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Abstract

We establish non-asymptotic error bounds for a nonparametric density-ratio estima-1

tor using deep neural networks with the Bregman divergence. We also show that2

the deep density-ratio estimator can mitigate the curse of dimensionality when the3

data is supported on an approximate low-dimensional manifold. Our error bounds4

are optimal in the minimax sense and the pre-factors in our error bounds depend5

on the dimensionality of the data polynomially. We apply our results to investigate6

the convergence properties of the telescoping density-ratio estimator (Rhodes et al.,7

2020) and provide sufficient conditions under which it has a smaller upper error8

bound than a single-ratio estimator.9

1 Introduction10

Density-ratio estimation is of key importance in various statistical and machine learning problems11

(Sugiyama et al., 2012b; Kato & Teshima, 2021). There is a vast literature on density-ratio estimation12

due to its wide range of applications, such as discriminative analysis (Silverman, 1978; Cox & Ferry,13

1991), covariate shift adaptation (Sugiyama et al., 2008; Tsuboi et al., 2009), two-sample testing14

(Qin, 1998; Sugiyama et al., 2011), energy-based modelling (Gutmann & Hyvärinen, 2012; Ceylan &15

Gutmann, 2018), generative learning (Goodfellow et al., 2014; Nowozin et al., 2016), and mutual16

information estimation (Moustakides & Basioti, 2019; Rhodes et al., 2020), among others.17

Let Zq and Zp ∈ Z = [0, 1]d be two random vectors with probability density functions q∗ and p∗,18

respectively. Given independent and identically distributed (i.i.d) samples {Zq,i}
nq
i=1 from q∗ and19

{Zp,j}
np
j=1 from p∗, a basic problem is to estimate the density ratio20

R∗(z) = q∗(z)/p∗(z), z ∈ Z.

A naive estimator of R∗ is q̂/p̂, where q̂ and p̂ are the density estimators of q∗ and p∗, respectively.21

However, such an estimator can be highly unstable. Moreover, density estimation itself is a diffi-22

cult problem, especially in the high-dimensional settings. For example, kernel density estimators23

(Rosenblatt, 1956; Parzen, 1962) works well when d ≤ 3, but deteriorate dramatically as d increases.24

To avoid density estimation, various methods have been proposed to estimate the density ratio R∗25

directly, including the density matching approach (Sugiyama et al., 2008; Tsuboi et al., 2009; Yamada26

& Sugiyama, 2009; Nguyen et al., 2010; Yamada et al., 2010), the moment matching approach (Qin,27

1998; Gretton et al., 2009; Kanamori et al., 2012b), the density-ratio fitting approach (Kanamori28

et al., 2009, 2012a), and the unified density-ratio matching approach under Bregman divergence29

framework (Sugiyama et al., 2012a). Impressive empirical successes of using deep neural networks30

in density-ratio estimation have been reported in some recent works (Moustakides & Basioti, 2019;31

Rhodes et al., 2020). Moreover, Kato & Teshima (2021) studied the convergence properties of deep32

density-ratio estimation under a modified Bregman divergence criterion.33
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In this paper, we study deep density-ratio estimators with the Bregman divergence as the criterion. We34

apply our results to construct an estimator for statistical inference for the Kullback-Liebler divergence.35

We also study the theoretical properties of the telescoping density-ratio estimator (Rhodes et al.,36

2020) based on our results.37

Our contributions are as follows:38

1. We establish non-asymptotic error bounds for the density-ratio estimator using deep neural39

networks under the Bregman divergence (BD, Bregman, 1967), and provide a neural network40

architecture for the estimator to achieve minimax optimal rate Op
(
n−2β/(d+2β)

)
, where41

n = min{nq, np} and β is a smoothness parameter of the logarithmic density-ratio function;42

see Subsection 3.2 for details;43

2. We show that deep density-ratio estimator with the Bregman divergence criterion is able44

to mitigate the curse of dimensionality when the data is supported on an approximate45

low-dimensional manifold; see Subsection 3.3;46

3. We apply our results to study the convergence properties of the telescoping density-ratio47

estimator (Rhodes et al., 2020) and demonstrate its advantages over single-ratio estimators48

under certain conditions.49

Notation. Let n = min{nq, np} be the smaller sample size between the two samples {Zq,i}
nq
i=150

and {Zp,j}
np
j=1. In addition, ‖ · ‖∞ denotes the sup-norm on some specific domain, and C,C0 are51

generic constants that may vary from place to place. For any measurable function f , we denote52

‖f‖max := max{‖f‖p, ‖f‖q} and ‖f‖np,nq = max{‖f‖p,np , ‖f‖q,nq}, where ‖f‖2I = EI∗f
2(Z)53

and ‖f‖2I,nI = EnIf
2(Z) = (1/nI)

∑nI
t=1 f

2(ZI,t), I = p, q.54

2 Density-ratio estimation55

In this section, we first present the density-ratio estimation problem using the Bregman divergence56

(BD, Bregman, 1967) and then describe the structure of the deep neural networks to be used in57

density-ratio estimation.58

Let ψ : R→ R be a first-order continuously differentiable and strictly convex function. Define59

∆ψ(x, y) = ψ(x)− ψ(y)− ψ′(y)(x− y),

where ψ′ is the derivative of ψ. Then, the convexity of ψ implies that ∆ψ(x, y) ≥ 0 and the equality60

holds if and only if x = y. It follows that Ep∗∆ψ(R∗(Z), R(Z)) ≥ 0 and the equality holds if and61

only if R = R∗. Therefore, the target density-ratio R∗ = q∗/p∗ can be characterized as a minimizer:62

R∗ ∈ arg min
R nonnegative and measurable

Ep∗∆ψ(R∗(Z), R(Z)).

We verify in the appendix that63

Ep∗∆ψ(R∗(Z), R(Z))

= Ep∗ [ψ
′(R(Z))R(Z)− ψ(R(Z))]− Eq∗ [ψ′(R(Z))] + Ep∗ [ψ(R∗(Z))] (1)

Since the last term on the right side in (1) Ep∗ [ψ(R∗(Z))] is independent of R, we have64

R∗ ∈ arg min
R nonnegative and measurable

Ep∗ [ψ
′(R(Z))R(Z)− ψ(R(Z))]− Eq∗ [ψ′(R(Z))]. (2)

Hence, for any measurable function R : Z → R, the BD score induced by ψ for estimating the target65

density-ratio R∗ = q∗/p∗ is66

Bψ(R) = Ep∗ [ψ
′(R(Z))R(Z)− ψ(R(Z))]− Eq∗ [ψ′(R(Z))], (3)

where ψ′ is the derivative of ψ (Sugiyama et al., 2012a,b). Then, R∗ is the minimizer of Bψ(R) over67

all nonnegative measurable functions.68

Because a density ratio is always nonnegative, a nonnegative constraint needs to be considered when69

defining the density ratio as a minimizer, as in (2). This makes the minimization problem more70

difficult to solve. To avoid the non-negative constraint of the density ratio, we first consider the71

2



log-density ratio D∗ := logR∗. Then the nonnegativity constraint is no longer needed and by (2), we72

have73

D∗ ∈ arg min
D measurable

Bψ(exp(D)).

In practice, the estimation of R∗ can be based on an empirical version of Bψ when random samples74

from p∗ and q∗ are available. Suppose we have samples {Zq,i}
nq
i=1 i.i.d. q∗ and {Zp,j}

np
j=1 i.i.d. p∗.75

We estimate D∗ by76

D̂ ∈ arg min
D∈Fn

B̂ψ(eD), (4)

where Fn is a class of neural network functions and B̂ψ(eD) is an empirical version of Bψ(eD)77

defined in (3), which can be written as78

B̂ψ(eD) =
1

np

np∑
j=1

L1(D(Zp,j)) +
1

nq

nq∑
i=1

L2(D(Zq,i)),

where79

L1(t) = ψ′(et)et − ψ(et) and L2(t) = −ψ′(et). (5)

The density-ratio estimator is R̂ = exp(D̂).80

We take the function class Fn to be FM,D,W,U,S , a class of ReLU activated feedforward neural81

networks (FNNs) fθ : Rd → R with parameter θ, depth D, widthW , size S, number of neurons82

U . We require that ‖fθ‖∞ ≤ M for some 0 ≤ M ≤ ∞. There are D hidden layers and (D + 1)83

layers in total. The widthW is the maximum width of the hidden layers; the number of neurons U is84

defined as the number of neurons of fθ; the size S is the total number of parameters in the network.85

Note that D,W,U ,S may depend on n, but we suppress the dependence for notational simplicity.86

We write FM,D,W,U,S as FFNN for brevity.87

3 Theoretical results88

In this section, we first study the error bounds for the deep logarithmic density-ratio estimator. The89

bounds for the density-ratio estimator follows directly based on the properties of the exponential90

function. We also show that deep density-ratio estimator can mitigate the curse of dimensionality91

when data is supported on an approximate low-dimensional manifold.92

3.1 General error bounds93

To state our assumptions and results, we need the definitions of µ-smoothness, σ-strong convexity94

and pseudo dimension.95

A function f : R→ R is said to be µ-smooth over a set A ⊆ R if it is differentiable over A and its96

first-order derivative f ′ satisfies97

|f ′(x)− f ′(y)| ≤ µ|x− y|, ∀ x, y ∈ A, (6)

where 0 ≤ µ <∞. The constant µ is called the smoothness parameter.98

A function f : R→ R is called σ-strongly convex if the domain dom(f) of f is convex and for any99

x, y ∈ dom(f) and λ ∈ [0, 1], f satisfies100

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− σ

2
λ(1− λ)(x− y)2, (7)

where 0 ≤ σ <∞. The constant σ is called the strong convexity (SC) parameter.101

For a function class F , its pseudo dimension denoted by Pdim(F), is the largest integer B satisfying102

that there exists (x1, x2, . . . , xB , y1, y2, . . . , yB) ∈ ZB × RB such that for any (r1, r2, . . . , rB) ∈103

{0, 1}B , there exists an f ∈ F satisfying for any i ∈ {1, 2, . . . , B} : f(xi) > yi ⇔ ri = 1 (Anthony104

& Bartlett, 1999; Bartlett et al., 2019).105
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Table 1: Commonly-used Loss Functions ψ

Name ψ(c) Domain Smooth Parameter µ SC Parameter σ
LS (c− 1)2 R 2 2
LR c log c− (c+ 1) log(c+ 1) [a, b] (−1 ≤ a ≤ b) 1

a(a+1)
1

b(b+1)

KL c log c− c [a, b] (0 ≤ a ≤ b) 1
a

1
b

Remark 1. For any measurable function class F , by the definition of VC dimension,106

VCdim(F) ≤ Pdim(F). If F is the class of functions generated by ReLU FNNs, it follows from107

Theorem 14.1 of Anthony & Bartlett (1999) that Pdim(F) ≤ VCdim(F). Hence, for the function108

class F generated by ReLU FNNs, Pdim(F) = VCdim(F).109

We make the following assumptions.110

Assumption 1. The function ψ is µ-smooth & σ-strongly convex, that is, it satisfies (6) and (7).111

