An Error Analysis of Deep Density-Ratio Estimation with Bregman Divergence

Anonymous Author(s)
Affiliation
Address
email

Abstract

We establish non-asymptotic error bounds for a nonparametric density-ratio estimator using deep neural networks with the Bregman divergence. We also show that the deep density-ratio estimator can mitigate the curse of dimensionality when the data is supported on an approximate low-dimensional manifold. Our error bounds are optimal in the minimax sense and the pre-factors in our error bounds depend on the dimensionality of the data polynomially. We apply our results to investigate the convergence properties of the telescoping density-ratio estimator (Rhodes et al. 2020) and provide sufficient conditions under which it has a smaller upper error bound than a single-ratio estimator.

1 Introduction

Density-ratio estimation is of key importance in various statistical and machine learning problems (Sugiyama et al. 2012b, Kato \& Teshima 2021). There is a vast literature on density-ratio estimation due to its wide range of applications, such as discriminative analysis (Silverman, 1978, Cox \& Ferry, 1991), covariate shift adaptation (Sugiyama et al., 2008, Tsuboi et al., 2009), two-sample testing (Qin, 1998, Sugiyama et al. 2011), energy-based modelling (Gutmann \& Hyvärinen, 2012, Ceylan \& Gutmann, 2018), generative learning (Goodfellow et al., 2014; Nowozin et al., 2016), and mutual information estimation (Moustakides \& Basioti, 2019, Rhodes et al., 2020), among others.
Let Z_{q} and $Z_{p} \in \mathcal{Z}=[0,1]^{d}$ be two random vectors with probability density functions q^{*} and p^{*}, respectively. Given independent and identically distributed (i.i.d) samples $\left\{Z_{q, i}\right\}_{i=1}^{n_{q}}$ from q^{*} and $\left\{Z_{p, j}\right\}_{j=1}^{n_{p}}$ from p^{*}, a basic problem is to estimate the density ratio

$$
R^{*}(z)=q^{*}(z) / p^{*}(z), z \in \mathcal{Z}
$$

A naive estimator of R^{*} is \hat{q} / \hat{p}, where \hat{q} and \hat{p} are the density estimators of q^{*} and p^{*}, respectively. However, such an estimator can be highly unstable. Moreover, density estimation itself is a difficult problem, especially in the high-dimensional settings. For example, kernel density estimators (Rosenblatt, 1956; Parzen, 1962) works well when $d \leq 3$, but deteriorate dramatically as d increases. To avoid density estimation, various methods have been proposed to estimate the density ratio R^{*} directly, including the density matching approach (Sugiyama et al., 2008, Tsuboi et al., 2009, Yamada \& Sugiyama, 2009, Nguyen et al. 2010, Yamada et al. 2010), the moment matching approach (Qin, 1998; Gretton et al., 2009; Kanamori et al. 2012b), the density-ratio fitting approach (Kanamori et al. 2009, 2012a), and the unified density-ratio matching approach under Bregman divergence framework (Sugiyama et al., 2012a). Impressive empirical successes of using deep neural networks in density-ratio estimation have been reported in some recent works (Moustakides \& Basioti, 2019, Rhodes et al. 2020). Moreover, Kato \& Teshima (2021) studied the convergence properties of deep density-ratio estimation under a modified Bregman divergence criterion.

In this paper, we study deep density-ratio estimators with the Bregman divergence as the criterion. We apply our results to construct an estimator for statistical inference for the Kullback-Liebler divergence. We also study the theoretical properties of the telescoping density-ratio estimator (Rhodes et al. 2020) based on our results.

Our contributions are as follows:

1. We establish non-asymptotic error bounds for the density-ratio estimator using deep neural networks under the Bregman divergence (BD, Bregman 1967), and provide a neural network architecture for the estimator to achieve minimax optimal rate $O_{p}\left(n^{-2 \beta /(d+2 \beta)}\right)$, where $n=\min \left\{n_{q}, n_{p}\right\}$ and β is a smoothness parameter of the logarithmic density-ratio function; see Subsection 3.2 for details;
2. We show that deep density-ratio estimator with the Bregman divergence criterion is able to mitigate the curse of dimensionality when the data is supported on an approximate low-dimensional manifold; see Subsection 3.3,
3. We apply our results to study the convergence properties of the telescoping density-ratio estimator (Rhodes et al. 2020) and demonstrate its advantages over single-ratio estimators under certain conditions.

Notation. Let $n=\min \left\{n_{q}, n_{p}\right\}$ be the smaller sample size between the two samples $\left\{Z_{q, i}\right\}_{i=1}^{n_{q}}$ and $\left\{Z_{p, j}\right\}_{j=1}^{n_{p}}$. In addition, $\|\cdot\|_{\infty}$ denotes the sup-norm on some specific domain, and C, C_{0} are generic constants that may vary from place to place. For any measurable function f, we denote $\|f\|_{\max }:=\max \left\{\|f\|_{p},\|f\|_{q}\right\}$ and $\|f\|_{n_{p}, n_{q}}=\max \left\{\|f\|_{p, n_{p}},\|f\|_{q, n_{q}}\right\}$, where $\|f\|_{I}^{2}=E_{I^{*}} f^{2}(Z)$ and $\|f\|_{I, n_{I}}^{2}=E_{n_{I}} f^{2}(Z)=\left(1 / n_{I}\right) \sum_{t=1}^{n_{I}} f^{2}\left(Z_{I, t}\right), I=p, q$.

2 Density-ratio estimation

In this section, we first present the density-ratio estimation problem using the Bregman divergence (BD, Bregman, 1967) and then describe the structure of the deep neural networks to be used in density-ratio estimation.
Let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a first-order continuously differentiable and strictly convex function. Define

$$
\Delta_{\psi}(x, y)=\psi(x)-\psi(y)-\psi^{\prime}(y)(x-y)
$$

where ψ^{\prime} is the derivative of ψ. Then, the convexity of ψ implies that $\Delta_{\psi}(x, y) \geq 0$ and the equality holds if and only if $x=y$. It follows that $E_{p^{*}} \Delta_{\psi}\left(R^{*}(Z), R(Z)\right) \geq 0$ and the equality holds if and only if $R=R^{*}$. Therefore, the target density-ratio $R^{*}=q^{*} / p^{*}$ can be characterized as a minimizer:

$$
R^{*} \in \underset{R \text { nonnegative and measurable }}{\arg \min } E_{p^{*}} \Delta_{\psi}\left(R^{*}(Z), R(Z)\right)
$$

We verify in the appendix that

$$
\begin{align*}
& E_{p^{*}} \Delta_{\psi}\left(R^{*}(Z), R(Z)\right) \\
& =E_{p^{*}}\left[\psi^{\prime}(R(Z)) R(Z)-\psi(R(Z))\right]-E_{q^{*}}\left[\psi^{\prime}(R(Z))\right]+E_{p^{*}}\left[\psi\left(R^{*}(Z)\right)\right] \tag{1}
\end{align*}
$$

Since the last term on the right side in (1) $E_{p^{*}}\left[\psi\left(R^{*}(Z)\right)\right]$ is independent of R, we have

$$
\begin{equation*}
R^{*} \in \underset{R \text { nonnegative and measurable }}{\arg \min } E_{p^{*}}\left[\psi^{\prime}(R(Z)) R(Z)-\psi(R(Z))\right]-E_{q^{*}}\left[\psi^{\prime}(R(Z))\right] . \tag{2}
\end{equation*}
$$

Hence, for any measurable function $R: \mathcal{Z} \rightarrow \mathbb{R}$, the BD score induced by ψ for estimating the target density-ratio $R^{*}=q^{*} / p^{*}$ is

$$
\begin{equation*}
\mathcal{B}_{\psi}(R)=E_{p^{*}}\left[\psi^{\prime}(R(Z)) R(Z)-\psi(R(Z))\right]-E_{q^{*}}\left[\psi^{\prime}(R(Z))\right], \tag{3}
\end{equation*}
$$

where ψ^{\prime} is the derivative of ψ (Sugiyama et al. 2012ab). Then, R^{*} is the minimizer of $\mathcal{B}_{\psi}(R)$ over all nonnegative measurable functions.

Because a density ratio is always nonnegative, a nonnegative constraint needs to be considered when defining the density ratio as a minimizer, as in (2). This makes the minimization problem more difficult to solve. To avoid the non-negative constraint of the density ratio, we first consider the
\log-density ratio $D^{*}:=\log R^{*}$. Then the nonnegativity constraint is no longer needed and by (2), we have

$$
D^{*} \in \underset{D \text { measurable }}{\arg \min } \mathcal{B}_{\psi}(\exp (D)) .
$$

In practice, the estimation of R^{*} can be based on an empirical version of \mathcal{B}_{ψ} when random samples from p^{*} and q^{*} are available. Suppose we have samples $\left\{Z_{q, i}\right\}_{i=1}^{n_{q}}$ i.i.d. q^{*} and $\left\{Z_{p, j}\right\}_{j=1}^{n_{p}}$ i.i.d. p^{*}. We estimate D^{*} by

$$
\begin{equation*}
\widehat{D} \in \underset{D \in \mathcal{F}_{n}}{\arg \min } \widehat{\mathcal{B}}_{\psi}\left(e^{D}\right), \tag{4}
\end{equation*}
$$

where \mathcal{F}_{n} is a class of neural network functions and $\widehat{\mathcal{B}}_{\psi}\left(e^{D}\right)$ is an empirical version of $\mathcal{B}_{\psi}\left(e^{D}\right)$ defined in (3), which can be written as

$$
\widehat{\mathcal{B}}_{\psi}\left(e^{D}\right)=\frac{1}{n_{p}} \sum_{j=1}^{n_{p}} \mathcal{L}_{1}\left(D\left(Z_{p, j}\right)\right)+\frac{1}{n_{q}} \sum_{i=1}^{n_{q}} \mathcal{L}_{2}\left(D\left(Z_{q, i}\right)\right),
$$

where

$$
\begin{equation*}
\mathcal{L}_{1}(t)=\psi^{\prime}\left(e^{t}\right) e^{t}-\psi\left(e^{t}\right) \text { and } \mathcal{L}_{2}(t)=-\psi^{\prime}\left(e^{t}\right) \tag{5}
\end{equation*}
$$

The density-ratio estimator is $\widehat{R}=\exp (\widehat{D})$.
We take the function class \mathcal{F}_{n} to be $\mathcal{F}_{M, \mathcal{D}, \mathcal{W}, \mathcal{U}, \mathcal{S}}$, a class of ReLU activated feedforward neural networks (FNNs) $f_{\boldsymbol{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with parameter $\boldsymbol{\theta}$, depth \mathcal{D}, width \mathcal{W}, size \mathcal{S}, number of neurons \mathcal{U}. We require that $\left\|f_{\boldsymbol{\theta}}\right\|_{\infty} \leq M$ for some $0 \leq M \leq \infty$. There are \mathcal{D} hidden layers and $(\mathcal{D}+1)$ layers in total. The width \mathcal{W} is the maximum width of the hidden layers; the number of neurons \mathcal{U} is defined as the number of neurons of $f_{\boldsymbol{\theta}}$; the size \mathcal{S} is the total number of parameters in the network. Note that $\mathcal{D}, \mathcal{W}, \mathcal{U}, \mathcal{S}$ may depend on n, but we suppress the dependence for notational simplicity. We write $\mathcal{F}_{M, \mathcal{D}, \mathcal{W}, \mathcal{U}, \mathcal{S}}$ as $\mathcal{F}_{\mathrm{FNN}}$ for brevity.

3 Theoretical results

In this section, we first study the error bounds for the deep logarithmic density-ratio estimator. The bounds for the density-ratio estimator follows directly based on the properties of the exponential function. We also show that deep density-ratio estimator can mitigate the curse of dimensionality when data is supported on an approximate low-dimensional manifold.

3.1 General error bounds

To state our assumptions and results, we need the definitions of μ-smoothness, σ-strong convexity and pseudo dimension.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be μ-smooth over a set $\mathcal{A} \subseteq \mathbb{R}$ if it is differentiable over \mathcal{A} and its first-order derivative f^{\prime} satisfies

$$
\begin{equation*}
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \mu|x-y|, \forall x, y \in \mathcal{A}, \tag{6}
\end{equation*}
$$

where $0 \leq \mu<\infty$. The constant μ is called the smoothness parameter.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called σ-strongly convex if the domain $\operatorname{dom}(f)$ of f is convex and for any $x, y \in \operatorname{dom}(f)$ and $\lambda \in[0,1], f$ satisfies

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\frac{\sigma}{2} \lambda(1-\lambda)(x-y)^{2} \tag{7}
\end{equation*}
$$

where $0 \leq \sigma<\infty$. The constant σ is called the strong convexity (SC) parameter.
For a function class \mathcal{F}, its pseudo dimension denoted by $\operatorname{Pdim}(\mathcal{F})$, is the largest integer B satisfying that there exists $\left(x_{1}, x_{2}, \ldots, x_{B}, y_{1}, y_{2}, \ldots, y_{B}\right) \in \mathcal{Z}^{B} \times \mathbb{R}^{B}$ such that for any $\left(r_{1}, r_{2}, \ldots, r_{B}\right) \in$ $\{0,1\}^{B}$, there exists an $f \in \mathcal{F}$ satisfying for any $i \in\{1,2, \ldots, B\}: f\left(x_{i}\right)>y_{i} \Leftrightarrow r_{i}=1$ (Anthony \& Bartlett, 1999, Bartlett et al., 2019).

Table 1: Commonly-used Loss Functions ψ

Name	$\psi(c)$	Domain	Smooth Parameter μ	SC Parameter σ
LS	$(c-1)^{2}$	\mathbb{R}	2	2
LR	$c \log c-(c+1) \log (c+1)$	$[a, b](-1 \leq a \leq b)$	$\frac{1}{a(a+1)}$	$\frac{1}{b(b+1)}$
KL	$c \log c-c$	$[a, b](0 \leq a \leq b)$	$\frac{1}{a}$	$\frac{1}{b}$

Remark 1. For any measurable function class \mathcal{F}, by the definition of $V C$ dimension, $\operatorname{VCdim}(\mathcal{F}) \leq \operatorname{Pdim}(\mathcal{F})$. If \mathcal{F} is the class of functions generated by ReLU FNNs, it follows from Theorem 14.1 of Anthony \& Bartlett (1999) that $\operatorname{Pdim}(\mathcal{F}) \leq \operatorname{VCdim}(\mathcal{F})$. Hence, for the function class \mathcal{F} generated by ReLU FNNs, $\operatorname{Pdim}(\mathcal{F})=\operatorname{VCdim}(\mathcal{F})$.

We make the following assumptions.
Assumption 1. The function ψ is μ-smooth \& σ-strongly convex, that is, it satisfies (6) and (7).
Some commonly-used ψ 's satisfy Assumption 1, see Table 1 for some examples.
Assumption 2. There exists a constant $0<M<\infty$ such that $\left\|D^{*}\right\|_{\infty} \leq M,\|D\|_{\infty} \leq M$ for every $D \in \mathcal{F}_{\mathrm{FNN}}$.

Assumption 2 assumes that the target density ratio is bounded. Such an assumption is often made in nonparametric statistics for avoiding technical difficulties associated with dealing with unbounded functions. We will partially relax this assumption below. The finite M in Assumption 2 can be relaxed to $M=\mathcal{O}(\log \log n)$ at a small price of an additional logarithm term in the error bounds. The boundedness of a network can be achieved by clipping operation. For example, let $T_{M}(t)=-M I\{t<-M\}+t I\{-M \leq t \leq M\}+M I\{t>M\}$ be the truncation function taking values in $[-M, M]$, then $T(t)=\sigma(t)-\sigma(\sigma(t)-M)-\{\sigma(-t)-\sigma(\sigma(-t)-M)\}$ can be computed by a ReLU network with depth 2 and width 4 . Hence, through network concatenation, we can construct some bounded ReLU FNNs and such a boundedness assumption can be satisfied.

