chain- 566

of-thought for MATH tasks grows excessively at 567

128k tokens, partly due to repetitive loops. This 568

trend indicates that beyond a certain context length, 569

the model’s reasoning becomes unfocused and ver- 570

bose. 571

7 Conclusion 572

We investigated many-shot in-context learning 573

(ICL) across various tasks using different open- 574

weight models, assessing their suitability for evalu- 575

ating long-context language models (LCLMs). Our 576

findings indicate that classification and summa- 577

rization tasks consistently benefit from additional 578

demonstrations, while other tasks do not. To iden- 579

tify a set of tasks suitable for long-context evalua- 580

tion, we introduced the concept of SLR to assess 581

the retrieval demands of different tasks. This analy- 582

sis revealed that classification tasks predominantly 583

rely on the model’s retrieval capabilities. Based 584

on these insights, we categorized tasks into two 585

distinct groups: SSL tasks and ASL tasks. Further- 586

more, we introduced a novel many-shot ICL bench- 587

mark, ManyICLBench, designed to evaluate both 588

retrieval and global context understanding skills of 589

LCLMs. Benchmarking open-weight LCLMs on 590

ManyICLBench revealed that most models struggle 591

with ASL tasks at lengths beyond 16k tokens. In 592

contrast, performance on SSL tasks tends to decline 593

after 32k tokens. 594
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8 Limitation595

Our study focuses solely on in-context learning596

setup, and does not address other setups where597

long context abilities are important, e.g., retrieval-598

augmented generation. In addition, we restrict our599

evaluation and benchmark to English ICL tasks, as600

most existing long-context benchmarks are English-601

centric. Expanding the benchmark to include mul-602

tilingual tasks is an important direction for future603

work. Lastly, given the rapid development and604

iteration of LCLMs, our findings may not fully605

generalize to newer models that may be trained to606

handle long context differently from existing ones.607

Nevertheless, we believe our findings are useful for608

future efforts on building models with strong long609

context understanding.610
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A Additional Related Work941

