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Abstract

We consider proximal splitting algorithms for convex optimization problems over
matrices. A significant computational bottleneck in many of these algorithms is the
need to compute a full eigenvalue or singular value decomposition at each iteration
for the evaluation of a proximal operator.
In this paper we propose to use an old and surprisingly simple method due to
Jacobi to compute these eigenvalue and singular value decompositions, and we
demonstrate that it can lead to substantial gains in terms of computation time
compared to standard approaches. We rely on three essential properties of this
method: (a) its ability to exploit an approximate decomposition as an initial point,
which in the case of iterative optimization algorithms can be obtained from the
previous iterate; (b) its parallel nature which makes it a great fit for hardware
accelerators such as GPUs, now common in machine learning, and (c) its simple
termination criterion which allows us to trade-off accuracy with computation
time. We demonstrate the efficacy of this approach on a variety of algorithms
and problems, and show that, on a GPU, we can obtain 5 to 10x speed-ups in
the evaluation of proximal operators compared to standard CPU or GPU linear
algebra routines. Our findings are supported by new theoretical results providing
guarantees on the approximation quality of proximal operators obtained using
approximate eigenvalue or singular value decompositions.

1 Introduction

Many problems in statistics and learning can be formulated as convex optimization over matrices. This
includes kernel learning [LCB+04], low-rank matrix recovery [RFP10, CR09], sparse covariance
selection [BGdN06, FHT08], community detection [BBV16], and many others. Proximal splitting
algorithms such as (accelerated) proximal gradient methods [Nes03, BT09], or the alternating
direction method of multipliers (ADMM) [EB92, BPC11], are among the most popular methods to
deal with large-scale instances of such problems. These methods solve generic convex optimization
problems of the form

min
X∈E

F (X) +G(X) (1)

via calls to the proximal operators of F and/or G. When the variable X is a symmetric or rectangular
matrix, it is often the case that the functions F and/or G are symmetric functions of the eigenvalues
or singular values of X; i.e., so-called spectral or othogonally-invariant functions. Typical examples
are F (X) = I(X � 0) =

∑n
i=1 I(λi(X) ≥ 0) the convex indicator function for the positive

semidefinite cone, or F (X) = ‖X‖∗ =
∑n
i=1 σi(X) the nuclear norm.

Computing the proximal operator of such spectral functions F requires a full eigenvalue/singular
value decomposition which contributes a large computational cost of at least n3 floating-point
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operations per iteration. The most common algorithms for such decompositions are the QR method,
and the divide-and-conquer algorithm [GVL13] which are implemented in linear algebra packages
(LAPACK) that are used in standard numerical computing software such as MATLAB or NumPy.

Contributions In this paper we propose to use a simple and lesser known method due to Jacobi
from 1846 [Jac46] for the computation of these decompositions. Several features of this method
make it suitable for its use within iterative proximal methods:

(i) It can effectively exploit an initial approximate decomposition of the target matrix. In
iterative proximal methods, the eigenvectors/singular vectors from the previous iterate are
often a very good initial point that almost diagonalize the matrix of the current iterate.

(ii) The method can be very easily parallelized, and is a very good fit for parallel hardware
accelerators, notably GPUs, which are now very common in machine learning.

(iii) It has a simple termination criterion that allows us to trade-off computation time with the
accuracy of the desired decomposition.

The present paper has two main contributions. First, we establish new theoretical results providing
guarantees on the approximation quality of the proximal operator of a convex spectral function when
computed with an approximate eigenvalue/singular value decomposition. When combined with
existing results on the convergence of proximal splitting methods with inexact proximal oracles, we
are able to appropriately set the tolerance of Jacobi-based methods and gain computation time, while
guaranteeing global convergence of the optimization method. Second, we demonstrate using the
observations above, and on a variety of problems and splitting algorithms, that the method of Jacobi
on a GPU can yield speed-ups of 5-10x in the evaluation of proximal operators of spectral functions,
compared to standard approaches on CPU and GPU.

Related work Several approaches have been considered to avoid computing a full eigenvalue
or singular value decomposition at each iteration, when the solution is known to be low-rank.
Popular approaches include the Lanczos algorithm, see e.g., [CCS10], randomized SVD [HMT11],
or nonconvex low-rank formulations [BM03]. However these approaches usually rely on an a priori
knowledge of the rank of the solution.