Define the best in class approximation of D^{*} in $\mathcal{F}_{\mathrm{FNN}}$ as $D_{\mathrm{NN}} \in \arg \min _{D \in \mathcal{F}_{\mathrm{FNN}}}\left\|D-D^{*}\right\|_{\max }$. Denote

$$
\begin{equation*}
\xi_{n}=\sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} . \tag{8}
\end{equation*}
$$

Theorem 1. Suppose Assumptions 1 are satisfied. When $n \geq \operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)$, there exists a constant C depending on (μ, σ, M) such that for any $\gamma>0$, with probability at least $1-\exp (-\gamma)$,

$$
\left\|\widehat{D}-D^{*}\right\|_{\max } \leq C\left(\xi_{n}+\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }+\sqrt{\frac{\gamma}{n}}\right)
$$

and

$$
\left\|\widehat{D}-D^{*}\right\|_{n_{p}, n_{q}} \leq 2 C\left(\xi_{n}+\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }+\sqrt{\frac{\gamma}{n}}\right)
$$

We have the following corollary for the expected error.
Corollary 1. Under the conditions of Theorem 1 there exists a constant C_{0} depending only on ($\mu, \sigma, M)$, such that

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq C_{0}\left(\xi_{n}^{2}+\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2}\right)
$$

and

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{n_{p}, n_{q}}^{2} \leq 2 C_{0}\left(\xi_{n}^{2}+\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2}\right)
$$

The above results are obtained under the boundedness Assumption 2. While such an assumption is often made in the error analysis of nonparametric procedures, it is somewhat restrictive in densityratio estimation problems. For example, this assumption may not be satisfied in the presence of the density-chasm problem, i.e., the gap between two densities is large (Rhodes et al. 2020). We establish an error bound result with the following partially relaxed assumption.

Assumption 3. There exists a constant $0<M<\infty$ such that $D^{*}(z) \geq-M$ for every $z \in \mathcal{Z}$ and $\|D\|_{\infty} \leq M$ for every $D \in \mathcal{F}_{\mathrm{FNN}}$.

This assumption does not require the target log-density ratio D^{*} to be bounded above. Denote truncated versions of D^{*} and R^{*} by

$$
\begin{aligned}
& D_{M}^{*}(z)=D^{*}(z) \mathbf{1}\left\{D^{*}(z) \leq M\right\}+M \mathbf{1}\left\{D^{*}(z) \geq M\right\} \\
& R_{M}^{*}(z)=R^{*}(z) \mathbf{1}\left\{R^{*}(z) \leq e^{M}\right\}+e^{M} \mathbf{1}\left\{R^{*}(z) \geq e^{M}\right\}
\end{aligned}
$$

where $0<M<\infty$ and $\mathbf{1}\{\cdot\}$ is the indicator function. We establish a non-asymptotic error bound involving the truncation error.

Theorem 2. Suppose Assumptions 1 and 3 hold. When $n>\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)$, there exists two constants C depending only on (μ, σ, M) and C_{0}^{-}depending only on (μ, σ), such that

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{p}^{2} \leq C_{0} e^{2 M}\left\|R^{*}-R_{M}^{*}\right\|_{p}^{2}+C\left(\xi_{n}+\inf _{D \in \mathcal{F}_{\mathrm{FNN}}}\left\|D-D_{M}^{*}\right\|_{p}^{2}\right)
$$

where ξ_{n} is defined in (8).
The term $\left\|R^{*}-R_{M}^{*}\right\|_{p}^{2}$ is the truncation error for an unbounded R^{*} and the unboundedness also leads to the term $\xi_{n}=\left[\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)(\log n) / n\right]^{1 / 2}$ in the error bound, which is greater than ξ_{n}^{2} in the bounded case. However, because no boundedness assumption is needed in this theorem, we can apply it to study the convergence properties of the telescoping density-ratio estimator of Rhodes et al. (2020) in Section 4 below.

3.2 Non-asymptotic error bounds

By Corollary 1 , it suffices to bound the estimation error $\operatorname{Pdim}\left(\mathcal{F}_{\text {FNN }}\right) \log n / n$ and the approximation error $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\text {max }}^{2}$. It follows from Theorem 6 in Bartlett et al. (2019) that, for $\mathcal{F}_{\mathrm{FNN}}=\mathcal{F}_{M, \mathcal{D}, \mathcal{W}, \mathcal{U}, \mathcal{S}}$, there exists a universal constant C_{2} such that $\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \leq C_{2} \mathcal{S D} \log \mathcal{S}$. To control the approximation error $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2}$, we assume that D^{*} belongs to the Hölder class $\mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$, where \mathbb{N}^{+}is the set of positive integers.

Definition 1 (Hölder class). A Hölder class $\mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$ consists of function $f:[0,1]^{d} \rightarrow \mathbb{R}$ satisfying

$$
\max _{\|\boldsymbol{\alpha}\|_{1} \leq k}\left\|\partial^{\boldsymbol{\alpha}} f\right\|_{\infty}, \max _{\|\boldsymbol{\alpha}\|_{1}=k} \max _{x \neq y} \frac{\left|\partial^{\boldsymbol{\alpha}} f(x)-\partial^{\boldsymbol{\alpha}} f(y)\right|}{\|x-y\|_{2}^{a}} \leq M
$$

where $\|\boldsymbol{\alpha}\|_{1}=\sum_{i=1}^{d} \alpha_{i}$ and $\partial^{\boldsymbol{\alpha}}=\partial^{\alpha_{1}} \partial^{\alpha_{2}} \ldots \partial^{\alpha_{d}}$ for $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{+d}$.
We use Theorem 3.3 of Jiao et al. (2021) to control the approximation error $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\text {max }}^{2}$. For convenience, we include this result in the following lemma.

We specify the width \mathcal{W} and depth \mathcal{D} as follows. For any $K, L \in \mathbb{N}^{+}$,

$$
\begin{equation*}
\mathcal{W}=38(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+1} L\left\lceil\log _{2}(8 L)\right\rceil, \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2} K\left\lceil\log _{2}(8 K)\right\rceil, \tag{9}
\end{equation*}
$$

where $\lceil a\rceil$ is the smallest integer no less than a.
Lemma 1 (Approximation error). Assume $f \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$ and $a \in(0,1]$. Then there exists a function ϕ_{0} implemented by a ReLU network with width \mathcal{W} and depth \mathcal{D} specified in (9) such that

$$
\sup _{x \in[0,1]^{d} \backslash H_{B, \delta}}\left|f-\phi_{0}\right| \leq 18 M C_{\beta}(K L)^{-\frac{2 \beta}{d}}
$$

where $C_{\beta}=(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+(\beta \vee 1) / 2}, \quad H_{B, \delta}=\cup_{i=1}^{d}\left\{x=\left[x_{1}, \ldots, x_{d}\right]: x_{i} \in\right.$ $\left.\cup_{b=1}^{B-1}(b / B-\delta, b / B)\right\}$ for $B=\left\lceil(K L)^{2 / d}\right\rceil, \delta \in(0,1 /(3 B)]$ and $a \vee b=\max (a, b)$.
Furthermore, if $\mathcal{W}=38(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+1} 3^{d} L\left\lceil\log _{2}(8 L)\right\rceil, \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2} K\left\lceil\log _{2}(8 K)\right\rceil+2 d$, then

$$
\sup _{x \in[0,1]^{d}}\left|f-\phi_{0}\right| \leq 19 M C_{\beta}(K L)^{-\frac{2 \beta}{d}}
$$

The following theorem gives an error bound for \widehat{D}.
Theorem 3 (Non-asymptotic error bound for \widehat{D}). Suppose that Assumptions $1 / 2$ are satisfied, $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$, and $\mathcal{F}_{\mathrm{FNN}}$ is the function class of ReLU DNNs with width \mathcal{W} and depth \mathcal{D} specified in (9). Then, for $M \geq 1$ and $n \geq \operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)$, we have

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq C\left(\xi_{n}^{2}+C_{1}(K L)^{-\frac{4 \beta}{d}}\right)
$$

where $C_{1}=(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)}$ and the constant C depends only on (μ, σ, M).
Furthermore, if

$$
\mathcal{W}=114(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+1}, \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2}\left\lceil n^{\frac{d}{2(d+2 \beta)}} \log _{2}\left(8 n^{\frac{d}{2(d+2 \beta)}}\right)\right\rceil
$$

then

$$
\begin{equation*}
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq C_{0}(\lfloor\beta\rfloor+1)^{9} d^{2\lfloor\beta\rfloor+(\beta \vee 3)} n^{-\frac{2 \beta}{d+2 \beta}}, \tag{10}
\end{equation*}
$$

where the constant C_{0} depends only on (μ, σ, M).
The convergence rate in (10) is optimal. This can be seen by considering a density estimation problem with i.i.d observations $\left\{Z_{q, i}^{(1)}\right\}_{i=1}^{m_{q}}$ from an underlying unknown density q_{1} on $[0,1]^{d}$. To estimate q_{1}, we sample referencing observations $\left\{Z_{p, j}^{(1)}\right\}_{j=1}^{m_{p}}$ with $m_{p} \geq m_{q}$, from a uniform distribution $\operatorname{Unif}\left([0,1]^{d}\right)$ whose density $p_{1} \equiv 1$. Thus, estimating the density ratio q_{1} / p_{1} is equivalent to estimating q_{1}. According to (4), we obtain the estimator \hat{q}_{1} of q_{1}. If $\log q_{1} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ where $\beta=k+a$ with $k \in \mathbb{N}^{+}$and $a \in(0,1]$, a neural estimator based on the network structure specified in Theorem 3 satisfies

$$
\begin{equation*}
E_{p_{1}, q_{1}}\left\|\hat{q}_{1}-q_{1}\right\|_{\max }^{2} \leq C_{0}(\lfloor\beta\rfloor+1)^{9} d^{2\lfloor\beta\rfloor+(\beta \vee 3)} m_{q}^{-\frac{2 \beta}{d+2 \beta}} \tag{11}
\end{equation*}
$$

Tsybakov (2008) showed that for a density belonging to the Hölder function class, the optimal minimax rate of the density estimation is $O_{p}\left(m_{q}^{-2 \beta /(d+2 \beta)}\right)$. Hence, our estimator achieves the optimal minimax rate.
In addition, the existing error bounds usually contain a prefactor depending on the dimension d exponentially, e.g. 2^{d} (Devroye \& Lugosi, 1996). Such a prefactor can be very large even for a moderately large d, which severely degrades the quality of an error bound. The prefactors in our results depend on d only polynomially and are much smaller than those in the existing bounds.
Under Assumption 2, to derive a nonasymptotic error bound for the log-density ratio estimator \widehat{R}, we note that

$$
E_{p^{*}, q^{*}}\left\|\widehat{R}-R^{*}\right\|_{\max }^{2} \leq e^{2 M} E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2}
$$

Thus a bound for \widehat{R} follows directly from a bound for \widehat{D}.
Remark 2. Appendix A.2 contains some examples of p^{*} and q^{*} such that $D^{*}=\log \left(q^{*} / p^{*}\right) \in$ $\mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$.

Remark 3. The hypercube $[0,1]^{d}$ assumption for the density ratio is made for technical convenience. With an unbounded support, we can bound $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }$ using a truncation technique under some suitable additional assumptions, at a small price of an additional logarithm term in the error bound. Specifically, suppose the pdfs are supported on \mathbb{R}^{d}. In addition to Assumptions 1-2 and the Hölder class assumption in Theorem 3, we need to further assume that $\max \left\{E_{p^{*}} I\left(\|Z\|_{\infty} \geq \log n\right), E_{q^{*}} I\left(\|Z\|_{\infty} \geq \log n\right)\right\} \leq n^{-\frac{2 \beta}{d+2 \beta}}$. For $I=p$ or q, and any $D \in \mathcal{F}_{\mathrm{FNN}}$, where $\mathcal{F}_{\mathrm{FNN}}$ is the function class of ReLU FNNs with width \mathcal{W} and depth \mathcal{D} specified by

$$
\mathcal{W}=114(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+1}, \quad \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2}\left\lceil n^{\frac{d}{2(d+2 \beta)}} \log _{2}\left(8 n^{\frac{d}{2(d+2 \beta)}}\right)\right\rceil
$$

we have

$$
\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2} \leq 328 M^{2}(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)}(2 \log n)^{2\lfloor\beta\rfloor} n^{-\frac{2 \beta}{d+2 \beta}}
$$

Compared with the upper bound of the approximation error in Theorem 3, when the pdfs are supported on \mathbb{R}^{d} (unbounded case), we can derive a similar approximation error upper bound with an additional logrithmic factor $(2 \log n)^{2\lfloor\beta\rfloor}$. The details are given in Appendix A.3

3.3 Circumventing the curse of dimensionality

In many modern statistical and machine learning tasks, such as image processing and text analysis, the dimensionality d of the data can be high, which results in a very slow convergence rate even with a large sample size. This is known as the curse of dimensionality. Nonetheless, the data in various applications has been demonstrated to be supported or approximately supported in some subspaces or subsets with low intrinsic dimensionality (Nakada \& Imaizumi, 2020). For regression problems, Nakada \& Imaizumi (2020) have shown that DNNs can adaptively estimate the regression function through the low-dimensional structure of the data, and the resulting convergence rates no longer depend on the nominal high dimensionality d of the data, but on its low intrinsic dimension.

Motivated by these advancements, we assume that the data is concentrated on an approximate compact Riemannian submanifold \mathcal{M} with the Riemannian dimension $d_{\mathcal{M}} \ll d$.

Assumption 4. The target log-density ratio $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$, and the data from the densities p^{*}, q^{*} are concentrated on a set $\mathcal{M}_{\rho} \subseteq[0,1]^{d}$ defined as

$$
\mathcal{M}_{\rho}:=\left\{x \in[0,1]^{d}: \text { there exists } y \in \mathcal{M},\|x-y\|_{2} \leq \rho\right\}
$$

where \mathcal{M} is a compact $d_{\mathcal{M}}$-dimensional Riemannian submanifold and $\rho \in(0,1)$.
Theorem 4. Suppose Assumptions 1$] 2$ and 4 hold. Suppose that $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a, k \in \mathbb{N}^{+}$and $a \in(0,1]$. If $\mathcal{F}_{\mathrm{FNN}}$ is the function class of ReLU FNNs with width and depth

$$
\mathcal{W}=38(\lfloor\beta\rfloor+1)^{2} d_{\delta}{ }^{\lfloor\beta\rfloor+1} L\left\lceil\log _{2}(8 L)\right\rceil, \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2} K\left\lceil\log _{2}(8 K)\right\rceil,
$$

where $K, L \in \mathbb{N}^{+}$and $d_{\delta}=O\left(d_{\mathcal{M}} \log (d / \delta) / \delta^{2}\right) \ll d$, then when $M \geq 1, n>\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)$ and

$$
\rho \leq(\lfloor\beta\rfloor+1)^{2} 2^{\beta} d^{\beta-\frac{1}{2}} d_{\delta}^{\lfloor\beta\rfloor+(\beta-1 / 2) \vee(1 / 2)}(K L)^{-\frac{2 \beta}{d_{\delta}}},
$$

we have

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq C(1-\delta)^{-2 \beta}\left[\xi_{n}^{2}+C_{2}(K L)^{-\frac{4 \beta}{d_{\delta}}}\right]
$$

where the constant C only depends on $(\mu, \sigma, M), C_{2}=(\lfloor\beta\rfloor+1)^{4}(2 d)^{2 \beta} d_{\delta}^{3 \beta+(\beta \vee 1)}$, and ξ_{n} is defined in (8).