In-context learning (ICL) enables models to942

quickly recognize and perform tasks during in-943

ference by conditioning on a set of provided944

demonstrations (Brown et al., 2020). Many pre-945

vious works have sought to understand the mecha-946

nisms behind in-context learning (ICL). Xie et al.947

(2022) suggests that models implicitly perform948

Bayesian inference during inference, retrieving rel-949

evant skills learned during pretraining. Addition-950

ally, Lin and Lee (2024) introduces the concept951

of a dual operating mode in ICL: task learning952

and task retrieval. With sufficient demonstrations,953

models can adapt to unseen tasks learned during954

pretraining, thereby enhancing performance as the955

number of demonstrations increases. To explore956

how many-shot ICL operates, Bertsch et al. (2024)957

modified the attention patterns by restricting atten-958

tion among individual examples. Their findings959

suggest that performance improvements primarily960

arise from retrieving similar examples rather than961

comprehending the task. However, their experi-962

ment is limited to classification tasks. It may also963

be biased when comparing full attention and block964

attention, as block attention allows access to more965

demonstrations. Our work tries to design better966

experiments to investigate during many-shot ICL967

what skill each task mainly requires from LCLMs.968

B Datasets969

BANKING77 (Casanueva et al., 2020) is an intent970

classification task in the banking domain. It has971

over 10k customer service queries labeled with 77972

intents.973

GoEmotions (Demszky et al., 2020) contains 58974

Reddit comments labeled for 27 emotion categories975

or Neutral.976

DialogRE (Yu et al., 2020) is a relation extrac-977

tion dataset that is built based on transcripts of an978

American TV show Friends. It comprises 10,168979

relation triples for 1,788 dialogues and 36 total rela-980

tions types. We only focus on relation classification981

for this dataset.982

TREC (Li and Roth, 2002; Hovy et al., 2001)983

is a question classification dataset with six coarse984

and 50 fine class labels. It contains 5,500 questions985

in the training set and 500 in the test set.986

CLINC150 (Larson et al., 2019) is an intent clas-987

sification dataset with 150 intents from 10 domains.988

MATH (Hendrycks et al., 2021) is a dataset of989

12,5000 challenging completion mathematics prob-990

lems. Each problem has a full step-by-step solution. 991

We use four subdomains from the dataset: algebra, 992

geometry, counting and probability, and number 993

theory. 994

GSM8K (Hendrycks et al., 2021) consists of 995

8.5K high quality grade school math problems cre- 996

ated by human problem writers. These problems 997

take between 2 and 8 steps to solve, and solutions 998

primarily involve performing a sequence of elemen- 999

tary calculations using basic arithmetic operations 1000

(+ - / *) to reach the final answer. 1001

BBH (Srivastava et al., 2022) is a subset of 23 1002

challenging BIG-Bench tasks (Suzgun et al., 2022), 1003

which include task categories such as mathematics, 1004

commonsense reasoning, and question answering. 1005

We use four subtasks from BBH-Hard: geomet- 1006

ric shape, salient translation error detection, word 1007

sorting, and dyck languages. 1008

ARC (Clark et al., 2018) is a dataset of 7,787 1009

genuine grade-school level, multiple-choice sci- 1010

ence questions. The dataset is partitioned into a 1011

Challenge Set and Easy Set, where the former con- 1012

tains only questions answered incorrectly by both a 1013

retrieval-based algorithm and a word co-occurrence 1014

algorithm. 1015

GPQA (Rein et al., 2023) is a dataset of 448 1016

multiple-choice questions with detailed explana- 1017

tions written by domain experts in biology, physics, 1018

and chemistry. 1019

XLSUM (Hasan et al., 2021) is a summarization 1020

dataset that focuses on news articles from BBC. In 1021

this work, we focus only on English news articles. 1022

FLORES-200 (NLLB Team, 2022) is a transla- 1023

tion benchmark that contains many low-resource 1024

languages. We follow Agarwal et al. (2024) and 1025

choose the translation task from Tamil to English. 1026

Additionally, we also test models on Chinese and 1027

Spanish. 1028

C Models 1029

Llama-3.1 8B and 70B (Dubey et al., 2024): We 1030

use both the 8B and 70B Llama 3.1 Instruction 1031

models. These multilingual models are trained on 1032

a 128k context window using position interpola- 1033

tion. The models are further fine-tuned with syn- 1034

thetic long-text Supervised Fine-Tuning (SFT) data 1035

and also undergo Direct Preference Optimization 1036

(DPO) (Rafailov et al., 2024). 1037

GLM-4-9B-Chat (GLM et al., 2024): This 1038

is a 9-billion-parameter multilingual model, also 1039

trained on a 128k context window with position 1040
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interpolation. It is further fine-tuned with labeled1041

long-text SFT data and undergoes a DPO stage.1042

Mistral Family (Mistral AI, 2024): We use both1043

12-billion-parameter and 123-billion-parameter1044

multilingual models, trained on a 128k context win-1045

dow.1046

Qwen2 7B and 72B (Yang et al., 2024): These1047

two models are trained with a context size of 32k to-1048

kens, and their context window is extended to 128k1049

by YARN (Peng et al., 2023), a dynamic position1050

interpolation technique.1051

Phi-3 (Abdin et al., 2024): We use the mini1052

(3.8B), small (7B), and medium (14B) versions of1053

Phi-3 models. They are trained with the context1054

size of 4k tokens on high quality data, and Lon-1055

gRope (Ding et al., 2024) extends their context size1056

to 128k.1057

Jamba-1.5-Mini (Team et al., 2024): It’s a hy-1058

brid SSM-Transformer model with 12B of active1059

parameters and 52B of total parameters with a con-1060

text size of 256k tokens.1061

Gemini-1.5-Pro (Team, 2024): It is a commer-1062

cial model introduced by Google and has a context1063

size of 2 million tokens.1064

D Quantization vs. Regular1065

We compare the 4-bit quantized version and un-1066

quantized version of both Llama-3.1 8B and Llama-1067

3.1-70B. In both Figure 4 and Figure 5, we can ob-1068

serve that the quantized version experiences a little1069

performance drop but exhibits the same trend as1070

the unquantized version with the increasing context1071

length.
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Figure 4: Comparison between Llama-3.1-8B and 4-bit
quantized Llama-3.1-8B. There are some performance
gaps between two models on translation, science, and
math tasks, but with the increasing context size, the
performance trend is the same for both models.
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Figure 5: Comparison between Llama-3.1-70B and 4-bit
quantized Llama-3.1-70B. Similar to the smaller model,
the performance trends hold for both models except the
translation tasks. In our benchmark, we exclude all the
translation tasks because of the inconsistent multilingual
ability of LCLMs.

1072

E More analysis on Section 4 many-shot 1073

ICL 1074

Subjective tasks do not benefit from more ex- 1075

amples. The GoEmotions task, though being a 1076

classification problem, exhibits a fluctuating per- 1077

formance trend across all models with increasing 1078

shots in Figure 9. We attribute this inconsistency 1079

to the subjective nature of the task, where nuanced 1080

emotional categories may lead to low annotator 1081

agreement (Demszky et al., 2020). This variance in 1082

the annotated labels may results in a weaker correla- 1083

tion between context length and performance. This 1084

finding highlights a limitation in using ICL tasks 1085

with ambiguous ground truths to evaluate LCLMs, 1086

as their performance does not improve with more 1087

demonstrations. 1088

Models’ performance fluctuates on transla- 1089

tion tasks. As shown in Figure 10, the perfor- 1090

mance curves for all models across different lan- 1091

guages differ. For the low-resource language, mod- 1092

els show larger performance gap than those in the 1093

high-resource language, e.g., Spanish. In Chinese, 1094

models become spikier than in other languages 1095

across different context sizes. In Figure 1a, transla- 1096

tion tasks show a very flat curve, with no significant 1097

improvement as the number of demonstrations in- 1098

creases. This result contrasts with Agarwal et al. 1099

(2024), where the Gemini-1.5 Pro model demon- 1100

strated consistent performance improvements in 1101

Kurdish and Tamil translation tasks as the context 1102

size increased. We think the performance incon- 1103
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sistency is caused by the mismatched multilingual1104