Some commonly-used ψ’s satisfy Assumption 1; see Table 1 for some examples.112

Assumption 2. There exists a constant 0 < M <∞ such that ‖D∗‖∞ ≤M, ‖D‖∞ ≤M for113

every D ∈ FFNN.114

Assumption 2 assumes that the target density ratio is bounded. Such an assumption is often made in115

nonparametric statistics for avoiding technical difficulties associated with dealing with unbounded116

functions. We will partially relax this assumption below. The finite M in Assumption 2 can117

be relaxed to M = O(log log n) at a small price of an additional logarithm term in the error118

bounds. The boundedness of a network can be achieved by clipping operation. For example, let119

TM (t) = −MI{t < −M}+ tI{−M ≤ t ≤M}+MI{t > M} be the truncation function taking120

values in [−M,M ], then T (t) = σ(t)−σ(σ(t)−M)−{σ(−t)−σ(σ(−t)−M)} can be computed121

by a ReLU network with depth 2 and width 4. Hence, through network concatenation, we can122

construct some bounded ReLU FNNs and such a boundedness assumption can be satisfied.123

Define the best in class approximation of D∗ in FFNN as DNN ∈ arg minD∈FFNN
‖D − D∗‖max.124

Denote125

ξn =

√
Pdim(FFNN) log n

n
. (8)

Theorem 1. Suppose Assumptions 1-2 are satisfied. When n ≥ Pdim(FFNN), there exists a126

constant C depending on (µ, σ,M) such that for any γ > 0, with probability at least 1− exp(−γ),127

‖D̂ −D∗‖max ≤ C
(
ξn + ‖DNN −D∗‖max +

√
γ

n

)
,

and128

‖D̂ −D∗‖np,nq ≤ 2C

(
ξn + ‖DNN −D∗‖max +

√
γ

n

)
.

We have the following corollary for the expected error.129

Corollary 1. Under the conditions of Theorem 1, there exists a constant C0 depending only on130

(µ, σ,M), such that131

Ep∗,q∗‖D̂ −D∗‖2max ≤ C0

(
ξ2
n + ‖DNN −D∗‖2max

)
,

and132

Ep∗,q∗‖D̂ −D∗‖2np,nq ≤ 2C0

(
ξ2
n + ‖DNN −D∗‖2max

)
.

The above results are obtained under the boundedness Assumption 2. While such an assumption is133

often made in the error analysis of nonparametric procedures, it is somewhat restrictive in density-134

ratio estimation problems. For example, this assumption may not be satisfied in the presence of135

the density-chasm problem, i.e., the gap between two densities is large (Rhodes et al., 2020). We136

establish an error bound result with the following partially relaxed assumption.137
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Assumption 3. There exists a constant 0 < M <∞ such that D∗(z) ≥ −M for every z ∈ Z138

and ‖D‖∞ ≤ M for every D ∈ FFNN.139

This assumption does not require the target log-density ratio D∗ to be bounded above. Denote140

truncated versions of D∗ and R∗ by141

D∗M (z) = D∗(z)1{D∗(z) ≤M}+M1{D∗(z) ≥M},
R∗M (z) = R∗(z)1{R∗(z) ≤ eM}+ eM1{R∗(z) ≥ eM},

where 0 < M <∞ and 1{·} is the indicator function. We establish a non-asymptotic error bound142

involving the truncation error.143

Theorem 2. Suppose Assumptions 1 and 3 hold. When n > Pdim(FFNN), there exists two144

constants C depending only on (µ, σ,M) and C0 depending only on (µ, σ), such that145

Ep∗,q∗‖D̂ −D∗‖2p ≤ C0e
2M‖R∗ −R∗M‖2p + C

(
ξn + inf

D∈FFNN
‖D −D∗M‖2p

)
,

where ξn is defined in (8).146

The term ‖R∗ − R∗M‖2p is the truncation error for an unbounded R∗ and the unboundedness also147

leads to the term ξn = [Pdim(FFNN)(log n)/n]1/2 in the error bound, which is greater than ξ2
n in148

the bounded case. However, because no boundedness assumption is needed in this theorem, we can149

apply it to study the convergence properties of the telescoping density-ratio estimator of Rhodes et al.150

(2020) in Section 4 below.151

3.2 Non-asymptotic error bounds152

By Corollary 1, it suffices to bound the estimation error Pdim(FFNN) log n/n and the approxi-153

mation error ‖DNN − D∗‖2max. It follows from Theorem 6 in Bartlett et al. (2019) that, for154

FFNN = FM,D,W,U,S , there exists a universal constant C2 such that Pdim(FFNN) ≤ C2SD logS.155

To control the approximation error ‖DNN − D∗‖2max, we assume that D∗ belongs to the Hölder156

classHβ([0, 1]d,M) with β = k + a where k ∈ N+ and a ∈ (0, 1], where N+ is the set of positive157

integers.158

Definition 1 (Hölder class). A Hölder classHβ([0, 1]d,M) with β = k + a where k ∈ N+ and159

a ∈ (0, 1] consists of function f : [0, 1]d → R satisfying160

max
‖α‖1≤k

‖∂αf‖∞, max
‖α‖1=k

max
x6=y

|∂αf(x)− ∂αf(y)|
‖x− y‖a2

≤M,

where ‖α‖1 =
∑d
i=1 αi and ∂α = ∂α1∂α2 · · · ∂αd for α = (α1, α2, . . . , αd) ∈ N+d.161

We use Theorem 3.3 of Jiao et al. (2021) to control the approximation error ‖DNN −D∗‖2max. For162

convenience, we include this result in the following lemma.163

We specify the widthW and depth D as follows. For any K,L ∈ N+,164

W = 38(bβc+ 1)2dbβc+1Ldlog2(8L)e,D = 21(bβc+ 1)2Kdlog2(8K)e, (9)
where dae is the smallest integer no less than a.165

Lemma 1 (Approximation error). Assume f ∈ Hβ([0, 1]d,M) with β = k + a where k ∈ N+166

and a ∈ (0, 1]. Then there exists a function φ0 implemented by a ReLU network with widthW and167

depth D specified in (9) such that168

sup
x∈[0,1]d\HB,δ

|f − φ0| ≤ 18MCβ(KL)−
2β
d ,

where Cβ = (bβc + 1)2dbβc+(β∨1)/2, HB,δ = ∪di=1{x = [x1, . . . , xd] : xi ∈169

∪B−1
b=1 (b/B − δ, b/B)} for B = d(KL)2/de, δ ∈ (0, 1/(3B)] and a ∨ b = max(a, b).170

Furthermore, ifW = 38(bβc+ 1)2dbβc+13dLdlog2(8L)e,D = 21(bβc+ 1)2Kdlog2(8K)e+ 2d,171

then172

sup
x∈[0,1]d

|f − φ0| ≤ 19MCβ(KL)−
2β
d .

In this uniform approximation result, the widthW is required to depend on d exponentially.173
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The following theorem gives an error bound for D̂.174

Theorem 3 (Non-asymptotic error bound for D̂). Suppose that Assumptions 1-2 are satisfied,175

D∗ ∈ Hβ([0, 1]d,M) with β = k + a where k ∈ N+ and a ∈ (0, 1], and FFNN is the function class176

of ReLU DNNs with widthW and depth D specified in (9). Then, for M ≥ 1 and n ≥ Pdim(FFNN),177

we have178

Ep∗,q∗‖D̂ −D∗‖2max ≤ C
(
ξ2
n + C1(KL)−

4β
d

)
,

where C1 = (bβc+ 1)4d2bβc+(β∨1) and the constant C depends only on (µ, σ,M).179

Furthermore, if180

W = 114(bβc+ 1)2dbβc+1,D = 21(bβc+ 1)2
⌈
n

d
2(d+2β) log2

(
8n

d
2(d+2β)

)⌉
,

then181

Ep∗,q∗‖D̂ −D∗‖2max ≤ C0(bβc+ 1)9d2bβc+(β∨3)n−
2β
d+2β , (10)

where the constant C0 depends only on (µ, σ,M).182

The convergence rate in (10) is optimal. This can be seen by considering a density estimation problem183

with i.i.d observations {Z(1)
q,i }

mq
i=1 from an underlying unknown density q1 on [0, 1]d. To estimate184

q1, we sample referencing observations {Z(1)
p,j }

mp
j=1 with mp ≥ mq, from a uniform distribution185

Unif([0, 1]d) whose density p1 ≡ 1. Thus, estimating the density ratio q1/p1 is equivalent to186

estimating q1. According to (4), we obtain the estimator q̂1 of q1. If log q1 ∈ Hβ([0, 1]d,M) where187

β = k + a with k ∈ N+ and a ∈ (0, 1], a neural estimator based on the network structure specified188

in Theorem 3 satisfies189

Ep1,q1‖q̂1 − q1‖2max ≤ C0(bβc+ 1)9d2bβc+(β∨3)m
− 2β
d+2β

q . (11)

Tsybakov (2008) showed that for a density belonging to the Hölder function class, the optimal190

minimax rate of the density estimation is Op
(
m
−2β/(d+2β)
q

)
. Hence, our estimator achieves the191

optimal minimax rate.192

In addition, the existing error bounds usually contain a prefactor depending on the dimension d193

exponentially, e.g. 2d (Devroye & Lugosi, 1996). Such a prefactor can be very large even for a194

moderately large d, which severely degrades the quality of an error bound. The prefactors in our195

results depend on d only polynomially and are much smaller than those in the existing bounds.196

Under Assumption 2, to derive a nonasymptotic error bound for the log-density ratio estimator R̂, we197

note that198

Ep∗,q∗‖R̂−R∗‖2max ≤ e2MEp∗,q∗‖D̂ −D∗‖2max.

Thus a bound for R̂ follows directly from a bound for D̂.199

Remark 2. Appendix A.2 contains some examples of p∗ and q∗ such that D∗ = log(q∗/p∗) ∈200

Hβ([0, 1]d,M).201

Remark 3. The hypercube [0, 1]d assumption for the density ratio is made for technical202

convenience. With an unbounded support, we can bound ‖DNN − D∗‖max using a truncation203

technique under some suitable additional assumptions, at a small price of an additional loga-204

rithm term in the error bound. Specifically, suppose the pdfs are supported on Rd. In addition205

to Assumptions 1-2 and the Hölder class assumption in Theorem 3, we need to further assume206

that max{Ep∗I(‖Z‖∞ ≥ log n), Eq∗I(‖Z‖∞ ≥ log n)} ≤ n−
2β
d+2β . For I = p or q, and any207

D ∈ FFNN, where FFNN is the function class of ReLU FNNs with widthW and depth D specified by208

W = 114(bβc+ 1)2dbβc+1, D = 21(bβc+ 1)2
⌈
n

d
2(d+2β) log2

(
8n

d
2(d+2β)

)⌉
,

we have209

‖DNN −D∗‖2max ≤ 328M2(bβc+ 1)4d2bβc+(β∨1)(2 log n)2bβcn−
2β
d+2β .