By Theorem 4 , if we set $\mathcal{W}=114(\lfloor\beta\rfloor+1)^{2} d_{\delta}{ }^{\lfloor\beta\rfloor+1}, \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2}\left[n^{\zeta_{\delta}} \log _{2}\left(8 n^{\zeta_{\delta}}\right)\right]$, with $\zeta_{\delta}=d_{\delta} /\left(2\left(d_{\delta}+2 \beta\right)\right)$, then

$$
\begin{equation*}
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq C_{0} C_{3}(1-\delta)^{-2 \beta} n^{-\frac{2 \beta}{d_{\delta}+2 \beta}}, \tag{12}
\end{equation*}
$$

where the constant C_{0} only depends on (μ, σ, M) and $C_{3}=(\lfloor\beta\rfloor+$ $1)^{9} \max \left\{d_{\delta}^{2\lfloor\beta\rfloor+3},(2 d)^{2 \beta} d_{\delta}^{3 \beta+(\beta \vee 1)}\right\}$. The convergence rate $n^{-2 \beta /\left(d_{\delta}+2 \beta\right)}$ in 12 only depends on $d_{\delta} \ll d$, instead of the ambient dimension d. Therefore, Theorem 4 shows that a low-dimensional Riemannian manifold support assumption can alleviate the curse of dimensionality.

4 Error analysis of the telescoping density-ratio estimator

When the difference or the 'gap' between two densities is large, a single-ratio estimation method may perform poorly. This is referred to as the the density-chasm problem (Rhodes et al., 2020). To alleviate this problem, Rhodes et al. (2020) proposed an approach called Telescoping density-Ratio Estimation (TRE). This approach first gradually transports samples from q^{*} to samples from p^{*}, creating a chain of intermediate datasets, then estimates the density ratio between consecutive datasets along this chain. The chained ratios are combined via a telescoping product which yields an estimate of the original density ratio. The experiments conducted by Rhodes et al. (2020) demonstrate that TRE can yield substantial improvements over existing single-ratio methods for mutual information estimation, representation learning and energy-based modelling

We now provide a theoretical analysis of TRE, which partially explains why TRE performs well. For notational simplicity, suppose $n_{p}=n_{q} \equiv n$ below.

For $k=0,1, \ldots, K$, Rhodes et al. (2020) constructed a chain of intermediate samples connecting q^{*} and p^{*} by setting $Z_{k, i}=\left(1-\alpha_{k}^{2}\right)^{1 / 2} Z_{q, i}+\alpha_{k} Z_{p, i}, i=1, \ldots, n$, where $0=\alpha_{0}<\alpha_{1}<\cdots<$ $\alpha_{K-1}<\alpha_{K}=1$, and used these samples to build a TRE.

To simplify the analysis, we use a slightly different chain of intermediate samples as follows. For $k=0,1, \ldots, K$, let

$$
\begin{equation*}
Z_{k, i}=\left(1-\delta_{k, i}\right) Z_{q, i}+\delta_{k, i} Z_{p, i}, i=1, \ldots, n \tag{13}
\end{equation*}
$$

where $\delta_{k, i}, i=1, \ldots, n$, are i.i.d. Bernoulli random variables with success probability α_{k}.
Let q_{k} be the density of the synthetic data $Z_{k, i}$ constructed this way. We have $q_{k}(z)=\left(1-\alpha_{k}\right) q^{*}(z)+$ $\alpha_{k} p^{*}(z), k=1, \ldots, K-1$. Therefore, the distribution of the samples from q_{k} in the chain is a simple mixture of q^{*} and p^{*} with the mixing proportions $1-\alpha_{k}$ and α_{k}, instead of a more complex convolution of two densities using the construction of Rhodes et al. (2020). As α_{k} changes from $\alpha_{0}=0$ to $\alpha_{K}=1$ over a grid $\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{K}\right\} \subset[0,1]$, the distributions of the samples in the chain move gradually from q^{*} to p^{*}. Let $q_{0}=q^{*}$ and $q_{K} \equiv p^{*}$. Then,

$$
\begin{equation*}
R^{*}(z)=\frac{q^{*}(z)}{p^{*}(z)}=\prod_{i=0}^{K-1} R_{i}^{*}(z), z \in \mathcal{Z} \tag{14}
\end{equation*}
$$

where $R_{i}^{*}(z)=q_{i}(z) / q_{i+1}(z)$. For $k=0,1, \ldots, K-1$, applying the neural density-ratio estimator with $\left\{Z_{k, j}\right\}_{j=1}^{n_{k}}$ and $\left\{Z_{k+1, j}\right\}_{j=1}^{n_{k+1}}$ yields an estimator \widehat{R}_{i} of R_{i}^{*}. Then the telescoping density ratio estimator of R^{*} is $\prod_{i=0}^{K-1} \widehat{R}_{i}$

We consider the log-density ratio. Let \widehat{D}_{k} be the neural estimator of $D_{k}^{*} \equiv \log \left(q_{k} / q_{k+1}\right)$. Based on (14), the telescoping estimator of the log-density ratio $D^{*} \equiv \log R^{*}$ is

$$
\begin{equation*}
\widehat{D}_{\mathrm{TRE}}=\sum_{k=0}^{K-1} \widehat{D}_{k} \tag{15}
\end{equation*}
$$

In what follows, we show that under certain conditions, the telescoping estimator has an improved asymptotic error bound. The intuition is as follows: when q_{k} / q_{k+1} is bounded or $q_{k}(z) / q_{k+1}(z) \ll$ $q^{*}(z) / p^{*}(z)$ for $z \in \mathcal{Z}$, where q_{k} and q_{k+1} are the densities of the synthetic data $\left\{Z_{k, j}\right\}_{j=1}^{n}$ and $\left\{Z_{k+1, j}\right\}_{j=1}^{n}$, respectively, the truncation error for q_{k} / q_{k+1} vanishes or is far less than that for q^{*} / p^{*}. This can help the telescoping density-ratio estimator perform better than a single-ratio estimator.

Assume that $q^{*} \geq c_{1}$ and $c_{1} \leq p^{*} \leq c_{2}$, where $0<c_{1}, c_{2}<\infty$ are two constants. Thus, $D^{*}=\log \left(q^{*} / p^{*}\right) \geq \log \left(c_{1} / c_{2}\right)$. Therefore, Assumption 3 is satisfied. For any finite set $\mathcal{A} \subset \mathbb{R}$, $\max \mathcal{A}$ denotes the maximal value in \mathcal{A}. Let $M=\log \left(c_{2} / c_{1}\right)$ and M_{0} be a constant satisfying

$$
\begin{equation*}
M_{0} \geq \max \mathcal{A}_{M, \alpha}^{(2 K)} \tag{16}
\end{equation*}
$$

where

$$
\mathcal{A}_{M, \alpha}^{(2 K)}=\{M, 1\} \cup\left\{\log \frac{1-\alpha_{k-1}}{1-\alpha_{k}}, 1 \leq k \leq K-1\right\} \cup\left\{\log \frac{\left(e^{M}-1\right) \alpha_{k}+1}{\left(e^{M}-1\right) \alpha_{k-1}+1}, 1 \leq k \leq K-1\right\}
$$

Based on Theorem 2. we can establish an asymptotic error bound for the telescoping estimator $\widehat{D}_{\text {TRE }}$ defined in (15), with

$$
\widehat{D}_{k} \in \underset{D \in \mathcal{F}_{\mathrm{FNN}}^{0}}{\arg \min } \hat{\mathcal{B}}_{\psi}^{k}\left(e^{D}\right)
$$

where

$$
\hat{\mathcal{B}}_{\psi}^{k}\left(e^{D}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{1}\left(D\left(Z_{k+1, i}\right)\right)+\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{2}\left(D\left(Z_{k, i}\right)\right),
$$

where \mathcal{L}_{1} and \mathcal{L}_{2} are defined in (5) and $\mathcal{F}_{\mathrm{FNN}}^{0}$ consists of DNNs D with $\|D\|_{\infty} \leq M_{0}$. To demonstrate the advantages of the telescoping estimator, we also consider the single-ratio estimator (SRE), $\widehat{D}_{\text {SRE }} \in \arg \min _{D \in \mathcal{F}_{\text {FNN }}^{0}} \hat{\mathcal{B}}_{\psi}\left(e^{D}\right)$.

Proposition 1. Assume that $q^{*} \geq c_{1}, c_{1} \leq p^{*} \leq c_{2}$, where the constants $0<c_{1} \leq c_{2}<\infty$,
 constant $C_{0}\left(\mu, \sigma, c_{1}\right)$ depending only on $\left(\mu, \sigma, c_{1}\right)$ such that for

$$
B_{\mathrm{SRE}}=e^{M_{0}} C_{0}\left(\mu, \sigma, c_{1}\right)\left\|R^{*}-R_{M_{0}}^{*}\right\|_{p},
$$

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{\mathrm{SRE}}-D^{*}\right\|_{2} \leq B_{\mathrm{SRE}} \\
& \limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{\mathrm{TRE}}-D^{*}\right\|_{2} \leq\left(1-\alpha_{K-1}\right) B_{\mathrm{SRE}}
\end{aligned}
$$

where $\|f\|_{2}=\left[\int_{\mathcal{Z}} f^{2}(z) d z\right]^{1 / 2}$ for any square integrable function f.
Proposition 1 shows that for a given sequence $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{K-1}<\alpha_{K}=1$ and a truncation level M_{0}, the upper bound for the asymptotic L_{2}-error of $\widehat{D}_{\text {TRE }}$ is reduced by a factor $\left(1-\alpha_{K-1}\right)$ with $0<1-\alpha_{K-1}<1$. This upper bound can be far less than that of $\widehat{D}_{\text {SRE }}$ when α_{K-1} is close to 1 . Therefore, TRE can improve the asymptotic error bound over the bound for the single-ratio method.
It is important to note that there is a tradeoff between the value of α_{K-1} and the truncation level M_{0} dictated by (16). For instance, with $\alpha_{1} \leq \cdots \leq \alpha_{K-2}$ fixed, the closer α_{K-1} is to 1 , in view of 16$)$, the larger M_{0} is. Larger α_{K-1} sharpens the pre-factor $\left(1-\alpha_{K-1}\right)$ and larger M_{0} also improves $\left\|R^{*}-R_{M_{0}}^{*}\right\|_{p}$, but deteriorates the pre-factor $e^{M_{0}}$.
Proposition 1 is generally not applicable to the original chain of TRE. The difficulty is due to the possibly intensive oscillation of density ratios caused by the convolution form for the density
of the sum of two random variables. We illustrate this by a toy example: suppose Z_{q}, Z_{p} are the possibly intensive oscillation of density ratios caused by the convolution form for the density
of the sum of two random variables. We illustrate this by a toy example: suppose Z_{q}, Z_{p} are i.i.d. uniform random variables on $[0,1]$. For any $t \in(0,1 / 2],(1-t) Z_{q}+t Z_{p}$ has density $q_{t}^{*}(z)=\frac{z}{t(1-t)} I\{0 \leq z \leq t\}+\frac{1}{1-t} I\{t<z \leq 1-t\}+\frac{1-z}{t(1-t)} I\{1-t<z \leq 1\}$. In this case, q^{*} / q_{t}^{*} is unbounded and oscillates sharply when z is close to 0 or 1 . This makes it hard to estimate q^{*} / q_{t}^{*}. However, the chain we used does not have this problem, which may be a good choice in practice.

Additionally, we conduct simulation studies to evaluate the performance of our proposed mixing chain and the original convolution chain; see Table 2 for the results. The simulation settings are given in Appendix A.4. Table 2 shows that, for the models considered in the simulation studies, the proposed mixing chain performs comparably or better compared with the original convolution chain.

Table 2: The MSEs averaged over 10 replications and the corresponding standard errors in parentheses between the telescoping ratio estimate (TRE) of log density-ratio and its true value for the proposed between the telescoping ratio estimate (TRE) of log density-ratio and its true value for the proposed
mixing chain (mTRE) and the original convolution chain (cTRE) under different settings, where n is the training data sample size and K is the length of the chain. The bold one is the best in a specific setting among the two estimates.

Setting	Method	(n,K)			
		$(5000,5)$	$(5000,10)$	$(10000,5)$	$(10000,10)$
Beta	mTRE(ours)	0.9850(0.0269)	$\mathbf{0 . 8 8 4 0}(0.0180)$	1.0109(0.0171)	0.9299(0.0194)
	cTRE	1.4670(0.0606)	1.2935(0.0274)	1.3674(0.0625)	1.2850(0.0293)
Normal	mTRE(ours)	2.7426(0.0370)	2.8330(0.0450)	2.7483(0.0367)	2.7813(0.0265)
	cTRE	2.7987(0.0586)	$2.7076(0.0293)$	2.8184(0.0347)	2.7503(0.0297)

we have -

5 Related work: comparison with the NN-BD estimator

There has been much work on the error analysis of nonparametric density-ratio estimation (Nguyen et al. 2010; Sugiyama et al., 2008; Kanamori et al., 2012a, Yamada et al., 2013). These results show that when the targeted density-ratio belongs to certain function space \mathcal{H}, such as RKHS, and thus no approximation error is incurred, their estimators achieve certain nonparametric convergence rate
decided by the complexity of \mathcal{H}. Compared to these works, our results consider the approximation error using neural network functions and still achieves the minimax optimality under some mild conditions.