The recent paper [RGN19] focusses on the ADMM method for SDPs and proposes the use of iterative
eigensolvers (LOBPCG [Kny01]) to approximately project a symmetric matrix on the positive
semidefinite cone. The proposed method can achieve 10x speedups, especially when the primal or
dual solution has low-rank. From the theoretical point of view, the approach relies on error bounds
derived in [GNR20] concerning approximate projections on the positive semidefinite cone. Our
theoretical results in Section 4 constitute a significant generalization of these error bounds to proximal
operators of convex spectral functions, and to different notions of approximations.

The papers [CV18] and [JV21] consider proximal splitting algorithms with a generalized Bregman
divergence (i.e., different than the squared Euclidean distance), and show that these proximal operators
can sometimes be evaluated without explicitly computing a full eigenvalue decomposition. If φ is a
strongly-convex function, the φ-proximal operator of F is defined by

proxφF (y; a) = argminx {F (x) + 〈a, x〉+ φ(x)− 〈∇φ(y), x〉} .

The paper [CV18] considers optimization problems over symmetric positive semidefinite Toeplitz
matrices and shows that by choosing φ to be the kernel for the so-called Itakura-Saito distance one
can compute the generalized proximal operator in O(n2) time, instead of O(n3). In [JV21] it is
shown that for sparse semidefinite programs, an adequate choice of φ leads to a proximal operator that
can be computed at the cost of a Cholesky decomposition of a sparse matrix which in general is much
smaller than the cost of a full eigenvalue decomposition. Concerning sparse semidefinite programs,
there has been a lot of work on devising fast ADMM algorithms using the clique decomposition
method [FKMN01], e.g., [ZFP+20, MKL15]. We note that these contributions are specific to sparse
semidefinite programs and are complementary to the present paper because they still require an
eigenvalue decomposition to be computed at each iteration.

Finally let us mention that there are first-order methods that do not require a full eigenvalue decompo-
sition at each iteration but only the computation of the smallest eigenvalue(s)/eigenvector(s) at each
iteration such as e.g., [HR00, Ren14, YTF+21] and for which Lanczos methods are more suited.
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Organization In Section 2 we recall some necessary background material about convex spectral
functions and their proximal operators. In Section 3 we present the Jacobi method to diagonalize
symmetric matrices, and explain how it can be used with proximal algorithms. In Section 4 we
present the main theoretical result of the paper and show that approximate eigenvalue/singular value
decompositions yield guaranteed approximations of proximal operators for spectral functions. Finally
we present numerical experiments in Section 5.

2 Background

In this section we present some notations and background results concerning spectral functions.
If f : E → R is a convex function on Euclidean space E we let ∂f(x) be the subdifferential of
f at x, namely ∂f(x) = {g ∈ E : f(y) ≥ f(x) + 〈g, y − x〉}. An element g ∈ ∂f(x) is called a
subgradient of f at x. The proximal operator of f at y is defined as

proxf (y) = argminx∈E
{
f(x) + (1/2)‖x− y‖2

}
.

We let Sn be the Euclidean space of n×n symmetric matrices with the trace inner product 〈X,Y 〉 =
tr(XY ). We let Sn+ (resp. Sn++) be the cone of positive semidefinite (resp. definite) matrices in Sn.
Also O(n) denotes the set of n× n orthogonal matrices.

Spectral functions A function F : Sn → R of symmetric matrices is called spectral if there
is a permutation-invariant function f : Rn → R such that F (X) = f(λ(X)) where λ(X) =
(λ1(X), . . . , λn(X)) is the vector of eigenvalues of X (in any order). It is clear that spectral
functions are orthogonally-invariant, i.e., F (UTXU) = F (X), because UTXU and X have the
same eigenvalues; conversely any orthogonally-invariant function F is the spectral function associated
to the permutation-invariant function f(x) = F (diag(x)). The main remarkable fact that we will use
about spectral functions is a result due to Davis [Dav57], which asserts that F is convex as soon as f
is, and gives a variational formula for F certifying this convexity.

Theorem 1 ([Dav57], see also [BTN01, p.282, claim D]). Let f : Rn → R be a permutation-
invariant function, and let F : Sn → R, F (X) = f(λ(X)) be the associated spectral function. If f
is convex on Rn, then F is convex on Sn, and we have the following variational formulation for F :

F (X) = max
U∈O(n)

f(diag(UTXU)). (2)

An important, and well-known consequence of the theorem above, is that the proximal operator of F
can be obtained from that of f , namely for any Y ∈ Sn we have

proxF (Y ) = U diag(proxf (y))UT

where Y = U diag(y)UT is an eigenvalue decomposition of Y .