Compared with the upper bound of the approximation error in Theorem 3, when the pdfs are supported210

on Rd (unbounded case), we can derive a similar approximation error upper bound with an additional211

logrithmic factor (2 log n)2bβc. The details are given in Appendix A.3.212
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3.3 Circumventing the curse of dimensionality213

In many modern statistical and machine learning tasks, such as image processing and text analysis,214

the dimensionality d of the data can be high, which results in a very slow convergence rate even with215

a large sample size. This is known as the curse of dimensionality. Nonetheless, the data in various216

applications has been demonstrated to be supported or approximately supported in some subspaces217

or subsets with low intrinsic dimensionality (Nakada & Imaizumi, 2020). For regression problems,218

Nakada & Imaizumi (2020) have shown that DNNs can adaptively estimate the regression function219

through the low-dimensional structure of the data, and the resulting convergence rates no longer220

depend on the nominal high dimensionality d of the data, but on its low intrinsic dimension.221

Motivated by these advancements, we assume that the data is concentrated on an approximate compact222

Riemannian submanifoldM with the Riemannian dimension dM � d.223

Assumption 4. The target log-density ratio D∗ ∈ Hβ([0, 1]d,M) with β = k + a where224

k ∈ N+ and a ∈ (0, 1], and the data from the densities p∗, q∗ are concentrated on a setMρ ⊆ [0, 1]d225

defined as226

Mρ := {x ∈ [0, 1]d : there exists y ∈M, ‖x− y‖2 ≤ ρ},
whereM is a compact dM-dimensional Riemannian submanifold and ρ ∈ (0, 1).227

Theorem 4. Suppose Assumptions 1, 2 and 4 hold. Suppose that D∗ ∈ Hβ([0, 1]d,M) with228

β = k+ a, k ∈ N+ and a ∈ (0, 1]. If FFNN is the function class of ReLU FNNs with width and depth229

W = 38(bβc+ 1)2dδ
bβc+1Ldlog2(8L)e,D = 21(bβc+ 1)2Kdlog2(8K)e,

where K,L ∈ N+ and dδ = O
(
dM log(d/δ)/δ2

)
� d, then when M ≥ 1, n > Pdim(FFNN) and230

ρ ≤ (bβc+ 1)22βdβ−
1
2 d
bβc+(β−1/2)∨(1/2)
δ (KL)

− 2β
dδ ,

we have231

Ep∗,q∗‖D̂ −D∗‖2max ≤ C(1− δ)−2β
[
ξ2
n + C2(KL)

− 4β
dδ

]
,

where the constant C only depends on (µ, σ,M), C2 = (bβc + 1)4(2d)2βd
3β+(β∨1)
δ , and ξn is232

defined in (8).233

By Theorem 4, if we setW = 114(bβc+ 1)2dδ
bβc+1,D = 21(bβc+ 1)2

⌈
nζδ log2

(
8nζδ

)⌉
, with234

ζδ = dδ/(2(dδ + 2β)), then235

Ep∗,q∗‖D̂ −D∗‖2max ≤ C0C3(1− δ)−2βn
− 2β
dδ+2β , (12)

where the constant C0 only depends on (µ, σ,M) and C3 = (bβc +236

1)9 max{d2bβc+3
δ , (2d)2βd

3β+(β∨1)
δ }. The convergence rate n−2β/(dδ+2β) in (12) only de-237

pends on dδ � d, instead of the ambient dimension d. Therefore, Theorem 4 shows that a238

low-dimensional Riemannian manifold support assumption can alleviate the curse of dimensionality.239

4 Error analysis of the telescoping density-ratio estimator240

When the difference or the ‘gap’ between two densities is large, a single-ratio estimation method241

may perform poorly. This is referred to as the the density-chasm problem (Rhodes et al., 2020). To242

alleviate this problem, Rhodes et al. (2020) proposed an approach called Telescoping density-Ratio243

Estimation (TRE). This approach first gradually transports samples from q∗ to samples from p∗,244

creating a chain of intermediate datasets, then estimates the density ratio between consecutive datasets245

along this chain. The chained ratios are combined via a telescoping product which yields an estimate246

of the original density ratio. The experiments conducted by Rhodes et al. (2020) demonstrate that247

TRE can yield substantial improvements over existing single-ratio methods for mutual information248

estimation, representation learning and energy-based modelling.249

We now provide a theoretical analysis of TRE, which partially explains why TRE performs well. For250

notational simplicity, suppose np = nq ≡ n below.251

7



For k = 0, 1, . . . ,K, Rhodes et al. (2020) constructed a chain of intermediate samples connecting252

q∗ and p∗ by setting Zk,i = (1− α2
k)1/2Zq,i + αkZp,i, i = 1, . . . , n, where 0 = α0 < α1 < · · · <253

αK−1 < αK = 1, and used these samples to build a TRE.254

To simplify the analysis, we use a slightly different chain of intermediate samples as follows. For255

k = 0, 1, . . . ,K, let256

Zk,i = (1− δk,i)Zq,i + δk,iZp,i, i = 1, . . . , n, (13)

where δk,i, i = 1, . . . , n, are i.i.d. Bernoulli random variables with success probability αk.257

Let qk be the density of the synthetic dataZk,i constructed this way. We have qk(z) = (1−αk)q∗(z)+258

αkp
∗(z), k = 1, . . . ,K − 1. Therefore, the distribution of the samples from qk in the chain is a259

simple mixture of q∗ and p∗ with the mixing proportions 1− αk and αk, instead of a more complex260

convolution of two densities using the construction of Rhodes et al. (2020). As αk changes from261

α0 = 0 to αK = 1 over a grid {α0, α1, . . . , αK} ⊂ [0, 1], the distributions of the samples in the262

chain move gradually from q∗ to p∗. Let q0 = q∗ and qK ≡ p∗. Then,263

R∗(z) =
q∗(z)

p∗(z)
=

K−1∏
i=0

R∗i (z), z ∈ Z, (14)

where R∗i (z) = qi(z)/qi+1(z). For k = 0, 1, . . . ,K − 1, applying the neural density-ratio estimator264

with {Zk,j}nkj=1 and {Zk+1,j}
nk+1

j=1 yields an estimator R̂i of R∗i . Then the telescoping density ratio265

estimator of R∗ is
∏K−1
i=0 R̂i266

We consider the log-density ratio. Let D̂k be the neural estimator of D∗k ≡ log(qk/qk+1). Based on267

(14), the telescoping estimator of the log-density ratio D∗ ≡ logR∗ is268

D̂TRE =

K−1∑
k=0

D̂k. (15)

In what follows, we show that under certain conditions, the telescoping estimator has an improved269

asymptotic error bound. The intuition is as follows: when qk/qk+1 is bounded or qk(z)/qk+1(z)�270

q∗(z)/p∗(z) for z ∈ Z , where qk and qk+1 are the densities of the synthetic data {Zk,j}nj=1 and271

{Zk+1,j}nj=1, respectively, the truncation error for qk/qk+1 vanishes or is far less than that for q∗/p∗.272

This can help the telescoping density-ratio estimator perform better than a single-ratio estimator.273

Assume that q∗ ≥ c1 and c1 ≤ p∗ ≤ c2, where 0 < c1, c2 < ∞ are two constants. Thus,274

D∗ = log(q∗/p∗) ≥ log(c1/c2). Therefore, Assumption 3 is satisfied. For any finite set A ⊂ R,275

maxA denotes the maximal value in A. Let M = log(c2/c1) and M0 be a constant satisfying276

M0 ≥ maxA(2K)
M,α , (16)

where277

A(2K)
M,α =

{
M, 1

}
∪
{

log
1− αk−1

1− αk
, 1 ≤ k ≤ K − 1

}
∪
{

log
(eM − 1)αk + 1

(eM − 1)αk−1 + 1
, 1 ≤ k ≤ K − 1

}
.

Based on Theorem 2, we can establish an asymptotic error bound for the telescoping estimator D̂TRE278

defined in (15), with279

D̂k ∈ arg min
D∈F0

FNN

B̂kψ(eD),

where

B̂kψ(eD) =
1

n

n∑
i=1

L1(D(Zk+1,i)) +
1

n

n∑
i=1

L2(D(Zk,i)),

where L1 and L2 are defined in (5) and F0
FNN consists of DNNs D with ‖D‖∞ ≤ M0. To280

demonstrate the advantages of the telescoping estimator, we also consider the single-ratio estimator281

(SRE), D̂SRE ∈ arg minD∈F0
FNN
B̂ψ(eD).282
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Proposition 1. Assume that q∗ ≥ c1, c1 ≤ p∗ ≤ c2, where the constants 0 < c1 ≤ c2 < ∞,
and the samples {Zq,i}ni=1 from q∗ and {Zp,j}nj=1 from p∗ are independent. Then, there exists a
constant C0(µ, σ, c1) depending only on (µ, σ, c1) such that for

BSRE = eM0C0(µ, σ, c1)‖R∗ −R∗M0
‖p,

we have283

lim sup
n→∞

Ep∗,q∗‖D̂SRE −D∗‖2 ≤ BSRE,

lim sup
n→∞

Ep∗,q∗‖D̂TRE −D∗‖2 ≤ (1− αK−1)BSRE,

where ‖f‖2 =
[∫
Z f

2(z)dz
]1/2

for any square integrable function f .284

Proposition 1 shows that for a given sequence 0 = α0 < α1 < · · · < αK−1 < αK = 1 and a285

truncation level M0, the upper bound for the asymptotic L2-error of D̂TRE is reduced by a factor286

(1 − αK−1) with 0 < 1 − αK−1 < 1. This upper bound can be far less than that of D̂SRE when287

αK−1 is close to 1. Therefore, TRE can improve the asymptotic error bound over the bound for the288

single-ratio method.289

It is important to note that there is a tradeoff between the value of αK−1 and the truncation level290

M0 dictated by (16). For instance, with α1 ≤ · · · ≤ αK−2 fixed, the closer αK−1 is to 1, in291

view of (16), the larger M0 is. Larger αK−1 sharpens the pre-factor (1− αK−1) and larger M0 also292

improves ‖R∗ −R∗M0
‖p, but deteriorates the pre-factor eM0 .293

Proposition 1 is generally not applicable to the original chain of TRE. The difficulty is due to294

the possibly intensive oscillation of density ratios caused by the convolution form for the density295

of the sum of two random variables. We illustrate this by a toy example: suppose Zq, Zp are296

i.i.d. uniform random variables on [0, 1]. For any t ∈ (0, 1/2], (1 − t)Zq + tZp has density297

q∗t (z) = z
t(1−t)I{0 ≤ z ≤ t}+ 1

1−tI{t < z ≤ 1− t}+ 1−z
t(1−t)I{1− t < z ≤ 1}. In this case, q∗/q∗t298

is unbounded and oscillates sharply when z is close to 0 or 1. This makes it hard to estimate q∗/q∗t .299

However, the chain we used does not have this problem, which may be a good choice in practice.300

Additionally, we conduct simulation studies to evaluate the performance of our proposed mixing301

chain and the original convolution chain; see Table 2 for the results. The simulation settings are302

given in Appendix A.4. Table 2 shows that, for the models considered in the simulation studies, the303

proposed mixing chain performs comparably or better compared with the original convolution chain.304

Table 2: The MSEs averaged over 10 replications and the corresponding standard errors in parentheses
between the telescoping ratio estimate (TRE) of log density-ratio and its true value for the proposed
mixing chain (mTRE) and the original convolution chain (cTRE) under different settings, where n is
the training data sample size and K is the length of the chain. The bold one is the best in a specific
setting among the two estimates.