Our work is most related to the paper by Kato \& Teshima (2021), who proposed a non-negative Bregman divergence (NN-BD) method to tackle the possible over-fitting problem due to the unboundedness of certain Bregman divergences. We compare our theoretical results with those for the NN-BD estimator of Kato \& Teshima (2021). Using the notation in this paper, we restate two conditions required in Kato \& Teshima (2021):
(a) Let $\mathcal{F}_{\mathrm{FNN}}^{R}$ be a class of FNNs with output taking values in $\left[e^{-M}, e^{M}\right]$ for some finite $M>0$. The target density-ratio $R^{*} \in \mathcal{F}_{\mathrm{FNN}}^{R}$. Moreover, for any function in $\mathcal{F}_{\mathrm{FNN}}^{R}$, its Frobenius norm of the parameter matrix W_{j} in the j th layer is bounded by $\mathcal{B}_{j} \geq 0$ and the activation functions are 1-Lipschitz positive-homogeneous.
(b) The function $\psi(\cdot)$ is σ-strongly convex. Let $\ell_{\tilde{1}}(t)=\psi^{*}(t) t-\psi(t)+A, \ell_{2}(t)=-\tilde{\psi}(t), t \in$ $\left[e^{-M}, e^{M}\right]$, where $\psi^{*}(t)=C_{n n}\left\{\psi^{\prime}(t) t-\psi(t)\right\}+\tilde{\psi}(t)$. Here $\tilde{\psi}(t)$ is a function bounded above, $C_{n n}$ and A are user-selected constants. Suppose $\ell_{1}(\cdot)$ and $\ell_{2}(\cdot)$ are Lipschitz functions on $\left[e^{-M}, e^{M}\right]$.
Under these two conditions, Kato \& Teshima (2021) rewrote the BD in (3) as

$$
\begin{equation*}
\mathcal{B}_{\psi}(R)=E_{p} \ell_{1}(R(Z))-C_{n n} E_{q} \ell_{1}(R(Z))+E_{q} \ell_{2}(R(Z))+\left(1-C_{n n}\right) A, \tag{17}
\end{equation*}
$$

and proposed the density-ratio estimator $\widehat{R}_{\mathrm{KT}}$ defined as

$$
\widehat{R}_{\mathrm{KT}} \in \underset{R \in \mathcal{F}_{\mathrm{FNN}}}{\arg \min }\left\{\frac{1}{n_{q}} \sum_{i=1}^{n_{q}} \ell_{2}\left(R\left(Z_{q, i}\right)\right)+\left[\frac{1}{n_{p}} \sum_{j=1}^{n_{p}} \ell_{1}\left(R\left(Z_{p, j}\right)\right)-\frac{C_{n n}}{n_{q}} \sum_{j=1}^{n_{q}} \ell_{1}\left(R\left(Z_{q, j}\right)\right)\right]_{+}\right\},
$$

where $[a]_{+}=\max (0, a)$ for any $a \in \mathbb{R}$. They showed that

$$
\begin{equation*}
\left\|\widehat{R}_{\mathrm{KT}}-R^{*}\right\|_{p}=O_{p}\left(n^{-1 /(2+a)}\right) \tag{18}
\end{equation*}
$$

for any $0 \leq a \leq 2$.
According to Theorem 1 , we have the following corollary for our density-ratio estimator $\widehat{R}=\exp (\widehat{D})$.
Corollary 2. Under Assumption 1 when $n \geq \operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}^{R}\right)$, there exists a constant C depending only on (μ, σ, M) such that, for any $\gamma \geq 0$, with probability at least $1-\exp (-\gamma)$,

$$
\left\|\widehat{R}-R^{*}\right\|_{p} \leq C\left(\sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}^{R}\right) \log n}{n}}+\sqrt{\frac{\gamma}{n}}\right)
$$

Corollary 2 implies that $\left\|\widehat{R}-R^{*}\right\|_{p}=O_{p}(\sqrt{\log n / n})$, when the true density-ratio $R^{*} \in \mathcal{F}_{\mathrm{FNN}}$. This convergence rate is slightly faster than the rate for $\widehat{R}_{\mathrm{KT}}$ given in 18 . Moreover, the boundedness assumption for the weights of the neural network functions, as imposed by Kato \& Teshima (2021), is not needed. Corollary 2 also shows that, if the target ratio is assumed to belong to the optimization space (or hypothesis space), i.e., $R^{*} \in \mathcal{F}_{\mathrm{FNN}}^{R}$ without approximation error, then the convergence rate does not depend on the dimension of the data. In other words, the estimation of R^{*} does not suffer from the curse of dimensionality. However, this is probably not realistic. Therefore, it is important to consider the approximation error due to the fact that $R^{*} \notin \mathcal{F}_{\mathrm{FNN}}^{R}$ in applications.

6 Conclusions

In this paper, we have established the non-asymptotic error bounds for the deep density-ratio estimator using the Bregman divergence criterion. Under reasonable conditions, we have shown that the deep density-ratio estimator achieves the optimal minimax convergence rate. When the data is supported on an approximate low-dimensional manifold, we have shown that the neural estimator can mitigate the curse of dimensionality. We have also analyzed the convergence properties of the telescoping density ratio estimator (Rhodes et al., 2020) and provided sufficient conditions under which it has a lower error bound than a single-ratio estimator.

348 349 350 351 352 353

A limitation of this work is that certain boundedness assumptions on the target density ratio such as Assumption 2 or 3 is needed. Also, when the boundedness assumption is partially relaxed as in Assumption 3, the error bound in Theorem 2 is not as sharp as that with the boundedness assumption in Theorem 1 It would be interesting to further relax or remove such assumptions. It would also be useful to improve the error bound in Theorem 2 if possible. These are interesting and challenging problems that deserve further study in the future.

References

Anthony, M. and Bartlett, P. L. Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge, 1999.

Baraniuk, R. G. and Wakin, M. B. Random projections of smooth manifolds. Found. Comput. Math., 9(1):51-77, 2009.

Bartlett, P. L., Bousquet, O., and Mendelson, S. Local rademacher complexities. The Annals of Statistics, 33(4):1497-1537, 2005.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20 (63):1-17, 2019.

Beck, A. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, 2017.

Bregman, L. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7(3):200-217, 1967.

Ceylan, C. and Gutmann, M. U. Conditional Noise-Contrastive Estimation of Unnormalised Models. In Proceedings of the 35th International Conference on Machine Learning, pp. 725-733. PMLR, 2018.

Cox, T. F. and Ferry, G. Robust logistic discrimination. Biometrika, 78(4):841-849, 1991.
Devroye, L. and Lugosi, G. A universally acceptable smoothing factor for kernel density estimates. The Annals of Statistics, 24(6):2499 - 2512, 1996.

Fefferman, C. Whitney's extension problem for c^{m}. Annals of Mathematics., 164(1):313-359, 2006.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In Advances in neural information processing systems, pp . 2672-2680, 2014.

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. Covariate shift by kernel mean matching. In Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. (eds.), Dataset Shift in Machine Learning, chapter 8, pp. 131 - 160. MIT Press, Cambridge, 2009

Gutmann, M. and Hyvärinen, A. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13:307-361, 2012.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261-2269, 2017.

Jiao, Y., Shen, G., Lin, Y., and Huang, J. Deep nonparametric regression on approximately lowdimensional manifolds. arXiv:2104.06708, 2021.

Kanamori, T., Hido, S., and Sugiyama, M. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 10(48):1391-1445, 2009.

Kanamori, T., Suzuki, T., and Sugiyama, M. Statistical analysis of kernel-based least-squares density-ratio estimation. Machine Learning, 86(3):335-367, 2012a.

Kanamori, T., Suzuki, T., and Sugiyama, M. f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models. IEEE Transactions on Information Theory, 58:708 $-720,2012 \mathrm{~b}$.

Kato, M. and Teshima, T. Non-negative bregman divergence minimization for deep direct density ratio estimation. In International Conference on Machine Learning, pp. 5320-5333, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database. AT\&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

Moustakides, G. V. and Basioti, K. Training neural networks for likelihood/density ratio estimation. arXiv:1911.00405, 2019.

Nakada, R. and Imaizumi, M. Adaptive approximation and estimation of deep neural network with intrinsic dimensionality. Journal of Machine Learning Research, 21(174):1-38, 2020.

Nguyen, X., Wainwright, M., and Jordan, M. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):5847-5861, 2010.

Nowozin, S., Cseke, B., and Tomioka, R. f-gan: Training generative neural samplers using variational divergence minimization. In Advances in neural information processing systems, pp. 271-279, 2016.

Parzen, E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3):1065-1076, 1962.

Qin, J. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika, 85(3):619-630, 1998.

Rhodes, B., Xu, K., and Gutmann, M. U. Telescoping density-ratio estimation. In Advances in Neural Information Processing Systems, 2020.

Rosenblatt, M. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27(3):832-837, 1956.

Silverman, B. W. Density ratios, empirical likelihood and cot death. Journal of the Royal Statistical Society. Series C (Applied Statistics), 27(1):26-33, 1978.

Sugiyama, M., Nakajima, S., Kashima, H., Bunau, P. V., and Kawanabe, M. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4): 699-746, 2008.

Sugiyama, M., Suzuki, T., Itoh, Y., Kanamori, T., and Kimura, M. Least-squares two-sample test. Neural Networks, 24(7):735-751, 2011.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density-ratio matching under the bregman divergence: a unified framework of density-ratio estimation. Annals of the Institute of Statistical Mathematics, 64(5):1009-1044, 2012a.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density Ratio Estimation in Machine Learning. Cambridge University Press, Cambridge, 2012b.

Tsuboi, Y., Kashima, H., Hido, S., Bickel, S., and Sugiyama, M. Direct density ratio estimation for large-scale covariate shift adaptation. Journal of Information Processing, 17(2):138 - 155, 2009.

Tsybakov, A. B. Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer New York, 2008.

Yamada, M. and Sugiyama, M. Direct importance estimation with gaussian mixture models. IEICE Transactions on Information and Systems, E92.D(10):2159 - 2162, 2009.

Yamada, M., Sugiyama, M., Wichern, G., and Simm, J. Direct importance estimation with a mixture of probabilistic principal component analyzers. IEICE Transactions on Information and Systems, E93.D(10):2846-2849, 2010.

Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., and Sugiyama, M. Relative density-ratio estimation for robust distribution comparison. Neural computation, 25(5):1324-1370, 2013.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section6
(c) Did you discuss any potential negative societal impacts of your work? [No] There is no such a potential negative societal impact in our work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assumptions 1, 2, 3 and 4
(b) Did you include complete proofs of all theoretical results? [Yes] See the subsection A. 1 in Appendix A
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] .
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] .
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] .
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] .
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

A Appendix

A. 1 Theoretical Proofs

In the appendix, we provide all the technical details and proofs of the theorems stated in the paper.
Verification of (1): Equation (1) holds because

$$
\begin{aligned}
& E_{p^{*}} \Delta_{\psi}\left(R^{*}(Z), R(Z)\right) \\
= & E_{p^{*}}\left[\psi\left(R^{*}(Z)\right)-\psi(R(Z))-\psi^{\prime}(R(Z))\left(R^{*}(Z)-R(Z)\right)\right] \\
= & E_{p^{*}}\left[\psi^{\prime}(R(Z)) R(Z)-\psi(R(Z))\right]-E_{p^{*}}\left[\psi^{\prime}(R(Z)) R^{*}(Z)\right]+E_{p^{*}}\left[\psi\left(R^{*}(Z)\right)\right] \\
= & E_{p^{*}}\left[\psi^{\prime}(R(Z)) R(Z)-\psi(R(Z))\right]-E_{q^{*}}\left[\psi^{\prime}(R(Z))\right]+E_{p^{*}}\left[\psi\left(R^{*}(Z)\right)\right],
\end{aligned}
$$

As $E_{p^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2}=E_{q^{*}} e^{-D^{*}(Z)}\left\{D(Z)-D^{*}(Z)\right\}^{2}$ and $\left\|D^{*}\right\|_{\infty} \leq M$, we have

$$
\begin{equation*}
e^{-M} E_{q^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2} \leq E_{p^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2} \leq e^{M} E_{q^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2} . \tag{A.2}
\end{equation*}
$$

Let $c_{0}=\frac{\sigma e^{-3 M}}{2}, C_{0}=\frac{\mu e^{3 M}}{2}$, then A.1 and A. 2 imply that

$$
c_{0}\left\|D-D^{*}\right\|_{\max }^{2} \leq \mathcal{B}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right) \leq C_{0}\left\|D-D^{*}\right\|_{\max }^{2}
$$

where $E_{p^{*}}\left[\psi^{\prime}(R(Z)) R^{*}(Z)\right]=E_{q^{*}}\left[\psi^{\prime}(R(Z))\right]$ by the definition of R^{*}. This verifies 1 .
We now prove the following lemmas.
Lemma A.1. 1. If the convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ is μ-smooth over \mathbb{R}, then for any $x, y \in \mathbb{R}$, the following inequality holds

$$
f(y) \leq f(x)+f^{\prime}(x)(y-x)+\frac{\mu}{2}(y-x)^{2} .
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a first-order differentiable and convex function. If f is σ-strongly convex, then for any $x, y \in \mathbb{R}$, the following inequality holds

$$
f(y) \geq f(x)+f^{\prime}(x)(y-x)+\frac{\sigma}{2}(y-x)^{2} .
$$

Proof of Lemma A.1. The proof of Lemma A. 1 is standard and can be found in Beck (2017).
Lemma A.2. Under Assumptions $1 \mid 2$ we have
(a). There exist two constants $c_{0}=\frac{\sigma e^{-3 M}}{2}, C_{0}=\frac{\mu e^{3 M}}{2}$, such that

$$
c_{0}\left\|D-D^{*}\right\|_{\max }^{2} \leq \mathcal{B}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)
$$

and

$$
\mathcal{B}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right) \leq C_{0}\left\|D-D^{*}\right\|_{\max }^{2}
$$

(b). For $t_{1}, t_{2} \in[-M, M]$, there exist two constants C_{1}, C_{2}, such that

$$
\left|\mathcal{L}_{1}\left(t_{1}\right)-\mathcal{L}_{1}\left(t_{2}\right)\right| \leq C_{1}\left|t_{1}-t_{2}\right|
$$

and

$$
\left|\mathcal{L}_{2}\left(t_{1}\right)-\mathcal{L}_{2}\left(t_{2}\right)\right| \leq C_{2}\left|t_{1}-t_{2}\right|
$$

Actually, we can take $C_{1}=2 e^{2 M} \mu, C_{2}=e^{M} \mu$.
Proof of Lemma A.2. (a) Let $\Delta_{\psi}(x, y):=\psi(x)-\psi(y)-\psi^{\prime}(x)(x-y)$. Since $E_{p^{*}} \Delta_{\psi}\left(e^{D(Z)}, e^{D^{*}(Z)}\right)=\mathcal{B}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)$ and ψ is μ-smooth and σ-strongly convex, by Lemma A. 1

$$
\frac{\sigma}{2} E_{p^{*}}\left\{e^{D(Z)}-e^{D^{*}(Z)}\right\}^{2} \leq E_{p^{*}} \Delta_{\psi}\left(e^{D(Z)}, e^{D^{*}(Z)}\right) \leq \frac{\mu}{2} E_{p^{*}}\left\{e^{D(Z)}-e^{D^{*}(Z)}\right\}^{2},
$$

and then by Assumption 2 ,

$$
\begin{equation*}
\frac{\sigma e^{-2 M}}{2} E_{p^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2} \leq E_{p^{*}} \Delta_{\psi}\left(e^{D(Z)}, e^{D^{*}(Z)}\right) \leq \frac{\mu e^{2 M}}{2} E_{p^{*}}\left\{D(Z)-D^{*}(Z)\right\}^{2} \tag{A.1}
\end{equation*}
$$

(b) Obviously, for $t_{1}, t_{2} \in[-M, M]$,

$$
\begin{aligned}
\left|\mathcal{L}_{1}\left(t_{1}\right)-\mathcal{L}_{1}\left(t_{2}\right)\right| & =\left|\psi^{\prime}\left(e^{t_{1}}\right) e^{t_{1}}-\psi\left(e^{t_{1}}\right)-\left(\psi^{\prime}\left(e^{t_{2}}\right) e^{t_{2}}-\psi\left(e^{t_{2}}\right)\right)\right| \\
& \leq e^{t_{1}}\left|\psi^{\prime}\left(e^{t_{1}}\right)-\psi^{\prime}\left(e^{t_{2}}\right)\right|+\left|\psi\left(e^{t_{1}}\right)-\psi\left(e^{t_{2}}\right)-\psi^{\prime}\left(e^{t_{2}}\right)\left(e^{t_{1}}-e^{t_{2}}\right)\right| \\
& \leq e^{M} \mu\left|e^{t_{1}}-e^{t_{2}}\right|+\frac{\mu}{2}\left|e^{t_{1}}-e^{t_{2}}\right|^{2} \\
& \leq 2 e^{M} \mu\left|e^{t_{1}}-e^{t_{2}}\right|\left(\text { As }\left|e^{t_{1}}-e^{t_{2}}\right| \leq 2 e^{M}\right) \\
& \leq 2 e^{2 M} \mu\left|t_{1}-t_{2}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\mathcal{L}_{2}\left(t_{1}\right)-\mathcal{L}_{2}\left(t_{2}\right)\right| & =\left|\psi^{\prime}\left(e^{t_{1}}\right)-\psi^{\prime}\left(e^{t_{2}}\right)\right| \\
& \leq \mu\left|e^{t_{1}}-e^{t_{2}}\right| \\
& \leq e^{M} \mu\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