Functions of singular values Similar results hold for functions F : Rm×n → R of rectangular
matrices that are orthogonally-invariant, i.e., F (UXV ) = F (X) for all U ∈ O(m) and V ∈ O(n).
Any such function can be written as F (X) = f(σ(X)) where σ(X) ∈ Rmin(m,n) is the vector of
singular values and f : Rmin(m,n) → R is an absolutely symmetric function, i.e., it is invariant under
signed permutations: f(η1xπ(1), . . . , ηkxπ(k)) = f(x1, . . . , xk) for ηi = ±1 and π a permutation of
{1, . . . , k} where k = min(m,n) [Lew95]. In this case too, it holds that F is convex as soon as f is,
and we have:

F (X) = max
U∈O(m),V ∈O(n)

f(diag(UTXV )). (3)

The variational formulas (2) and (3) are a consequence of well-known results concerning majorization
relations between the diagonal of a matrix and its eigenvalues or singular values [MOA79, Chapter 9].
For completeness we have included a proof of these formulas in the supplementary material. We refer
the reader to [PB14, Section 6.7] and references therein for more details on the proximal operator of
spectral and orthogonally-invariant functions.
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3 Jacobi-based methods for eigenvalue and singular value decompositions

In this section we present Jacobi-based methods to compute eigenvalue and singular value decompo-
sitions, and explain how they can be used in proximal optimization algorithms. For concreteness we
will focus on the eigenvalue decomposition of symmetric matrices, but as will be clear, the extension
to the SVD of rectangular matrices will be straightforward.

3.1 The method

Jacobi eigenvalue methods compute the eigenvalue decomposition of a real symmetric matrix by
iteratively eliminating off-diagonal elements using Givens rotations. More precisely, let A be a
n × n real symmetric matrix that we want to diagonalize. The Jacobi method begins by selecting
an off-diagonal index (i, j), with i < j, such that |Aij | > 0, and constructs a 2× 2 rotation matrix[

cos θ sin θ
− sin θ cos θ

]
that diagonalizes the 2× 2 submatrix

[
Aii Aij

Aij Ajj

]
. The rotation matrix can be embedded

in a larger n × n Givens rotation matrix at indices (i, j) which is otherwise equal to the identity
matrix: {

Gii = Gjj = cos θ

Gij = sin θ,Gji = − sin θ
and Gpq = δp,q for p /∈ {i, j} or q /∈ {i, j},

where δp,q = 1 if p = q and 0 otherwise. This Givens rotation matrix satisfies (GAGT )ij = 0.
The Jacobi algorithm then proceeds by updating A← GAGT and performs the same process until
a convergence criterion is satisfied. Usually the convergence criterion is given in terms of off(A),
defined to be the square root of the sum of the off-diagonal elements of A:

off(A) :=

√ ∑
1≤i 6=j≤n

A2
ij . (4)

The algorithm can thus be summarized as follows:

Algorithm 1: Jacobi method for diagonalizing symmetric matrix A
while off(A) ≥ tolerance do

choose an off-diagonal index (i, j) such that |Aij | > 0
construct a Givens matrix G such that (GAGT )ij = 0
update A← GAGT

end

In the classical Jacobi method, the off-diagonal entry (i, j) selected at each iteration is the one for
which |Aij | is largest. It can be easily shown that with this choice, the quantity off(A) satisfies after
one iteration

off(GAGT )2 ≤ (1− 1/N) off(A)2

where N = n(n− 1)/2. As such off(A) converges linearly to 0. It has been shown by Schönhage,
and van Kempen [Sch64, VK66a] that the method actually attains quadratic convergence locally.

Cyclic method The classical Jacobi method requires searching for a largest element among the
off-diagonal elements at each iteration. For an n×nmatrix the cost of this step isO(n2) flops. Cyclic
Jacobi methods instead cycle through all off-diagonal elements of the matrix in some fixed order,
computing the associated Givens matrices and updating accordingly. The algorithm proceeds by
sweeps, where in each sweep each off-diagonal entry is processed exactly once. Various convergence
results have been proved for cyclic methods most notably local quadratic convergence, see e.g.,
[FH60, Wil62, VK66b]. In practice, the number of sweeps needed to diagonalize a matrix of size
n . 1000 is usually no more than 15.