Setting Method (n,K)
(5000,5) (5000,10) (10000,5) (10000,10)

Beta mTRE(ours) 0.9850(0.0269) 0.8840(0.0180) 1.0109(0.0171) 0.9299(0.0194)
cTRE 1.4670(0.0606) 1.2935(0.0274) 1.3674(0.0625) 1.2850(0.0293)

Normal mTRE(ours) 2.7426(0.0370) 2.8330(0.0450) 2.7483(0.0367) 2.7813(0.0265)
cTRE 2.7987(0.0586) 2.7076(0.0293) 2.8184(0.0347) 2.7503(0.0297)

5 Related work: comparison with the NN-BD estimator305

There has been much work on the error analysis of nonparametric density-ratio estimation (Nguyen306

et al., 2010; Sugiyama et al., 2008; Kanamori et al., 2012a; Yamada et al., 2013). These results show307

that when the targeted density-ratio belongs to certain function space H, such as RKHS, and thus308

no approximation error is incurred, their estimators achieve certain nonparametric convergence rate309
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decided by the complexity ofH. Compared to these works, our results consider the approximation310

error using neural network functions and still achieves the minimax optimality under some mild311

conditions.312

Our work is most related to the paper by Kato & Teshima (2021), who proposed a non-negative313

Bregman divergence (NN-BD) method to tackle the possible over-fitting problem due to the unbound-314

edness of certain Bregman divergences. We compare our theoretical results with those for the NN-BD315

estimator of Kato & Teshima (2021). Using the notation in this paper, we restate two conditions316

required in Kato & Teshima (2021):317

(a) Let FRFNN be a class of FNNs with output taking values in [e−M , eM ] for some finite M > 0.318

The target density-ratio R∗ ∈ FRFNN. Moreover, for any function in FRFNN, its Frobenius norm of319

the parameter matrix Wj in the jth layer is bounded by Bj ≥ 0 and the activation functions are320

1-Lipschitz positive-homogeneous.321

(b) The function ψ(·) is σ-strongly convex. Let `1(t) = ψ∗(t)t − ψ(t) + A, `2(t) = −ψ̃(t), t ∈322

[e−M , eM ], where ψ∗(t) = Cnn{ψ′(t)t−ψ(t)}+ ψ̃(t). Here ψ̃(t) is a function bounded above, Cnn323

and A are user-selected constants. Suppose `1(·) and `2(·) are Lipschitz functions on [e−M , eM ].324

Under these two conditions, Kato & Teshima (2021) rewrote the BD in (3) as325

Bψ(R) = Ep`1(R(Z))− CnnEq`1(R(Z)) + Eq`2(R(Z)) + (1− Cnn)A, (17)

and proposed the density-ratio estimator R̂KT defined as326

R̂KT ∈ arg min
R∈FFNN

{ 1

nq

nq∑
i=1

`2(R(Zq,i)) +
[ 1

np

np∑
j=1

`1(R(Zp,j))−
Cnn
nq

nq∑
j=1

`1(R(Zq,j))
]

+

}
,

where [a]+ = max(0, a) for any a ∈ R. They showed that327

‖R̂KT −R∗‖p = Op

(
n−1/(2+a)

)
(18)

for any 0 ≤ a ≤ 2.328

According to Theorem 1, we have the following corollary for our density-ratio estimator R̂ = exp(D̂).329

Corollary 2. Under Assumption 1, when n ≥ Pdim(FRFNN), there exists a constant C depending330

only on (µ, σ,M) such that, for any γ ≥ 0, with probability at least 1− exp(−γ),331

‖R̂−R∗‖p ≤ C

(√
Pdim(FRFNN) log n

n
+

√
γ

n

)
.

Corollary 2 implies that ‖R̂−R∗‖p = Op
(√

log n/n
)
, when the true density-ratio R∗ ∈ FFNN. This332

convergence rate is slightly faster than the rate for R̂KT given in (18). Moreover, the boundedness333

assumption for the weights of the neural network functions, as imposed by Kato & Teshima (2021),334

is not needed. Corollary 2 also shows that, if the target ratio is assumed to belong to the optimization335

space (or hypothesis space), i.e., R∗ ∈ FRFNN without approximation error, then the convergence rate336

does not depend on the dimension of the data. In other words, the estimation of R∗ does not suffer337

from the curse of dimensionality. However, this is probably not realistic. Therefore, it is important to338

consider the approximation error due to the fact that R∗ 6∈ FRFNN in applications.339

6 Conclusions340

In this paper, we have established the non-asymptotic error bounds for the deep density-ratio estimator341

using the Bregman divergence criterion. Under reasonable conditions, we have shown that the deep342

density-ratio estimator achieves the optimal minimax convergence rate. When the data is supported343

on an approximate low-dimensional manifold, we have shown that the neural estimator can mitigate344

the curse of dimensionality. We have also analyzed the convergence properties of the telescoping345

density ratio estimator (Rhodes et al., 2020) and provided sufficient conditions under which it has a346

lower error bound than a single-ratio estimator.347
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A limitation of this work is that certain boundedness assumptions on the target density ratio such348

as Assumption 2 or 3 is needed. Also, when the boundedness assumption is partially relaxed as in349

Assumption 3, the error bound in Theorem 2 is not as sharp as that with the boundedness assumption350

in Theorem 1. It would be interesting to further relax or remove such assumptions. It would also be351

useful to improve the error bound in Theorem 2 if possible. These are interesting and challenging352

problems that deserve further study in the future.353
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A Appendix482

A.1 Theoretical Proofs483

In the appendix, we provide all the technical details and proofs of the theorems stated in the paper.484

Verification of (1): Equation (1 holds because485

Ep∗∆ψ(R∗(Z), R(Z))

= Ep∗ [ψ(R∗(Z))− ψ(R(Z))− ψ′(R(Z))(R∗(Z)−R(Z))]

= Ep∗ [ψ
′(R(Z))R(Z)− ψ(R(Z))]− Ep∗ [ψ′(R(Z))R∗(Z)] + Ep∗ [ψ(R∗(Z))]

= Ep∗ [ψ
′(R(Z))R(Z)− ψ(R(Z))]− Eq∗ [ψ′(R(Z))] + Ep∗ [ψ(R∗(Z))],
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where Ep∗ [ψ′(R(Z))R∗(Z)] = Eq∗ [ψ
′(R(Z))] by the definition of R∗. This verifies (1).486

We now prove the following lemmas.487

Lemma A.1. 1. If the convex function f : R → R is µ-smooth over R, then for any488

x, y ∈ R, the following inequality holds489

f(y) ≤ f(x) + f ′(x)(y − x) +
µ

2
(y − x)2.

2. Let f : R→ R be a first-order differentiable and convex function. If f is σ-strongly convex,490

then for any x, y ∈ R, the following inequality holds491

f(y) ≥ f(x) + f ′(x)(y − x) +
σ

2
(y − x)2.

Proof of Lemma A.1. The proof of Lemma A.1 is standard and can be found in Beck (2017).492

Lemma A.2. Under Assumptions 1-2, we have493

(a). There exist two constants c0 = σe−3M

2 , C0 = µe3M

2 , such that494

c0‖D −D∗‖2max ≤ Bψ
(
eD
)
− Bψ

(
eD
∗
)
,

and495

Bψ
(
eD
)
− Bψ

(
eD
∗
)
≤ C0‖D −D∗‖2max.

(b). For t1, t2 ∈ [−M,M ], there exist two constants C1, C2, such that496

|L1(t1)− L1(t2)| ≤ C1|t1 − t2|,

and497

|L2(t1)− L2(t2)| ≤ C2|t1 − t2|.
Actually, we can take C1 = 2e2Mµ,C2 = eMµ.498

Proof of Lemma A.2. (a) Let ∆ψ(x, y) := ψ(x) − ψ(y) − ψ′(x)(x − y). Since499

Ep∗∆ψ(eD(Z), eD
∗(Z)) = Bψ(eD)−Bψ(eD

∗
) and ψ is µ-smooth and σ-strongly convex, by Lemma500

A.1,501

σ

2
Ep∗{eD(Z) − eD

∗(Z)}2 ≤ Ep∗∆ψ(eD(Z), eD
∗(Z)) ≤ µ

2
Ep∗{eD(Z) − eD

∗(Z)}2,

and then by Assumption 2,502

σe−2M

2
Ep∗{D(Z)−D∗(Z)}2 ≤ Ep∗∆ψ(eD(Z), eD

∗(Z)) ≤ µe2M

2
Ep∗{D(Z)−D∗(Z)}2. (A.1)

As Ep∗{D(Z)−D∗(Z)}2 = Eq∗e
−D∗(Z){D(Z)−D∗(Z)}2 and ‖D∗‖∞ ≤M , we have503

e−MEq∗{D(Z)−D∗(Z)}2 ≤ Ep∗{D(Z)−D∗(Z)}2 ≤ eMEq∗{D(Z)−D∗(Z)}2. (A.2)

Let c0 = σe−3M

2 , C0 = µe3M

2 , then (A.1) and (A.2) imply that504

c0‖D −D∗‖2max ≤ Bψ
(
eD
)
− Bψ

(
eD
∗
)
≤ C0‖D −D∗‖2max.

(b) Obviously, for t1, t2 ∈ [−M,M ],505

|L1(t1)− L1(t2)| = |ψ′(et1)et1 − ψ(et1)− (ψ′(et2)et2 − ψ(et2))|
≤ et1 |ψ′(et1)− ψ′(et2)|+ |ψ(et1)− ψ(et2)− ψ′(et2)(et1 − et2)|

≤ eMµ|et1 − et2 |+ µ

2
|et1 − et2 |2

≤ 2eMµ|et1 − et2 | (As |et1 − et2 | ≤ 2eM )

≤ 2e2Mµ|t1 − t2|.
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and506

|L2(t1)− L2(t2)| = |ψ′(et1)− ψ′(et2)|
≤ µ|et1 − et2 |
≤ eMµ|t1 − t2|.