capability of models and different model sizes.1105

Math tasks benefit from additional demon-1106

strations, particularly for stronger models. In1107

math reasoning tasks, only the Llama-3.1 and1108

Qwen2 model families show significant perfor-1109

mance improvements with additional demonstra-1110

tions. Notably, Qwen2 performance plateaus at 16k1111

length, while Llama-3.1 continues to improve until1112

64k. The models with larger parameter sizes tend1113

to exhibit more consistent performance gains, sup-1114

porting findings from Agarwal et al. (2024) who1115

have demonstrated that Gemini 1.5 Pro improves1116

on math tasks with more examples.1117

F Sample Learning Ratio with1118

Replacement1119

To ensure the performance downgrade is not caused1120

by the absence of certain labels in the experiment1121

from Section 5, we replace similar examples with1122

distant examples with the same labels. The new1123

sample learning ratio formula is scoreoriginal

scorereplace
. We1124

use Llama-3.1 and Qwen2 models and conduct this1125

experiment from 1k to 32k with BM25 and from 1k1126

to 32k with SBERT (Reimers and Gurevych, 2019)1127

retrievers.1128

BM25: The trend in Figure 2 matches the results1129

of Figure 6. All the classification tasks downgrade1130

performance more when similar examples are re-1131

placed. However, the degree of downgrade is less1132

significant than removing similar examples.1133

SBERT: For SentenceTransformer, we use all-1134

MiniLM-L6-v2 as the base model. The trends ob-1135

served from Figure 2 and Figure 6 still hold in1136

Figure 7. That is, all the classification tasks still1137

have a higher ratio and the non-classification tasks1138

have a ratio close to 1.1139

G A deeper look into all-sample learning1140

task1141

In this section, we investigate which ASL tasks1142

tend to benefit more from additional demonstra-1143

tions and whether models use all the demonstra-1144

tions to understand the task during ICL.1145

To that end, we propose another metric,1146

Global Context Index, to measure the global con-1147

text understanding skill required by a task i.e., skills1148

required to learn from all samples. Specifically, for1149

each ASL task, we create two variants of demon-1150

strations, both starting with the same demonstra-1151

tions used in the 1k context-length experiment. For1152

context lengths l ranging from 2k to 64k, the unique 1153

variant keeps adding unique demonstrations to the 1154

prompt, whereas the duplicate variant repeats the 1155

same demonstrations as in the 1k context. At each 1156

length l, the performance of the unique variant is 1157

denoted as Perf(l)unique, and the performance of the 1158

duplicate variant as Perf(l)duplicate. We then average 1159

the percentage difference between Perf(l)unique and 1160

Perf(l)duplicate for l = 2k to l = 64k across 6 context 1161

lengths as: 1162

Global Context Index =
1

6

64k∑
l=2k

1−
Perf(l)duplicate

Perf(l)unique

 1163

If duplicating examples results in worse perfor- 1164

mance on an ASL task than adding unique exam- 1165

ples, the global context index will be positive and 1166

suggests that the model benefits more from provid- 1167

ing unique demonstrations. This means that per- 1168

formance improvements come from learning from 1169

diverse examples rather than simply picking up on 1170

formatting patterns or relying on spurious corre- 1171

lations between in-domain tokens and predictions. 1172

We use Llama-3.1-70B for the preliminary analysis 1173

because it is best at using additional demonstra- 1174

tions out of all models we have tested so far, e.g., it 1175

shows a high positive correlation between context 1176

lengths and performance in Figure 1b. 1177

In Figure 8, tasks such as the math problems, 1178

summarization, Dyck languages, translation error 1179

detection from BBH, and GPQA with explana- 1180

tions all have worse performance with duplicated 1181

demonstrations. This means that they necessitate 1182

a greater degree of global context understanding 1183

rather than relying on the retrieval of similar ex- 1184

amples. These tasks are often complex reasoning 1185

challenges, for which models may lack pretraining 1186

skills to solve perfectly, underscoring the need for 1187

additional demonstrations or deeper task compre- 1188

hension. 1189

ARC-Easy, ARC-Challenge, GPQA, and BBH 1190

word sorting tasks are indifferent to duplicating 1191

examples. This indicates that these tasks do not 1192

benefit from additional demonstrations. Most of 1193

these tasks assess the intrinsic abilities of the mod- 1194

els reasoning with their parametric knowledge, thus 1195

a few demonstrations suffice. Adding more demon- 1196

strations may introduce distractions rather than 1197

improve performance. Interestingly, GPQA with 1198

“chain-of-thoughts” benefit from additional exam- 1199

ples. We suspect that without these solution steps, 1200
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Figure 6: Sample Learning Ratio under the replacement setting with BM25 on all tasks expect XLSUM from 1k to
32k tokens. The ratio of 1 indicates models are not doing retrieval during ICL because similar demonstrations don’t
help models perform better. Similar to Figure 2, classification is the only category of tasks that has a higher ratio,
which means classification tasks largely require model retrieval skills during ICL. The rest of the tasks are close to
1, and the models’ performance on these tasks does not rely on retrieving similar examples.