Parallelization The cyclic Jacobi method can be easily parallelized. Indeed, instead of eliminating
a single off-diagonal entry at each iteration, one can eliminate in parallel bn/2c off-diagonal entries
that correspond to distinct rows/columns. More precisely by selecting indices (i1, j1), . . . , (im, jm)
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where m = bn/2c such that i1, j1, i2, j2, . . . , im, jm are all distinct one can compute in parallel
the m Givens rotations that are needed to eliminate the entries Ai1j1 , . . . , Aimjm . A single sweep
can then be performed in n − 1 steps where at each step k = 1, . . . , n − 1 one chooses indices
(i1[k], j1[k]), . . . , (im[k], jm[k]) that are pairwise distinct in such a way that all the off-diagonal
entries are processed at least once. For more details on the choice of these indices we refer the reader
to [GVL13, Section 8.5].

Other eigenvalue algorithms In general, the Jacobi method is not competitive with more tradi-
tional eigenvalue algorithms such as the QR method or the divide-and-conquer method. Count-
ing floating point operations only, the QR method is roughly equivalent to two sweeps of Jacobi
[GVL13, TBI97]. One important difference between the Jacobi method and QR/divide-and-conquer
algorithms is that the latter start by putting the matrix A into tridiagonal form by a sequence of
orthogonal (Householder) transformations, whereas the Jacobi method operates on A directly. One
consequence of this is that the Jacobi method can have faster convergence if off(A) is small, whereas
this is not the case of other algorithms that start by a reduction into tridiagonal form. This ability to
exploit an approximate diagonalization of A is what makes the Jacobi method particularly interesting
for iterative optimization algorithms.

Singular value decomposition The Jacobi algorithm can be very easily adapted to compute the
singular value decomposition of rectangular matrices. The idea is to solve a sequence of 2 × 2
SVD problems, instead of 2× 2 symmetric eigenvalue problems. This leads to the two-sided Jacobi
SVD algorithm. Another approach, called the one-sided Jacobi SVD algorithm, performs orthogonal
transformations on the right to make the columns of A orthogonal, by iteratively orthogonalizing
pairs of columns. From there, one can extract the singular values as the Euclidean norms of the
columns of A, and the left singular vector matrix easily. We refer the reader to [GVL13, Section
8.6.4] for more details and references.

3.2 Jacobi-based methods in proximal algorithms

We now explain how the Jacobi method can be used in iterative optimization algorithms for the
computation of proximal operators of spectral functions. The main idea is to use the eigenvector
matrix from the previous iteration as a warm-start for the current iterate. More precisely, assume
that at iteration k one needs to compute the proximal operator proxF (Yk) where F : Sn → R is
the spectral function associated to the permutation-invariant function f : Rn → R. We proceed as
follows:

• Let Uk−1 be the orthogonal eigenvector matrix computed at iterate k − 1

• Apply the Jacobi method to UTk−1YkUk−1 with tolerance εk. This returns an orthogonal
matrix W such that

off(WTUTk−1YkUk−1W ) ≤ εk
• Set Uk = Uk−1W (eigenvector matrix of Yk) and yk = diag(UTk YkUk) (eigenvalues of Yk)

• Output Uk diag(proxf (yk))UTk as the proximal operator proxF (Yk).

As we demonstrate in the numerical experiments section below, a very small number of sweeps (often
just one) are in general needed to converge to the eigenvalue decomposition of Yk in the second step
above, because the matrix UTk−1YkUk−1 is usually very close to being diagonal, especially after the
first few iterations of the optimization algorithm.

It is straightforward to extend the warm-start approach described here to the situation where we want
to compute singular value decompositions, and we omit the details for brevity.
Remark 1. When numerically implementing the procedure above, the accumulation of errors can
cause the columns of Uk not to be normalized after a large number of iterations. To resolve this issue
one can orthonormalize the columns of Uk periodically using a QR decomposition.

4 Approximate proximal evaluation

Most proximal algorithms (e.g., ADMM, proximal gradient method, ...) are still convergent even if
only an approximation of the proximal operator is computed at each iteration, provided the approxi-
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mation quality suitably decays to zero, see e.g., [EB92, SRB11, Yao16, BTB20]. A natural question
is to understand how the tolerance parameter of the Jacobi method εk affects the approximation
quality of the proximal operator proxF (Yk)? This section addresses this question.