The proof of the lemma is completed.507

Proof of Theorem 1. For notational convenience, denote εn = ‖DNN − D∗‖max and use EI to508

denote EI∗ , I = p, q. Recall that EnI denotes the expectation with respect to (w.r.t) the empirical509

distribution of {ZI,t}nIt=1 for I = p, q. As D̂ ∈ arg minD∈FFNN
Lnp,nq (D), where Lnp,nq (D) =510

1/np
∑np
j=1 L1(D(Zp,j)) + 1/nq

∑nq
i=1 L2(D(Zq,i)), we have511

c0‖D̂ −D∗‖2max

≤ Bψ
(
eD̂
)
− Bψ

(
eD
∗
)

≤ Bψ
(
eD̂
)
− Bψ

(
eD
∗
)
− Lnp,nq (D̂) + Lnp,nq (DNN)

= Bψ
(
eD̂
)
− Lm,n(D̂)−

{
Bψ
(
eD
∗
)
− Lm,n(D∗)

}
+

{
Lnp,nq (DNN)− Lnp,nq (D∗)

}
= (Ep∗ − Enp){L1(D̂)− L1(D∗)}+ (Eq − Enq ){L2(D̂)− L2(D∗)}
+ Enp{L1(DNN)− L1(D∗)}+ Enq{L2(DNN)− L2(D∗)}. (A.3)

By Theorem 2.1 in Bartlett et al. (2005), with probability at least 1− exp(−γ1),512

Enp{L1(DNN)−L1(D∗)} ≤ Ep{L1(DNN)−L1(D∗)}+
√

2C1‖DNN−D∗‖max

√
γ1

n
+

16C1Mγ1

3n
.

(A.4)
Also, with probability at least 1− exp(−γ1),513

Enq{L2(DNN)−L2(D∗)} ≤ Eq{L2(DNN)−L2(D∗)}+
√

2C2‖DNN−D∗‖max

√
γ1

n
+

16C2Mγ1

3n
.

(A.5)
The inequalities (A.4) and (A.5) together imply that with probability at least 1− 2 exp(−γ1),514

Enp{L1(DNN)− L1(D∗)}+ Enq{L2(DNN)− L2(D∗)}
≤ Ep{L1(DNN)− L1(D∗)}+ Eq{L2(DNN)− L2(D∗)}

+
√

2(C1 + C2)‖DNN −D∗‖max

√
γ1

n
+

16(C1 + C2)Mγ1

3n

= Bψ
(
eDNN

)
− Bψ

(
eD
∗
)

+

√
2γ1

n
(C1 + C2)‖DNN −D∗‖max +

16(C1 + C2)Mγ1

3n

≤ C0‖DNN −D∗‖2max +

√
2γ1

n
(C1 + C2)‖DNN −D∗‖max +

16(C1 + C2)Mγ1

3n
. (A.6)

Step 1. Let g = (D −D∗)2, then g ≤ 4M2 by Assumption 2. If ‖D −D∗‖max ≤ r, then515

varp(g) ≤ Ep(g2) = Ep(D −D∗)4

≤ 4M2Ep(D −D∗)2

≤ 4M2r2.

Regarding g as a function of D −D∗, we have516

|g(D1 −D∗)− g(D2 −D∗)| = |D2
1 − 2D1D

∗ − (D2
2 − 2D2D

∗)|
= |(D1 +D2 − 2D∗)(D1 −D2)|
= |(D1 +D2 − 2D∗){(D1 −D∗)− (D2 −D∗)}|
≤ 4M |(D1 −D∗)− (D2 −D∗)|.
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Thus g can be viewed as the function of D −D∗ with a Lipschitz constant 4M . Denote FD
∗,r

FNN =517

{D ∈ FFNN, ‖D −D∗‖max ≤ r}, and518

RnIF = sup
f∈F

1

nI

nI∑
i=1

ηIi f(ZI,i), I = p, q,

where ηIi , i = 1, 2, . . . , nI are i.i.d. Rademacher variables. For the rest of the proof of Theorem519

1, we use EηRnIF to denote the conditional expectation of RnIF w.r.t ηIi , i = 1, 2, . . . , nI , given520

ZI,i, i = 1, 2, . . . , nI and EI,ηRnIF to denote the expectation of RnIF jointly w.r.t ηIi , ZI,i, i =521

1, 2, . . . , nI . Again, by Theorem 2.1 in Bartlett et al. (2005), with probability at least 1− exp(−γ1),522

‖D −D∗‖2p,np − ‖D −D
∗‖2p

≤ 3Ep,ηRnp

{
(D −D∗)2 : D ∈ FD

∗,r
FNN

}
+ 2

√
2γ1

n
M +

16M2

3

γ1

n

≤ 24MEp,ηRnp

{
(D −D∗) : D ∈ FD

∗,r
FNN

}
+ 2

√
2γ1

n
Mr +

16M2

3

γ1

n
, (A.7)

where the last inequality follows from Talagland’s contraction theorem. Similarly, with probability at523

least 1− exp(−γ1),524

‖D−D∗‖2q,nq−‖D−D
∗‖2q ≤ 24MEq,ηRnq

{
(D −D∗) : D ∈ FD

∗,r
FNN

}
+2

√
2γ1

n
Mr+

16M2

3

γ1

n
.

(A.8)
Let525

Rn(r)

24M
= max
I∈{p,q}

{
EI,ηRnI

{
(D −D∗) : D ∈ FD

∗,r
FNN

}}
.

When526

r2 ≥ Rn(r), r2 ≥ 16M2γ

3n
, (A.9)

(A.7) and (A.8) indicate that with probability at least 1− 2 exp(−γ1),527

‖D −D∗‖2np,nq = max{‖D −D∗‖2p,np , ‖D −D
∗‖2q,nq}

≤ max{‖D −D∗‖2p, ‖D −D∗‖2q}+Rn(r) + 2

√
2γ1

n
Mr +

16M2

3

γ1

n

= ‖D −D∗‖2max +Rn(r) + 2

√
2γ1

n
Mr +

16M2

3

γ1

n

≤ (2r)2.

Thus, when (A.9) holds, with probability at least 1− 2 exp(−γ1),528

‖D −D∗‖max ≤ r ⇒ ‖D −D∗‖np,nq ≤ 2r. (A.10)

Step 2. Suppose ‖D̂ −D∗‖max ≤ r0 and let529

Gi =
{
Li(D)− Li(D∗) : D ∈ FD

∗,r0
FNN

}
, i = 1, 2.

For each (I, i) ∈ {(p, 1), (q, 2)}, with probability at least 1− 2 exp(−γ1),530

(EI − EnI ){Li(D̂)− Li(D∗)} ≤ 6EηRnIGi +
√

2Cir0

√
γ1

n
+

46CiMγ1

3n
. (A.11)

Denote F̂D
∗,r

FNN = {D ∈ FFNN, ‖D −D∗‖np,nq ≤ r}. By (A.10) in Step 1, when r2
0 ≥ Rn(r0) and531

r2
0 ≥ 16M2γ1/(3n), with probability at least 1− 2 exp(−γ1), for each (I, i) ∈ {(p, 1), (q, 2)},532

EηRnIGi ≤ 2CiEηRnI

{
(D −D∗) : D ∈ FD

∗,r0
FNN

}
≤ 2CiEηRnI

{
(D −D∗) : D ∈ F̂D

∗,2r0
FNN

}
.

17



Denote F̂D
∗,r

I = {D ∈ FFNN, ‖D − D∗‖I,nI ≤ r}. When n ≥ Pdim(FFNN), r0 ≥ 1/n and533

n ≥ (2eM)2, we have534

EηRnI{(D −D∗) : D ∈ F̂D
∗,2r0

I } ≤ 64r0

√
Pdim(FFNN) log n

n
, (A.12)

and thus535

EηRnIGi ≤ 128Cir0

√
Pdim(FFNN) log n

n
. (A.13)

Combining (A.3) (A.6) (A.11) and (A.13), with probability at least 1− 8 exp(−γ1), we have536

c0‖D̂ −D∗‖2max ≤ 768(C1 + C2)r0

√
Pdim(FFNN) log n

n

+

√
2γ1

n
(C1 + C2)r0 +

46(C1 + C2)Mγ1

3n
+ C0ε

2
n

+

√
2γ1

n
(C1 + C2)εn +

16(C1 + C2)Mγ1

3n

= (C1 + C2)r0

(
768

√
Pdim(FFNN) log n

n
+

√
2γ1

n

)

+C0ε
2
n +

√
2γ1

n
(C1 + C2)εn +

62(C1 + C2)Mγ1

3n
.

Therefore, when max
{√

Pdim(FFNN) log n/n, εn

}
� r0, there exists r1 � r0 such that ‖D̂ −537

D∗‖max � r1.538

Step 3. Let r∗ = inf{r ≥ 0 : Rn(s) ≤ s2, for s ≥ r} and E =539 {
‖D −D∗‖np,nq ≤ 4r∗ for all D ∈ FD

∗,2r∗
FNN

}
. We intend to prove540

r∗ ≤ κM
√

Pdim(FFNN) log n

n
, κ = 24× 130. (A.14)

When r∗ ≤ 2
√

3M
√

log n/n/3, the inequality is trivial. When r∗ ≥ 2
√

3M
√

log n/n/3, by the541

result in Step 1, P (E) ≥ 1− 2/n. As a result,542

r2
∗ ≤ Rn(r∗)

≤ Rn(2r∗)

= 24M max
I∈{p,q}

{
EI,ηRnI

{
(D −D∗) : D ∈ FD

∗,2r∗
FNN

}}
.

For each I ∈ {p, q},543

EI,ηRnI

{
(D −D∗) : D ∈ FD

∗,2r∗
FNN

}
= EIEηRnI

{
(D −D∗) : D ∈ FD

∗,2r∗
FNN

}
= EIEηRnI

{
(D −D∗) : D ∈ FD

∗,2r∗
FNN

}
(IE + IEc)

≤ EIEηRnI

{
(D −D∗) : D ∈ F̂D

∗,4r∗
FNN

}
+

4M

n
.

It follows from (A.12) that544

r2
∗ ≤ 24M

(
128r∗

√
Pdim(FFNN) log n

n
+

4M

n

)

= 24M

(
128r∗

√
Pdim(FFNN) log n

n
+ r∗ ·

4M

n
· 1

r∗

)

≤ 24Mr∗

(
128

√
Pdim(FFNN) log n

n
+

√
3

n log n

)

≤ κ

√
Pdim(FFNN) log n

n
Mr∗,
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where κ = 24× 130. Thus, r∗ ≤ κM
√

Pdim(FFNN) log n/n and (A.14) is proved.545

Step 4. Let Bmax(D∗, r) = {D ∈ FFNN, ‖D − D∗‖max ≤ r}, r̄ ≥ max
(√

log n/n, r∗

)
and546

l =
⌊
log2(2M/

√
log n/n)

⌋
. Then, the neural network function space FFNN can be divided into547

Bmax(D∗, r̄), Bmax(D∗, 2r̄)\Bmax(D∗, r̄), . . . , Bmax(D∗, 2lr̄)\Bmax(D∗, 2l−1r̄).