GPQA is too challenging for the model to under-1201

stand even after seeing many demonstrations with1202

answers only.1203

9 Strong ASL Tasks. Based on the analy-1204

sis of the global context index, we remove ARC-1205

Challenge and BBH word sorting tasks to create1206

a new category of tasks called strong ASL Tasks.1207

Evaluation results on strong ASL Tasks are sum-1208

marized in Table 3.1209

H Task Performance1210

In this section, we present the models’ performance1211

on individual tasks and group them by the task cate-1212

gories: classification (Figure 9), translation (Figure1213

10), summarization (Figure 9), and reasoning (Fig-1214

ures 11, 12, and 13).1215

I Error Analysis1216

In this section, we include examples from MATH,1217

BBH, and XLSUM tasks, highlighting the per-1218

formance of Llama-3.1-70B and Qwen2-72B at1219

both 16k and 128k context lengths. We analyze1220

the strengths and shortcomings of each model’s1221

outputs, focusing on accuracy, consistency, and1222

the impact of extended context lengths on their1223

reasoning processes. MATH (Table 5, 6, and 7),1224

BBH-word_sorting (Table 11, 12, and 13), BBH-1225

dyck_languages (Table 8, 9, and 10), and XLSUM1226

(Table 14).1227

Qwen2 and GLM-4 show relatively robust capa- 1228

bilities on both tasks. The Qwen2-72B model 1229

consistently maintains performance across both 1230

SSL and ASL tasks, demonstrating its adaptability 1231

for longer contexts. Trained on data with up to 1232

32k tokens, Qwen2 models employ modified RoPE 1233

frequency and training-free positional interpola- 1234

tion methods to handle longer contexts. However, 1235

the Qwen2 family models drop their performance 1236

from 16k to 32k in the ASL tasks but maintain 1237

their performance after 32k. This raises the ques- 1238

tion of whether the training-free length extension 1239

methods enable models to use additional demon- 1240

strations or merely maintain their performance in 1241

the short context length and ignore additional ex- 1242

amples during many-shot ICL. Meanwhile, GLM- 1243

4-chat also shows a relatively robust performance 1244

at a longer context size and is the only model to 1245

experience a performance increase from 64k to 1246

128k on SSL tasks. GLM-4’s training methodol- 1247

ogy closely mirrors that of Llama 3.1 models, with 1248

adjustments to the RoPE base and continuous train- 1249

ing on long-context data. The difference is, during 1250

SFT, GLM-4-9B follows LongAlign (Bai et al., 1251

2024), which determines the length distribution of 1252

the long-context SFT data carefully. GLM-4-9B 1253

also goes through the RLHF stage with both short 1254

and long data. 1255

Does LCLM’s poor performance beyond 16k 1256

limit their potential in the world application? 1257
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Figure 7: Sample Learning Ratio under the replacement setting with SBERT on selective tasks from 1k to 32k
tokens. A ratio of 1 signifies that models do not perform retrieval during in-context learning (ICL), as similar
demonstrations do not enhance their performance. As shown in Figure 2, classification tasks are the only category
with a higher retrieval load ratio, indicating a strong dependence on retrieval during ICL. In contrast, other tasks
exhibit ratios close to 1, suggesting minimal reliance on retrieval, with models’ performance largely unaffected by
retrieval-based demonstrations.

In our ASL task evaluation, we distinguish between1258

more practical tasks, such as XLSUM and MATH,1259

and less real-world-relevant tasks, such as sym-1260

bolic reasoning and ARC. To assess whether poor1261

ASL performance beyond 16K tokens translates to1262

real-world limitations, we analyzed the correlation1263

between these tasks for three models that exhibit1264

significant degradation after 16K tokens. In Figure1265

14, for Phi-3-Medium and Mistral-Large, we ob-1266

served strong correlations across all tasks, which1267

likely stems from their uniformly poor performance1268

across the board. In contrast, Llama-3.1-70B ex-1269

hibits a distinct pattern: while word sorting (a less1270

practical task) does not correlate well with other1271

tasks, all other ASL tasks show strong mutual cor-1272

relations. Based on these findings, we believe that1273

LCLMs’ poor performance on ASL tasks beyond1274

16K tokens is a fair indicator of their limitations in1275

real-world applications, where long-context under-1276

standing is often essential.1277
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Figure 8: Global context index is the average % difference between adding duplicated vs. unique examples from 2k
to 64k context for non-retrieval tasks. 0% means duplicating does not harm the model’s performance. Easy tasks
such as ARC and word sorting do not benefit from additional information. When a task is too difficult, e.g., GPQA,
the model cannot effectively learn all demonstrations unless explanations are provided.

ASL Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.

GLM-4-9b-Chat 36.79 36.23 38.30 39.30 37.60 37.94 36.53 35.45 37.27 36.64
Mistral-Nemo-Instruct 33.94 34.88 34.92 34.72 28.22 28.64 26.28 23.23 30.60 26.05
Mistral-Large-Instruct-AWQ 57.09 56.30 56.21 56.12 56.43 53.33 42.98 13.10 48.94 36.47
Llama-3.1-8B-Instruct-AWQ 31.31 32.79 33.02 34.50 34.25 35.22 33.71 27.88 32.84 32.27
Llama-3.1-70B-Instruct-AWQ 45.53 47.60 48.39 49.08 49.64 49.83 47.74 13.88 43.99 37.23
Qwen2-7B-Instruct-AWQ 37.75 39.47 43.86 44.55 42.83 35.17 33.00 32.70 38.67 33.62
Qwen2-72B-Instruct-AWQ 47.38 49.03 50.32 50.69 50.78 48.56 48.18 48.68 49.20 48.47
Phi-3-Mini-Instruct 29.86 29.20 26.61 26.95 27.65 26.34 25.54 23.08 26.90 24.98
Phi-3-Medium-Instruct 37.74 37.15 31.49 32.02 33.04 33.19 33.06 24.56 32.78 30.27
Phi-3-Small-Instruct 38.40 38.40 38.35 31.69 34.04 34.59 33.74 32.46 35.21 33.60
Jamba-1.5-Mini 27.86 29.04 28.93 28.86 27.86 24.92 23.12 22.42 26.63 23.48
Gemini-1.5-Pro 58.26 60.88 61.30 65.20 65.05 65.12 62.38 63.61 62.73 63.70

Table 3: Model performance on strong ASL tasks. AVG. is the average model performance of all context lengths.
AVG.L. is the average model performance of 32k, 64k and 128k. Red indicates performance improvement com-
pared to 1k. Blue indicates performance downgrade compared to 1k. A darker color means higher improvement
or downgrade. BOLD number means the largest number of a column.
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Figure 9: Models’ performance on all classification tasks. All tasks except GoEmotions show a very consistent
gain with increasing context size. We excluded GoEmotions from our benchmark because of the data’s strong
subjectivity.
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Figure 10: Models’ performance on all translation tasks and the summarization task. For translation tasks, we
do not observe a clear pattern among different languages and models, which can be caused by LCLMs’ different
multilingual abilities. We can see a slightly positive trend for the summarization task.
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Figure 11: Models’ performance on all math tasks. Overall, the larger and stronger models benefit more from the
increasing context window size on math tasks.
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Figure 12: Models’ performance on all science tasks. For the ARC task, the performance of all models stays
the same across all context sizes. For GPQA, we can see larger and more robust LCLMs keep or increase their
performance with the increasing context size.
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Figure 13: Models’ performance on all symbolic tasks. For the geometric shape and translation error detection tasks,
we can all model benefit from the increasing context length. We suspect the word sorting task may too easy for the
models, so the lines are flat. For the dyck language task, the models experience performance gain up 16k context
length but start downgrading afterward.
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(a) Llama-3.1-70B-Instruct’s correlation (b) Mistral-Large’s correlation

(c) Phi-3-Medium’s correlation

Figure 14: Correlation table among ASL tasks.