Measures of quality of prox There are multiple ways to quantify the approximation quality of a
proximal operator, see e.g., [BTB20] which compiles a list of different ways that were considered in
the literature. In this section we will focus on two simple notions that have been used in convergence
guarantees for proximal splitting methods. Let F : E → R be a convex function for which we want
to compute the prox at a point Y ∈ E. Let

Φ(X;Y ) = F (X) + (1/2)‖X − Y ‖2F

be the prox objective so that proxF (Y ) = argminX∈E Φ(X;Y ). If X̂ ∈ E is a candidate value
for proxF (Y ) the two measures of approximations we consider are: (i) Euclidean distance to
the true prox, i.e., δ = ‖X̂ − proxF (Y )‖F and (ii) suboptimality in prox objective value, i.e.,
η = Φ(X̂;Y ) − Φ(proxF (Y );Y ). The former notion was used e.g., to guarantee convergence of
ADMM algorithms, assuming that the sequence of errors (δk) is summable [EB92, Yao16]; and the
latter was used in [SRB11] to guarantee convergence of (fast) proximal gradient methods, under a
decaying assumption on (ηk).
Remark 2. Note that since Φ is 1-strongly convex we always have the inequality:

Φ(X̂;Y )− Φ(proxF (Y );Y ) ≥ 1

2
‖X̂ − proxF (Y )‖2. (5)

This means that any bound on the approximation quality in terms of prox objective value, implies a
bound on the approximation quality using the Euclidean norm.

Approximate prox using approximate eigenvalue/singular decomposition Our main result
gives bounds on the quality of the prox of any convex spectral function computed using an ap-
proximate eigenvalue decomopsition. More precisely, assume that F : Sn → R is a convex spectral
function of symmetric matrices associated to the permutation-invariant function f(x1, . . . , xn). Let
Y ∈ Sn for which we want to compute proxF (Y ). We know that proxF (Y ) = U proxf (y)UT

where y = (y1, . . . , yn) is the vector of eigenvalues of Y , and U is the orthogonal matrix that
diagonalizes Y . Assume that Û is an orthogonal matrix such that off(ÛTY Û) ≤ ε, i.e.,

ÛTY Û = diag(ŷ) + E where
{
‖E‖F ≤ ε
Eii = 0 for i = 1, . . . , n.

(6)

Our main theoretical result, stated below, quantifies the error in the approximation X̂ ≈ proxF (Y )
where

X̂ = Û diag(proxf (ŷ))ÛT . (7)
Theorem 2. Under the assumptions above, we have:
(i) ‖X̂ − proxF (Y )‖F ≤ ε; and
(ii) Φ(X̂;Y )− Φ(proxF (Y );Y ) ≤ ε2/2.

A similar result can be stated for orthogonally-invariant functions of rectangular matrices.
Theorem 3. Let F : Rm×n → R be a convex orthogonally-invariant function associated with the
absolutely-symmetric function f(x) = F (diag(x)) defined on Rmin(m,n). Let Y ∈ Rm×n, and
assume that Û ∈ O(m) and V ∈ O(n) are orthogonal matrices such that

ÛTY V̂ = diag(ŷ) + E where
{
‖E‖F ≤ ε
Eii = 0 for i = 1, . . . ,min(m,n).

Then, with X̂ = Û diag(proxf (ŷ))V̂ T , the following holds:
(i) ‖X̂ − proxF (Y )‖F ≤ ε, and
(ii) Φ(X̂;Y )− Φ(proxF (Y );Y ) ≤ ε2/2.

The proofs of both theorems are in the supplementary material. Some remarks are in order:
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• Inequality (i) generalizes the main result in [GNR20].1 The main result in [GNR20] shows
that when F is the indicator function of the positive semidefinite cone (so that proxF is
the Euclidean projection on Sn+) then ‖X̂ − proxF (Y )‖F ≤

√
2ε. Our result significantly

generalizes the latter to the proximal operator of arbitrary convex spectral functions F .
• Note that inequality (i) actually follows from (ii) by (5).

We believe Theorems 2 and 3 are remarkable in a number of ways:

• They bound the distance to the true prox (a quantity that is hard to compute) using a simple
quantity which is ε = off(ÛTY Û).

• the bounds apply to all convex spectral functions F and do not depend on any Lipschitz
assumption on F ;

• the bounds do not depend on how the orthogonal matrix Û is obtained; in this paper we
consider the Jacobi method for obtaining approximate diagonalizations, however the bounds
can be used with any other method;

• well-known perturbation bounds for eigenvalue/eigenvector computation (e.g., the Davis-
Kahan theorem) suggest that the error would depend on additional factors related to the
spectrum of Y . Such a dependence would make the theorem very hard to apply. Our bounds
are free of such dependence and only depend on ε.