The proof of the lemma is completed.
Proof of Theorem 1 . For notational convenience, denote $\epsilon_{n}=\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }$ and use E_{I} to denote $E_{I^{*}}, I=p, q$. Recall that $E_{n_{I}}$ denotes the expectation with respect to (w.r.t) the empirical distribution of $\left\{Z_{I, t}\right\}_{t=1}^{n_{I}}$ for $I=p, q$. As $\widehat{D} \in \arg \min _{D \in \mathcal{F}_{\mathrm{FNN}}} \mathcal{L}_{n_{p}, n_{q}}(D)$, where $\mathcal{L}_{n_{p}, n_{q}}(D)=$ $1 / n_{p} \sum_{j=1}^{n_{p}} \mathcal{L}_{1}\left(D\left(Z_{p, j}\right)\right)+1 / n_{q} \sum_{i=1}^{n_{q}} \mathcal{L}_{2}\left(D\left(Z_{q, i}\right)\right)$, we have

$$
\begin{align*}
& c_{0}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \\
\leq & \mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right) \\
\leq & \mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)-\mathcal{L}_{n_{p}, n_{q}}(\widehat{D})+\mathcal{L}_{n_{p}, n_{q}}\left(D_{\mathrm{NN}}\right) \\
= & \mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\mathcal{L}_{m, n}(\widehat{D})-\left\{\mathcal{B}_{\psi}\left(e^{D^{*}}\right)-\mathcal{L}_{m, n}\left(D^{*}\right)\right\} \\
+ & \left\{\mathcal{L}_{n_{p}, n_{q}}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{n_{p}, n_{q}}\left(D^{*}\right)\right\} \\
= & \left(E_{p^{*}}-E_{n_{p}}\right)\left\{\mathcal{L}_{1}(\widehat{D})-\mathcal{L}_{1}\left(D^{*}\right)\right\}+\left(E_{q}-E_{n_{q}}\right)\left\{\mathcal{L}_{2}(\widehat{D})-\mathcal{L}_{2}\left(D^{*}\right)\right\} \\
+ & E_{n_{p}}\left\{\mathcal{L}_{1}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{1}\left(D^{*}\right)\right\}+E_{n_{q}}\left\{\mathcal{L}_{2}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{2}\left(D^{*}\right)\right\} \tag{A.3}
\end{align*}
$$

512

$$
\begin{equation*}
E_{n_{p}}\left\{\mathcal{L}_{1}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{1}\left(D^{*}\right)\right\} \leq E_{p}\left\{\mathcal{L}_{1}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{1}\left(D^{*}\right)\right\}+\sqrt{2} C_{1}\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max } \sqrt{\frac{\gamma_{1}}{n}}+\frac{16 C_{1} M \gamma_{1}}{3 n} \tag{A.4}
\end{equation*}
$$

513 Also, with probability at least $1-\exp \left(-\gamma_{1}\right)$,

$$
\begin{equation*}
E_{n_{q}}\left\{\mathcal{L}_{2}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{2}\left(D^{*}\right)\right\} \leq E_{q}\left\{\mathcal{L}_{2}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{2}\left(D^{*}\right)\right\}+\sqrt{2} C_{2}\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max } \sqrt{\frac{\gamma_{1}}{n}}+\frac{16 C_{2} M \gamma_{1}}{3 n} \tag{A.5}
\end{equation*}
$$

514 The inequalities A.4 and A.5 together imply that with probability at least $1-2 \exp \left(-\gamma_{1}\right)$,

$$
\begin{align*}
& E_{n_{p}}\left\{\mathcal{L}_{1}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{1}\left(D^{*}\right)\right\}+E_{n_{q}}\left\{\mathcal{L}_{2}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{2}\left(D^{*}\right)\right\} \\
\leq & E_{p}\left\{\mathcal{L}_{1}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{1}\left(D^{*}\right)\right\}+E_{q}\left\{\mathcal{L}_{2}\left(D_{\mathrm{NN}}\right)-\mathcal{L}_{2}\left(D^{*}\right)\right\} \\
+ & \sqrt{2}\left(C_{1}+C_{2}\right)\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max } \sqrt{\frac{\gamma_{1}}{n}}+\frac{16\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n} \\
= & \mathcal{B}_{\psi}\left(e^{D_{\mathrm{NN}}}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)+\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right)\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }+\frac{16\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n} \\
\leq & C_{0}\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2}+\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right)\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }+\frac{16\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n} . \tag{A.6}
\end{align*}
$$

Step 1. Let $g=\left(D-D^{*}\right)^{2}$, then $g \leq 4 M^{2}$ by Assumption 2. If $\left\|D-D^{*}\right\|_{\max } \leq r$, then

$$
\begin{aligned}
\operatorname{var}_{p}(g) \leq E_{p}\left(g^{2}\right) & =E_{p}\left(D-D^{*}\right)^{4} \\
& \leq 4 M^{2} E_{p}\left(D-D^{*}\right)^{2} \\
& \leq 4 M^{2} r^{2}
\end{aligned}
$$

516
Regarding g as a function of $D-D^{*}$, we have

$$
\begin{aligned}
\left|g\left(D_{1}-D^{*}\right)-g\left(D_{2}-D^{*}\right)\right| & =\left|D_{1}^{2}-2 D_{1} D^{*}-\left(D_{2}^{2}-2 D_{2} D^{*}\right)\right| \\
& =\left|\left(D_{1}+D_{2}-2 D^{*}\right)\left(D_{1}-D_{2}\right)\right| \\
& =\left|\left(D_{1}+D_{2}-2 D^{*}\right)\left\{\left(D_{1}-D^{*}\right)-\left(D_{2}-D^{*}\right)\right\}\right| \\
& \leq 4 M\left|\left(D_{1}-D^{*}\right)-\left(D_{2}-D^{*}\right)\right|
\end{aligned}
$$

Thus g can be viewed as the function of $D-D^{*}$ with a Lipschitz constant $4 M$. Denote $\mathcal{F}_{\text {FNN }}^{D^{*}, r}=$ $\left\{D \in \mathcal{F}_{\mathrm{FNN}},\left\|D-D^{*}\right\|_{\max } \leq r\right\}$, and

$$
R_{n_{I}} \mathcal{F}=\sup _{f \in \mathcal{F}} \frac{1}{n_{I}} \sum_{i=1}^{n_{I}} \eta_{i}^{I} f\left(Z_{I, i}\right), I=p, q,
$$

where $\eta_{i}^{I}, i=1,2, \ldots, n_{I}$ are i.i.d. Rademacher variables. For the rest of the proof of Theorem 1. we use $E_{\eta} R_{n_{I}} \mathcal{F}$ to denote the conditional expectation of $R_{n_{I}} \mathcal{F}$ w.r.t $\eta_{i}^{I}, i=1,2, \ldots, n_{I}$, given $Z_{I, i}, i=1,2, \ldots, n_{I}$ and $E_{I, \eta} R_{n_{I}} \mathcal{F}$ to denote the expectation of $R_{n_{I}} \mathcal{F}$ jointly w.r.t $\eta_{i}^{I}, Z_{I, i}, i=$ $1,2, \ldots, n_{I}$. Again, by Theorem 2.1 in Bartlett et al. (2005), with probability at least $1-\exp \left(-\gamma_{1}\right)$,

$$
\begin{align*}
& \left\|D-D^{*}\right\|_{p, n_{p}}^{2}-\left\|D-D^{*}\right\|_{p}^{2} \\
\leq & 3 E_{p, \eta} R_{n_{p}}\left\{\left(D-D^{*}\right)^{2}: D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r}\right\}+2 \sqrt{\frac{2 \gamma_{1}}{n}} M+\frac{16 M^{2}}{3} \frac{\gamma_{1}}{n} \\
\leq & 24 M E_{p, \eta} R_{n_{p}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r}\right\}+2 \sqrt{\frac{2 \gamma_{1}}{n}} M r+\frac{16 M^{2}}{3} \frac{\gamma_{1}}{n}, \tag{A.7}
\end{align*}
$$

where the last inequality follows from Talagland's contraction theorem. Similarly, with probability at least $1-\exp \left(-\gamma_{1}\right)$,

$$
\begin{equation*}
\left\|D-D^{*}\right\|_{q, n_{q}}^{2}-\left\|D-D^{*}\right\|_{q}^{2} \leq 24 M E_{q, \eta} R_{n_{q}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r}\right\}+2 \sqrt{\frac{2 \gamma_{1}}{n}} M r+\frac{16 M^{2}}{3} \frac{\gamma_{1}}{n} \tag{A.8}
\end{equation*}
$$

Let

$$
\frac{R_{n}(r)}{24 M}=\max _{I \in\{p, q\}}\left\{E_{I, \eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r}\right\}\right\}
$$

When

$$
\begin{equation*}
r^{2} \geq R_{n}(r), r^{2} \geq \frac{16 M^{2} \gamma}{3 n} \tag{A.9}
\end{equation*}
$$

A.7) and A.8 indicate that with probability at least $1-2 \exp \left(-\gamma_{1}\right)$,

$$
\begin{aligned}
\left\|D-D^{*}\right\|_{n_{p}, n_{q}}^{2} & =\max \left\{\left\|D-D^{*}\right\|_{p, n_{p}}^{2},\left\|D-D^{*}\right\|_{q, n_{q}}^{2}\right\} \\
& \leq \max \left\{\left\|D-D^{*}\right\|_{p}^{2},\left\|D-D^{*}\right\|_{q}^{2}\right\}+R_{n}(r)+2 \sqrt{\frac{2 \gamma_{1}}{n}} M r+\frac{16 M^{2}}{3} \frac{\gamma_{1}}{n} \\
& =\left\|D-D^{*}\right\|_{\max }^{2}+R_{n}(r)+2 \sqrt{\frac{2 \gamma_{1}}{n}} M r+\frac{16 M^{2}}{3} \frac{\gamma_{1}}{n} \\
& \leq(2 r)^{2} .
\end{aligned}
$$

Thus, when A.9 holds, with probability at least $1-2 \exp \left(-\gamma_{1}\right)$,

$$
\begin{equation*}
\left\|D-D^{*}\right\|_{\max } \leq r \Rightarrow\left\|D-D^{*}\right\|_{n_{p}, n_{q}} \leq 2 r \tag{A.10}
\end{equation*}
$$

Step 2. Suppose $\left\|\widehat{D}-D^{*}\right\|_{\max } \leq r_{0}$ and let

$$
\mathcal{G}_{i}=\left\{\mathcal{L}_{i}(D)-\mathcal{L}_{i}\left(D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r_{0}}\right\}, i=1,2
$$

For each $(I, i) \in\{(p, 1),(q, 2)\}$, with probability at least $1-2 \exp \left(-\gamma_{1}\right)$,

$$
\begin{equation*}
\left(E_{I}-E_{n_{I}}\right)\left\{\mathcal{L}_{i}(\widehat{D})-\mathcal{L}_{i}\left(D^{*}\right)\right\} \leq 6 E_{\eta} R_{n_{I}} \mathcal{G}_{i}+\sqrt{2} C_{i} r_{0} \sqrt{\frac{\gamma_{1}}{n}}+\frac{46 C_{i} M \gamma_{1}}{3 n} \tag{A.11}
\end{equation*}
$$

Denote $\hat{\mathcal{F}}_{\mathrm{FNN}}^{D^{*}, r}=\left\{D \in \mathcal{F}_{\mathrm{FNN}},\left\|D-D^{*}\right\|_{n_{p}, n_{q}} \leq r\right\}$. By A.10 in Step 1 , when $r_{0}^{2} \geq R_{n}\left(r_{0}\right)$ and $r_{0}^{2} \geq 16 M^{2} \gamma_{1} /(3 n)$, with probability at least $1-2 \exp \left(-\gamma_{1}\right)$, for each $(I, i) \in\{(p, 1),(q, 2)\}$,

$$
\begin{aligned}
E_{\eta} R_{n_{I}} \mathcal{G}_{i} & \leq 2 C_{i} E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, r_{0}}\right\} \\
& \leq 2 C_{i} E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \hat{\mathcal{F}}_{\mathrm{FNN}}^{D^{*}, 2 r_{0}}\right\}
\end{aligned}
$$

and thus

$$
\begin{equation*}
E_{\eta} R_{n_{I}} \mathcal{G}_{i} \leq 128 C_{i} r_{0} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} \tag{A.13}
\end{equation*}
$$

Denote $\hat{\mathcal{F}}_{I}^{D^{*}, r}=\left\{D \in \mathcal{F}_{\mathrm{FNN}},\left\|D-D^{*}\right\|_{I, n_{I}} \leq r\right\}$. When $n \geq \operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right), r_{0} \geq 1 / n$ and $n \geq(2 e M)^{2}$, we have

$$
\begin{equation*}
E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \hat{\mathcal{F}}_{I}^{D^{*}, 2 r_{0}}\right\} \leq 64 r_{0} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} \tag{A.12}
\end{equation*}
$$

Combining A.3 A.6 A.11 and A.13, with probability at least $1-8 \exp \left(-\gamma_{1}\right)$, we have

$$
\begin{aligned}
c_{0}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq & 768\left(C_{1}+C_{2}\right) r_{0} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} \\
& +\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right) r_{0}+\frac{46\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n}+C_{0} \epsilon_{n}^{2} \\
& +\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right) \epsilon_{n}+\frac{16\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n} \\
= & \left(C_{1}+C_{2}\right) r_{0}\left(768 \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{2 \gamma_{1}}{n}}\right) \\
& +C_{0} \epsilon_{n}^{2}+\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right) \epsilon_{n}+\frac{62\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n}
\end{aligned}
$$

Therefore, when $\max \left\{\sqrt{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n / n}, \epsilon_{n}\right\} \ll r_{0}$, there exists $r_{1} \ll r_{0}$ such that $\| \widehat{D}-$ $D^{*} \|_{\max } \ll r_{1}$.
Step 3. Let $r_{*}=\inf \left\{r \geq 0: R_{n}(s) \leq s^{2}\right.$, for $\left.s \geq r\right\}$ and $E=$ $\left\{\left\|D-D^{*}\right\|_{n_{p}, n_{q}} \leq 4 r_{*}\right.$ for all $\left.D \in \overline{\mathcal{F}}_{\mathrm{FNN}}^{D^{*}, 2 r_{*}}\right\}$. We intend to prove

$$
\begin{equation*}
r_{*} \leq \kappa M \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}, \kappa=24 \times 130 \tag{A.14}
\end{equation*}
$$

541 When $r_{*} \leq 2 \sqrt{3} M \sqrt{\log n / n} / 3$, the inequality is trivial. When $r_{*} \geq 2 \sqrt{3} M \sqrt{\log n / n} / 3$, by the 542 result in Step $1, P(E) \geq 1-2 / n$. As a result,

$$
\begin{aligned}
r_{*}^{2} & \leq R_{n}\left(r_{*}\right) \\
& \leq R_{n}\left(2 r_{*}\right) \\
& =24 M \max _{I \in\{p, q\}}\left\{E_{I, \eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, 2 r_{*}}\right\}\right\}
\end{aligned}
$$