(a) Llama-3.1-70B-Instruct’s generation length on XLSUM (b) Qwen2-72B-Instruct’s generation length on XLSUM

Figure 15: XLSUM generation length
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(a) Llama-3.1-70B-Instruct’s generation length on MATH
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(b) Qwen2-72B-Instruct’s generation length on MATH

Figure 16: MATH generation length
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Task Example

banking77 Query: I have multiple of the same transaction
Intent: transaction_charged_twice

goEmotions Comment: It is bad tho.
Category: disapproval

dialogRE Dialogue: Speaker 1: I’m divorced! I’m only 26 and I’m divorced! Speaker 2:
Shut up! Speaker 3: You must stop! Speaker 1: That only took me an hour.
The list of 1 relations are (Speaker 1,26)
The respective relations between each entity pair are: per:age

trec_50 Question: Describe the Finnish music personality Salonen ’s appearance .
Type: DESC:desc

clinc150 Query: i need a good joke about office parties
Intent: tell_joke

MATH-algebra Problem: How many cubic feet are in three cubic yards?
Solution: Cubing both sides of 1 yard = 3 feet we find that 1 cubic yard equals
27 cubic feet. Therefore, 3 cubic yards are equal to 27 · 3 = 81 cubic feet.

MATH-geometry Problem: In quadrilateral ABCD, BC = 8, CD = 12, AD = 10, and
m ̸ A = m̸ B = 60◦. Given that AB = p +

√
q, where p and q are positive

integers, find p+ q.

Solution: [asy]draw((0,0)–(20.87,0)–(15.87,8.66)–(5,8.66)–cycle);
draw((5,8.66)–(5,0)); draw((15.87,8.66)–(15.87,0)); draw((5,8.66)–
(16.87,6.928)); label("A",(0,0),SW); label("B",(20.87,0),SE);
label("E",(15.87,8.66),NE); label("D",(5,8.66),NW); label("P ",(5,0),S);
label("Q",(15.87,0),S); label("C",(16.87,7),E); label("12",(10.935,7.794),S);
label("10",(2.5,4.5),W); label("10",(18.37,4.5),E); [/asy]
Draw line segment DE such that line DE is concurrent with line BC. Then,
ABED is an isosceles trapezoid so AD = BE = 10, and BC = 8 and
EC = 2. We are given that DC = 12. Since ̸ CED = 120◦, using the Law
of Cosines on △CED gives

122 = DE2 + 4− 2(2)(DE)(cos 120◦),

which simplifies to 144 − 4 = DE2 + 2DE. Adding 1 to both sides yields
(DE + 1)2 = 141, so DE =

√
141− 1. In the 30−60−90 triangles △DAP

and △EBQ, we have AP = BQ = 5. Since PQ = DE, it follows that

AB = AP + PQ+BQ = 5 + (
√
141− 1) + 5 = 9 +

√
141,

so (p, q) = (9, 141) and p+ q = 150 .

MATH-counting Problem: Sarah wants to order a pizza with 2 different toppings. She has 9
different toppings to choose from. How many different pizzas could she order?
Solution: There are 9 choices of toppings, and we need to choose 2 distinct
toppings. This is represented by the number of 2-element subsets of a 9-element
set. We use the binomial coefficient

(
9
2

)
= 36 to compute this.

MATH-
number_theory

Problem: Express eleven in base 2.
Solution: We have 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20, so 11 = 1011_2 .
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BBH-
geometric_shapes

Input: This SVG path element <path d="M 53.64,29.71 L 61.55,33.55
M 61.55,33.55 L 65.49,42.75 M 65.49,42.75 L 60.75,49.85
M 60.75,49.85 L 54.92,52.75 L 48.80,50.52 M 48.80,50.52
L 44.97,43.03 M 44.97,43.03 L 46.15,33.55 M 46.15,33.55 L
53.64,29.71"/> draws a
Options: (A) circle, (B) heptagon, (C) hexagon, (D) kite, (E) line, (F) octagon,
(G) pentagon, (H) rectangle, (I) sector, (J) triangle
Target: (F)

BBH-
salient_translation_
error_detection Input: The following translations from German to English contain a particular

error. That error will be one of the following types: Named Entities (an entity
is changed), Numerical Values (values or units are changed), Modifiers or Ad-
jectives (modifiers are changed), Negation or Antonyms (negations or opposites
are altered), Facts (trivial factual errors), Dropped Content (significant content
is removed). Please identify that error.
Source: Die unvollständige Liste der Baudenkmale in Barsinghausen enthält
Baudenkmale der Barsinghausener Kernstadt sowie der Ortsteile Bantorf, Bar-
rigsen, Eckerde, Egestorf, Göxe, Großgoltern, Groß Munzel, Hohenbostel,
Holtensen, Kirchdorf, Landringhausen, Langreder, Nordgoltern, Ostermunzel,
Stemmen, Wichtringhausen und Winninghausen.
Translation: The complete list of architectural monuments in Barsinghausen
contains architectural monuments of the Barsinghausen core town as well as
the districts bantorf, Barrigsen, Eckerde, Egestorf, Göxe, Großgoltern, Groß
Munzel, Hohenbostel, Holtensen, Kirchdorf, Landringhausen, Langreder, Nord-
goltern, Ostermunzel, Stemmen, Wichtringhausen and Winninghausen.
The translation contains an error pertaining to
Options: (A) Modifiers or Adjectives, (B) Numerical Values, (C) Negation or
Antonyms, (D) Named Entities, (E) Dropped Content, (F) Facts
Target: (C)

BBH-word_sorting Input: Sort the following words alphabetically: List: thrill splutter panicking
scorch same dot prod obstetric malton onus drumhead delmarva barn embezzle
it&t damp guru subsist entirety greene
Target: barn damp delmarva dot drumhead embezzle entirety greene guru it&t
malton obstetric onus panicking prod same scorch splutter subsist thrill