Implications If we combine our theorems with [EB92] and [SRB11] we get guarantees on the
convergence rates of ADMM and (fast) proximal gradient methods, when the proximal operators
are evaluated using an approximate eigenvector matrix. To illustrate this, consider for instance the
following optimization over symmetric matrices

min
X∈Sn

F (X) +G(X) (8)

where F (X) is a convex spectral function and G(X) is convex and smooth with L-Lipschitz gradient.
Consider the (accelerated) proximal gradient method

Xk+1 = proxL−1F (Z − (1/L)∇G(Z)) (9)

where Z = Xk for the standard proximal gradient method, and Z = Xk + k−1
k+2 (Xk − Xk−1)

for the accelerated version. Assume that the proximal operator in (9) is evaluated approximately
according to (6)-(7) with accuracy εk. Then, using [SRB11, Props. 1 and 2] and Theorem 2(ii), we
immediately get: (a) if (εk) is summable (e.g., εk = O(1/k1+δ)) then the (basic) proximal gradient
method converges at a rate O(1/k) to the optimal value of (8); and (b) if (kεk) is summable (e.g.,
εk = O(1/k2+δ)) then the accelerated proximal gradient method converges at a rate O(1/k2) to the
optimal value of (8). For the ADMM algorithm, we can combine the result of [EB92, Theorem 8]
with Theorem 2(i) to guarantee convergence when (εk) is summable.

5 Numerical experiments

In this section we present numerical experiments with Jacobi-based methods on different problems
and splitting algorithms.

Setup We use the parallel version of the Jacobi method implemented on GPU, and available
through the NVIDIA CUSOLVER library [NVI20] in the functions syevj and gesvdj for symmetric
eigenvalue decomposition and singular value decomposition respectively. We compare it with the
standard functions on both CPU/GPU implemented in LAPACK/CUSOLVER’s functions syevd
and gesvd. All our code is in Python and the latter functions are invoked respectively by NumPy’s
[HMvdW+20] and CuPy’s [OUN+17] functions linalg.eigh and linalg.svd. The GPU we
used is a NVIDIA TITAN Xp with CUDA 11.0, and the CPU is an Intel Core i5-6500 with 4 cores at
3.20 GHz and 32GB RAM, running Ubuntu 18.04. For GPU computations (default eigenvalue solver
and Jacobi’s method) we use 32-bit floats, instead of 64-bit doubles, which are much faster on GPU.
On the examples we have tried this had little or no effect on the quality of the solutions, especially
because we are looking at problems where moderate accuracy is satisfactory.

1We note that the proof of inequality (i) does not actually use the assumption that Eii = 0 for i = 1, . . . , n.
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Performance of Jacobi’s method on GPU Before showing the results on optimization problems,
we first compare in Table 1 the time needed for a single Jacobi sweep vs. the time needed for
a full eigenvalue (resp. singular value) decomposition using NumPy/CuPy’s linalg.eigh (resp.
linalg.svd), on a random Gaussian n × n matrix. For symmetric eigenvalue decompositions,
we note that for matrices of size ∼ 500, one sweep of Jacobi is about 10x faster than the default
methods. However the default method becomes faster for matrices of size� 2000.2 On the other
hand, for singular value decomposition the ratio is more pronounced and attains 40x for matrices of
size & 2000.

Symmetric eigenvalue decomposition Singular value decomposition

n
default
(CPU)

default
(GPU)

jacobi-1sw
(GPU)

128 2.18 5.91 0.83
256 6.86 12.72 1.43
512 26.24 31.78 3.29

1024 152.44 63.28 11.45
2048 1180.78 163.62 59.94
4096 8491.13 532.92 682.72

default
(CPU)

default
(GPU)

jacobi-1sw
(GPU)

3.75 12.23 1.14
12.93 39.93 1.85
62.46 107.47 3.99
385.59 476.22 15.17

3,453.76 3,223.60 77.18
24,869.11 19,649.37 500.99

Table 1: Times, in milliseconds, for one sweep of the Jacobi method on a GPU vs. full
eigenvalue/singular-value decomposition using the default method on CPU/GPU.