543 For each $I \in\{p, q\}$,

$$
\begin{aligned}
E_{I, \eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, 2 r_{*}}\right\} & =E_{I} E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, 2 r_{*}}\right\} \\
& =E_{I} E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \mathcal{F}_{\mathrm{FNN}}^{D^{*}, 2 r_{*}}\right\}\left(I_{E}+I_{E^{c}}\right) \\
& \leq E_{I} E_{\eta} R_{n_{I}}\left\{\left(D-D^{*}\right): D \in \hat{\mathcal{F}}_{\mathrm{FNN}}^{D^{*}, 4 r_{*}}\right\}+\frac{4 M}{n}
\end{aligned}
$$

544
It follows from A.12 that

$$
\begin{aligned}
r_{*}^{2} & \leq 24 M\left(128 r_{*} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\frac{4 M}{n}\right) \\
& =24 M\left(128 r_{*} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+r_{*} \cdot \frac{4 M}{n} \cdot \frac{1}{r_{*}}\right) \\
& \leq 24 M r_{*}\left(128 \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{3}{n \log n}}\right) \\
& \leq \kappa \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} M r_{*}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{1}{c_{0}}\left[C_{0} \epsilon_{N}^{2}+\sqrt{2}\left(C_{1}+C_{2}\right) \epsilon_{N} \sqrt{\frac{\gamma_{1}}{N}}+\frac{62\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 N}\right] \leq \frac{1}{8} 2^{2 j} \bar{r}^{2} \tag{A.16}
\end{equation*}
$$

then

$$
\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq 2^{2 j-2} \bar{r}^{2} \Leftrightarrow\left\|\widehat{D}-D^{*}\right\|_{\max } \leq 2^{j-1} \bar{r}
$$

In short, to obtain this inequality, we need \bar{r} satisfying A.15, A.16 and $\bar{r} \geq$ $\max \left(\sqrt{\log n / n}, 4 \sqrt{3} M \sqrt{\gamma_{1} / n} / 3, r_{*}\right)$. As $r_{*} \leq \kappa M \sqrt{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n / n}$, there exists a con$\operatorname{stant} C_{*}=C_{*}\left(c_{0}, C_{0}, C_{1}, C_{2}, M\right)=C^{\prime}(\mu, \sigma, M)$ such that

$$
\bar{r}=C_{*}\left(\sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{\gamma_{1}}{n}}+\epsilon_{n}\right)
$$

satisfies all the requirements. As a result, with probability at least $1-10 l \exp \left(-\gamma_{1}\right)$,

$$
\left\|\widehat{D}-D^{*}\right\|_{\max } \leq \bar{r} \text { and }\left\|\widehat{D}-D^{*}\right\|_{n_{p}, n_{q}} \leq 2 \bar{r}
$$

560 561

Let $\gamma_{1}=\log 10 l+\gamma, l=\left\lfloor\log _{2}(2 M / \sqrt{\log n / n})\right\rfloor$, there exists $C=C\left(c_{0}, C_{0}, C_{1}, C_{2}, M\right)=$ $C(\mu, \sigma, M)$ such that with probability at least $1-\exp (-\gamma)$,
where $\kappa=24 \times 130$. Thus, $r_{*} \leq \kappa M \sqrt{\mathrm{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n / n}$ and A .14 is proved.
Step 4. Let $B_{\max }\left(D^{*}, r\right)=\left\{D \in \mathcal{F}_{\mathrm{FNN}},\left\|D-D^{*}\right\|_{\max } \leq r\right\}, \bar{r} \geq \max \left(\sqrt{\log n / n}, r_{*}\right)$ and $l=\left\lfloor\log _{2}(2 M / \sqrt{\log n / n})\right\rfloor$. Then, the neural network function space $\mathcal{F}_{\text {FNN }}$ can be divided into

$$
B_{\max }\left(D^{*}, \bar{r}\right), B_{\max }\left(D^{*}, 2 \bar{r}\right) \backslash B_{\max }\left(D^{*}, \bar{r}\right), \ldots, B_{\max }\left(D^{*}, 2^{l} \bar{r}\right) \backslash B_{\max }\left(D^{*}, 2^{l-1} \bar{r}\right)
$$

As $\bar{r} \geq r_{*}$, it then follows from the definition of r_{*} that $\bar{r}^{2} \geq R_{n}(\bar{r})$. Further, if $\bar{r}^{2} \geq$ $16 M^{2} \gamma_{1} /(3 n)$, according to A.10 in Step 1, with probability at least $1-2 l \exp \left(-\gamma_{1}\right)$, for any $j=1,2, \ldots, l$,

$$
\left\|D-D^{*}\right\|_{\max } \leq 2^{j} \bar{r} \Rightarrow\left\|D-D^{*}\right\|_{n_{p}, n_{q}} \leq 2^{j+1} \bar{r} .
$$

Suppose that for some $j \leq l, \widehat{D} \in B_{\max }\left(D^{*}, 2^{j} \bar{r}\right) \backslash B_{\max }\left(D^{*}, 2^{j-1} \bar{r}\right)$, then by the results in Step 2, with probability at least $1-8 \exp \left(-\gamma_{1}\right)$,

$$
\begin{aligned}
c_{0}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \leq & \left(C_{1}+C_{2}\right) 2^{j} \bar{r}\left(768 \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{2 \gamma_{1}}{n}}\right) \\
& +C_{0} \epsilon_{n}^{2}+\sqrt{\frac{2 \gamma_{1}}{n}}\left(C_{1}+C_{2}\right) \epsilon_{n}+\frac{62\left(C_{1}+C_{2}\right) M \gamma_{1}}{3 n}
\end{aligned}
$$

If

$$
\begin{equation*}
\frac{1}{c_{0}}\left(C_{1}+C_{2}\right)\left(768 \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log N}{N}}+\sqrt{2} \sqrt{\frac{\gamma_{1}}{N}}\right) \leq \frac{1}{8} 2^{j} \bar{r} \tag{A.15}
\end{equation*}
$$

$$
\left\|\widehat{D}-D^{*}\right\|_{\max } \leq \bar{r} \leq C\left(\sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{\gamma}{n}}+\epsilon_{n}\right)
$$

562 and

$$
\left\|\widehat{D}-D^{*}\right\|_{n_{p}, n_{q}} \leq 2 C\left(\sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+\sqrt{\frac{\gamma}{n}}+\epsilon_{n}\right)
$$

563 The proof of Theorem 1 is completed.
564 Lemma A.3. The following excess risk decomposition always holds:

$$
\begin{equation*}
\mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)=\left\{\mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\inf _{D \in \mathcal{F}_{\mathrm{FNN}}} \mathcal{B}_{\psi}\left(e^{D}\right)\right\}+\left\{\inf _{D \in \mathcal{F}_{\mathrm{FNN}}} \mathcal{B}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D^{*}}\right)\right\} \tag{A.17}
\end{equation*}
$$

Under Assumptions 1 and 3 when $n \geq \operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right)$, there exist three constants C, C_{0}, C_{*}, with C, C_{0} depending only on (μ, σ, M) and C_{*} depending only on (μ, σ), such that

$$
\begin{equation*}
E_{p^{*}, q^{*}}\left\{\mathcal{B}_{\psi}\left(e^{\widehat{D}}\right)-\inf _{D \in \mathcal{F}_{\mathrm{FNN}}} \mathcal{B}_{\psi}\left(e^{D}\right)\right\} \leq C \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}} \tag{A.18}
\end{equation*}
$$

and

$$
E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{p}^{2} \leq C_{0} \sqrt{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}}+C_{*} e^{2 M} \inf _{D \in \mathcal{F}_{\mathrm{FNN}}}\left\|e^{D}-e^{D^{*}}\right\|_{p}^{2}
$$

Proof of Lemma A.3. To show (A.18) is the key step in the proof of this theorem, thus we focus on the proof of A.18. Let

$$
D_{0} \in \underset{D \in \mathcal{F}_{\mathrm{FNN}}}{\arg \min } \mathcal{B}_{\psi}\left(e^{D}\right) .
$$

Then,

$$
\begin{align*}
& E_{p^{*}, q^{*}}\left\{\mathcal{B}_{\psi}\left(e^{\hat{D}}\right)-\inf _{D \in \mathcal{F}_{\mathrm{FNN}}} \mathcal{B}_{\psi}\left(e^{D}\right)\right\} \\
= & E_{p^{*}, q^{*}}\left\{\mathcal{B}_{\psi}\left(e^{\hat{D}}\right)-\mathcal{B}_{\psi}\left(e^{D_{0}}\right)\right\} \\
\leq & E_{p^{*}, q^{*}}\left\{\mathcal{B}_{\psi}\left(e^{\hat{D}}\right)-\hat{\mathcal{B}}_{\psi}\left(e^{\hat{D}}\right)+\hat{\mathcal{B}}_{\psi}\left(e^{\hat{D}}\right)-\hat{\mathcal{B}}_{\psi}\left(e^{D_{0}}\right)\right\} \\
+ & E_{p^{*}, q^{*}}\left\{\hat{\mathcal{B}}_{\psi}\left(e^{D_{0}}\right)-\mathcal{B}_{\psi}\left(e^{D_{0}}\right)\right\} \\
\leq & 2 E_{p^{*}, q^{*}}\left\{\sup _{D \in \mathcal{F}_{\mathrm{FNN}}}\left|\hat{\mathcal{B}}_{\psi}\left(e^{D}\right)-\mathcal{B}_{\psi}\left(e^{D}\right)\right|\right\} . \tag{A.19}
\end{align*}
$$

By the symmetrization technique, Talagrand's lemma, A.12 and the fact that $\|D\|_{\infty} \leq M$ for any $D \in \mathcal{F}_{\text {FNN }}$, we can easily get the inequality A.18) through A.19).

Proof of Theorem 2 Theorem 2 is a direct corollary of Lemma A. 3 . We omit the details here.

Proof of Theorem 3. Since $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$, by Lemma 1 , for the $\mathcal{F}_{\mathrm{FNN}}$, a function class consists of ReLU FNN with width $\mathcal{W}=38(\lfloor\beta\rfloor+$ $1)^{2} d^{\lfloor\beta\rfloor+1} L\left\lceil\log _{2}(8 L)\right\rceil$ and depth $\mathcal{D}=21(\lfloor\beta\rfloor+1)^{2} K\left\lceil\log _{2}(8 K)\right\rceil$, where $K, L \in \mathbb{N}^{+}$, there exists a function $\phi_{0} \in \mathcal{F}_{\mathrm{FNN}}$ such that

$$
\begin{equation*}
\sup _{x \in[0,1]^{d} \backslash H_{B, \delta}}\left|D^{*}-\phi_{0}\right| \leq 18 M(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+(\beta \vee 1) / 2}(K L)^{-\frac{2 \beta}{d}}, \tag{A.20}
\end{equation*}
$$

where $H_{B, \delta}=\cup_{i=1}^{d}\left\{x=\left[x_{1}, \ldots, x_{d}\right]: x_{i} \in \cup_{b=1}^{B-1}(b / B-\delta, b / B)\right\}, B=\left\lceil(K L)^{2 / d}\right\rceil, \delta \in$ $(0,1 /(3 B)]$. As $D_{\mathrm{NN}} \in \arg \min _{D \in \mathcal{F}_{\mathrm{FNN}}}\left\|D-D^{*}\right\|_{\max }$, then

$$
\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2} \leq\left\|\phi_{0}-D^{*}\right\|_{\max }^{2}
$$

As $p^{*}(\cdot), q^{*}(\cdot)$ are the density functions of some measures on $[0,1]^{d}$ which are absolutely continuous with respect to the Lebesgue measure and δ can be arbitrarily small, $\int_{H_{B, \delta}} I_{0}(x) d x$ is also arbitrarily small. Thus we have

$$
\left\|\phi_{0}-D^{*}\right\|_{I}^{2} \leq 324 M^{2}(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)}(K L)^{-\frac{4 \beta}{d}}
$$

$$
\begin{aligned}
& E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \\
\leq & 324 M^{2} C_{1}\left\{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}+C_{1}(\beta, d)(K L)^{-\frac{4 \beta}{d}}\right\} \\
\leq & 324 M^{2} C_{1}\left\{\frac{C_{2} \mathcal{S D} \log \mathcal{S} \log n}{n}+C_{1}(\beta, d)(K L)^{-\frac{4 \beta}{d}}\right\} \\
\leq & 324 M^{2} C_{1}\left\{C_{2} C_{5}(\lfloor\beta\rfloor+1)^{9} d^{2\lfloor\beta\rfloor+3} n^{-\frac{2 \beta}{d+2 \beta}}+(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)} n^{-\frac{2 \beta}{d+2 \beta}}\right\} \\
\leq & 324 M^{2} C_{1}\left(C_{2} C_{5}+1\right)(\lfloor\beta\rfloor+1)^{9} d^{2\lfloor\beta\rfloor+(\beta \vee 3)} n^{-\frac{2 \beta}{d+2 \beta}} .
\end{aligned}
$$

Proof of Theorem 4. Based on Theorem 3.1 in Baraniuk \& Wakin (2009), there exists a linear projection $A \in \mathbb{R}^{a_{\delta} \times d}$ such that $A A^{T}=d I_{d_{\delta}} / d_{\delta}$, where $I_{d_{\delta}} \in \mathbb{R}^{d_{\delta} \times d_{\delta}}$ is an identity matrix, and for any $x, y \in \mathcal{M}$,

$$
\begin{equation*}
(1-\delta)\|x-y\|_{2} \leq\|A x-A y\|_{2} \leq(1+\delta)\|x-y\|_{2} . \tag{A.23}
\end{equation*}
$$

Then we have

$$
A\left(\mathcal{M}_{\rho}\right) \subseteq A\left([0,1]^{d}\right) \subseteq\left[-\frac{d}{\sqrt{d_{\delta}}}, \frac{d}{\sqrt{d_{\delta}}}\right]^{d_{\delta}}
$$

Note that for any $z \in A(\mathcal{M})$, there exits a unique $x \in \mathcal{M}$ such that $z=A x$. Otherwise, suppose we can find $x, x^{\prime} \in \mathcal{M}, x \neq x^{\prime}$ such that $z=A x=A x^{\prime}$, then by A.23), we know $\left\|x-x^{\prime}\right\|_{2}=0$ and thus $x=x^{\prime}$, which contradicts the assumption that $x \neq x^{\prime}$. This uniqueness allows us to define a linear operator $\mathcal{S L}: A(\mathcal{M}) \rightarrow \mathcal{M}$ such that $A[\mathcal{S} \mathcal{L}(z)]=z$. By A.23), we have

$$
(1-\delta)\left\|\mathcal{S} \mathcal{L}\left(z_{1}\right)-\mathcal{S} \mathcal{L}\left(z_{2}\right)\right\|_{2} \leq\left\|z_{1}-z_{2}\right\|_{2} \leq(1+\delta)\left\|\mathcal{S} \mathcal{L}\left(z_{1}\right)-\mathcal{S} \mathcal{L}\left(z_{2}\right)\right\|_{2}
$$

This implies that the norm of $\mathcal{S} \mathcal{L}$ belongs to $[1 /(1+\delta), 1 /(1-\delta)]$. For the high-dimensional function $D^{*}:[0,1]^{d} \rightarrow \mathbb{R}$ whose support is \mathcal{M}_{ρ}, it has a approximate low-dimensional representation \tilde{D}^{*} as follows:

$$
\tilde{D}^{*}(z)=D^{*}(\mathcal{S} \mathcal{L}(z)), \forall z \in A(\mathcal{M}) .
$$