BBH-
dyck_languages

Input: Complete the rest of the sequence, making sure that the parentheses are
closed properly. Input: ( [ [ [ ] ] < [ < [ ] > ] >
Target: ] )

GPQA Question: Determine which set of states mentioned below are only entangled
states:
(a) 1√

30
(|00⟩+ 2i|01⟩ − 3|10⟩ − 4i|11⟩)

(b) 1
5 (|00⟩+ 2i|01⟩ − 2|10⟩ − 4i|11⟩)

(c) 1
2 (|00⟩+ |01⟩+ |10⟩ − |11⟩)

(d) 1
2 (|00⟩+ |01⟩ − |10⟩ − |11⟩)

Options: A. a,b B. b,d C. c,d D. a,c
Answer: D
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GPQA_cot Question: Determine which set of states mentioned below are only entangled
states:
(a) 1√

30
(|00⟩+ 2i|01⟩ − 3|10⟩ − 4i|11⟩)

(b) 1
5 (|00⟩+ 2i|01⟩ − 2|10⟩ − 4i|11⟩)

(c) 1
2 (|00⟩+ |01⟩+ |10⟩ − |11⟩)

(d) 1
2 (|00⟩+ |01⟩ − |10⟩ − |11⟩)

Options: A. a,b B. b,d C. c,d D. a,c
Answer: D
Explanation: For a state a|00⟩+ b|01⟩+ c|10⟩+ d|11⟩, separability requires
a · d = b · c. This condition is not met for option a,c; hence both states are
entangled.

ARC-Challenge Question: One important difference between living things and nonliving things
is that only living things have
1. compounds 2. elements 3. molecules 4. cells
Answer: 4

ARC-Easy Question: Infections may be caused by
1. mutations 2. microorganisms 3. toxic substances 4. climate changes
Answer: 2

MT_Kurdish English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Kurdish: ...

MT_Chinese English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Chinese: ...

MT_Spanish English: Every corner store is filled with a confusing array of pre-paid phone
cards that can be used from pay phones or ordinary telephones.

Spanish: En las tiendas de cada esquina hay una enorme y confusa
variedad de tarjetas de telefonía prepagas que pueden utilizarse en teléfonos
públicos o comunes.

GSM8K Question: If one Burmese python can eat one 50-cm alligator per week, how
many Burmese pythons would it take to eat fifteen 50-centimeter alligators in
three weeks?
Answer: 15 alligators eaten over 3 weeks gives a rate of 15/3 = 5 alligators
per week. Thus, at 1 alligator per week per python, it would take 5 pythons to
eat 15 alligators.
5

Table 4: Input and output example from each task
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Task: Math-Algebra

Problem:
A triangle has vertices at coordinates (11, 1), (2, 3) and (3, 7). What is the number of units in the
length of the longest side of the triangle?

Difficulty: Level 3

Solution:
We must find the distance between each pair of points by using the distance formula. The distance
between (11, 1) and (2, 3) is

√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85. The distance between

(2, 3) and (3, 7) is
√
(2− 3)2 + (3− 7)2 =

√
1 + 16 =

√
17. The distance between (3, 7) and

(11, 1) is
√

(11− 3)2 + (1− 7)2 =
√
64 + 36 =

√
100 = 10. 10 is larger than

√
85 and

√
17.

Thus, the longest side of the triangle has length 10 .

Model: Llama-3.1-70B

16k Solution:
The longest side of the triangle is the side with the greatest length. The length of a side can be
found using the distance formula, which is√

(x2 − x1)2 + (y2 − y1)2.

We can use this formula to find the lengths of the three sides of the triangle. The first side has a
length of √

(11− 2)2 + (1− 3)2 =
√

92 + 22 =
√
85.

The second side has a length of√
(11− 3)2 + (1− 7)2 =

√
82 + 62 =

√
100 = 10.

The third side has a length of√
(2− 3)2 + (3− 7)2 =

√
12 + 42 =

√
17.

The longest side of the triangle is the side with the greatest length, which is the second side with a
length of 10 units.

128k Solution:
We use the distance formula:√

(−1− 2)2 + (2− 3)2 + (3− 7)2 =

... Repeat 13 times√
(−1− 2)2 + (2− 3)2 + (3− 7)2 = 10 .

Model: Qwen2-72B

16k Solution:
We must find the distance between each pair of points.

The distance between (11, 1) and (2, 3) is
√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85.

The distance between (11, 1) and (3, 7) is
√
(11− 3)2 + (1− 7)2 =

√
64 + 36 =

√
100 = 10.

The distance between (2, 3) and (3, 7) is
√
(2− 3)2 + (3− 7)2 =

√
1 + 16 =

√
17.
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Thus, the longest side of the triangle has length 10 .

128k Solution:
We find the distance between each pair of points. The distance between (11, 1) and (2, 3)
is

√
(11− 2)2 + (1− 3)2 =

√
81 + 4 =

√
85. The distance between (11, 1) and (3, 7) is√

(11− 3)2 + (1− 7)2 =
√
64 + 36 =

√
100 = 10. The distance between (2, 3) and (3, 7)

is
√

(2− 3)2 + (3− 7)2 =
√
1 + 16 =

√
17. Therefore, the longest side of the triangle has length

10 .

Analysis: At 128k, Llama-3.1-70B misapplies the distance formula and repeats the same incorrect
computation multiple times. Although the final boxed answer is correct, the reasoning is completely
flawed. In contrast, Qwen2-72B maintains consistent reasoning in both 16k and 128k solutions and
arrives at the correct answer 10 .

Table 5: An example problem from MATH_algebra

26



Task: MATH-counting_and_probability

Problem:
Sarah wants to order a pizza with 2 different toppings. She has 9 different toppings to choose from.
How many different pizzas could she order?