5.1 Sparse inverse covariance selection

We consider here the well-known statistical problem of estimating an unknown covariance matrix
Σ ∈ Sn++ from samples x1, . . . , xN ∈ Rn of a Gaussian distribution N (0,Σ), under the assumption
that Σ−1 is sparse. The approach proposed in [BGdN06, FHT08] consists of solving the following
convex optimization problem:

min
X∈Sn

++

tr(ŜX)− log detX + λ‖X‖1 (10)

where λ > 0 is a regularization parameter, Ŝ ∈ Sn+ is the given empirical covariance matrix, and
‖X‖1 =

∑
ij |Xij | is the entrywise `1-norm of X . The ADMM algorithm is one of the most popular

methods for this problem, see e.g., [SMG10, BPC11] and references therein. The problem (10) can
be naturally put in the splitting form (1) with F (X) = tr(ŜX) − log detX and G(X) = λ‖X‖1.
The ADMM iterates can be written as:

Xk+1 = prox−ρ log det(Zk − Uk − ρŜ)

Zk+1 = Sλ/ρ(Xk+1 + Uk)

Uk+1 = Uk +Xk+1 − Zk+1

(11)

where the proximal operator of −ρ log det is prox−ρ log det(Y ) = V diag
(

(y +
√
y2 + 4ρ)/2

)
V T

where Y = V diag(y)V T is the eigenvalue decomposition of Y ; and St is the entrywise soft-
thresholding operation defined by St(x) = 0 if |x| ≤ t and x − sign(x)t otherwise. The main
computational cost in the iterations (11) is the proximal update rule for Xk which requires the
eigenvalue decomposition of Zk − Uk − ρŜ at each iteration. We can use the Jacobi method to
compute this eigenvalue decomposition, using the previous iterate’s orthogonal transformation as a
warm start, as suggested in Section 3.2.

We have implemented this approach with different values of n in the range 200-1000, where the
covariance matrix Σ ∈ Sn++ was chosen to be a banded matrix with constant bandwidth k = 5. We
have used the parameters and stopping criterion of the Matlab implementation of (11) from [BPC11]
available at https://web.stanford.edu/~boyd/papers/admm/. We compare the Jacobi method

2It is not clear to us why the performance of the Jacobi-symmetric eigenvalue routine syevj significantly
degrades for sizes � 2000. Note that, surprisingly, the Jacobi-SVD routine on matrices of size 4096 is faster
than the Jacobi-symmetric eigenvalue routine on the same size.
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with the standard routines in linear algebra packages for eigenvalue decomposition on CPU and GPU
(NumPy/CuPy’s linalg.eigh).

The results of the numerical experiments are shown in Table 2. Depending on the size of the matrix,
the Jacobi method can be more than 5x faster than the standard approaches on both CPU and GPU.
For the Jacobi method we used a relative tolerance that decays like 1/k2, more precisely we set
εk = ‖Yk‖F /(1 + k2), where Yk is the matrix to diagonalize at iteration k. We see that the average
number of sweeps per iteration is ≈ 1 confirming the fact that the eigenvector matrix from iterate
k − 1 is a good initial point for the k’th iterate.

iterations X-update time per iter (ms)

n
default
(CPU)

default
(GPU)

jacobi
(GPU)

default
(CPU)

default
(GPU)

jacobi
(GPU) sweeps/iter

200 308 308 309 6.20 7.43 1.81 0.97
400 269 269 270 25.83 19.56 3.06 0.97
600 248 248 249 62.64 33.41 5.62 0.98
800 236 236 237 100.06 46.55 10.7 0.99

1000 227 227 227 234.32 67.42 16.4 0.99

Table 2: Sparse covariance selection problem. Time per iteration for the computation of the X-
proximal update in (11) using the Jacobi method compared to the standard approaches on CPU/GPU.

5.2 Semidefinite programming

We consider here semidefinite programs in primal-dual form,

min
x∈Rn,S∈Sk

cTx

s.t.
∑n
i=1 xiAi + S = B, S � 0

max
Y ∈Sk

− tr(BY )

s.t. Y � 0, 〈Ai, Y 〉 = −ci (i = 1, . . . , n)
(12)

where c ∈ Rn, A1, . . . , An ∈ Sk and B ∈ Sk. A primal-dual ADMM-based algorithm was proposed
in [OCPB16] and implemented in the SCS package [OCPB19]. Each iteration of the algorithm
consists of two steps, one projection onto a linear subspace, and one projection onto the positive
semidefinite cone Sk+. The projection step can be computed using the Jacobi-based method. Table 3
shows the time per iteration required for the projection step using Jacobi’s method compared to the
default approaches, on random instances of (12). Like in the previous example, we used a relative
tolerance for the Jacobi method that decays like 1/k2, more precisely, εk = ‖Yk‖F /(1 + k2), where
Yk is the matrix to diagonalize at iteration k. We see that the time spent in the computation of the
projection on the positive semidefinite is up to 5x faster than the default approaches, and that the
number of sweeps per iteration is close to 1.