As r̄ ≥ r∗, it then follows from the definition of r∗ that r̄2 ≥ Rn(r̄). Further, if r̄2 ≥548

16M2γ1/(3n), according to (A.10) in Step 1, with probability at least 1 − 2l exp(−γ1), for any549

j = 1, 2, . . . , l,550

‖D −D∗‖max ≤ 2j r̄ ⇒ ‖D −D∗‖np,nq ≤ 2j+1r̄.

Suppose that for some j ≤ l, D̂ ∈ Bmax(D∗, 2j r̄)\Bmax(D∗, 2j−1r̄), then by the results in Step 2,551

with probability at least 1− 8 exp(−γ1),552

c0‖D̂ −D∗‖2max ≤ (C1 + C2)2j r̄

(
768

√
Pdim(FFNN) log n

n
+

√
2γ1

n

)

+C0ε
2
n +

√
2γ1

n
(C1 + C2)εn +

62(C1 + C2)Mγ1

3n
.

If553

1

c0
(C1 + C2)

(
768

√
Pdim(FFNN) logN

N
+
√

2

√
γ1

N

)
≤ 1

8
2j r̄, (A.15)

and554

1

c0

[
C0ε

2
N +
√

2(C1 + C2)εN

√
γ1

N
+

62(C1 + C2)Mγ1

3N

]
≤ 1

8
22j r̄2, (A.16)

then555

‖D̂ −D∗‖2max ≤ 22j−2r̄2 ⇔ ‖D̂ −D∗‖max ≤ 2j−1r̄.

In short, to obtain this inequality, we need r̄ satisfying (A.15), (A.16) and r̄ ≥556

max
(√

log n/n, 4
√

3M
√
γ1/n/3, r∗

)
. As r∗ ≤ κM

√
Pdim(FFNN) log n/n, there exists a con-557

stant C∗ = C∗(c0, C0, C1, C2,M) = C ′(µ, σ,M) such that558

r̄ = C∗

(√
Pdim(FFNN) log n

n
+

√
γ1

n
+ εn

)
satisfies all the requirements. As a result, with probability at least 1− 10l exp(−γ1),559

‖D̂ −D∗‖max ≤ r̄ and ‖D̂ −D∗‖np,nq ≤ 2r̄.

Let γ1 = log 10l + γ, l = blog2(2M/
√

log n/n)c, there exists C = C(c0, C0, C1, C2,M) =560

C(µ, σ,M) such that with probability at least 1− exp(−γ),561

‖D̂ −D∗‖max ≤ r̄ ≤ C

(√
Pdim(FFNN) log n

n
+

√
γ

n
+ εn

)
,

and562

‖D̂ −D∗‖np,nq ≤ 2C

(√
Pdim(FFNN) log n

n
+

√
γ

n
+ εn

)
.

The proof of Theorem 1 is completed.563

Lemma A.3. The following excess risk decomposition always holds:564

Bψ
(
eD̂
)
− Bψ

(
eD
∗
)

=

{
Bψ
(
eD̂
)
− inf
D∈FFNN

Bψ
(
eD
)}

+

{
inf

D∈FFNN
Bψ
(
eD
)
− Bψ

(
eD
∗
)}

.(A.17)
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Under Assumptions 1 and 3, when n ≥ Pdim(FFNN), there exist three constants C,C0, C∗, with565

C,C0 depending only on (µ, σ,M) and C∗ depending only on (µ, σ), such that566

Ep∗,q∗

{
Bψ
(
eD̂
)
− inf
D∈FFNN

Bψ
(
eD
)}
≤ C

√
Pdim(FFNN) log n

n
, (A.18)

and567

Ep∗,q∗‖D̂ −D∗‖2p ≤ C0

√
Pdim(FFNN) log n

n
+ C∗e

2M inf
D∈FFNN

‖eD − eD
∗
‖2p.

Proof of Lemma A.3. To show (A.18) is the key step in the proof of this theorem, thus we focus on568

the proof of (A.18). Let569

D0 ∈ arg min
D∈FFNN

Bψ
(
eD
)
.

Then,570

Ep∗,q∗

{
Bψ
(
eD̂
)
− inf
D∈FFNN

Bψ
(
eD
)}

= Ep∗,q∗
{
Bψ
(
eD̂
)
− Bψ

(
eD0
)}

≤ Ep∗,q∗
{
Bψ
(
eD̂
)
− B̂ψ

(
eD̂
)

+ B̂ψ
(
eD̂
)
− B̂ψ

(
eD0
)}

+ Ep∗,q∗
{
B̂ψ
(
eD0
)
− Bψ

(
eD0
)}

≤ 2Ep∗,q∗

{
sup

D∈FFNN

|B̂ψ
(
eD
)
− Bψ

(
eD
)
|
}
. (A.19)

By the symmetrization technique, Talagrand’s lemma, (A.12) and the fact that ‖D‖∞ ≤ M for any571

D ∈ FFNN, we can easily get the inequality (A.18) through (A.19).572

Proof of Theorem 2. Theorem 2 is a direct corollary of Lemma A.3. We omit the details here.573

Proof of Theorem 3. Since D∗ ∈ Hβ([0, 1]d,M) with β = k + a where k ∈ N+ and a ∈ (0, 1],574

by Lemma 1, for the FFNN, a function class consists of ReLU FNN with width W = 38(bβc +575

1)2dbβc+1Ldlog2(8L)e and depth D = 21(bβc+ 1)2Kdlog2(8K)e, where K,L ∈ N+, there exists576

a function φ0 ∈ FFNN such that577

sup
x∈[0,1]d\HB,δ

|D∗ − φ0| ≤ 18M(bβc+ 1)2dbβc+(β∨1)/2(KL)−
2β
d , (A.20)

where HB,δ = ∪di=1

{
x = [x1, . . . , xd] : xi ∈ ∪B−1

b=1 (b/B − δ, b/B)
}
, B = d(KL)2/de, δ ∈578

(0, 1/(3B)]. As DNN ∈ arg minD∈FFNN
‖D −D∗‖max, then579

‖DNN −D∗‖2max ≤ ‖φ0 −D∗‖2max.

By the result in (A.20), for I = p or q, we have580

‖φ0 −D∗‖2I =

∫
[0,1]d\HB,δ

|D∗ − φ0|2I∗(x)dx+

∫
HB,δ

|D∗ − φ0|2I∗(x)dx

≤ 324M2(bβc+ 1)4d2bβc+(β∨1)(KL)−
4β
d + 4M2

∫
HB,δ

I∗(x)dx.

As p∗(·), q∗(·) are the density functions of some measures on [0, 1]d which are absolutely continuous581

with respect to the Lebesgue measure and δ can be arbitrarily small,
∫
HB,δ

I0(x)dx is also arbitrarily582

small. Thus we have583

‖φ0 −D∗‖2I ≤ 324M2(bβc+ 1)4d2bβc+(β∨1)(KL)−
4β
d

20



and584

‖DNN −D∗‖2max ≤ ‖φ0 −D∗‖2max

≤ 324M2(bβc+ 1)4d2bβc+(β∨1)(KL)−
4β
d

= 324M2C1(β, d)(KL)−
4β
d .

By Corollary 1, there exists a constant C1 only depending on (µ, σ,M) such that585

Ep∗,q∗‖D̂ −D∗‖2max ≤ C1

(
Pdim(FFNN) log n

n
+ ‖DNN −D∗‖2max

)
≤ C1

{
Pdim(FFNN) log n

n
+ 324M2C1(β, d)(KL)−

4β
d

}
≤ 324M2C1

{
Pdim(FFNN) log n

n
+ C1(β, d)(KL)−

4β
d

}
. (A.21)

This completes the proof of the first part of Theorem 3.586

As for the second part of this theorem, based on Theorem 6 in Bartlett et al. (2019), for a specific587

ReLU network fφ, where φ contains the parameters in the network, there exists a universal constant588

C2 such that589

Pdim(FFNN) ≤ C2SD logS,
where S is the total number of parameters in the network fφ. For a ReLU FNN with width590

W and depth D, it can be easily checked that S = O(W2D). Now for W = 114(bβc +591

1)2dbβc+1, D = 21(bβc + 1)2
⌈
n

d
2(d+2β) log2

(
8n

d
2(d+2β)

)⌉
, and W,D satisfy O(W2D) =592

O
(

(bβc+ 1)6d2bβc+2
⌈
n

d
2(d+2β) log−3 n

⌉)
, which means L = 1,K =

⌈
n

d
2(d+2β)

⌉
, and there exist593

three universal constants C3, C4, C5 such that594

SD logS log n

n

≤ C3

{
(bβc+ 1)6d2bβc+2

⌈
n

d
2(d+2β) log−3 n

⌉}
×
(

log
[
C3

{
(bβc+ 1)6d2bβc+2

⌈
n

d
2(d+2β) log−3 n

⌉}])
×
{

21(bβc+ 1)2
⌈
n

d
2(d+2β) log2

(
8n

d
2(d+2β)

)⌉
log n/n

}
≤ C4

n

{
(bβc+ 1)8d2bβc+2n

2d
2(d+2β) log−1 n

}
×
{

6 log(bβc+ 1) + 2(bβc+ 1) log d+
d

2(d+ 2β)
log n

}
≤ C4

n

{
(bβc+ 1)8d2bβc+2n

2d
2(d+2β) log−1 n

}
{6(bβc+ 1) + 2(bβc+ 1)d+ log n}

≤ C5(bβc+ 1)9d2bβc+3n−
2β
d+2β . (A.22)

It follows from (A.21) that595

Ep∗,q∗‖D̂ −D∗‖2max

≤ 324M2C1

{
Pdim(FFNN) log n

n
+ C1(β, d)(KL)−

4β
d

}
≤ 324M2C1

{
C2SD logS log n

n
+ C1(β, d)(KL)−

4β
d

}
≤ 324M2C1

{
C2C5(bβc+ 1)9d2bβc+3n−

2β
d+2β + (bβc+ 1)4d2bβc+(β∨1)n−

2β
d+2β

}
≤ 324M2C1(C2C5 + 1)(bβc+ 1)9d2bβc+(β∨3)n−

2β
d+2β .

This completes the proof of the second part of Theorem 3.596
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Proof of Theorem 4. Based on Theorem 3.1 in Baraniuk & Wakin (2009), there exists a linear597

projection A ∈ Rdδ×d such that AAT = dIdδ/dδ , where Idδ ∈ Rdδ×dδ is an identity matrix, and for598

any x, y ∈M,599

(1− δ)‖x− y‖2 ≤ ‖Ax−Ay‖2 ≤ (1 + δ)‖x− y‖2. (A.23)

Then we have600

A(Mρ) ⊆ A
(
[0, 1]d

)
⊆
[
− d√

dδ
,
d√
dδ

]dδ
.