Difficulty: Level 1

Solution:
There are 9 choices of toppings, and we need to choose 2 distinct toppings. This is represented by
the number of 2-element subsets of a 9-element set. We use the binomial coefficient

(
9
2

)
= 36 to

compute this.

Model: Llama-3.1-70B

16k Solution:
There are

(
9
2

)
= 36 different pizzas she could order.

Solution at 128k:
Sarah can choose 2 different toppings from 9 different toppings. There are

(
9
2

)
= 42 ways to choose

2 different toppings. For each of these 42 different toppings, there are 2 different pizzas, one with
the first topping first and the other with the second topping first. Therefore, there are 42 · 2 = 84
different pizzas.

Model: Qwen2-72B

16k Solution:
Sarah can choose 2 toppings from 9 in

(
9
2

)
= 36 ways.

Solution at 128k:
Sarah can choose her first topping in 9 ways. For the second topping, she has 8 choices left. So,
there are 9× 8 = 72 ways to choose the toppings. However, since the order of the toppings does
not matter, we have counted each pair of toppings twice. Therefore, the number of different pizzas

she can order is
9× 8

2
= 36 .

Analysis:
Llama-3.1-70B’s 128k solution incorrectly computes the number of ways to choose 2 toppings by
mistakenly taking

(
9
2

)
as 42 and then multiplying by 2, resulting in an incorrect answer of 84 . In

contrast, Qwen2-72B’s 128k solution correctly accounts for the unordered nature of the topping
selection, arriving at the correct answer of 36 .

Table 6: An example problem from MATH_counting_and_probability
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Task: MATH-number_theory

Problem:
Tim is doing a cakewalk with 11 steps. He takes his first step on step 1 and takes a total of 139
steps, walking in a circle (so that after the 11th step he reaches the first step again). Which step of
the cakewalk does he end on?

Difficulty: Level 2

Solution:
When you divide 139 steps by 11 steps, you get 12 with a remainder of 7. Therefore, Tim lands on
step 7 .

Model: Llama-3.1-70B

16k Solution:
We can write 139 = 11 · 12 + 7. Thus, after 12 full cycles, he will end up 7 steps from the first
step. Since 7 is less than 11, he will end up on the 7th step of the cakewalk. Thus, the answer is 7 .

Solution at 128k:
Since 139 is divisible by 11, the number of steps is a multiple of 11. Since 139 is less than 200, the
number of steps is less than 200 and therefore is 139 or 139− 1 or 139− 2 or 139− 3 or 139− 4
or 139− 5 or 139− 6 or 139− 7 or 139− 8 or 139− 9 or 139− 10 or 139− 11 or 139− 12 or
139− 13 or 139− 14 or 139− 15 or 139− 16 or 139− 17 or 139− 18 or 139− 19 or 139− 20 or
139− 21 or 139− 22 or 139− 23 or 139− 24 or 139− 25 or 139− 26 or 139− 27 or 139− 28 or
139− 29 or 139− 30 or 139− 31 or 139− 32 or 139− 33 or 139− 34 or 139− 35 or 139− 36 or
139− 37 or 139− 38 or 139− 39 or 139− 40 or 139− 41 or 139− 42 or 139− 43 or 139− 44 or
139− 45 or 139− 46 or 139− 47 or 139− 48 or 139− 49 or 139− 50 or 139− 51 or 139− 52
or 139− 53 or . . . (incomplete reasoning)

Model: Qwen2-72B

16k Solution:
We can think of this problem as finding the remainder when 139 is divided by 11. Dividing 139
by 11, we get a quotient of 12 and a remainder of 7. This means that after taking 139 steps, Tim
will have completed 12 full circles of 11 steps each, and will be on the 7th step of the next circle.
Therefore, Tim ends on step 7 .

Solution at 128k:
We can write 139 ≡ 3 (mod 11), so Tim ends on step 3 .

Analysis:
Both models correctly solved the problem in their 16k solutions. However, the 128k solution from
Llama-3.1-70B devolves into a repetitive and incorrect calculation process, while Qwen2-72B’s
128k solution misapplies modular arithmetic, leading to an incorrect result.

Table 7: An example problem from MATH-number_theory
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Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: < < { { { < [ ( < > { ( ) } ) ] > } } }

Difficulty: Level 4

Solution:
> >

Model: Llama-3.1-70B

16k Solution:
> >

Solution at 128k:
> >

Model: Qwen2-72B

16k Solution:
> >

Solution at 128k:
> >

Analysis:
Both models, Llama-3.1-70B and Qwen2-72B, consistently provide the same answer > > for all
context lengths. Their responses correctly complete the given Dyck language sequence by closing
the parentheses appropriately.

Table 8: An example problem from BBH-dyck_languages

29



Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: [ < < [ [ ] ( ) { < > ( [ { } { < > } { } ] ) } [ [ [ ( [ ( ) [ [ { < [ { { } } < { { < ( ) > } } > ] > } ] ] ] ) ] < < [ [ ( < < ( ) > > ) ] ] > > [ ] ] ] ] < ( [ ] ) > { ( ( < { } > ) ) } > >

Difficulty: Level 5

Solution:
]

Model: Llama-3.1-70B

16k Solution:
]

Solution at 128k:
> )

Model: Qwen2-72B

16k Solution:
]

Solution at 128k:
]

Analysis:
The expected correct solution to complete the sequence is ]. Both models provide the correct
answer in their 16k solutions. However, at 128k, Llama-3.1-70B deviates from its earlier correct
response and outputs > ), which is incorrect. Qwen2-72B remains consistent across both context
lengths by providing the correct solution ].

Table 9: An example problem from BBH-dyck_languages

30



Task: BBH-dyck_languages

Problem:
Complete the rest of the sequence, making sure that the parentheses are closed properly.