iterations proj time/iter (ms) linsolve/iter (ms)

k
default
(CPU)

default
(GPU)

jacobi
(GPU)

default
(CPU)

default
(GPU)

jacobi
(GPU)

sweeps
per iter

200 60 60 60 5.28 8.01 11.63 1.00 2.46
400 80 80 80 21.75 20.57 3.70 1.01 10.07
600 90 90 90 66.05 32.62 7.97 1.01 25.76
800 90 90 90 95.20 47.9 11.65 1.01 39.10

1000 150 150 150 247.76 74.24 18.55 1.01 58.76

Table 3: Semidefinite programming using primal-dual ADMM approach of [OCPB16] on random
instances of (12) where n = 3k, B = Ik, and the Ai are sparse random matrices with density ∼ k.
Time per iteration (in milliseconds) to compute projection of k × k symmetric matrix on the positive
semidefinite cone using the Jacobi method vs. standard approaches on CPU/GPU. For comparison,
we also show the time needed for the linear system solve at each iteration (in milliseconds). We used
the same termination criterion as the one in [OCPB16], with a tolerance of 10−3 on the normalized
primal and dual residuals, and duality gap.
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5.3 Nuclear norm minimization using the proximal gradient method

We consider the low-rank matrix recovery problem

min
X∈Rn×n

(1/2)‖A(X)− b‖22 + λ‖X‖∗ (13)

where A : Rn×n → Rm, b ∈ Rm, λ is the regularization parameter, and ‖X‖∗ =
∑n
i=1 σi(X) is the

nuclear norm. A popular method for solving (13) is the (fast) proximal gradient method, with iterates:

Xk+1 = SVTtλ(Z − tA∗(A(Z)− b)) (14)

where t > 0 is the step size, and SVTtλ is the proximal operator associated to the nuclear norm which
is given by the soft-thresholding of singular values. In the standard proximal gradient method, we take
Z = Xk in (14), whereas for the fast proximal gradient method we take Z = Xk+ k−1

k+2 (Xk−Xk−1).
Clearly, the main computational cost in the implementation of (14) is to compute the singular value
decomposition of a n× n matrix.

Table 4 shows the result of using the fast proximal gradient method with the Jacobi-based method
vs. the default SVD routines on CPU/GPU for the computation of the proximal operator, on random
matrix-completion instances of (13). Like for the previous examples, we used a relative tolerance for
the Jacobi method decaying like 1/k2, except for the largest instance where we fixed the number of
sweeps to be 1 at each iteration. The number of iterations (14) was fixed and set to 1000, with a time
limit of 1 hour on the total running time. For the largest instance the two default methods exceeded
the time limit and the objective value we report is the one obtained after 1000 iterations.

objective SVD time per iter (ms)

n
default
CPU

default
GPU

jacobi
GPU

default
CPU

default
GPU

jacobi
GPU

jacobi sweeps
per iter

200 7.64e+01 7.64e+01 7.64e+01 7.1 16.8 2.1 1.4
400 3.15e+02 3.15e+02 3.15e+02 29.4 53.1 4.9 1.9
600 7.24e+02 7.24e+02 7.24e+02 71.1 105.4 10.1 2.3
800 1.29e+03 1.29e+03 1.29e+03 149.5 177.7 17.4 2.5

1000 1.99e+03 1.99e+03 1.99e+03 306.2 327.7 29.3 2.6
4000 4.65e+04∗ 3.94e+04∗ 3.41e+04 22,641.5 10,676.7 597.5 1.0∗∗

Table 4: Nuclear norm minimization using fast proximal gradient method (14). Time to compute the
SVD at each iteration using the Jacobi’s method vs. the default methods on CPU/GPU. Objective
value is after 1000 iterations (except for n = 4000, default CPU/GPU).
∗Objective value after the time limit of 1h was reached.
∗∗The number of sweeps of the Jacobi method was fixed to 1 for the instance n = 4000.
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