Note that for any z ∈ A(M), there exits a unique x ∈M such that z = Ax. Otherwise, suppose we601

can find x, x′ ∈M, x 6= x′ such that z = Ax = Ax′, then by (A.23), we know ‖x− x′‖2 = 0 and602

thus x = x′, which contradicts the assumption that x 6= x′. This uniqueness allows us to define a603

linear operator SL : A(M)→M such that A[SL(z)] = z. By (A.23), we have604

(1− δ)‖SL(z1)− SL(z2)‖2 ≤ ‖z1 − z2‖2 ≤ (1 + δ)‖SL(z1)− SL(z2)‖2.

This implies that the norm of SL belongs to [1/(1 + δ), 1/(1− δ)]. For the high-dimensional605

functionD∗ : [0, 1]d → R whose support isMρ, it has a approximate low-dimensional representation606

D̃∗ as follows:607

D̃∗(z) = D∗(SL(z)), ∀ z ∈ A(M).

As D∗ ∈ Hβ([0, 1]d,M) with β = k + a where k ∈ N+ and a ∈ (0, 1], we have608

D̃∗ ∈ Hβ
(
A(M),M/(1− δ)β

)
. By the extended version of Whitney’s extension theorem609

in Fefferman (2006), since A(M) ⊆ A
(
[0, 1]d

)
⊆
[
−d/
√
dδ, d/

√
dδ
]dδ , there exists D̃∗E ∈610

Hβ
([
−d/
√
dδ, d/

√
dδ
]dδ

,M/(1− δ)β
)

such that D̃∗E ≡ D̃∗ on A(M). If W = 38(bβc +611

1)2dδ
bβc+1Ldlog2(8L)e and D = 21(bβc + 1)2Kdlog2(8K)e, by the first result of Lemma 1,612

there exists a function φ0 implemented by a ReLU network with widthW and depth D such that613

sup
z∈[0,1]dδ\HdδB,ε

∣∣∣∣D̃∗E (2dz − d1dδ√
dδ

)
− φ0(z)

∣∣∣∣ ≤ 18M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ .

where Hdδ
B,ε = ∪dδi=1

{
x = [x1, x2, . . . , xdδ ] : xi ∈ ∪B−1

b=1 (b/B − ε, b/B)
}

and B =614

d(KL)2/de, ε ∈ (0, 1/(3B)]. Thus615

sup

z∈
[
− d√

dδ
, d√

dδ

]dδ
\H̃dδB,ε

∣∣∣∣D̃∗E(z)− φ0

(√
dδz + d1dδ

2d

)∣∣∣∣
≤ 18M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ ,

where H̃dδ
B,ε =

{
(2dt− d1dδ)/

√
dδ : t ∈ Hdδ

B,ε

}
.616

Let φ̃0(x) = φ0

(
(
√
dδAx+ d1dδ)/(2d)

)
and H̄d

∗B,ε =617 {
x ∈ [0, 1]d×d : (

√
dδAx+ d1dδ)/(2d) ∈ Hdδ

B,ε

}
. It can be easily checked that φ̃0 is also a function618

implemented by a ReLU network with the same structure as φ0, except that the input layer of φ̃0 has619

d units, instead of dδ units. For any x ∈ Mρ\H̄d
∗B,ε, Ax ∈

[
−d/
√
dδ, d/

√
dδ
]dδ \H̃dδ

B,ε and there620

exists a x′ ∈ M satisfying ‖x− x′‖2 ≤ ρ. Since D̃∗E ∈ Hβ
([
−d/
√
dδ, d/

√
dδ
]dδ

,M/(1− δ)β
)

621
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and D∗ ∈ Hβ([0, 1]d,M),622

|φ̃0(x)−D∗(x)|
≤ |φ̃0(x)− D̃∗E(Ax)|+ |D̃∗E(Ax)− D̃∗E(Ax′)|+ |D̃∗E(Ax′)−D∗(x)|

≤ 18M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ +

M

(1− δ)β
‖Ax′ −Ax‖2 + ρM

≤ 18M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ +

M
√
d

(1− δ)β
√
dδ
ρ+ ρM

≤ 18M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ +

2M
√
d

(1− δ)β
√
dδ
ρ

≤ 20M

(1− δ)β
(bβc+ 1)2(2d)βd

bβc+(β∨1+β)/2
δ (KL)

− 2β
dδ , (A.24)

where the last inequality holds when ρ ≤ (bβc + 1)22βdβ−
1
2 d
bβc+(β−1/2)∨(1/2)
δ (KL)

− 2β
dδ . As623

DNN ∈ arg minD∈FFNN
‖D −D∗‖max,624

‖DNN −D∗‖2max ≤ ‖φ̃0 −D∗‖2max.

By the result in (A.24), for I = p or q, it holds625

‖φ̃0 −D∗‖2I =

∫
[0,1]d\HB,δ

|D∗ − φ̃0|2I∗(x)dx+

∫
HB,δ

|D∗ − φ̃0|2I∗(x)dx

≤ 400M2

(1− δ)2β
(bβc+ 1)4(2d)2βdβ∨1+3β

δ (KL)
− 4β
dδ +

4M2

(1− δ)2β

∫
H̄d∗B,ε

I∗(x)dx.

As p∗(·), q∗(·) are the density functions of some measures on [0, 1]d which are absolutely continuous626

w.r.t the Lebesgue measure and ε can be arbitrarily small for the given δ,
∫
H̄d∗B,ε

I0(x)dx is also627

arbitrarily small for the given δ. Thus we have628

‖φ̃0 −D∗‖2I ≤ 400M2

(1− δ)2β
(bβc+ 1)4(2d)2βdβ∨1+3β

δ (KL)
− 4β
dδ

and629

‖DNN −D∗‖2max ≤ ‖φ0 −D∗‖2max

≤ 400M2

(1− δ)2β
(bβc+ 1)4(2d)2βdβ∨1+3β

δ (KL)
− 4β
dδ

=
400M2

(1− δ)2β
C2(β, d, dδ)(KL)

− 4β
dδ .

By Corollary 1, there exists a constant C1 only depending on (µ, σ,M), such that630

Ep∗,q∗‖D̂ −D∗‖2max

≤ C1

(
Pdim(FFNN) log n

n
+ ‖DNN −D∗‖2max

)
≤ C1

{
Pdim(FFNN) log n

n
+

400M2

(1− δ)2β
C2(β, d, dδ)(KL)

− 4β
dδ

}
≤ 400M2C1

(1− δ)2β

{
Pdim(FFNN) log n

n
+ C2(β, d, dδ)(KL)

− 4β
dδ

}
. (A.25)

For631

W = 114(bβc+ 1)2dδ
bβc+1,

632

D = 21(bβc+ 1)2

⌈
n

dδ
2(dδ+2β) log2

(
8n

dδ
2(dδ+2β)

)⌉
,
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andW,D satisfy633

O(W2D) = O
(

(bβc+ 1)6d
2bβc+2
δ

⌈
n

dδ
2(dδ+2β) log−3 n

⌉)
,

along the derivation of (A.22), there exists a universal constants C∗ such that634

Pdim(FFNN) log n

n
≤ C∗(bβc+ 1)9d

2bβc+3
δ n

− 2β
dδ+2β .

Based on the result of (A.25),635

Ep∗,q∗‖D̂ −D∗‖2max

≤ 400M2C1

(1− δ)2β

{
Pdim(FFNN) log n

n
+ C2(β, d, dδ)(KL)

− 4β
dδ

}
≤ 400M2C1

(1− δ)2β

{
C∗(bβc+ 1)9d

2bβc+3
δ n

− 2β
dδ+2β + C2(β, d, dδ)n

− 2β
dδ+2β

}
≤ 800M2C1C

∗

(1− δ)2β
(bβc+ 1)9 max

{
d

2bβc+3
δ , (2d)2βdβ∨1+3β

δ

}
n
− 2β
dδ+2β

=
800M2C1C

∗C3(β, d, dδ)

(1− δ)2β
n
− 2β
dδ+2β .

This completes the proof of the theorem and (12).636

Proof of Proposition 1. For k = 0, . . . ,K − 2, the densities qk(), qk+1() of the synthetic data637

{Zk,j}nj=1 and {Zk+1,j}nj=1 satisfy638

qk(t)

qk+1(t)
=

(1− αk)q∗(z) + αkp
∗(z)

(1− αk+1)q∗(z) + αk+1p∗(z)
∈
[

(1− e−M )αk + e−M

(1− e−M )αk+1 + e−M
,

1− αk
1− αk+1

]
.

As ‖f‖2 = (
∫
Z f

2(x)dx)
1
2 , then for any density g satisfying g ≥ c, ‖f‖2 =

(∫
Z f

2(x)dx
) 1

2 ≤639 (∫
Z f

2(x)g(x)/cdx
) 1

2 = ‖f‖g/
√
c. Using an appropriateF0

FNN whose elementD satisfies ‖D‖∞ ≤640

M0, for the direct estimate D̂SRE, as log(q∗/p∗) is only bounded from below by −M0, by Theorem641

2, we have642

lim sup
n→∞

Ep∗,q∗‖D̂SRE −D∗‖2 ≤ eM0C∗(µ, σ, c1)‖R∗ −R∗M0
‖p.

For k = 0, 1, . . . ,K − 2, as | log{qk(t)/qk+1(t)}| is bounded by M0, by Corollary 1, we have643

lim sup
n→∞

Ep∗,q∗‖D̂k −D∗k‖2 = 0.

LetR∗K−1,M0
= (1−αK−1)R∗M0

+αK−1. As the logarithm of R∗K−1 = (1−αK−1)q∗/p∗+αK−1644

is also only bounded from below by −M0, again, by Theorem 2,645

lim sup
n→∞

Ep∗,q∗‖D̂K−1 −D∗K−1‖2 ≤ eM0C∗(µ, σ, c1)‖R∗K−1 −R∗K−1,M0
‖p

= (1− αK−1)eM0C∗(µ, σ, c1)‖R∗ −R∗M0
‖p.

Thus646

lim sup
n→∞

Ep∗,q∗‖D̂TRE −D∗‖2 ≤
K−1∑
k=0

lim sup
n→∞

Ep∗,q∗‖D̂k −D∗k‖2

= lim sup
n→∞

Ep∗,q∗‖D̂K−1 −D∗K−1‖2

≤ (1− αK−1)eM0C∗(µ, σ, c1)‖R∗ −R∗M0
‖p.

This completes the proof of Proposition 1.647
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A.2 Examples of Hölder function class648

Let p∗ be the density function of a truncated d-dimensional multivariate Gaussian with mean zero649

and covariance matrix Σp ∈ Rd×d in [0, 1]d. That means650

p∗(z) = exp(−z′Σ−1
p z/2)/c(Σp), c(Σp) =

∫
[0,1]d

exp(−t′Σ−1
p t/2)dt, z ∈ [0, 1]d.

Similarly, let651

q∗(z) = exp(−z′Σ−1
q z/2)/c(Σq)

for some positive definite matrix Σq. For any matrix A ∈ Rd×d, Ai,· is the ith row of A for652

i = 1, 2, . . . , d and653

‖A‖2,∞ := sup
‖z‖∞≤1

‖Az‖2.