Input: [ < < [ [ ] ( ) { < > ( [ { } { < > } { } ] ) } [ [ [ ( [ ( ) [ [ { < [ { { } } < { { < ( ) > } } > ] > } ] ] ] ) ] < < [ [ ( < < ( ) > > ) ] ] > > [ ] ] ] ] < ( [ ] ) > { ( ( < { } > ) ) } > >

Difficulty: Level 5

Solution:
]

Model: Llama-3.1-70B

16k Solution:
]

Solution at 128k:
> )

Model: Qwen2-72B

16k Solution:
]

Solution at 128k:
]

Analysis:
The expected correct solution to complete the sequence is ]. Both models provide the correct
answer in their 16k solutions. However, at 128k, Llama-3.1-70B deviates from its earlier correct
response and outputs > ), which is incorrect. Qwen2-72B remains consistent across both context
lengths by providing the correct solution ].

Table 10: An example problem from BBH-dyck_languages
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Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: sediment varsity towel fracture

Difficulty: Level 1

Solution:
frature sediment towel varsity

Model: Llama-3.1-70B

16k Solution:
fracture sediment towel varsity

Solution at 128k:
fracture sediment towel varsity

Model: Qwen2-72B

16k Solution:
fracture sediment towel varsity

Solution at 128k:
fracture sediment towel varsity

Analysis:
Both models, Llama-3.1-70B and Qwen2-72B, consistently produce the correct alphabetical order:
fracture sediment towel varsity, regardless of the context length (16k or 128k). Their
responses are accurate and demonstrate stable performance for this word-sorting task.

Table 11: An example problem from BBH-word_sorting
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Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: papaw perfidious frugal labial feel sonar blunderbuss box dinnertime oresteia

Difficulty: Level 3

Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Model: Llama-3.1-70B

16k Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Solution at 128k:
box dinnertime labial oresteia papaw perfidious frugal labial sonar perfidious

Model: Qwen2-72B

16k Solution:
blunderbuss box dinnertime feel frugal labial oresteia papaw perfidious sonar

Solution at 128k:
blunderbuss box dinnertime feel frugal labial oresteia papaw

Analysis:
Both models correctly produce the alphabetical ordering in their 16k solutions: blunderbuss box
dinnertime feel frugal labial oresteia papaw perfidious sonar.
However, at the 128k context length, Llama-3.1-70B returns an incorrect and inconsistent ordering
(box dinnertime labial oresteia papaw perfidious frugal labial sonar perfidious),
while Qwen2-72B provides an incomplete solution (blunderbuss box dinnertime feel frugal
labial oresteia papaw).

Table 12: An example problem from BBH-word_sorting
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Task: BBH-word_sorting

Problem:
Sort the following words alphabetically:
List: logarithm robertson inanimate uganda micron incurring wilcox lumber sammy souvenir
newman profuse maladapt cone butch airlift homeowner

Difficulty: Level 4

Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Model: Llama-3.1-70B

16k Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Solution at 128k:
airlift cone butch inanimate homeowner incurring logarithm micron newman profuse robertson
uganda wilcox

Model: Qwen2-72B

16k Solution:
airlift butch cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox

Solution at 128k:
airlift butch cone homeowner inanimate incurring logarithm maladapt micron newman profuse
robertson sammy souvenir uganda wilcox

Analysis:
Both models correctly output the full alphabetical ordering in their 16k solutions: airlift butch
cone homeowner inanimate incurring logarithm lumber maladapt micron newman
profuse robertson sammy souvenir uganda wilcox.

At 128k, Llama-3.1-70B produces an output that is missing several words (e.g., lumber, sammy,
and souvenir) and reorders some items incorrectly, while Qwen2-72B’s 128k solution is mostly
correct but also omits lumber compared to the expected solution.

These discrepancies indicate that both models encounter difficulties maintaining full consistency at
the extended 128k context length for this word sorting task.

Table 13: An example problem from BBH-word_sorting
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News Article:
’Philip Bevington, of Camborne, admitted two counts of cultivating cannabis at Truro Crown
Court. He told police they were for medicinal purposes to alleviate pain from kidney failure, after
being caught by officers twice in two months. Bevington was sentenced to a two-year conditional
discharge by Judge Simon Carr, who ordered the drugs destroyed. Officers went to Bevington’s
home to investigate a "strong smell of cannabis" in November 2019, the court heard. The 80-
year-old showed them a sophisticated hydroponic growing set up in his garage housing 30 plants,
including a ventilation system, lamps hanging from his ceiling and plastic sheets lining the walls.
These plants had the potential to grow three crops a year, which would have had a street selling
value of £12,600 to £37,800, the court was told. The same police officers returned two months later
in January 2020 and found 44 plants. Judge Simon Carr acknowledged Bevington was growing
the cannabis for his "own personal use to alleviate pain", while suffering from his condition and
mobility issues, which left him housebound. Related Internet Links HM Courts & Tribunals Service
- GOV.UK

Reference Summary:
’An 80-year-old man caught twice by police with dozens of cannabis plants claimed he used them
to treat pain.’

Model: Llama-3.1-70B

16K:
An 80-year-old man has been given a two-year conditional discharge for growing cannabis for
medicinal purposes.

128k:
A man in Camborne has been sentenced to a two-year conditional discharge for cultivating cannabis.
He told police the plants were for medicinal purposes to alleviate pain from kidney failure.

Model: Qwen2-72B

16K:
An 80-year-old man who grew cannabis to alleviate pain from kidney failure has been given a
conditional discharge.

128k:
An 80-year-old man who grew cannabis to ease the pain of kidney failure has been given a
conditional discharge.

Analysis:
Llama-3.1-70B’s 128k output provides additional location context ("Camborne") and repeats the
reason for cultivation, while Qwen2-72B maintains consistency between the 16k and 128k outputs
with only minor stylistic differences in phrasing.

Table 14: An example news article generation from Llama-3.1-70B and Qwen2-72B
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