As $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$ with $\beta=k+a$ where $k \in \mathbb{N}^{+}$and $a \in(0,1]$, we have $\tilde{D}^{*} \in \mathcal{H}^{\beta}\left(A(\mathcal{M}), M /(1-\delta)^{\beta}\right)$. By the extended version of Whitney's extension theorem in Fefferman (2006), since $A(\mathcal{M}) \subseteq A\left([0,1]^{d}\right) \subseteq\left[-d / \sqrt{d_{\delta}}, d / \sqrt{d_{\delta}}\right]^{d_{\delta}}$, there exists $\tilde{D}_{E}^{*} \in$ $\mathcal{H}^{\beta}\left(\left[-d / \sqrt{d_{\delta}}, d / \sqrt{d_{\delta}}\right]^{d_{\delta}}, M /(1-\delta)^{\beta}\right)$ such that $\tilde{D}_{E}^{*} \equiv \tilde{D}^{*}$ on $A(\mathcal{M})$. If $\mathcal{W}=38(\lfloor\beta\rfloor+$ $1)^{2} d_{\delta}{ }^{\lfloor\beta\rfloor+1} L\left\lceil\log _{2}(8 L)\right\rceil$ and $\mathcal{D}=21(\lfloor\beta\rfloor+1)^{2} K\left\lceil\log _{2}(8 K)\right\rceil$, by the first result of Lemma 1 there exists a function ϕ_{0} implemented by a ReLU network with width \mathcal{W} and depth \mathcal{D} such that
$\sup _{z \in[0,1]^{d_{\delta}} \backslash H_{B, \epsilon}^{d_{\delta}}}\left|\tilde{D}_{E}^{*}\left(\frac{2 d z-d \mathbf{1}_{d_{\delta}}}{\sqrt{d_{\delta}}}\right)-\phi_{0}(z)\right| \leq \frac{18 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}}$.
where $H_{B, \epsilon}^{d_{\delta}}=\cup_{i=1}^{d_{\delta}}\left\{x=\left[x_{1}, x_{2}, \ldots, x_{d_{\delta}}\right]: x_{i} \in \cup_{b=1}^{B-1}(b / B-\epsilon, b / B)\right\}$ and $B=$ $\left\lceil(K L)^{2 / d}\right\rceil, \epsilon \in(0,1 /(3 B)]$. Thus

$$
\begin{aligned}
& \quad \sup _{z \in\left[-\frac{d}{\sqrt{d_{\delta}}}, \frac{d}{\sqrt{d_{\delta}}}\right]^{d_{\delta}} \backslash \tilde{H}_{B, \epsilon}^{d_{\delta}}}\left|\tilde{D}_{E}^{*}(z)-\phi_{0}\left(\frac{\sqrt{d_{\delta}} z+d \mathbf{1}_{d_{\delta}}}{2 d}\right)\right| \\
& \leq \frac{18 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}},
\end{aligned}
$$

where $\tilde{H}_{B, \epsilon}^{d_{\delta}}=\left\{\left(2 d t-d \mathbf{1}_{d_{\delta}}\right) / \sqrt{d_{\delta}}: t \in H_{B, \epsilon}^{d_{\delta}}\right\}$.
Let $\quad \tilde{\phi}_{0}(x) \quad=\quad \phi_{0}\left(\left(\sqrt{d_{\delta}} A x+d \mathbf{1}_{d_{\delta}}\right) /(2 d)\right) \quad$ and $\quad \bar{H}_{* B, \epsilon}^{d} \quad=$ $\left\{x \in[0,1]^{d \times d}:\left(\sqrt{d_{\delta}} A x+d \mathbf{1}_{d_{\delta}}\right) /(2 d) \in H_{B, \epsilon}^{d_{\delta}}\right\}$. It can be easily checked that $\tilde{\phi}_{0}$ is also a function implemented by a ReLU network with the same structure as ϕ_{0}, except that the input layer of $\tilde{\phi}_{0}$ has d units, instead of d_{δ} units. For any $x \in \mathcal{M}_{\rho} \backslash \bar{H}_{* B, \epsilon}^{d}, A x \in\left[-d / \sqrt{d_{\delta}}, d / \sqrt{d_{\delta}}\right]^{d_{\delta}} \backslash \tilde{H}_{B, \epsilon}^{d_{\delta}}$ and there exists a $x^{\prime} \in \mathcal{M}$ satisfying $\left\|x-x^{\prime}\right\|_{2} \leq \rho$. Since $\tilde{D}_{E}^{*} \in \mathcal{H}^{\beta}\left(\left[-d / \sqrt{d_{\delta}}, d / \sqrt{d_{\delta}}\right]^{d_{\delta}}, M /(1-\delta)^{\beta}\right)$

622
and $D^{*} \in \mathcal{H}^{\beta}\left([0,1]^{d}, M\right)$,

$$
\begin{align*}
& \left|\tilde{\phi}_{0}(x)-D^{*}(x)\right| \\
\leq & \left|\tilde{\phi}_{0}(x)-\tilde{D}_{E}^{*}(A x)\right|+\left|\tilde{D}_{E}^{*}(A x)-\tilde{D}_{E}^{*}\left(A x^{\prime}\right)\right|+\left|\tilde{D}_{E}^{*}\left(A x^{\prime}\right)-D^{*}(x)\right| \\
\leq & \frac{18 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}}+\frac{M}{(1-\delta)^{\beta}}\left\|A x^{\prime}-A x\right\|_{2}+\rho M \\
\leq & \frac{18 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}}+\frac{M \sqrt{d}}{(1-\delta)^{\beta} \sqrt{d_{\delta}}} \rho+\rho M \\
\leq & \frac{18 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}}+\frac{2 M \sqrt{d}}{(1-\delta)^{\beta} \sqrt{d_{\delta}}} \rho \\
\leq & \frac{20 M}{(1-\delta)^{\beta}}(\lfloor\beta\rfloor+1)^{2}(2 d)^{\beta} d_{\delta}^{\lfloor\beta\rfloor+(\beta \vee 1+\beta) / 2}(K L)^{-\frac{2 \beta}{d_{\delta}}} \tag{A.24}
\end{align*}
$$

$$
\begin{aligned}
\left\|\tilde{\phi}_{0}-D^{*}\right\|_{I}^{2} & =\int_{[0,1]^{d} \backslash H_{B, \delta}}\left|D^{*}-\tilde{\phi}_{0}\right|^{2} I^{*}(x) d x+\int_{H_{B, \delta}}\left|D^{*}-\tilde{\phi}_{0}\right|^{2} I^{*}(x) d x \\
& \leq \frac{400 M^{2}}{(1-\delta)^{2 \beta}}(\lfloor\beta\rfloor+1)^{4}(2 d)^{2 \beta} d_{\delta}^{\beta \vee 1+3 \beta}(K L)^{-\frac{4 \beta}{d_{\delta}}}+\frac{4 M^{2}}{(1-\delta)^{2 \beta}} \int_{\bar{H}_{* B, \epsilon}^{d}} I^{*}(x) d x .
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2} & \leq\left\|\phi_{0}-D^{*}\right\|_{\max }^{2} \\
& \leq \frac{400 M^{2}}{(1-\delta)^{2 \beta}}(\lfloor\beta\rfloor+1)^{4}(2 d)^{2 \beta} d_{\delta}^{\beta \vee 1+3 \beta}(K L)^{-\frac{4 \beta}{d_{\delta}}} \\
& =\frac{400 M^{2}}{(1-\delta)^{2 \beta}} C_{2}\left(\beta, d, d_{\delta}\right)(K L)^{-\frac{4 \beta}{d_{\delta}}}
\end{aligned}
$$

As $p^{*}(\cdot), q^{*}(\cdot)$ are the density functions of some measures on $[0,1]^{d}$ which are absolutely continuous w.r.t the Lebesgue measure and ϵ can be arbitrarily small for the given $\delta, \int_{\bar{H}_{* B, \epsilon}^{d}} I_{0}(x) d x$ is also arbitrarily small for the given δ. Thus we have

$$
\left\|\tilde{\phi}_{0}-D^{*}\right\|_{I}^{2} \leq \frac{400 M^{2}}{(1-\delta)^{2 \beta}}(\lfloor\beta\rfloor+1)^{4}(2 d)^{2 \beta} d_{\delta}^{\beta \vee 1+3 \beta}(K L)^{-\frac{4 \beta}{d_{\delta}}}
$$

By Corollary 1 , there exists a constant C_{1} only depending on (μ, σ, M), such that

$$
\begin{aligned}
& E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \\
\leq & C_{1}\left(\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}+\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2}\right) \\
\leq & C_{1}\left\{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}+\frac{400 M^{2}}{(1-\delta)^{2 \beta}} C_{2}\left(\beta, d, d_{\delta}\right)(K L)^{-\frac{4 \beta}{d_{\delta}}}\right\} \\
\leq & \frac{400 M^{2} C_{1}}{(1-\delta)^{2 \beta}}\left\{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}+C_{2}\left(\beta, d, d_{\delta}\right)(K L)^{-\frac{4 \beta}{d_{\delta}}}\right\}
\end{aligned}
$$

For

$$
\begin{gathered}
\mathcal{W}=114(\lfloor\beta\rfloor+1)^{2} d_{\delta}\lfloor\beta\rfloor+1 \\
\mathcal{D}=21(\lfloor\beta\rfloor+1)^{2}\left[n^{\frac{d_{\delta}}{2\left(d_{\delta}+2 \beta\right)}} \log _{2}\left(8 n^{\frac{d_{\delta}}{2\left(d_{\delta}+2 \beta\right)}}\right)\right]
\end{gathered}
$$

and \mathcal{W}, \mathcal{D} satisfy

$$
\mathcal{O}\left(\mathcal{W}^{2} \mathcal{D}\right)=\mathcal{O}\left((\lfloor\beta\rfloor+1)^{6} d_{\delta}^{2\lfloor\beta\rfloor+2}\left\lceil n^{\frac{d_{\delta}}{2\left(d_{\delta}+2 \beta\right)}} \log ^{-3} n\right\rceil\right),
$$

634 along the derivation of A.22, there exists a universal constants C^{*} such that

$$
\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n} \leq C^{*}(\lfloor\beta\rfloor+1)^{9} d_{\delta}^{2\lfloor\beta\rfloor+3} n^{-\frac{2 \beta}{d_{\delta}+2 \beta}} .
$$

635 Based on the result of A.25,

$$
\begin{aligned}
& E_{p^{*}, q^{*}}\left\|\widehat{D}-D^{*}\right\|_{\max }^{2} \\
\leq & \frac{400 M^{2} C_{1}}{(1-\delta)^{2 \beta}}\left\{\frac{\operatorname{Pdim}\left(\mathcal{F}_{\mathrm{FNN}}\right) \log n}{n}+C_{2}\left(\beta, d, d_{\delta}\right)(K L)^{-\frac{4 \beta}{d_{\delta}}}\right\} \\
\leq & \frac{400 M^{2} C_{1}}{(1-\delta)^{2 \beta}}\left\{C^{*}(\lfloor\beta\rfloor+1)^{9} d_{\delta}^{2\lfloor\beta\rfloor+3} n^{-\frac{2 \beta}{d_{\delta}+2 \beta}}+C_{2}\left(\beta, d, d_{\delta}\right) n^{-\frac{2 \beta}{d_{\delta}+2 \beta}}\right\} \\
\leq & \frac{800 M^{2} C_{1} C^{*}}{(1-\delta)^{2 \beta}}(\lfloor\beta\rfloor+1)^{9} \max \left\{d_{\delta}^{2\lfloor\beta\rfloor+3},(2 d)^{2 \beta} d_{\delta}^{\beta \vee 1+3 \beta}\right\} n^{-\frac{2 \beta}{d_{\delta}+2 \beta}} \\
= & \frac{800 M^{2} C_{1} C^{*} C_{3}\left(\beta, d, d_{\delta}\right)}{(1-\delta)^{2 \beta}} n^{-\frac{2 \beta}{d_{\delta}+2 \beta}} .
\end{aligned}
$$

636 This completes the proof of the theorem and 12 .
637 Proof of Proposition 1 For $k=0, \ldots, K-2$, the densities $q_{k}(), q_{k+1}()$ of the synthetic data $638 \quad\left\{Z_{k, j}\right\}_{j=1}^{n}$ and $\left\{Z_{k+1, j}\right\}_{j=1}^{n}$ satisfy

$$
\frac{q_{k}(t)}{q_{k+1}(t)}=\frac{\left(1-\alpha_{k}\right) q^{*}(z)+\alpha_{k} p^{*}(z)}{\left(1-\alpha_{k+1}\right) q^{*}(z)+\alpha_{k+1} p^{*}(z)} \in\left[\frac{\left(1-e^{-M}\right) \alpha_{k}+e^{-M}}{\left(1-e^{-M}\right) \alpha_{k+1}+e^{-M}}, \frac{1-\alpha_{k}}{1-\alpha_{k+1}}\right]
$$

${ }_{639}$ As $\|f\|_{2}=\left(\int_{\mathcal{Z}} f^{2}(x) d x\right)^{\frac{1}{2}}$, then for any density g satisfying $g \geq c,\|f\|_{2}=\left(\int_{\mathcal{Z}} f^{2}(x) d x\right)^{\frac{1}{2}} \leq$ $640\left(\int_{\mathcal{Z}} f^{2}(x) g(x) / c d x\right)^{\frac{1}{2}}=\|f\|_{g} / \sqrt{c}$. Using an appropriate $\mathcal{F}_{\mathrm{FNN}}^{0}$ whose element D satisfies $\|D\|_{\infty} \leq$ ${ }_{641} M_{0}$, for the direct estimate $\widehat{D}_{\text {SRE }}$, as $\log \left(q^{*} / p^{*}\right)$ is only bounded from below by $-M_{0}$, by Theorem 642 2. we have

$$
\limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{\text {SRE }}-D^{*}\right\|_{2} \leq e^{M_{0}} C_{*}\left(\mu, \sigma, c_{1}\right)\left\|R^{*}-R_{M_{0}}^{*}\right\|_{p}
$$

643 For $k=0,1, \ldots, K-2$, as $\left|\log \left\{q_{k}(t) / q_{k+1}(t)\right\}\right|$ is bounded by M_{0}, by Corollary 1 , we have

$$
\limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{k}-D_{k}^{*}\right\|_{2}=0
$$

644 Let $R_{K-1, M_{0}}^{*}=\left(1-\alpha_{K-1}\right) R_{M_{0}}^{*}+\alpha_{K-1}$. As the logarithm of $R_{K-1}^{*}=\left(1-\alpha_{K-1}\right) q^{*} / p^{*}+\alpha_{K-1}$ 645 is also only bounded from below by $-M_{0}$, again, by Theorem 2 ,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{K-1}-D_{K-1}^{*}\right\|_{2} & \leq e^{M_{0}} C_{*}\left(\mu, \sigma, c_{1}\right)\left\|R_{K-1}^{*}-R_{K-1, M_{0}}^{*}\right\|_{p} \\
& =\left(1-\alpha_{K-1}\right) e^{M_{0}} C_{*}\left(\mu, \sigma, c_{1}\right)\left\|R^{*}-R_{M_{0}}^{*}\right\|_{p}
\end{aligned}
$$

646 Thus

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{\mathrm{TRE}}-D^{*}\right\|_{2} & \leq \sum_{k=0}^{K-1} \limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{k}-D_{k}^{*}\right\|_{2} \\
& =\limsup _{n \rightarrow \infty} E_{p^{*}, q^{*}}\left\|\widehat{D}_{K-1}-D_{K-1}^{*}\right\|_{2} \\
& \leq\left(1-\alpha_{K-1}\right) e^{M_{0}} C_{*}\left(\mu, \sigma, c_{1}\right)\left\|R^{*}-R_{M_{0}}^{*}\right\|_{p}
\end{aligned}
$$