Then,654

D∗(z) = log
q∗(z)

p∗(z)
=

1

2
z′(Σ−1

p − Σ−1
q )z + log(c(Σp)− c(Σq)), z ∈ [0, 1]d.

LetM = max
{

1
2 (‖Σ−1/2

p ‖22,∞ + ‖Σ−1/2
q ‖22,∞) + | log[c(Σp)− c(Σq)]|, ‖(Σ−1

p − Σ−1
q )i,·‖2, i = 1, 2, . . . , d

}
.655

It is straightforward to check that656

D∗ ∈ H2([0, 1]d,M).

It implies the Hölder smoothness parameter β is 2 for this example.657

Moreover, the truncated multivariate Gaussian distributions considered above are special cases of the658

exponential distribution class defined below. Define the density function class659

Exp(β,B) :=

{
p(z) = exp(g(z))/cg : z ∈ [0, 1]d, cg =

∫
[0,1]d

exp(g(t))dt, g ∈ Hβ([0, 1]d, B)

}
.

Suppose that Σ ∈ Rd×d is positive definite and let g(z) = z′Σz/2. Then, g ∈ H2([0, 1]d,MΣ),660

where MΣ = max
{

1
2 (‖Σ1/2‖22,∞, ‖Σi,·‖2, i = 1, 2, . . . , d

}
. If p∗, q∗ ∈ Exp(β,B), we have661

D∗(z) = log[q∗(z)/p∗(z)] ∈ Hβ([0, 1]d, 4B).662

A.3 Extension to unbounded support case663

In fact, our Theorem 1, Corollary 1 and Theorem 2 do not rely on the hypercube assumption. To664

relax the hypercube assumption to allow unbounded support, we need to study the upper bound665

for the approximation error ‖DNN − D∗‖max carefully. With unbounded support, we may bound666

‖DNN −D∗‖max by the truncation technique under some additional assumptions, at a small price of667

an additional logarithm term in the error bound.668

Specifically, when the pdfs are supported on Rd, to bound the approximation error as in Theorem669

3, aside from Assumptions 1-2 and the Hölder class assumption, we need to further assume that670

max{Ep∗I(‖Z‖∞ ≥ log n), Eq∗I(‖Z‖∞ ≥ log n)} ≤ n−
2β
d+2β . For I = p or q, and anyD ∈ FFNN,671

where FFNN is the function class of ReLU FNNs with widthW and depth D specified by672

W = 114(bβc+ 1)2dbβc+1, D = 21(bβc+ 1)2
⌈
n

d
2(d+2β) log2

(
8n

d
2(d+2β)

)⌉
,

we have673

EI∗ [D(Z)−D∗(Z)]2

≤ EI∗ [{D(Z)−D∗(Z)}2I(‖Z‖∞ ≥ log n)] + EI∗ [{D(Z)−D∗(Z)}2I(‖Z‖∞ ≤ log n)]

≤ 4M2EI∗I(‖Z‖∞ ≥ log n) + EI∗ [{D(Z)−D∗(Z)}2I(‖Z‖∞ ≤ log n)],

where the second inequality follows from the facts that ‖D∗‖∞ ≤M, ‖D‖∞ ≤M under Assumption674

2. Since D∗ ∈ Hβ(Rd,M), D∗(2t log n− log n1d) ∈ Hβ([0, 1]d, (2 log n)bβcM) as a function of675

t, where 1d is the d-dimensional all-one vector. By Lemma 1, there exists a function φ0 ∈ FFNN such676

that677

sup
t∈[0,1]d\HB,δ

|D∗(2t log n− log n1d)− φ0| ≤ 18(2 log n)bβcM(bβc+ 1)2dbβc+(β∨1)/2n−
β

d+2β ,
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where HB,δ = ∪di=1

{
t = [t1, . . . , td] : ti ∈ ∪B−1

b=1 (b/B − δ, b/B)
}
, B = dn

1
d+2β e, δ ∈678

(0, 1/(3B)]. Thus679

sup
z∈[− logn,logn]d\H̃dB,ε

∣∣∣∣D∗(z)− φ0

(
z + log n1d

2 log n

)∣∣∣∣ ≤ 18(2 log n)bβcM(bβc+ 1)2dbβc+(β∨1)/2n−
β

d+2β ,

where H̃d
B,δ =

{
2t log n− log n : t ∈ Hd

B,δ

}
. Let φ̃0(z) = φ0

(
z+logn1d

2 logn

)
∈ FFNN. As δ can be680

arbitrarily small, it then follows from similar lines as in the proof of Theorem 3 that681

EI∗ [{φ̃0(Z)−D∗(Z)}2I(‖Z‖∞ ≤ log n)] ≤ 324M2(bβc+ 1)4d2bβc+(β∨1)(2 log n)2bβcn−
2β
d+2β .

Since DNN ∈ arg minD∈FFNN
‖D −D∗‖max, we have682

‖DNN −D∗‖2max ≤ ‖φ̃0 −D∗‖2max

≤ max
I=p,q

{4M2EI∗I(‖Z‖∞ ≥ log n) + EI∗ [{φ̃0(Z)−D∗(Z)}2I(‖Z‖∞ ≤ log n)]}

≤ 328M2(bβc+ 1)4d2bβc+(β∨1)(2 log n)2bβcn−
2β
d+2β .

Compared with the upper bound of the approximation error in Theorem 3, when the pdfs are supported683

on Rd (unbounded case), a similar approximation error upper bound can be derived with an additional684

logrithmic factor (2 log n)2bβc.685

A.4 Simulation setting and implementation details686

Our simulation settings are as follows.687

• Beta setting: Let Z = (Z1, Z2, . . . , Zp)
> ∈ Rp be a random vector of interest, where688

Z1, Z2, . . . , Zp are i.i.d. random variables following Beta distribution, denoted by689

Beta(α, β). Set p∗ as the p.d.f of Beta(2.2, 1.5) and q∗ as the p.d.f of Beta(2, 2). In690

this setting, we set p = 5.691

• Normal setting: Let Z = (Z1, Z2, . . . , Zd, Zd+1, Zd+2, . . . , Z2d)
> ∈ R2d be some random692

vector of interest. Let p∗ be the p.d.f of N(0, I2d) and q∗ be the p.d.f of N(0,Σ(ρ)), where693

Σ(ρ) = (σρi,j) ∈ R2d×2d and694

σρi,j =


1, i = j;

ρ, |i− j| = d

0, otherwise.
, i, j = 1, 2, . . . , 2d;

In this setting, we set d = 5 and ρ = 0.9.695

We apply the Adam algorithm (Kingma & Ba, 2014) in Pytorch with a learning rate lr = 0.0001 and696

a weight decay parameter wd = 0.0001. A neural network with 2 hidden layers with widths (64, 64)697

and ReLU activation function, is used in the experiment. The maximum number of epoches is 20000.698

In this experiment, the training data size n is 5000 (10000). A validation data is used. The batch size699

is 500 (1000), and an early-stopping technique is applied with patience = 100 for Beta setting and700

patience = 1000 for Normal setting, where patience is the number of epochs until termination if no701

improvement is made on the validation dataset. The experiment is conducted on a laptop with an702

Intel(R) Core(TM) i7-8750H @ 2.20GHz CPU having 6 cores. We use the LR-Bregman divergence in703

this example. For the sequence 0 = α0 < α1 < · · · < αK−1 < αK = 1, we use the linearly spaced704

αk’s, that is αk = k/K, k = 0, 1, 2, . . . ,K.705

A.5 The MNIST dataset706

We now apply the proposed mixing chain (13) for density ratio estimation to the MNIST dataset707

(LeCun et al., 2010). In the implementation, to accelerate the computation, we use the subsampling708

method with a training subsample size of 20,000 and a relatively small DenseNet network structure709

(Huang et al., 2017); see Table A.1 for the specification of the network architectures. Similarly710

to the results in Table 1 of Rhodes et al. (2020), we calculate the average negative log-likelihood711

(ANLL) in bits per dimension (bpd, smaller is better). We denote the estimate based on the proposed712
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mixing chain (13) with the chain length B by "mTRE-B". The batch size is 512, lr = 0.001 and713

wd = 0.0001. The maximum number of epoches is 1000. The reference distribution for our mTRE714

is taken to be the standard Gaussian distribution. Here, the reference distribution is the same as the715

noise distribution in the MNIST experiments of (Rhodes et al., 2020). We obtain the averaged ANLLs716

and their empirical standard errors for mTRE-5 and mTRE-10 over 5 random training subsamples.717

As a comparison, we use the results with the Gaussian noise for the direct single ratio estimate and718

the direct estimate based on the original convolution chain (cTRE) obtained from Table 1 in (Rhodes719

et al., 2020) as the benchmarks. Note that cTRE and the direct single ratio estimate are based on the720

full training sample, where the sample size is 60,000. The result for the cTRE presented in Table A.2721

is the best one among the cTRE’s with the chain length B ∈ {5, 10, 15, 20, 25, 30} in Table 1 in the722

online supplemental of Rhodes et al. (2020). Our results are presented in Table A.2.723

From Table A.2, we see that mTRE is significantly better than the single ratio estimate and comparable724

with cTRE. The difference between the results from mTRE and cTRE is not statistically significant.725

We note that the training sample size for mTRE we used is restricted to 20,000, due to the memory726

limitation of the laptop used in the computation. In comparison, the sample size for cTRE is 60,000.727

Table A.1: Architecture for mTRE

Layers Details Output size
Convolution 3 × 3 Conv 12 × 28 × 28
Transition Layer 1 BN, ReLU, 2 × 2 Average Pool,1 × 1 Conv 12 × 14 × 14
Dense Block 1 BN, 1 × 1 Conv, BN, 3 × 3 Conv 24 × 14 × 14
Transition Layer 1 BN, ReLU, 2 × 2 Average Pool,1 × 1 Conv 12 × 7 × 7
Dense Block 1 BN, 1 × 1 Conv, BN, 3 × 3 Conv 24 × 7 × 7
Pooling BN, ReLU, 7 × 7 Average Pool, Reshape 24
Fully connected Linear 1

Table A.2: Average negative log-likelihood (ANLL) in bits per dimension (bpd, smaller is better).
For the proposed mixing chain estimate with the chain length B (mTRE-B), the ANLLs are averaged
over 5 random training subsamples, where the subsample size is 20,000, and the corresponding
standard errors are in parentheses. The cTRE is the direct estimate based on the original convolution
chain (cTRE). The results for the direct single ratio estimate and the direct cTRE are obtained from
Table 1 in the seminal paper (Rhodes et al., 2020) and we use them as the benchmarks. The cTRE and
the direct single ratio estimate are based on the full training sample, where the sample size is 60,000.

Estimator mTRE-5 mTRE-10 Direct Single ratio Direct cTRE
ANLL 1.40 (0.0045) 1.39 (0.0077) 1.96 1.39
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