647 This completes the proof of Proposition 1

A. 2 Examples of Hölder function class

Let p^{*} be the density function of a truncated d-dimensional multivariate Gaussian with mean zero and covariance matrix $\Sigma_{p} \in \mathbb{R}^{d \times d}$ in $[0,1]^{d}$. That means

$$
p^{*}(z)=\exp \left(-z^{\prime} \Sigma_{p}^{-1} z / 2\right) / c\left(\Sigma_{p}\right), c\left(\Sigma_{p}\right)=\int_{[0,1]^{d}} \exp \left(-t^{\prime} \Sigma_{p}^{-1} t / 2\right) d t, z \in[0,1]^{d} .
$$

Similarly, let

$$
q^{*}(z)=\exp \left(-z^{\prime} \Sigma_{q}^{-1} z / 2\right) / c\left(\Sigma_{q}\right)
$$

for some positive definite matrix Σ_{q}. For any matrix $A \in \mathbb{R}^{d \times d}, A_{i, \text {. }}$ is the i th row of A for $i=1,2, \ldots, d$ and

$$
\|A\|_{2, \infty}:=\sup _{\|z\|_{\infty} \leq 1}\|A z\|_{2}
$$

Then,

$$
D^{*}(z)=\log \frac{q^{*}(z)}{p^{*}(z)}=\frac{1}{2} z^{\prime}\left(\Sigma_{p}^{-1}-\Sigma_{q}^{-1}\right) z+\log \left(c\left(\Sigma_{p}\right)-c\left(\Sigma_{q}\right)\right), z \in[0,1]^{d} .
$$

Let $M=\max \left\{\frac{1}{2}\left(\left\|\Sigma_{p}^{-1 / 2}\right\|_{2, \infty}^{2}+\left\|\Sigma_{q}^{-1 / 2}\right\|_{2, \infty}^{2}\right)+\left|\log \left[c\left(\Sigma_{p}\right)-c\left(\Sigma_{q}\right)\right]\right|,\left\|\left(\Sigma_{p}^{-1}-\Sigma_{q}^{-1}\right)_{i, \cdot}\right\|_{2}, i=1,2, \ldots, d\right\}$. It is straightforward to check that

$$
D^{*} \in \mathcal{H}^{2}\left([0,1]^{d}, M\right) .
$$

It implies the Hölder smoothness parameter β is 2 for this example.
Moreover, the truncated multivariate Gaussian distributions considered above are special cases of the exponential distribution class defined below. Define the density function class
$\operatorname{Exp}(\beta, B):=\left\{p(z)=\exp (g(z)) / c_{g}: z \in[0,1]^{d}, c_{g}=\int_{[0,1]^{d}} \exp (g(t)) d t, g \in \mathcal{H}^{\beta}\left([0,1]^{d}, B\right)\right\}$.
Suppose that $\Sigma \in \mathbb{R}^{d \times d}$ is positive definite and let $g(z)=z^{\prime} \Sigma z / 2$. Then, $g \in \mathcal{H}^{2}\left([0,1]^{d}, M_{\Sigma}\right)$, where $M_{\Sigma}=\max \left\{\frac{1}{2}\left(\left\|\Sigma^{1 / 2}\right\|_{2, \infty}^{2},\left\|\Sigma_{i,} \cdot\right\|_{2}, i=1,2, \ldots, d\right\}\right.$. If $p^{*}, q^{*} \in \operatorname{Exp}(\beta, B)$, we have $D^{*}(z)=\log \left[q^{*}(z) / p^{*}(z)\right] \in \mathcal{H}^{\beta}\left([0,1]^{d}, 4 B\right)$.

A. 3 Extension to unbounded support case

In fact, our Theorem 1, Corollary 1 and Theorem 2 do not rely on the hypercube assumption. To relax the hypercube assumption to allow unbounded support, we need to study the upper bound for the approximation error $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }$ carefully. With unbounded support, we may bound $\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }$ by the truncation technique under some additional assumptions, at a small price of an additional logarithm term in the error bound.

Specifically, when the pdfs are supported on \mathbb{R}^{d}, to bound the approximation error as in Theorem 3. aside from Assumptions 1.2 and the Hölder class assumption, we need to further assume that $\max \left\{E_{p^{*}} I\left(\|Z\|_{\infty} \geq \log n\right), E_{q^{*}} I\left(\|Z\|_{\infty} \geq \log n\right)\right\} \leq n^{-\frac{2 \beta}{d+2 \beta}}$. For $I=p$ or q, and any $D \in \mathcal{F}_{\mathrm{FNN}}$, where $\mathcal{F}_{\text {FNN }}$ is the function class of ReLU FNNs with width \mathcal{W} and depth \mathcal{D} specified by

$$
\mathcal{W}=114(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+1}, \quad \mathcal{D}=21(\lfloor\beta\rfloor+1)^{2}\left\lceil n^{\frac{d}{2(d+2 \beta)}} \log _{2}\left(8 n^{\frac{d}{2(d+2 \beta)}}\right)\right\rceil
$$

we have

$$
\begin{aligned}
& E_{I^{*}}\left[D(Z)-D^{*}(Z)\right]^{2} \\
\leq & E_{I^{*}}\left[\left\{D(Z)-D^{*}(Z)\right\}^{2} I\left(\|Z\|_{\infty} \geq \log n\right)\right]+E_{I^{*}}\left[\left\{D(Z)-D^{*}(Z)\right\}^{2} I\left(\|Z\|_{\infty} \leq \log n\right)\right] \\
\leq & 4 M^{2} E_{I^{*}} I\left(\|Z\|_{\infty} \geq \log n\right)+E_{I^{*}}\left[\left\{D(Z)-D^{*}(Z)\right\}^{2} I\left(\|Z\|_{\infty} \leq \log n\right)\right],
\end{aligned}
$$

where the second inequality follows from the facts that $\left\|D^{*}\right\|_{\infty} \leq M,\|D\|_{\infty} \leq M$ under Assumption 2. Since $D^{*} \in \mathcal{H}^{\beta}\left(\mathbb{R}^{d}, M\right), D^{*}\left(2 t \log n-\log n \mathbf{1}_{d}\right) \in \mathcal{H}^{\beta}\left([0,1]^{d},(2 \log n)^{\llcorner\beta\rfloor} M\right)$ as a function of t, where $\mathbf{1}_{d}$ is the d-dimensional all-one vector. By Lemma 1 there exists a function $\phi_{0} \in \mathcal{F}_{\mathrm{FNN}}$ such that

$$
\sup _{t \in[0,1]^{d} \backslash H_{B, \delta}}\left|D^{*}\left(2 t \log n-\log n \mathbf{1}_{d}\right)-\phi_{0}\right| \leq 18(2 \log n)^{\lfloor\beta\rfloor} M(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+(\beta \vee 1) / 2} n^{-\frac{\beta}{d+2 \beta}},
$$

where $H_{B, \delta}=\cup_{i=1}^{d}\left\{t=\left[t_{1}, \ldots, t_{d}\right]: t_{i} \in \cup_{b=1}^{B-1}(b / B-\delta, b / B)\right\}, B=\left\lceil n^{\frac{1}{d+2 \beta}}\right\rceil, \delta \in$ $(0,1 /(3 B)]$. Thus

$$
\sup _{z \in[-\log n, \log n]^{d} \backslash \tilde{H}_{B, \epsilon}^{d}}\left|D^{*}(z)-\phi_{0}\left(\frac{z+\log n \mathbf{1}_{d}}{2 \log n}\right)\right| \leq 18(2 \log n)^{\lfloor\beta\rfloor} M(\lfloor\beta\rfloor+1)^{2} d^{\lfloor\beta\rfloor+(\beta \vee 1) / 2} n^{-\frac{\beta}{d+2 \beta}},
$$

where $\tilde{H}_{B, \delta}^{d}=\left\{2 t \log n-\log n: t \in H_{B, \delta}^{d}\right\}$. Let $\tilde{\phi}_{0}(z)=\phi_{0}\left(\frac{z+\log n \mathbf{1}_{d}}{2 \log n}\right) \in \mathcal{F}_{\mathrm{FNN}}$. As δ can be arbitrarily small, it then follows from similar lines as in the proof of Theorem 3 that

$$
E_{I^{*}}\left[\left\{\tilde{\phi}_{0}(Z)-D^{*}(Z)\right\}^{2} I\left(\|Z\|_{\infty} \leq \log n\right)\right] \leq 324 M^{2}(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)}(2 \log n)^{2\lfloor\beta\rfloor} n^{-\frac{2 \beta}{d+2 \beta}} .
$$

Since $D_{\mathrm{NN}} \in \arg \min _{D \in \mathcal{F}_{\mathrm{FNN}}}\left\|D-D^{*}\right\|_{\max }$, we have

$$
\begin{aligned}
\left\|D_{\mathrm{NN}}-D^{*}\right\|_{\max }^{2} & \leq\left\|\tilde{\phi}_{0}-D^{*}\right\|_{\max }^{2} \\
& \leq \max _{I=p, q}\left\{4 M^{2} E_{I^{*}} I\left(\|Z\|_{\infty} \geq \log n\right)+E_{I^{*}}\left[\left\{\tilde{\phi}_{0}(Z)-D^{*}(Z)\right\}^{2} I\left(\|Z\|_{\infty} \leq \log n\right)\right]\right\} \\
& \leq 328 M^{2}(\lfloor\beta\rfloor+1)^{4} d^{2\lfloor\beta\rfloor+(\beta \vee 1)}(2 \log n)^{2\lfloor\beta\rfloor} n^{-\frac{2 \beta}{d+2 \beta}} .
\end{aligned}
$$

Compared with the upper bound of the approximation error in Theorem 3, when the pdfs are supported on \mathbb{R}^{d} (unbounded case), a similar approximation error upper bound can be derived with an additional logrithmic factor $(2 \log n)^{2\lfloor\beta\rfloor}$.

A. 4 Simulation setting and implementation details

Our simulation settings are as follows.

- Beta setting: Let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)^{\top} \in \mathbb{R}^{p}$ be a random vector of interest, where $Z_{1}, Z_{2}, \ldots, Z_{p}$ are i.i.d. random variables following Beta distribution, denoted by $\operatorname{Beta}(\alpha, \beta)$. Set p^{*} as the p.d.f of $\operatorname{Beta}(2.2,1.5)$ and q^{*} as the p.d.f of $\operatorname{Beta}(2,2)$. In this setting, we set $p=5$.
- Normal setting: Let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{d}, Z_{d+1}, Z_{d+2}, \ldots, Z_{2 d}\right)^{\top} \in \mathbb{R}^{2 d}$ be some random vector of interest. Let p^{*} be the p.d.f of $N\left(0, I_{2 d}\right)$ and q^{*} be the p.d.f of $N(0, \Sigma(\rho))$, where $\Sigma(\rho)=\left(\sigma_{i, j}^{\rho}\right) \in \mathbb{R}^{2 d \times 2 d}$ and

$$
\sigma_{i, j}^{\rho}= \begin{cases}1, & i=j \\ \rho, & |i-j|=d, i, j=1,2, \ldots, 2 d \\ 0, & \text { otherwise }\end{cases}
$$

In this setting, we set $d=5$ and $\rho=0.9$.
We apply the Adam algorithm (Kingma \& Ba, 2014) in Pytorch with a learning rate $l r=0.0001$ and a weight decay parameter $w d=0.0001$. A neural network with 2 hidden layers with widths $(64,64)$ and ReLU activation function, is used in the experiment. The maximum number of epoches is 20000 . In this experiment, the training data size n is $5000(10000)$. A validation data is used. The batch size is $500(1000)$, and an early-stopping technique is applied with patience $=100$ for Beta setting and patience $=1000$ for Normal setting, where patience is the number of epochs until termination if no improvement is made on the validation dataset. The experiment is conducted on a laptop with an Intel(R) Core(TM) i7-8750H @ 2.20 GHz CPU having 6 cores. We use the LR-Bregman divergence in this example. For the sequence $0=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{K-1}<\alpha_{K}=1$, we use the linearly spaced α_{k} 's, that is $\alpha_{k}=k / K, k=0,1,2, \ldots, K$.

A. 5 The MNIST dataset

We now apply the proposed mixing chain for density ratio estimation to the MNIST dataset (LeCun et al., 2010). In the implementation, to accelerate the computation, we use the subsampling method with a training subsample size of 20,000 and a relatively small DenseNet network structure (Huang et al., 2017); see Table A.1 for the specification of the network architectures. Similarly to the results in Table 1 of Rhodes et al. (2020), we calculate the average negative log-likelihood (ANLL) in bits per dimension (bpd, smaller is better). We denote the estimate based on the proposed
mixing chain (13) with the chain length B by "mTRE- B ". The batch size is 512 , $l r=0.001$ and $w d=0.0001$. The maximum number of epoches is 1000 . The reference distribution for our mTRE is taken to be the standard Gaussian distribution. Here, the reference distribution is the same as the noise distribution in the MNIST experiments of (Rhodes et al. 2020). We obtain the averaged ANLLs and their empirical standard errors for mTRE- 5 and mTRE-10 over 5 random training subsamples. As a comparison, we use the results with the Gaussian noise for the direct single ratio estimate and the direct estimate based on the original convolution chain (cTRE) obtained from Table 1 in (Rhodes et al. (2020) as the benchmarks. Note that cTRE and the direct single ratio estimate are based on the full training sample, where the sample size is 60,000 . The result for the cTRE presented in Table A. 2 is the best one among the cTRE's with the chain length $B \in\{5,10,15,20,25,30\}$ in Table 1 in the online supplemental of Rhodes et al. (2020). Our results are presented in Table A.2.
From Table A.2, we see that mTRE is significantly better than the single ratio estimate and comparable with cTRE. The difference between the results from mTRE and cTRE is not statistically significant. We note that the training sample size for mTRE we used is restricted to 20,000 , due to the memory limitation of the laptop used in the computation. In comparison, the sample size for cTRE is 60,000 .

Table A.1: Architecture for mTRE

Layers	Details	Output size
Convolution	3×3 Conv	$12 \times 28 \times 28$
Transition Layer 1	BN, ReLU, 2×2 Average Pool,1 $\times 1$ Conv	$12 \times 14 \times 14$
Dense Block 1	BN, 1×1 Conv, BN, 3 \times 3 Conv	$24 \times 14 \times 14$
Transition Layer 1	BN, ReLU, 2×2 Average Pool, 1×1 Conv	$12 \times 7 \times 7$
Dense Block 1	BN, 1×1 Conv, BN, 3 \times 3 Conv	$24 \times 7 \times 7$
Pooling	BN, ReLU, 7×7 Average Pool, Reshape	24
Fully connected	Linear	1

Table A.2: Average negative log-likelihood (ANLL) in bits per dimension (bpd, smaller is better). For the proposed mixing chain estimate with the chain length B (mTRE- B), the ANLLs are averaged over 5 random training subsamples, where the subsample size is 20,000 , and the corresponding standard errors are in parentheses. The cTRE is the direct estimate based on the original convolution chain (cTRE). The results for the direct single ratio estimate and the direct cTRE are obtained from Table 1 in the seminal paper (Rhodes et al. 2020) and we use them as the benchmarks. The cTRE and the direct single ratio estimate are based on the full training sample, where the sample size is 60,000 .

Estimator	mTRE-5	mTRE-10	Direct Single ratio	Direct cTRE
ANLL	$1.40(0.0045)$	$1.39(0.0077)$	1.96	1.39

